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 23	
ABSTRACT 24	
Objectives: Robotic prosthetic limbs promise to replace mechanical function of lost biological extremities 25	
and restore amputees’ capacity of moving and interacting with the environment. Despite recent advances in 26	
biocompatible electrodes, surgical procedures, and mechatronics, the impact of current solutions is hampered 27	
by the lack of intuitive and robust man-machine interfaces. Approach: Based on authors’ developments, this 28	
work presents a biomimetic interface that synthetizes the musculoskeletal function of an individual’s 29	
phantom limb as controlled by neural surrogates, i.e. electromyography-derived neural activations. With 30	
respect to current approaches based on machine learning, our method employs explicit representations of the 31	
musculoskeletal system to reduce the space of feasible solutions in the translation of electromyograms into 32	
prosthesis control commands. Electromyograms are mapped onto mechanical forces that belong to a 33	
subspace contained within the broader operational space of an individual’s musculoskeletal system. Results: 34	
Our results show that this constraint makes the approach applicable to real-world scenarios and robust to 35	
movement artefacts. This stems from the fact that any control command must always exist within the 36	
musculoskeletal model operational space and be therefore physiologically plausible. The approach was 37	
effective both on intact-limbed individuals and a transradial amputee displaying robust online control of 38	
multi-functional prostheses across a large repertoire of challenging tasks. Significance: The development 39	
and translation of man-machine interfaces that account for an individual’s neuromusculoskeletal system 40	
creates unprecedented opportunities to understand how disrupted neuro-mechanical processes can be 41	
restored or replaced via biomimetic wearable assistive technologies. 42	
 43	

 44	
 45	
 46	
 47	
 48	
 49	
 50	
 51	

52	
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INTRODUCTION 53	

The accurate and robust decoding of human limb motor function from recordings of the underlying 54	

neuromuscular activity (i.e. brain, nerve or muscle electrophysiological signals) is a complex, long-standing 55	

problem [1–3]. This challenge is central for the development of control paradigms to restore lost motor 56	

function in impaired individuals. Despite the advances in electromyography (EMG) and in surgical 57	

procedures such as targeted muscle reinnervation [4], myoelectric prostheses still have limited clinical and 58	

commercial impact [5], i.e. upper limb prostheses have peak abandonment rates between 40%-50% and 59	

average rates around 25% among users [2].   60	

Current myoelectric prosthesis control methods rely on machine learning where pattern recognition and 61	

linear/non-linear regressions map EMGs into limb kinematics [6,7]. However, the human neuro-musculo-62	

skeletal system is characterized by multiple muscles spanning a single joint. Therefore, the same joint 63	

rotation can be generated by different EMG patterns that can further vary across individuals, training 64	

conditions, arm postures, or tasks [8]. The mapping functions learned in a specific condition (i.e. low force 65	

tasks, or specific arm posture) do not necessarily generalize to novel conditions (i.e. high force tasks, or 66	

different arm posture). Furthermore, the mapping from EMG to kinematics is not direct, as assumed in 67	

machine learning schemes, i.e. limb kinematics is the musculoskeletal system final output generated by 68	

series of dynamic transformations (transfer functions) in response to control commands (EMG). For this 69	

reason, a single mapping function between EMGs and joint angular position (current state of the art 70	

approaches) may not always capture the complexity of all intermediate nonlinear transformations [2,9].  71	

A major barrier to natural artificial limb myoelectric control is the limited understanding of the 72	

biomechanical and neuromuscular mechanisms governing biological joints. Here we propose an interface 73	

that exploits an individual’s broader neuro-mechanical information for device control rather than only the 74	

underlying electrophysiological signals [1,10]. We record residual forearm EMGs from a transradial amputee 75	

and intact-limbed individuals, extract EMG-based features of neural activation and concurrently drive 76	

forward a subject-specific musculoskeletal model of the forearm [11–14]. This enables predicting the 77	

resulting mechanical moments actuating wrist-hand joints and prescribing them in real-time to a robotic 78	

multi-functional prosthesis low-level controller.  79	

Although recent research demonstrated the possibility of operating EMG-driven musculoskeletal models 80	

in real-time during dynamic movements [15–17], online EMG-driven modelling has never been developed 81	
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and applied for the control of multiple degrees of freedom (DOF) robotic limbs. To the best of our 82	

