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User-Centric Resource Allocation with
Two-Dimensional Reverse Pricing in Mobile

Communication Services
Jinho Choi, Sang Yeob Jung, Seong-Lyun Kim, Dong Min Kim, and Petar Popovski

Abstract: Reverse pricing has been recognized as an effective tool
to handle demand variability and uncertainty in the travel industry
(e.g., airlines and hotels). To investigate its viability in mobile com-
munication services, as a benchmark case, we first consider that a
single mobile network operator (MNO) adopts (MNO-driven) for-
ward pricing only, taking into account heterogeneous and stochas-
tic user demands. To effectively deal with the drawbacks of for-
ward pricing only, we propose (user-driven) two-dimensional re-
verse pricing on top of forward pricing and design a ξ-approximate
polynomial-time algorithm that can maximize the revenue of the
MNO. Through analytical and numerical results, we show that the
proposed scheme can achieve “triple-win” solutions: Higher aver-
age network capacity utilization, the increase in the average rev-
enue of the MNO, and the increment in the total average payoff of
the users. To verify its feasibility in practice, we further implement
its real prototype and perform experimental studies. We show that
the proposed scheme still creates triple-win solutions in practice.
Our findings provide a new outlook on resource allocation, and de-
sign guidelines for adopting two-dimensional reverse pricing on top
of forward pricing.

Index Terms: Heterogeneous and stochastic user demands, mobile
communications, resource allocation, revenue management, two-
dimensional reverse pricing.

I. INTRODUCTION

TO cope with the ever-increasing growth in mobile data traf-
fic, recent years have witnessed the changing landscape

of pricing as a congestion management tool in mobile com-
munication services [1], [2]. Deviating from a flat-rate pricing
scheme where a user is charged with a fixed payment irrespec-
tive of resource consumption [3], most mobile network oper-
ators (MNOs) currently employ a usage-based pricing scheme
where a user is charged proportionally to the amount of re-
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Fig. 1. Data usage patterns for 10 recruited users for a particular hour each day
(between 1:00 p.m. to 2:00 p.m.) from May 28 to June 17, in which we only
measured 3G and 4G data.

sources consumed [4]. However, its critical drawback stems
from charging all users the same usage fee at any time, regard-
less of actual network conditions. This could inevitably lead to a
lose-lose situation for both users and MNOs, when facing highly
volatile and uncertain demand patterns over different times of
the day.

The aim of this paper is how to design a resource alloca-
tion scheme that handles unwanted/ unexpected demand fluc-
tuations effectively. Recent measurement studies uncover strik-
ing temporal distributions of the mobile data traffic [5]–[8]. In
response, researchers from both academia and industry have tai-
lored MNO-driven pricing to the temporal distribution of net-
work demand. From here on, we will use the term “forward
pricing” to denote “MNO-driven pricing.” In order to reduce
peak-to-average ratios of network demand, time-dependent for-
ward pricing have been designed to encourage users to shift a
portion of their demand to the off-peak hours with lower prices
[9]–[13]. However, a key issue here is to what extent the pre-
diction of user preferences about rearranging it from peak to
off-peak hours is accurate. Our measurement, performed over
three weeks, shows that even the same user prefers distinctive
data usage patterns for a particular hour each day (see Fig. 1).
These variability and uncertainty in demand make the adoption
of time-dependent pricing particularly challenging. Rather than
predicting or overcoming such demand characteristics, how to
utilize them is of great practical interest for designing novel pric-
ing mechanisms.

As a complement to forward pricing, in this paper, we propose
(user-driven) two-dimensional reverse pricing on top of forward
pricing for embracing heterogeneous and stochastic user de-
mands wisely, while reducing computational complexity com-
pared to the auction-based pricing schemes [14], [15]. In this

1229-2370/19/$10.00 c© 2019 KICS
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scheme, a single MNO first asks users to pre-specify their re-
source demands based on forward pricing. Each user then in-
forms the MNO of his resource demand by maximizing his
payoff, the difference between its utility and payment. In re-
turn for this self-reported information based on forward pricing,
the MNO empowers each user to become a price maker, rather
than merely a price taker. The self-reports on resource demands
may be biased (either underestimated or overestimated) due to
knowledge bias (i.e., lack of knowledge of how much resources
the users will consume) or rating bias (i.e., unwillingness to esti-
mate their resource demands). In practice, there may exist some
discrepancies between actual (optimal) and self-reported ones.
As demonstrated in [16], however, their correlations are moder-
ate to strong. For mathematical tractability, we thus assume that
each user is aware of his optimal demand.

Extending our previous work [17] where each user places
only the bid price (the per-unit price that he is willing to pay)
on a given resource quantity, each user can now submit a two-
dimensional bid consisting of the bid price and the correspond-
ing resource quantity. If he wins the bid, then he is allowed to
spend his desired resource quantity at his submitted bid price;
otherwise, he is allocated his pre-specified resource quantity
from the MNO at the forward price per unit resource. Intuitively,
the superiority of the proposed scheme is its natural ability to
deal with the demand uncertainty. However, the challenge here
is two-fold: (i) How to incentivize the users to submit their two-
dimensional bids, and (ii) how to determine multiple winners to
maximize the revenue of the MNO.

