A Novel Lens Antenna Design Based on a Bed of Nails Metasurface for New Generation Mobile Devices

Paola, Carla di; Zhao, Kun; Zhang, Shuai; Pedersen, Gert Frølund

Published in:
2020 14th European Conference on Antennas and Propagation (EuCAP)

DOI (link to publication from Publisher):
10.23919/EuCAP48036.2020.9135354

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Abstract—This paper presents a lens antenna concept with multibeam performance in the mm-wave band for the next generation mobile devices. The lens consists of metallic vias, etched in the substrate with different height, to obtain different permittivity. The goal is to correct the phase distribution of the incoming electromagnetic wave, to radiate towards the desired direction with high gain. The -10 dB impedance bandwidth of 4 GHz is achieved around the central frequency of 38 GHz. Three beams pointing different directions allow to cover the angle range of 68° in azimuth with realized gain higher than 5 dBi. Simulations of the lens antenna placed on the top left corner of a mobile phone PCB confirm the performance of the prototype. Moreover, the total scan pattern (TSP) highlights wide coverage of 110° in elevation, where the gain is overall more than 6 dBi, reaching peak values of 9.4 dBi.

Index Terms—Mobile terminal antenna, lens antenna, metasurface, multibeam antenna, 38 GHz.

I. INTRODUCTION

The high speed data transfer required by the upcoming fifth generation mobile communication system (5G) cannot be satisfied by the conventional frequency bands. Therefore, centimeter-wave (cm-wave) and millimeter-wave (mm-wave) bands are selected in order to provide wider bandwidths, that support higher capacity and massive device connectivity and lower end to-end latency and better user experience [1]–[4]. However, by increasing the operating frequency, the free-space path loss becomes more significant than at the sub-6 GHz 4G bands, according to the Friis transmission equation [5].

Thus, high gain antennas are needed, in order to mitigate the free space attenuation [6]. Since high gain leads to narrow radiation beamwidth, antennas able to form multiple beams in different direction, reconfiguring their radiation patterns in real time [7], are needed to achieve a large beam steering range. Therefore, beam-steerable directional phased arrays result good candidates, thanks to their property to realize beam forming and obtain the desired coverage, for both the base station and the mobile device of the emerging 5G systems, as reported in [8]–[10]. Nevertheless, phased antenna arrays, despite their ability to shape and adjust the radiation pattern electronically, present bandwidth limitations, since phase shifters do not provide the correct rate of change of phase with frequency, to guarantee the same beam pointing over a wide bandwidth [11]–[13]. Moreover, they are responsible of the increased insertion loss of the entire structure.

Alternative beamforming networks (BFNs) are based on circuit or quasi-optics techniques. The first require delay lines and couplers, and their main representative is the Butler matrix [14]–[16]. Characterized by a compact layered topology and a wide achievable bandwidth, this feeding network suffers, though, from high loss. Quasi-optic techniques employing a lens aim to obtain size reduction and guarantee low profile, low cost and high performance. On the other hand, this BFN is affected by narrow band, as demonstrated in the research works in [17]–[20]. However, the BFN featuring the lens is one of the most promising low cost solutions for high frequency and highly directive antennas, ensuring low circuit complexity and lower loss compared to the other solutions mentioned above [21]. Lenses are exploited to modify the amplitude and the phase of the electromagnetic waves arriving from the sources, changing thus the field distribution at the aperture of the antenna, with the goal to obtain the desired beam pointing.

State of the art optically transformed lenses are ideal candidate for the design of highly directive antennas. Realized ad hoc for a specific feeding, hence the name bespoke lenses, they allow better radiation performance compared to homogeneous lenses [22], though their implementation in 3D will be made possible and affordable in the future, thanks to the development of 3D printers, which exploit low-loss dielectric materials.

Two-dimensional lenses, characterized by parallel plates with different dielectric materials inside, are then preferred, even though limited by the number of materials commercially available. This problem is overcome in [23]–[26] by drilling holes with different diameter and density or modifying also the thickness of the dielectric material, in order to obtain larger number of discrete levels of permittivity.