knowledge the work presented in this manuscript is the first demonstration of real-time model-based 83	

myoelectric prosthesis control on amputee individuals.  84	

Current state of the art work proposed and tested modeling formulations in intact-limbed individuals in 85	

isometric conditions and about a single joint DOF, i.e. elbow flexion-extension [18]. Although a real-time 86	

two-DOF upper limb model was recently proposed [19], this was not driven by EMGs but operated via 87	

simulated signals. A simplified lumped-parameter model of the hand [20,21] was recently used to compute 88	

wrist and metacarpophalangeal joint flexion/extension angles in a transradial amputee. However, this did not 89	

show the ability of controlling a physical prosthesis in real-time. That is, tests involved non-functional static 90	

poses where the amputee controls a virtual cursor to reach given targets [20–22]. This is a major limitation. 91	

Without direct proof of physical prosthesis control it is not possible to assess whether a myocontrol method 92	

can be realistically employed by the user. Tests based on virtual cursor control would not account for 93	

prosthesis weight, socket pressure, and prosthesis interaction with real objects, which would affect EMG 94	

quality, stability, and pose a challenge for control. Tests only involving static poses would not account for 95	

EMG non-stationarities (due to muscle fiber movement relative to electrode pick up areas), which may 96	

further affect control performance. Moreover, these tests would not enable understanding whether reported 97	

target reaching times enable prompt control of a physical prosthesis during functional tasks.  98	

Importantly, current model-based methods integrate the dynamic equations of motions in order to predict 99	

joint angles from EMGs [19,20,23]. As previously demonstrated [23], the numerical integration problem can 100	

become stiff, thus displaying numerical instability in the forward dynamic simulation. As a result, due to 101	

numerical integration computational load, state of the art formulations underlie simplified lumped 102	

musculoskeletal models with reduced sets of DOFs, limiting translation to more proximal amputations, i.e. 103	

transhumeral. These are major elements hampering robustness in the EMG-driven models currently existing, 104	

which may underpin the current inability of employing EMG-driven musculoskeletal modeling for the real-105	

time control of robotic limbs.  106	

The authors recently demonstrated the ability to establish real-time EMG-driven musculoskeletal models 107	

for the online estimation of joint moments about three DOFs simultaneously in the human lower limb [24]. 108	

Based on this work, we here translate and embed a large-scale and physiologically-accurate EMG-driven 109	

musculoskeletal model [25] into a new myoelectric control paradigm for a multifunctional robotic wrist-hand 110	
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prosthesis. Unlike state-of-the-art approaches, our method does not integrate the equations of motion (Fig. 111	

1A). We propose a new paradigm where the physical prosthesis is used, instead of a numerical integrator 112	

[20], to convert EMG-decoded joint moments into joint angles (Fig. 1B-C). Whether or not it is possible to 113	

decode phantom limb joint moments, instead of joint angles, from residual muscle EMGs and concurrently 114	

control a physical prosthesis represents an unanswered question. If possible, this would enable fast 115	

simulation of large-scale musculoskeletal models and open up to applications requiring the control of many 116	

DOFs, especially important for individuals who underwent targeted muscle reinnervation procedures.  117	

We here show that our proposed paradigm is robust to arm postures while enabling seamless wrist-hand 118	

prosthesis control across a large repertoire of functionally relevant motor tasks in an individual with 119	

transradial amputation. We provide tangible results showing the successful use of a new model-based 120	

paradigm in real myoelectric prosthesis control scenarios and real-world situations involving patients. The 121	

novel method we propose consistently outperformed the classic two-channel control (representing the 122	

commercial benchmark) in all the tests including multiple-DOF tasks as well as single-DOF tasks where the 123	

commercial benchmark is expected to be best performing. To the best of our knowledge these results have 124	

never been achieved by any study so far. 125	

126	

127	 Figure 1. Model-based control schematics for upper limb myoelectric robotic limbs. (A) A large-scale, 

128	 physiologically correct musculoskeletal model predicts muscle forces of residual forearm muscles as well the 

129	 resulting joint moments acting on the amputee’s phantom limb. (B) Joint moment estimates are converted 

130	 into prosthesis low-level motor commands. (C) The prosthesis is the physical device that converts EMG- 

131	predicted joint forces into joint kinematics, rather than using numerical integration as previously 132	proposed. 