This paper endeavors to design such two-dimensional reverse
pricing on top of forward pricing to answer both challenges.
As a benchmark case, we first consider that the MNO adopts
the forward pricing scheme only, considering the heterogeneous
and stochastic network demand. To this end, we use a two-stage
Stackelberg game to capture the interaction between the MNO
and the users. In Stage I, the MNO announces the price per
unit resource to maximize its expected revenue subject to both
demand uncertainty and capacity constraint. In Stage II, each
user determines his optimal resource demand to maximize the
payoff. Based on obtained results, we study how to utilize two-
dimensional reverse pricing in conjunction with forward pricing,
and quantify the effects of the proposed scheme in terms of the
average network capacity utilization, the average revenue of the
MNO, and the total average payoff of the users.

The main contributions and results of this paper are summa-
rized in the following.
• Forward pricing only: We study the MNO’s revenue max-

imization problem with forward pricing as a chance-
constrained programming problem. Here, we consider het-
erogeneous and stochastic user demands that make our model
and analysis different from prior works. For computational
tractability, we use a deterministic approximation method and
propose a ε-optimal approximate linear-time algorithm.

• Two-dimensional reverse pricing on top of forward pric-
ing: We study the MNO’s revenue maximization problem
with two-dimensional reverse pricing on top of forward pric-
ing as a 0/1 knapsack problem. To this end, we propose a
ξ-approximate polynomial-time algorithm. We show that the
proposed scheme can achieve “triple-win” solutions: Higher

average network capacity utilization, the increase in the aver-
age revenue of the MNO, and the increment in the total aver-
age payoff of the users.

• Experimental studies: To verify the feasibility of the proposed
scheme, we implement its real prototype and perform experi-
mental studies. We show that the proposed scheme still create
triple-win solutions in practice.
The remainder of this paper is organized as follows. We

present the system model in Section II. We analyze the revenue
maximization of the MNO in Section III. In this section, the
MNO employs forward pricing only, whereas in Section IV, the
MNO adopts two-dimensional reverse pricing on top of forward
pricing. We provide numerical and experimental results to val-
idate the proposed studies in Section V. Finally, we conclude
this paper in Section VI.

II. SYSTEM MODEL

To abstract the interaction between a single MNO and users,
and to introduce our two-dimensional reverse pricing smoothly,
without loss of generality, we consider a specific system model
hereafter. This, however, does not mean that our scheme is
only applicable to such specific model. Now let us consider a
resource-constrained network with a total amount of available
resource Q (e.g., bandwidth, data amount, etc.). The MNO al-
locates the resource to a set of N = {∞,∈, · · ·,N} of users.

We consider a time-slotted system where the resource
scheduling horizon is divided into a set T , {∞, · · ·, T } of
time slots. In general, users tend to use more data traffic in af-
ternoon and evening, while the reverse is true in morning and
night. Note that this diurnal pattern has been demonstrated by
a number of studies [5]–[8]. To characterize such temporal de-
mand pattern across users, yet be still simple enough for ana-
lytical tractability, we assume that the resource demand of each
user is randomly and independently distributed over each time
slot, but not identically distributed across different time slots1.
Accordingly, we here focus on the case of T = 1 and the results
obtained here can be extended to the general case of T > 1.
We thus drop the time index T from all the parameters for the
analysis.

For a given time slot, let us define si as the resource demand
of user i. If the demand si is satisfied through resource allo-
cation, then each user i ∈ N has a following stochastic utility
function

ui(θi, δi, si) = (θi + δi) ln(1 + si), (1)

where θi is the (average) deterministic willingness to pay of user
i, and δi is the stochastic willingness to pay of user i with zero
mean. In fact, θi is a value that indicates the instinctual state
of the user and is difficult to grasp accurately. However, it is
possible to statistically deduce the value by performing a sealed-
bid auction repeatedly as in the proposed method. Note that the

1In the papers [9], [12], the authors deal with the demand shift problem in time
domain. They assume that users can delay their demand in the future, and thus
the user’s traffic consumptions among time slots are dependent. It may reflect
the characteristics in reality better. However, based on the experimental results,
we confirmed that the user’s characteristics are well approximated to the beta
distribution even when the dependency is not taken into consideration.
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utility function (1) reflects the property of diminishing marginal
returns, and has been widely used to model resource allocation
in mobile communication services [2], [18].

In this work, we consider two types of pricing schemes.
1. Forward Pricing only: The MNO sets the ex-ante unit price p

subject to both demand uncertainty and capacity constraint.
As the price p usually remains constant for long periods
of time (i.e., months or years), the aim of the MNO is to
maximize its expected revenue. In this scheme, each user
i ∈ N acts as a price taker and adjusts his resource demand
si in accordance with his time varying demand preferences
over time. It implies that some residual uncertainty stem-
ming from the actual demand fluctuations may lead to under-
utilization of network capacity.

2. Two-Dimensional Reverse Pricing on top of Forward Pric-
ing: To effectively handle unwanted/unexpected demand
fluctuations, the MNO allows each user i ∈ N to submit a
two-dimensional bid (bi, qi) in return for pre-specifying his
resource demand si based on the forward price p. To be more
specific, in this scheme, the MNO acts as an bid-taker and
selects multiple users (winners) to maximize its revenue. On
the other hand, each user i ∈ N acts as a bidder and submits a
two-dimensional bid (bi, qi) to the MNO for maximizing his
payoff as well as reporting his demand si based on the for-
ward price p in priori. If user i wins the bid, then he receives
the resource allocation qi at his bid price bi. Otherwise, user
i gets the resource allocation si at the price p.