Planar lenses can also be realized with metasurfaces at a low manufacturing cost. Metasurfaces give the opportunity to realize fully metallic lenses, which have lower losses than dielectrics at higher frequencies. However, the narrow band of operation represents a limitation to their implementation. Higher symmetries have been demonstrated to generate low-dispersive unit cells [27], which allow to realize planar lenses with ultrawideband properties [28], [29]. The most common configurations for metasurfaces are periodic arrays of patches.
or holey metallic surfaces placed over a dielectric slab [30] and the bed of nails [31].

A novel lens design for mobile handset application, based on the second configuration, is presented in this paper. A bed of nails is employed in order to map the excitation fields originated from the feeding ports to the desired amplitude and phase distributions at the input of the radiating elements. This is accomplished by using groups of metallized vias etched in the PCB with different height, in order to modify the refractive index of the substrate. A parallel plate resonator placed on both sides of the PCB is selected as the matching layers for the lens antenna. It allows a -10 dB impedance bandwidth of 4 GHz, around the central frequency of 38 GHz, relatively wide for a lens antenna of this kind. The possibility to implement the proposed prototype on a PCB substrate with small thickness makes it feasible for mobile handset application. Moreover, the small clearance of less than 3 mm fulfills one of the requirements of the new generation mobile devices. Three beams with different directions can be generated to cover the angle range wider than 60° with gain higher than 5 dBi.

The paper is organized as follows. The main parts of the proposed lens antenna are described in detail in Section II. In Section III, the analysis conducted on the simulated structure is presented and discussed. The performance of the prototype placed in the corner of the mobile phone PCB are commented in Section IV. Finally, Section V concludes the paper.

II. STRUCTURE OF THE LENS ANTENNA

Figure 1 shows the design of the proposed lens antenna. Implemented in a substrate with dielectric constant $\varepsilon_r = 2.805$, width $W = 26$ mm, length $Hl + Hc = 19.4$ mm and thickness $T = 1.5$ mm, coated on both sides by a layer of copper, it consists of three main parts.

The first is the feeding region. Three waveguide ports are selected for the numerical study conducted using the electromagnetic simulator CST Microwave Studio 2019.

The following part is the beam forming network, the lens realized with the matasurface based on the bed of nails configuration. As reported in Fig. 1(b), it is a symmetric structure made up of metallic vias etched in the substrate, having the same diameter of 0.5 mm, the same center-to-center distance of 0.5 mm but different height, in order to get different value of permittivity. In particular, the central vias (red) are the highest, giving thus the highest permittivity, that decreases moving to the edges, where the vias are gradually shorter. In addition, another group of vias (brown), smaller than the red ones, is located in the center, in order to match the portion with the highest permittivity with the rest of the substrate with low permittivity. The dimensions are listed in Table I. This discretization, changing the propagation constant of the guided mode, allows to adjust the electromagnetic wave phase distribution at the input of the radiating elements, to direct the beam to the desired direction.

The matching layers, a parallel plate resonator with height $\lambda/4$, are placed in the last section corresponding to the small clearance $Hc = 2.4$ mm.

![Fig. 1. (a) Perspective and (b) top view of the geometric structure of the proposed antenna for 5G mobile-phones. For a better view of the vias, the substrate is hidden and the metal layer on top is transparent.](image-url)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Vias Color</th>
<th>Vias Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1.5</td>
<td>red</td>
<td>0.72</td>
</tr>
<tr>
<td>W</td>
<td>26</td>
<td>pink</td>
<td>0.68</td>
</tr>
<tr>
<td>Hl</td>
<td>17</td>
<td>blue</td>
<td>0.56</td>
</tr>
<tr>
<td>Hc</td>
<td>2.4</td>
<td>green</td>
<td>0.35</td>
</tr>
<tr>
<td>Hp</td>
<td>1.9</td>
<td>brown</td>
<td>0.5</td>
</tr>
</tbody>
</table>

III. LENS ANTENNA PERFORMANCE

The curves representing the S-parameter characteristics of the proposed lens antenna are reported in Fig. 2. The simulated -10 dB bandwidth is $35.6 - 39.6$ GHz around the central frequency of 38 GHz. In this interval S_{22} presents matching problems and, even though the value is not higher than -6 dB, it needs to be optimized, since it affects the realized gain. The mutual coupling between the ports 1 and 2 is due to the reflections inside the BFN. However, around 38 GHz it is below -15 dB.