This enables real-time simultaneous and proportional control multi of multiple degrees of 133	 freedom (DOFs) in 

myoelectric robotic limbs.  

134	
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METHODS 135	

We developed a subject-specific modeling formulation (Figs 1-2) that enabled estimation of wrist-hand 136	

musculoskeletal function in both intact-limbed individuals and transradial amputees as controlled by EMG-137	

derived neural activations. We demonstrated the ability of using resulting model-based joint moment 138	

estimates for the concurrent, real-time control of a myoelectric prosthesis throughout a large repertoire of 139	

wrist-hand tasks. Our proposed framework schematic is depicted in Figs 1-2 and comprises three major 140	

components including: EMG-driven musculoskeletal model (Fig. 1A), prosthesis low-level controller (Fig. 141	

1B-C), and model calibration (Fig. 2). The EMG-driven musculoskeletal model component is developed 142	

based on previous work from the authors [13–15,26–30]  as well as from other groups [31–37].  143	

Experimental procedures were performed for each individual subject on two consecutive days. During 144	

the first day, a musculoskeletal model was scaled and calibrated to match each individual’s anthropometry 145	

and force-generating capacity. During the second day, the subject-specific model was employed for the 146	

online prosthesis control tests across arm configurations. Online control tests were performed with no model 147	

re-calibration and involved direct comparison with the classic two-channel control benchmark. The 148	

commercial benchmark was chosen because it provides highest robustness in the control of single-DOFs 149	

across arm configurations and therefore represents the best means for comparison with respect to our 150	

proposed method.  151	

First, we describe how motion data were collected and processed for establishing subject-specific 152	

musculoskeletal models, i.e. see Data Recording and Processing Section. Second, we describe our proposed 153	

model-based framework components (see EMG-driven Musculoskeletal Model, Prosthesis Low-Level 154	

Controller and Model Calibration Sections) along with the communication framework that enabled data flow 155	

between EMG amplifier, prosthetic limb and model-based framework (see System Communication 156	

Framework Section). Third we describe the online prosthesis control testing procedures (see Experimental 157	

Tests Section).  158	

 159	

Data Recording and Processing 160	

Motion capture data were recorded (256Hz) using a seven-camera system (Qualisys, Göteborg, Sweden, 161	

256Hz) and a set of 18 retro-reflective markers placed on the individual’s intact left upper extremity, residual 162	

right upper extremity, trunk, and pelvis. Data were recorded during one static anatomical pose and used in 163	
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conjunction with the open-source software OpenSim [38] to scale a generic upper extremity model of the 164	

musculoskeletal geometry [25,39] to match the subject’s anthropometry. The musculoskeletal geometry 165	

model had six upper extremity DOFs including: shoulder elevation, shoulder adduction-abduction, elbow 166	

flexion-extension, forearm pronation-supination, wrist flexion-extension, and first-to-fourth proximal 167	

metacarpophalangeal joint flexion-extension. Although the model encompasses all DOFs and muscle-tendon 168	

units (MTUs) in the human hand [25], only a subset of these were employed. Specifically, this incorporated a 169	

total of 12 MTUs spanning the elbow, wrist and hand joints (Table I). During the scaling process, virtual 170	

markers were placed on the generic musculoskeletal geometry model based on the position of the 171	

experimental markers from the static pose. The model anthropomorphic properties as well as MTU insertion, 172	

origin and MTU-to-bone wrapping points were linearly scaled on the basis of the relative distances between 173	

experimental and corresponding virtual markers[38]. 174	

EMGs were measured (10KHz) and A/D converted with 12-bit precision using a 256-channel EMG 175	

amplifier (OTBioelettronica, Torino, IT). Only eight channels were used for the experiment, i.e. via eight 176	

pairs of disposable bipolar electrodes (Ambu, Neuroline 720, DK). Electrodes were placed in the 177	

correspondence of eight upper limb muscle groups including: biceps brachii, pronator teres, extensor carpi 178	

radialis, extensor carpi ulnaris, extensor digitorum, flexor carpi radialis, flexor carpi ulnaris, flexor 179	

digitorum. Placement was performed following SENIAM recommendations with a 10mm inter-electrode 180	

distance (measured from each electrode center) [40]. Each individual was initially asked to perform maximal 181	