III. BENCHMARK SCENARIO: FORWARD PRICING
ONLY

As a benchmark case, we first consider that the MNO employs
the forward pricing scheme only. In this case, the MNO decides
the ex-ante price per unit resource p to maximize its expected
revenue under both demand uncertainty and capacity constraint
in Stage I. In Stage II, each user acts as a price taker and ad-
justs the amount of resources. This study serves as a baseline to
quantify the effects of adopting two-dimensional reverse pricing
scheme on the average network capacity utilization, the average
revenue of the MNO, and the total average payoff of the users.
By using backward induction, we start to solve the two-stage
game from Stage II to Stage I.

A. Users’ Demand in Stage II

If the MNO announces a price p per unit resource in Stage I,
the demand function of each user i ∈ N in Stage II is derived as
the outcome of the following payoff maximization problem

max
si≥0

ui(θi, δi, si)− psi, (2)

which leads to

s∗i =

(
θi + δi
p
− 1

)+

, i ∈ N , (3)

where (·)+ , max(·, 0).
For analytical tractability, δi is assumed to be zero when

θi ≤ p. It means that user i always demands zero resource

(s∗i = 0) when the average (or deterministic) willingness to pay
of user i is less than or equal to the offered price. When θi > p,
on the other hand, δi is assumed to be an independent bounded
random variable such that δi ∈ [p − θi, p + θi] and E[δi] = 0.
We further assume that θ1 > θ2 > · · · > θN .

Under these assumptions, we can rewrite the user i’s de-
mand (3) as

s∗i = 1(θi > p)

(
θi + δi
p
− 1

)
, i ∈ N , (4)

where 1 is the indicator function: 1(A) = 1 is A is true, 0
otherwise.

B. MNO’s Forward Pricing in Stage I

Given the users’ demand functions (4), the MNO seeks to
maximize its expected revenue under both demand uncertainty
and capacity constraint. This is obtained by solving the follow-
ing stochastic optimization problem

P1 : max
p≥0

p E

∑
i∈N

1(θi > p)

(
θi + δi
p
− 1

) (5)

s.t.
∑
i∈N

1(θi > p)

(
θi + δi
p
− 1

)
≤ Q, i ∈ N . (6)

Note that problem P1 is computationally intractable, due to a
large number of random variables [19]. To overcome such curse
of dimensionality, a worst-case design approach can be used to
ensure feasibility against all possible realization of the uncertain
demands [17]. However, it may result in an extremely conser-
vative pricing strategy. Perhaps the natural way is to employ the
chance constrained method that transforms the inequality con-
straint (6) to a chance constraint, ensuring that the probability of
demand exceeding capacity is below a specified threshold. This
motivates us to define a region of an ε-optimal price.
Definition 1 (ε-optimal Price): We say that a price p is ε-optimal
if the probability that the aggregate resource demand exceeds the
total capacity is less than ε.

Under the chance constrained method, Problem P1 can be re-
formulated as follows:

P1.1 : max
p≥0

p E

∑
i∈N

1(θi > p)

(
θi + δi
p
− 1

) (7)

s.t. P

∑
i∈N

1(θi>p)

(
θi+δi
p
−1
)
≥Q

≤ε, i ∈ N
(8)

where ε ∈ (0, 1) is a risk tolerance, which is typically small.
The parameter ε partially explains the MNO’s attitude towards
quality of service (QoS) and revenue, i.e., risk tolerance. As ε
grows, the MNO can increase revenue by accommodating more
users while taking the greater risk of network congestion.

However, it is still challenging to solve the above chance con-
strained problem directly. This is because checking the feasible
probability of a given price p in (8) would require complicated
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multivariate numerical integrations. It is therefore desirable to
find a good deterministic approximation of the chance constraint
(8), while retaining both tractability and ease of practical imple-
mentation. Such approximation can be based on Hoeffding’s
inequality [20].

Let us first consider a special case of problem P1.1 in which
Q is sufficiently large so that all the users are admitted into the
network because of lowered price, i.e., 1(θi > p) = 1,∀i ∈ N .
With the above assumption, problem P1.1 can be rewritten as

P1.2 : max
p≥0

p E

∑
i∈N

(
θi + δi
p
− 1

) (a)
=
∑
i∈N

(θi − p)

(9)

s.t. P

∑
i∈N

(
θi + δi
p
− 1

)
≥ Q

 ≤ ε, (10)

where (a) follows from the fact that the bounded random vari-
ables δi, i ∈ N are independent with support [p − θi, p + θi].
With Hoeffding’s inequality, we can derive the lower bound on
the MNO’s ε-optimal optimal price, as summarized in the fol-
lowing lemma.
Lemma 1: The ε-optimal price for problem P1.2 is given by

p ≥
∑N
i=1 θi +

√
2 ln 1

ε

∑N
i=1 θ

2
i

Q+N
. (11)

Proof: Let si = θi+δi
p − 1 > 0, i ∈ N . Applying Hoeffd-

ing’s inequality yields

P

∑
i∈N

si ≥ Q

 = P

∑
i∈N

si−E

∑
i∈N

si

≥Q−E
∑
i∈N

si




(a)

≤ exp

−2
(
Q−

∑
i∈N

(
θi
p − 1

))2

∑
i∈N

(
2θi
p

)2


≤ ε,

where (a) follows from Hoeffding’s inequality [20].
Now, a sufficient condition for a price p to be ε-optimal is the

following.

e

−2

(
Q+N−

∑
i∈N

θi
p

)2
∑
i∈N

(
2θi
p

)2
≤ε↔ p ≥

∑
i∈N θi +

√
2 ln 1

ε

∑
i∈N θ

2
i

Q+N
.