The realization of the desired beam pointing, as introduced before, is accomplished by controlling the phase distribution of the electromagnetic wave through the etching of metallic vias in the substrate. In particular, as shown in Fig. 3, the high permittivity region created by the presence of the highest vias, allows to slower the spherical wave generated from port 1, obtaining a plane wave at the input of the radiating elements, with consequent radiation to the top. In the same way, the excitation field originated from port 2 is accelerated.
when encountering the area with lower permittivity, given by the shorter vias, and decelerated in the center, allowing the resulting plane wave to propagate to the left and the patches to radiate in the corresponding direction.

The effectiveness of the metallic vias is confirmed by the 3D radiation patterns generated at 38 GHz, shown in Fig. 4. They prove that the lens allows the electromagnetic waves originated at port 2 and 3 to be bended and radiate towards the opposite direction. In fact, the excitation from port 2 on the right produces a beam pointing to the left (Fig. 4(a)) and vice versa for port 3 (Fig. 4(c)). Moreover, the breaking effect played by the central vias, reducing the phase velocity of the spherical wave coming from port 1, results in the radiation directed to the top (Fig. 4(b)). The three beams scan an angle range wider than 60° in azimuth, as highlighted by the envelope plotted in Fig. 5. In fact, at \(\theta = 90° \), the beam is steered from 56° to 124° along \(\phi \) with realized gain higher than 5 dBi. In particular, the first radiation scans the interval 70° < \(\phi \) < 110° with peak gain of 6.2 dBi at 77° and 103°. The second and third beam cover 14° each, reaching the maximum gain of 6.6 dBi at 62° and 118°.

As expected, the main beam is very narrow at high frequency.
radiation in Fig. 7(a), the maximum gain along θ is observed when $\phi = 75^\circ$ and symmetrically 105°. In particular, realized gain higher than 6 dBi is evaluated in the interval $54^\circ < \theta < 126^\circ$. Examining the radiation patterns related to port 2 and 3, respectively in Fig. 7(b) and 7(c), the highest gain is reached in a smaller interval $63^\circ < \theta < 117^\circ$ and exactly at $\phi = 60^\circ$ for port 3 and symmetrically $\phi = 120^\circ$ for port 2.

Finally, the total scan pattern, being the 3-D envelope of the three individual patterns, allows a better understanding of the radiation performance of the lens antenna. Looking at Fig. 8, it is possible to state that the expected beam steering of 68° is obtained in azimuth, with corresponding 110° scanning in elevation. The realized gain is overall higher than 6 dBi, reaching the peak value of 9.4 dBi.

This work proposes a new lens antenna for the next generation beam steerable arrays. The main purpose of the design is to obtain multibeam performance in the mm-wave band and is achieved through the implementation of a lens, a metasurface based on the bed of nails configuration, and employing a parallel plate resonator as the matching layers. The goal of the lens, consisting of vias etched symmetrically in the substrate with different height, is to map the electromagnetic wave generated from the feeding ports to the desired amplitude and phase distributions at the input of the radiating elements, in order to obtain the desired beam pointing. In particular, in the configuration analyzed, three different excitations cover the angle range of 60° in azimuth with realized gain higher than 5 dBi at 38 GHz. The prototype can be implemented on a PCB substrate with small thickness, resulting a good candidate for mobile handset application. In fact, placing it on the top left corner of the mobile phone PCB, the performance are confirmed at the selected frequency. Future work aims to enhance the design, in order to improve the impedance matching and increase the realized gain. In addition, applying glide symmetry, it is possible to enlarge the bandwidth and adding more feeding ports allows to increase the number of beams. The following step consists in replacing the waveguide ports with coaxial cables and consequent realization of the prototype.

ACKNOWLEDGMENTS

The work presented in this paper has been conducted under the framework of the RANGE project, supported by The Innovation Fund Denmark together with industry partners: WiSpry, AAC and Sony Mobile.

REFERENCES