voluntary contractions articulating wrist flexion-extension, forearm pronation-supination, and hand opening-182	

closing. EMGs were high-pass filtered (30Hz), full-wave rectified, and low-pass filtered (6 Hz) using a 183	

second-order Butterworth filter. Resulting peak-processed values were used for the subsequent EMG 184	

normalization during the real-time myocontrol experimental tests. All tests were performed using a powered 185	

multi-functional wrist hand prosthesis (Michelangelo Hand, Ottobock HealthCare GmbH, Duderstadt, DE) 186	

equipped with wrist pronation-supination (WPS), flexion-extension (WFE) and hand opening-closing (HOC) 187	

motors. The prosthesis can produce two grasp types; the palmar grasp was used (HOC) in the present study. 188	

The hand is sensorized with embedded position and force sensors, measuring aperture size, wrist rotation 189	

angle and grasping force. The commands to the hand and sensor data from the hand were transmitted through 190	

a Bluetooth or TCP/IP connection (100 Hz). 191	

Table I. EMG to MTU mapping. Mapping between experimental electromyograms (EMGs) and 192	

Page 6 of 33AUTHOR SUBMITTED MANUSCRIPT - JNE-102513.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



J. Neural Eng.       M. Sartori, G.V. Durandau, S. Došen, D. Farina. Model-based Myoelectric Prosthesis Control.      Page 7 of 33 
	

simulated musculotendon units (MTUs)*.  193	
EMGs Biceps 

Brachii 
Pronator 
Teres 

Extensor 
Carpi 
Radialis 

Extensor 
Carpi 
Ulnaris 

Extensor 
Digitorum 

Flexor 
Carpi 
Radialis 

Flexor 
Carpi 
Ulnaris 

Flexor 
Digitorum 

MTUs BIClong, 
BICshort 

PT, 
PQ 

ECRL, 
ECRB 

ECU EDC FCR FCU FDS, 
FDPM 

* Musculotendon unit names: biceps brachii long head (BIClong) and short head (BICshort), extensor carpi 194	
radialis longus (ECRL), extensor carpi radialis brevis (ECRB), extensor carpi ulnaris (ECU), extensor 195	
digitorum communis (EDC), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum 196	
superficialis (FDS), flexor digitorum profundus (FDPM), pronator quadratus (PQ), and pronator teres (PT). 197	
 198	

EMG-driven Musculoskeletal Model 199	

Our proposed EMG-driven modeling framework (Fig. 1) receives as an input: (1) EMGs from the amputee’s 200	

residual limb and (2) prosthesis joint angles. This information is used to compute the mechanical moments 201	

produced to actuate the amputee’s phantom limb and the intact-limbed individuals’ wrist-hand. The EMG-202	

driven musculoskeletal modeling formulation comprises four main components [13,26,27,41]. The neural 203	

activation component (Fig. 1A.1) converts EMGs into MTU-specific activation using a second order 204	

muscle twitch model and a non-linear transfer function [13,30,41]. Eight EMG channels were mapped into 205	

12 MTUs as detailed in Table I. The MTU kinematics component (Fig. 2A.2) synthetizes the MTU paths 206	

defined in the subject-specific geometry model into a set of MTU-specific multidimensional cubic B-splines. 207	

Each B-spline computes MTU kinematics (i.e. MTU length and moment arms) as a function of input 208	

prosthesis joint angles [27]. The MTU dynamics component (Fig. 2A.3) solves for the dynamic equilibrium 209	

between muscle fibers and series tendons in the production of MTU force. It employs a Hill-type muscle 210	

model with activation-force-length-velocity relationships informed by MTU length and neural activations 211	

from the previous two components [13,42]. The joint mechanics component (Fig. 1A.4) transfers MTU 212	

forces to the skeletal joint level using MTU moment arms. This enables computing joint moments [13]. 213	

Unlike state of the art methods, this procedure does not require forward integration of the equations of 214	

motion and is done in real-time using a physiologically correct large-scale musculoskeletal model, i.e. no 215	

need for simplification in the underlying musculoskeletal structure being modeled [11].  216	