(12)
This completes the proof. �

With Lemma 1, we now have the approximate solution of
problem P1.2.
Corollary 1: The ε-optimal approximate solution of prob-
lem P1.2 is given by

p∗ =

∑N
i=1 θi +

√
2 ln 1

ε

∑N
i=1 θ

2
i

Q+N
. (13)

Proof: Since the objective function (9) is a decreasing func-
tion of the price p, taking the minimum value of p in (11) com-
pletes the proof. �

Lemma 2: The price in (13) is the ε-optimal approxi-
mate solution of problem P1.1 if and only if Q >∑N

i=1 θi+
√

2 ln 1
ε

∑
i∈N θ

2
i

θN
−N .

Proof: Suppose that the price in (13) is the ε-optimal
approximate solution of problem P1.1. This means that the
indicators for all users should be equal to 1, i.e., θi > p,
i ∈ N . Substituting (13) into these inequalities gives θi >∑

i∈N θi+
√

2 ln 1
ε

∑
i∈N θ

2
i

Q+N ,∀i ∈ N . Since θ1 > θ2 > · · · > θN ,

Q >
∑
i∈N θi+

√
2 ln 1

ε

∑
i∈N θ

2
i

θN
−N , completing the proof of the

“if” part.
Next, we prove the “only if” part by contradiction. Sup-

pose not, that is, suppose that the price in (13) is still the
ε-optimal approximate solution of problem P1.1 with Q ≤∑N

i=1 θi+
√

2 ln 1
ε

∑
i∈N θ

2
i

θN
− N . For notational convenience, let

SN =
∑
i∈N θi +

√
2 ln 1

ε

∑
i∈N θ

2
i . Since Q ≤ SN

θN
−N , we

observe that p∗ ≥ θN , indicating that user N does not subscribe
to the MNO.

Now, we need to show that p∗ still remains the ε-optimal
approximate solution of the following stochastic optimization
problem

max
p≥0

p E

 ∑
i∈N\N

1(θi > p)

(
θi + δi
p
− 1

) (14)

s.t. P

 ∑
i∈N\N

1(θi>p)

(
θi+δi
p
−1
)
≥Q

≤ε, i ∈ N \ N .
(15)

Note that the above problem has the same structure with prob-
lem P1.1. Thus, we assume that Q is sufficiently large so that
all the users except user N are admitted into the network, i.e.,
θi > p, i ∈ N \ N . Following the same steps as the proofs of
Lemma 1 gives

p ≥
∑N−1
i=1 θi +

√
2 ln 1

ε

∑N−1
i=1 θ2i

Q+N − 1
. (16)

Since the objective function (14) is a decreasing function of
the price, we should take the minimum value of p in constraint
(16), while satisfying θN ≤ p and θi > p, i ∈ N \ N . Follow-
ing the above proof of the “if” part, the ε-optimal approximate
solution of the above problem is

p† =

{
θN , if SN−1

θN
−N + 1 < Q ≤ SN

θN
−N,

SN−1

Q+N−1 , if SN−1

θN−1
−N + 1 < Q ≤ SN−1

θN
−N + 1.

(17)
It is observed that the ε-optimal approximate solution in (17)

is different from the solution in (11). This contradicts with the
fact that the price (13) is the ε-optimal approximate solution for
problem P1.1, and thus completes the proof. �
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Algorithm 1 ε-optimal approximate algorithm for problem
P1.1.
• Step 1: Set K = N and sort θi for i = 1, 2, · · ·,K in decreas-

ing order, i.e., θ1 > θ2 > · · · > θN .

• Step 2: Compute Q̃K =
∑K
i=1 θi+

√
2 ln 1

ε

∑K
i=1 θ

2
i

θK
−K.

• Step 3: Compare Q with Q̃K . If Q ≤ Q̃K , then set K =
K − 1, and go to step 2. Otherwise, go to step 4.

• Step 4: With K, compute p∗K =
∑K
i=1 θi+

√
2 ln 1

ε

∑K
i=1 θ

2
i

Q+K . If
K = N , then the ε-optimal price p∗ is p∗K . Otherwise, p∗ is
max{p∗K , θK+1}.

Using Lemmas 1 and 2, we can find the ε-optimal approx-
imate price p∗ of problem P1.1, which is summarized in the
following proposition.
Proposition 1: The ε-optimal approximate solution for prob-
lem P1.1 is given by

p∗ =



p∗N , if Q > Q̃N ,

max{p∗N−1, θN}, if Q̃N−1 < Q ≤ Q̃N ,
max{p∗N−2, θN−1}, if Q̃N−2 < Q ≤ Q̃N−1,
...

...
max{p∗1, θ2}, if Q̃1 < Q ≤ Q̃2,

(18)
where p∗K = Z

Q+K and Q̃K = Z
θK
−K where Z =

∑K
i=1 θi +√

2 ln 1
ε

∑K
i=1 θ

2
i , K ∈ N .

Proof: If Q > Q̃N , the ε-optimal approximate price p∗ can
be obtained from Lemmas 1 and 2. If Q̃N−1 < Q ≤ Q̃N , p∗

can be derived from the proof of Lemma 2. For the rest of other
intervals of Q, p∗ can be achieved by following the similar steps
as the proofs of Lemmas 1 and 2, and hence their proofs omitted.

�

Proposition 1 provides a useful result to determine the value
of the ε-optimal approximate price p∗ in practice. For a given
capacity Q, there exists a user index threshold K < N satis-
fying Q̃K < Q ≤ Q̃K+1 and θK > p∗ ≥ θK+1, and the
threshold K = N satisfying Q > Q̃N and p∗ < θN . Since
θ1 > θ2 > · · · > θN , it implies that only the set of users with
index less than or equal to K will be allocated via forward pric-
ing. By exploiting this property, the values of p∗ and K can be
simply computed as in Algorithm 1. Note that its compleixity is
O(|N |).

Proposition 1 offers an important insight into the drawbacks
of the forward pricing scheme only. As ε decreases, the resource
constraint in (8) becomes more tight. To satisfy it, the MNO
inevitably charges a higher price to the users. The higher price
induces the lower network demand, resulting in the decrease in
the total user payoff. These motivate the MNO to utilize two-
dimensional reverse pricing on top of forward pricing so that it
can achieve “triple-win” solutions.

IV. TWO-DIMENSIONAL REVERSE PRICING ON TOP OF
FORWARD PRICING

We now investigate how to design two-dimensional reverse
pricing on top of forward pricing to embrace the demand un-

certainty wisely. In this scheme, the MNO first asks each user
i ∈ N to pre-specify his optimal resource demand s∗i based on
the published unit-price p∗ in (18). With this information, the
MNO announces basic requirements, user-centric scoring func-
tions (in terms of pre-specified resource demands, residual ca-
pacity of the network and two-dimensional bids) to the users.
Then, each user i ∈ N submits a bid of the form (bi, qi) as a
sealed bid for maximizing his payoff. Based on the obtained
bids, the MNO selects the optimal bidders (winners) to maxi-
mize its revenue.

A. Basic Rules

A.1 Bid Quantity Requirements

Without loss of generality, we assume that the MNO limits
the users’ bid quantities, i.e.,

0 < s∗i ≤ qi ≤ Q−
∑
j∈N\〉

s∗j , i ∈ N , (19)

where the first inequality in (19) means that only the set of users
that pre-specify their optimal (positive) resource demands via
forward pricing can place on bids, and the last inequality in (19)
implies the maximum allowable residual capacity that the MNO
can provide via reverse pricing for each user i ∈ N .

A.2 Resource Allocation and Payment Rules

Let us denote by (bi, qi) the submitted bid by each bidder
i ∈ N where bi is the bid price that he is willing to pay for the
unit of resource and qi is the corresponding resource quantity.
We define x , {xi, i ∈ N} to be the winner vector, i.e., xi =
1 if user i wins the bid and xi = 0 otherwise. User i thus
receives the resource allocation qi at the submitted bid price bi
when xi = 1. When xi = 0, on the other hand, user i still gets
the resource allocation s∗i at the unit price p∗ in (18).

A.3 User-Centric Score Functions

Given that each user i ∈ N submits his bid (bi, qi), the aim
of the MNO is to solve the following optimization problem

P2 : max
x≥0

∑
i∈N

xi (biqi − p∗s∗i ) + p∗s∗i (20)

s.t.
∑
i∈N

xi (qi − s∗i ) + s∗i ≤ Q (21)

xi ∈ {0, 1}, i ∈ N , (22)

where x ≥ 0 represents xi ≥ 0,∀i ∈ N . We use bold sym-
bols to denote vectors in the sequel. Constraint (21) implies the
maximum allowable amount of resources allocated to the users
via the proposed scheme. Constraint (22) denotes the admission
control decision.

It is observed that the objective function (20) depends on not
only each user i’s submitted bid (bi, qi) via reverse pricing but
also the revenue p∗s∗i via forward pricing. Hence, the MNO
wants to maximize the difference between biqi and p∗s∗i by de-
termining each winner element of the winner vector x subject
to the resource constraint (21). To this end, we introduce a user-
centric score function which transforms a multi-dimensional bid
to a single score.
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Definition 2 (User-centric Score Function): In the proposed
two-dimensional reverse pricing scheme in conjunction with the
forward pricing scheme, the score function announced to each
user i is

Si(bi, qi) =
biqi − p∗s∗i
qi − s∗i

, i ∈ N . (23)

From (23), it can be seen that Si increases in biqi − p∗s∗i
but decreases in qi − s∗i . This implies that the MNO seeks to
maximize the additional profit biqi−p∗s∗i while minimizing the
additional resource consumption qi − s∗i via reverse pricing for
each user i. Note that the maximum values of Si is p∗. To
sum up, Si may be interpreted as the marginal profit, i.e., the
additional profit from selling one extra unit via reverse pricing
for each user i.