 217	

Prosthesis Low-Level Controller 218	

The joint moments predicted by the EMG-driven model are subsequently converted into prosthesis low-level 219	

control commands (Fig. 1B). These are first amplitude-normalized, threshold-processed, and prescribed to 220	
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the prosthesis DOFs individually (Fig. 1C). The prosthesis embedded low-level controller receives input 221	

commands and rotates the prosthesis joints with a velocity profile that is proportional to the decoded joint 222	

moment. The prosthesis DOF angular kinematics is directly modulated as a function of the input command 223	

amplitude. The prosthesis movement emerging from these commands is fed into the EMG-driven model 224	

MTU kinematic component (Fig. 1A.2) and used to update the kinematic-dependent state in the 225	

musculoskeletal model. This includes skeletal DOF angular position as well as DOF-angle-dependent MTU 226	

length, MTU-to-bone wrapping points, and MTU moment arms.   227	

 228	

Figure 2. Model calibration procedure. The real-time EMG-driven model-based controller is calibrated 229	

using prosthesis joint motor control commands. During calibration the amputee is instructed to mimic pre-230	

defined motions executed by the prostheses using their own phantom limb. EMG-driven model internal 231	

parameters are repeatedly refined, as part of a least-squares optimization procedure, so that the mismatch 232	

between EMG-driven model’s predicted prosthesis DOF commands and those produced by the prosthesis 233	

pre-defined command inputs is minimized.  234	

 235	

Model Calibration 236	

During calibration, the amputee is instructed to activate the muscles in the residual limb mimicking pre-237	

defined motions executed by the prostheses using their own phantom limb (Fig. 2). Pre-defined prostheses 238	

motions to mimic involve moving through the full range of motion about each selected DOF at a constant 239	

speed. Pre-defined motions included: wrist flexion-extension, forearm pronation-supination, and hand 240	

opening-closing. During this, the calibration algorithm receives three input signals: EMGs from the 241	

amputee’s residual limb, prosthesis DOF angles, as well as the prosthesis DOF control commands 242	
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(normalized velocities) producing the target DOF angles. The calibration component (Fig. 2) identifies a 243	

number of amputee-specific musculoskeletal parameters that vary non-linearly across individuals because of 244	

anatomical and physiological differences. These include: muscle twitch activation/deactivation time 245	

constants, EMG-to-activation non-linearity factor, muscle optimal fiber length, tendon slack length, and 246	

muscle maximal isometric force. The initial nominal parameters are repeatedly refined, as part of a least-247	

squares optimization procedure, so that the mismatch between EMG-driven model’s predicted prosthesis 248	

DOF commands and those applied to the prosthesis (predefined normalized velocities) is minimized. 249	

Calibration operates offline using prerecorded data. This enables calibration of both uni-lateral and bi-lateral 250	

amputees, since the subject mirrors the movement of the prosthesis with the phantom limb (instead of 251	

mirroring the contralateral healthy limb as in [20]).  252	

 253	

System Communication Framework 254	

The whole real-time modeling framework (i.e. EMG-driven Model and Calibration, Figs 1-2) operated on a 255	

laptop with dual-core processing unit (2.60GHz) and 16GB of RAM memory. Based on our recent work [24] 256	

we developed two software plug-in modules that enabled direct TCP/IP connection between the real-time 257	

modeling framework and external devices. The first plug-in module provided a direct TCP/IP connection to 258	

the external EMG amplifier. It recorded the raw EMGs and processed them as described in the Data 259	

Recording and Processing Section. The second plug-in module enabled a direct TCP/IP connection to the 260	

prosthetic limb. It processed the EMG-driven model-based estimates of wrist-hand moments to produce 261	

prosthesis low-level control commands, i.e. see Prosthesis Low-Level Controller Section. 262	

Table II. Description of subjects investigated. Intact-limbed subjects are labeled as IL1-3. The transradial 263	
amputee individual is labeled as TR1. 264	

 Age 
(Years) 

Weight 
(Kg) 

Height 
(cm) Sex 

Number of 
electrodes 

used 

Amputation 
Level 

Years since 
amputation 

Prosthesis 
use 

IL1 34 68 183 Male 8 - - - 
IL2 26 73 177 Male 8 - - - 
IL3 40 73 176 Male 8 - - - 
TR1 50 75 168 Male 8 Transradial 30 Daily 

 265	
Experimental Tests 266	

Experiments were conducted in accordance with the declaration of Helsinki. The University Medical Center 267	

Göttingen Ethical Committee approved all experimental procedures (Ethikkommission der 268	
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Universitätsmedizin Göttingen, approval number 22/4/16). Three intact-limbed individuals (IL1-3) and one 269	

transradial amputee (TR1, Table II) volunteered for this investigation after providing signed informed 270	

consent form. Amputation in the TR1 individual was a result of a traumatic injury at year 20th (Table II). 271	

Residual stump was estimated to be of 15 cm as measured from the stump most distal point to elbow lateral 272	

epicondyle. The TR1 individual is a regular prosthetic user currently fitted with a myocontrolled prosthesis 273	

(Michelangelo Hand, OttoBock HealthCare, GmbH) and the two-EMG-channel direct control scheme also 274	

used in our tests. None of the subjects had any neuromuscular disorder or abnormality than listed. Subjects 275	

performed three series of tasks including: virtual target reaching, clothespin, and functional tests. All tests 276	

were performed with no force feedback provided to the amputee. 277	

 278	

Figure 3. Vertical and horizontal target reaching tests reported for the transradial amputee (TR1). 279	

Four representative target positions to reach are depicted as red square-shaped cursors. The target workspace 280	

spanned the interval [-1, 1] in normalized units in both vertical and horizontal directions, where -1 and 1 281	

corresponded to full pronation/flexion and supination/extension of the prosthesis. Vertical targets are 282	
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accomplished by operating the prosthesis wrist flexion-extension (WFE) degree of freedom (DOF). 283	

Horizontal targets are accomplished by operating prosthesis forearm pronation-supination (WPS) DOF. Each 284	

target is represented along with the underlying electromyograms (EMGs) recorded from the residual forearm 285	

muscles including: flexor/extensor carpi radialis (FCR/ECR), flexor/extensor carpi ulnaris (FCU/ECU), 286	

flexor/extensor digitorum superficialis (FDS/EDS), pronator teres (PT), and biceps brachii (BIC). 287	

Furthermore, the resulting DOF moments predicted at the phantom limb WFE and WPS DOFs are depicted, 288	

i.e. see black curves in each quadrant. EMGs are depicted as dimensionless curves whereas moments are 289	

represented in Nm.  290	

 291	
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Figure 4. Diagonal target reaching tests reported for the transradial amputee (TR1). Results are 294	

reported for each of the four quadrants. See Movie 1 for a visual example of quadrant 3 reaching tasks. Three 295	

representative targets per quadrant are depicted as square-shaped cursors. Each target is reached from the 296	

same initial position, i.e. zero degrees of wrist flexion and forearm pronation (hand neutral position). The 297	

target workspace spanned the interval [-1, 1] in normalized units in vertical and horizontal directions, where 298	

-1 and 1 corresponded to full pronation/flexion and supination/extension of the prosthesis. Each target is 299	

reached by the simultaneous control of two degrees of freedoms (DOFs). In each quadrant, each target is 300	

represented along with the underlying electromyograms (EMGs) recorded from the residual forearm muscles 301	

including: flexor/extensor carpi radialis (FCR/ECR), flexor/extensor carpi ulnaris (FCU/ECU), 302	

flexor/extensor digitorum superficialis (FDS/EDS), pronator teres (PT), and biceps brachii (BIC). 303	

Furthermore, the resulting DOF moments predicted at the phantom limb wrist flexion-extension (WFE) and 304	

forearm pronation-supination (WPS) DOFs are depicted, i.e. see black curves in each quadrant. Across all 305	

quadrants and targets, vertical and horizontal directions are achieved by controlling WFE and WPS 306	

respectively. EMGs are depicted as dimensionless curves whereas moments (torques) are represented in Nm. 307	

 308	

Virtual Target Reaching Tasks 309	

During the virtual target reaching tasks, subjects sat in front of a monitor and were asked to position 310	

themselves on the chair so that their right arm could move freely in any direction. The monitor provided 311	

visual feedback in the form of a ball-shaped cursor representing the prosthesis wrist flexion-extension and 312	

pronation-supination kinematics state. Subjects were instructed to move a ball-shaped cursor to reach a 313	

square-shaped target while keeping the cursor within the target for more than 1 second. Both cursor and 314	

target moved in a Cartesian space. Cursor vertical movements were accomplished by actuating the prosthesis 315	

wrist flexion-extension DOF via appropriate muscle contractions. Flexion and extension moved the cursor in 316	

the negative and positive vertical directions respectively. Similarly, cursor horizontal movements were 317	

accomplished by actuating the prosthesis wrist pronation-supination DOF. Pronation and supinations moved 318	

the cursor in the negative and positive horizontal directions respectively. Prosthesis neutral position 319	

corresponded to the cursor being in the Cartesian space origin. During all tasks, the myoelectric prosthesis 320	

was located next to the subject.  321	

Page 12 of 33AUTHOR SUBMITTED MANUSCRIPT - JNE-102513.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