A.4 Target Score

We assume that the MNO sets a positive and unique score S̃,
which is called a target score. It means that each user i should
generate the score Si = S̃ when submitting a bid (bi, qi) ac-
cording to the announced score function (23). The reason is
two-fold. First, with a positive target score, the MNO can avoid
the revenue loss from utilizing two-dimensional reverse pricing
on top of forward pricing. Second, with a unique target score,
the MNO does not price-discriminate across all the users and
treats them fairly by extracting the same marginal profit from
them. It is worth noting that when S̃ is small, in general, more
potentially profitable trades are expected to occur, at the cost of
the higher marginal profit via reverse pricing. When S̃ is large,
on the other hand, the reverse is generally true. Thus, the MNO
should set S̃ as a strategic variable, taking this trade-off into
account. A numerical example of this will be discussed in V.A.

B. MNO’s Winner Selection Strategy

We now consider how the MNO determines the winner vector
x for problem P2. Based on the reported resource quantities
based on the announced unit price p∗ in (18), we first consider
the infeasible case of problem P2 where

∑
i∈N s

∗
i ≥ Q. Since

the unit price p∗ is ε-optimal, it can happen with the probability
of less than ε. Thus, we have xi = 0 for all i ∈ N , degenerating
the forward pricing only case (problem P1.1). From now on,
we will only focus on the feasible case of problem P2 in which∑
i∈N s

∗
i < Q.

LetR be a subset of the total user set {1, 2, · · ·, N}, such that
Si = S̃ for i ∈ R. From (23), we have biqi−p∗s∗i = S̃(qi−si)
for i ∈ R. Then, problem P2 can be simplified as

P2.1 : max
x≥0

∑
i∈R

xiS̃ (qi − s∗i ) (24)

s.t.
∑
i∈R

xi (qi − s∗i ) ≤ Q−
∑
j∈N

s∗j (25)

xi ∈ {0, 1}, i ∈ R, (26)

where xj = 0 for j ∈ N \ R.
Note that the above problem is a one-dimensional 0/1 knap-

sack problem (also known as the sum of subset problem [21]).
It is not straightforward to solve because finding an optimal so-
lution to this problem through an exhaustive search requires an

Algorithm 2 ξ-Approximate algorithm for problem P2.1.
• Step 1: For a given 0 < ξ ≤ 1

2 , set l = 1
ξ −1. Find a subset of

R′ ⊆ R such that qi − s∗i >
Q−
∑
k∈N s

∗
k

l+1 for i ∈ R′. If not,
go to step 4.

• Step 2: Select the subset R̂ ⊆ R′ that maximizes
∑
i∈R̂ qi −

s∗i without exceeding Q−
∑
k∈N s

∗
k.

• Step 3: If qj − s∗j > Q −
∑
k∈N s

∗
k −

∑
i∈R̂ qi − s∗i for all

j ∈ R \ R̂, then xi = 1 for all i ∈ R̂ and xj = 0 for all
j ∈ R \ R̂. Otherwise, go to step 4.

• Step 4: Find the element ĵ ∈ R\R̂ such that argmax
ĵ∈R\R̂

qĵ−s∗ĵ
without exceeding Q−

∑
k∈N s

∗
k −

∑
i∈R̂ qi − s∗i

• Step 5: Set R̂ = R̂ ∪ {̂|}. Go to step 3.

exponential complexity in the number of users, i.e., O(∈|R|).
Thus, it is only practical for small values of |R|. It is of much
importance to develop efficient algorithms for finding approx-
imate solutions. This leads us to define a ξ-approximate algo-
rithm.
Definition 3 (ξ-Approximate Algorithm): We say that for any
0 < ξ ≤ 1

2 , an algorithm for problem P2.1 is ξ-approximate if
it satisfies the following two conditions:

1. F∗−F̂
F∗ ≤ ξ, where F ∗ is the optimal objective value of prob-

lem P2.1 and F̂ is an approximate objective value given by the
algorithm.

2. The algorithm is of polynomial complexity O(|R|l) for l ≥ 1.
Proposition 2: The proposed Algorithm 2 is an ξ-approximate
algorithm that has complexity O(|R|l) for ξ = 1

1+l and l ≥ 1.
Proof: Suppose that the approximate optimal solution x̂

and its value F̂ of problem P2.1 are obtained by Algorithm 2.
From Steps 1 of Algorithm 2, the set of R̂ = {〉 ∈ R : §̂〉 =∞}
of winners can be divided into two disjoint sets, i.e.,

R̂ = R̂∞ ∪ R̂∈, (27)

where R̂∞ = {〉 ∈ R̂|q〉 − ∫∗〉 >
Q−

∑
‖∈N ∫

∗
‖

l+∞ }, and R̂∈ =

R̂ \ R̂∞. From (20), the approximate objective value F̂ can be
expressed as

F̂ =
∑
i∈R̂

S̃ (qi − s∗i ) +
∑
k∈N

p∗s∗k. (28)

Let x∗ and F ∗ be the optimal solution and its value of prob-
lem P2.1. Similarly, the set of R∗ = {〉 ∈ R : §∗〉 = ∞} of
optimal winners can be also partitioned into

R∗ = R∗∞ ∪R∗∈, (29)

where R∗∞ = {〉 ∈ R∗|q〉 − ∫∗〉 >
Q−

∑
‖∈N ∫

∗
‖

l+∞ }, and R∗∈ =

R∗ \ R∗∞. From (20), the optimal objective value F ∗ can be
written as

F ∗ =
∑
j∈R∗

S̃
(
qj − s∗j

)
+
∑
k∈N

p∗s∗k. (30)

Now, we prove that F̂ = F ∗ or F∗−F̂
F∗ ≤ ξ for ξ = 1

1+l

and l ≥ 1. To this end, first suppose that
∑
i∈R̂∈

(
qi − s∗i

)
≥
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∑
j∈R∗∈

(
qj − s∗j

)
. From Step 2 of Algorithm 2, we know

that
∑
i∈R̂∞

(
qi − s∗i

)
≥
∑
j∈R∗∞

(
qj − s∗j

)
. Then, it follows

F̂ − F ∗ ≥ 0. Since F ∗ is the optimal objective value of prob-
lem P2.1, we thus have F̂ = F ∗.

Next, suppose that
∑
i∈R̂∈(qi− s

∗
i ) <

∑
j∈R∗∈

(
qj − s∗j

)
. It

implies that some j ∈ R∗∈ are removed from R̂∈. From Step
4 of Algorithm 2, we know that qj − s∗j > Q −

∑
k∈N s

∗
k −∑

i∈R̂
(
qi − s∗i

)
. Then, we have

∑
i∈R̂

(qi − s∗i ) > Q−
∑
k∈N

s∗k − (qj − s∗j )

(a)

≥
(

l

l + 1

)Q−∑
k∈N

s∗k


(b)

≥
(

l

l + 1

) ∑
j∈R∗

(qj − s∗j ), (31)

where (a) follows from Step 4 of Algorithm 2, and (b) comes
from (25). Now, check F∗−F̂

F∗ ≤ ξ for ξ = 1
1+l and l ≥ 1, i.e.,

F ∗ − F̂
F ∗

=

∑
j∈R∗(qj − s∗j )−

∑
i∈R̂(qi − s∗i )∑

k∈N p
∗s∗k +

∑
j∈R∗

(
qj − s∗j

)
≤
∑
j∈R∗(qj − s∗j )−

∑
i∈R̂

(
qi − s∗i

)∑
j∈R∗(qj − s∗j )

≤ 1

1 + l
,

(32)

where the last (32) follows from (31). This completes the proof.
�

C. Users’ Bidding Strategies

Given the announced target score S̃ and users’ score func-
tions (23), each user i ∈ N seeks to maximize the following
optimization problem

P3 : max
bi,qi

ui(θi, δi, qi)− biqi (33)

s.t. Si(bi, qi) = S̃, (34)
ui(θi, δi, qi)− biqi ≥ ui(θi, δi, s∗i )− p∗s∗i , (35)
0 ≤ bi ≤ p∗, s∗i < qi ≤ qmax

i . (36)

Note that constraint (35) represents the individual rationality,
meaning that the bidders never get worse by bidding since they
can always get the non-negative payoffs (i.e.,ui(θi, δi, s∗i ) −
p∗si, i ∈ N ) via forward pricing. The following proposition
provides their optimal bidding strategies.
Proposition 3: For each user i ∈ N , the optimal bidding strat-
egy is given by

(b∗i , q
∗
i ) =


(

(q∗i−s
∗
i )S̃+p

∗s∗i
q∗i

,min
{
θi+δi
S̃
− 1, qmax

i

})
,

if constraints (34)–(36) are met,
(0, 0), otherwise.
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Fig. 2. Average network capacity utilization as a function of ε.

Proof: From (34), it follows that biqi = S̃
(
qi − s∗i

)
+p∗s∗i ,

for i ∈ K. Substituting it into (33) gives

ui(θi, δi, qi)− S̃ (qi − s∗i )− p∗s∗i . (37)

It is observed that the rewritten objective function in (37) is a
concave function over qi. Since all the constraints in (34)–(36)
are affine, problem P3 is a convex optimization problem. Ex-
ploiting the first order necessary condition yields

q∗i = min
{θi + δi

S̃
− 1, qmax

i

}
, b∗i =

(q∗i − s∗i )S̃ + p∗s∗i
q∗i

,

(38)
where the “min” operator stems from the constraint (36) and b∗i
follows from (34). Putting (38) into (35) and checking whether
(35) holds conclude the proof. �

V. NUMERICAL AND EXPERIMENTAL RESULTS

A. Numerical Results

We first provide numerical examples to study several key
properties of two-dimensional reverse pricing on top of forward
pricing. Consider a 100-user in the network. For simplicity, the
average willingness to pay of users are chosen as θi = i, for
i ∈ {1, 2, · · ·, 100}. The stochastic willingness to pay of users
follows the scaled beta distribution on [p∗ − θi, p

∗ + θi] with
shape parameters [θi − p∗, θi + p∗]. The total amount of avail-
able resource and target score are set as Q = 100 GHz and
S̃ = 0.6p∗ unless specified otherwise. For Algorithm 2, l is set
to be 2. Each graph represents an average over 100,000 inde-
pendent realizations.

Fig. 2 shows the average network capacity utilization (i.e.,
the average ratio of the total amount of allocated resource to the
total amount of available resource) as a function of ε. We ob-
serve that the effect of reverse pricing is greater when the total
resource of the network is larger. With forward pricing only, the
average network capacity utilization decreases as ε decreases.
As shown in Fig. 3, this stems from the fact that the MNO in-
evitably charges a higher price to the users as ε decreases.
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On the other hand, with two-dimensional reverse pricing on
top of forward pricing, the average network capacity utilization
is still very high even with lower ε.