J. Neural Eng.       M. Sartori, G.V. Durandau, S. Došen, D. Farina. Model-based Myoelectric Prosthesis Control.      Page 13 of 33 
	

The workspace spanned the interval [-1, 1] in normalized units in vertical and horizontal directions, 322	

where -1 and 1 corresponded to full pronation/flexion and supination/extension of the prosthesis. The 323	

prosthesis wrist range of motion was [-150, 150] and [-75, 50] degrees for pronation/supination and 324	

flexion/extension respectively. Tasks were conducted with variable travel distance that ranged between 0.35 325	

and 0.7 normalized units and with constant target size of 0.2 by 0.2 normalized units. The targets were 326	

centered at the coordinates (±0.25, ±0.25), (±0.25, ±0.5), (±0.5, ±0.25), and (±0.5, ±0.5), where the signs of 327	

the coordinates were determined by the quadrant that was tested.  Subject performed two series of tests.  328	

The first test series verified the system robustness to hand movement artefacts. Subjects were required to 329	

repeatedly open and close their right biological or phantom hands in time to an acoustic metronomic cue, i.e. 330	

50 beats per seconds, 10 repeated hand opening and closings. The subjects were instructed to exert 10 % of 331	

their maximum opening\closing force. 332	

The second test series verified the system ability to enable controlling WFE and WPS individually, 333	

sequentially, as well as simultaneously. Subjects were required to perform a number of reaching tests. Each 334	

test required reaching eight targets randomly located on the:  335	

• Vertical axis only, i.e. prosthesis WFE DOF myoelectric control. 336	

• Horizontal axis only, i.e. prosthesis WPS DOF myoelectric control. 337	

• Cartesian space four quadrants using sequential control of prosthesis WFE and WPS DOFs. 338	

• Cartesian space four quadrants respectively, i.e. top-left, bottom-left, top-right, bottom-right. Each 339	

quadrant required the simultaneous and proportional control of the prosthesis WFE and WPS DOFs.  340	

Importantly, in all the tests, the subjects could activate the DOFs simultaneously, but during horizontal, 341	

vertical and sequential task, they were instructed to use a single DOF at a time. The aim of these tests was to 342	

assess the selectivity of control and the amount of cross talk between the command signals (unwanted 343	

activation). Each test series was repeated with the right arm in three different postures including: fully 344	

extended elbow, 90 degree flexed elbow, 90 degree flexed elbow and 90 degree abducted shoulder. Arm 345	

postures were monitored via inertial measurement units (XSens, Enschede, Netherlands) placed in the 346	

correspondence of anatomical landmarks including: right acromion, humerus lateral compartment, forearm 347	

lateral compartment. Moreover, each test was performed both using our proposed model-based system as 348	
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well as the classic commercial control system. The aim was to compare the performance of the novel method 349	

to that of the commercial benchmark. 350	

 351	

Clothespin Task 352	

During the clothespin task subjects wore the prosthesis, which was connected to their forearms. For the 353	

able-bodied subjects, the prosthesis was connected to a custom-made splint, which was then strapped to the 354	

forearm. For the amputee subject, the prosthesis was mounted to a custom-made socket (as in a real-life 355	

application). They stood in front of a clothespin test preparation platform. These tasks verified the ability to 356	

accurately control WPS and HOC simultaneously and proportionally during functionally relevant tasks. Each 357	

test was performed both using our proposed model-based system as well as the classic commercial control 358	

system. Subjects performed two series of tests. The first test series involved grasping 12 pins located on 359	

horizontal bars and placing them onto a vertical bar. Each pin triplet underlay different stiffness, hence the 360	

need for grips with different force levels. This test was designed so that the subject needed to activate WPS 361	

as well as HOC proportionally (to modulate force) and simultaneously (to activate multiple DOFs).  362	