Fig. 4 shows average MNO revenue and average total user
payoff gains (i.e., the average ratios of the revenue and the total
user payoff of reverse pricing on top of forward pricing to those
of forward pricing only, respectively) as a function of ε. We ob-
serve that both gains increase as ε decreases. Perhaps counter-
intuitively, it is worth noting that we identify some cases where
the average MNO revenue gain is larger than the average total
user payoff gain and such difference becomes more distinct as ε
decreases. This can be explained as follows. As shown in Fig. 3,
p∗ increases as ε decreases, resulting in the decreases in both the
average total user payoff and the average MNO revenue. For a
given fixed target score S̃ = 0.6p∗, however, the MNO can ex-
tract the higher marginal profit from multiple winners via two-
dimensional reverse pricing as ε decreases. On the other hand,
the average network utilization is still very close to 1 even when
ε = 10−5. Thus, the average MNO revenue gain is larger than
the average total user payoff gain.

Fig. 5 shows the average network capacity utilization as a
function of S̃/p∗. We observe that the difference between two
pricing schemes decreases as S̃/p∗ increases. This is due to
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Fig. 5. Average network capacity utilization as a function of S̃
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ε = 10−5.
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of S̃

p∗ . We assume ε = 10−5.

the fact that the users are less incentivized to submit their two-
dimensional bids with higher S̃/p∗.

Fig. 6 shows average MNO revenue and average total user
payoff gains, respectively, as a function of S̃/p∗. Intuitively, we
observe that the average total user payoff gain decreases S̃/p∗

increases. On the other hand, there is the optimal value of S̃/p∗

for maximizing the average MNO revenue gain. As S̃/p∗ in-
creases, the MNO can extract the higher marginal profit from
the winners at the cost of the decrease in the number of winners
via two-dimensional reverse pricing. Thus, the MNO should set
S̃/p∗ as a a strategic variable, taking this trade-off into account.

B. Experimental Results

Next, we present experimental studies to verify the feasibility
of the proposed scheme in practice. To this end, we architected
and prototyped the fully functional proposed pricing system via
Android application and Amazon web service (AWS) service as
shown in Fig. 7. For the experimental studies, we recruited 50
users as our trial participants and all of them were subscribers of
SK Telecom (SKT) that is currently South Korea’s largest MNO.
Then, we conducted one month experiment by giving them the
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Fig. 7. The implemented proposed scheme app, called “Trafficbid.” Users can
plan their data amount and corresponding prices automatically or manually,
identify their bid result histories, and check their data usage patterns. On the
other hand, the MNO can manage users? bid profiles, check their informa-
tion, and modify a target score over different time periods.

Fig. 8. The implemented proposed scheme app, called “Trafficbid.” Users can
plan their data amount and corresponding prices automatically or manually,
identify their bid result histories, and check their data usage patterns. On the
other hand, the MNO can manage users’ bid profiles, check their informa-
tion, and modify a target score over different time periods.

manual about the data usage amount per each application and
enabling them to know how much data they would consume.
After one month, we then allowed them to submit their two-
dimensional bid as well as their data amount based on currently
employed forward pricing scheme for each given period (i.e., 6
hours), and conducted three week experiments as follows.
• 1 week: Participants used the currently employed forward

pricing scheme (no two-dimensional reverse pricing em-
ployed).

• 2 week: Participants used the proposed scheme without any
specific target score.

• 3 week: Participants used the proposed scheme with the target
score S̃ = 0.6p∗.
Fig. 8 shows the average network capacity utilization of all

participants per each daily quarter. An interesting observation
is that there is no distinct difference of the average network ca-
pacity utilization between in week 1 and week 2. If there is no
target score requirement, the participants want to user their data

Table 1. Average MNO revenue over three weeks.

Week 1 Week 2 Week 3
Average MNO revenue 100% 87% 121%

amount based on the forward pricing scheme with cheaper bid
prices. On the other hand, the average network capacity utiliza-
tion in week 3 has increased 80% more than that in week 1.
It indicates that the participants try to use more data amount
with their own bid price in order to satisfy the target score (i.e.,
S̃ = 0.6p∗ in our experiment).

Table 1 shows the average revenue of the MNO over three
weeks. Note that the baseline is the MNO’s average revenue in
week 1. Since the participants tend to submit cheaper bid prices
while keeping their current data usage patterns, the MNO’s av-
erage revenue in week 2 has decreased 13% less than that in
week 1. On the other hand, the MNO’s average revenue in
week 3 has increased 21% than that in week 1. Due to the
target score requirement, the MNO can extract more revenue
from adopting two-dimensional reverse pricing on top of for-
ward pricing.

VI. CONCLUDING REMARKS

In this paper, we study the revenue-maximizing problem for a
single MNO, considering heterogeneous and stochastic user de-
mands. As a benchmark case, we analyze the drawbacks of for-
ward pricing only. To effectively handle them, we propose two-
dimensional reverse pricing on top of forward pricing and de-
sign a ξ-approximate polynomial-time algorithm. Compared to
forward pricing only, we show that the proposed pricing scheme
can achieve “triple-win” solutions: Higher average network ca-
pacity utilization; an increase in the total average payoff of the
users; and an increment in the the average revenue of the MNO.
To verify its feasibility in practice, we further implement its real
prototype and perform experimental studies. We show that the
proposed scheme still creates triple-win solutions as well. Our
findings provide a new outlook on resource allocation, and de-
sign guidelines for adopting two-dimensional reverse pricing on
top of forward pricing.
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