The second test series was a variation of the first. It involved performing a clothespin task with pins 363	

equipped with custom-made contact sensor and an LED. When the pin fully closed, the sensor activated the 364	

LED indicating that the exerted grasping force was too high, thereby “breaking” the “object”. The goal is to 365	

grasp five pins each of which of different stiffness while accurately fine-tuning the grip force in order to 366	

always keep it below a predefined threshold. More specifically, the subjects needed to exert enough force to 367	

open the pin and remove it from the bar, but at the same time, the force had to be below the “breaking” 368	

threshold of the pin. Therefore, each pin corresponded to a target window of grasping force. 369	

 370	
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Figure 5. Diagonal target reaching tests reported for three intact-limbed individuals (IL1-3). Three 371	

representative targets per quadrant (Q1-Q4) are depicted as square-shaped cursors. Each target is reached 372	

from the same initial position, i.e. zero degrees of wrist flexion and forearm pronation (hand neutral 373	

position). The target workspace spanned the interval [-1, 1] in normalized units in vertical and horizontal 374	

directions, where -1 and 1 corresponded to full pronation/flexion and supination/extension of the prosthesis. 375	

Each target is reached by the simultaneous control of two degrees of freedoms (DOFs). Across all quadrants 376	

and targets, vertical and horizontal directions are achieved by controlling WFE and WPS respectively. Also 377	

see Movie 1 for a visual example of Q3 reaching tasks. 378	

 379	

Functional Tasks 380	

During the functional tasks, each subject wore the prosthesis and stood in front of a shelf. These tasks 381	

verified the system ability of performing real-world functions robustly and intuitively. The tasks were 382	

performed solely by using our proposed model-based system. Subjects performed three testing series. The 383	

first was a block-turn task [43] involving a sequence of fine control actions including: grasping a narrow 384	

wooden block placed on a high self, rotating it of 90 degrees, placing it back on the shelf, re-grasping the 385	

block, rotating it back of 90 degrees, and replacing the block back to its initial position. 386	

The second involved grasping a variety of objects ranging from small size and weight to large size and 387	

weight: including an egg and a big bottle (1.5L). This investigated the system robustness in handling heavy 388	

objects or preserving precise grip forces while handling delicate objects (i.e. eggs).  389	

The third assessed the robustness of the system to EMG movement artefacts. It involved mechanical 390	

perturbation in the EMG wired system to induce cable movement. This assessed whether the prosthesis 391	

would be inadvertently activated (by movement-induced noise) and whether the user could still actively 392	

control the prosthesis during the high noise condition. 393	
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 394	

Figure 6. Speed performance during diagonal target reaching test reported for the transradial 395	

amputee (TR1) and for the three intact-limbed individuals (IL1-3). (A) Histograms report the 396	

distribution of reaching time across all targets for each subject individually, i.e. TR1 and IL1-3. Vertical 397	

dotted lines represent median reaching time. (B) Graphs report median (ball marker) and interquartile range 398	

(vertical line) of the time took to reach all targets as reported on a subject-specific basis. Targets in each 399	

quadrant and condition were accomplished both using our proposed model-based approach (model) as well 400	

as the classic commercially available system (classic). 401	

 402	

Numerical Analysis 403	

We quantified our proposed model-based framework real-time computation performance using metrics 404	

including: the mean computation time, standard deviation, median and 1st-3rd interquartile range measured 405	

across all simulation frames from all subjects and tasks. The 90% confidence interval was estimated for our 406	

proposed framework computation time using the Chebyshev’s theorem, i.e., expected interval = mean ± 407	

3.16·std. This could be applied with no assumption on the normality of computation time distributions. Path 408	

similarity between reaching trajectory and shortest path was calculated using the coefficient of determination 409	

(R2, square of the Pearson product moment correlation coefficient. In all the reaching tasks, we have 410	

determined the mean and standard deviation for the time to reach the target. The outcome measure in the 411	

clothespin task was the number of pins transferred per minute.  412	
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 413	

Figure 7. Speed performance as a function of arm position reported for the transradial amputee (TR1) 414	

and for the three intact-limbed individuals (IL1-3). Graphs report median (horizontal line), interquartile 415	

range (box), and overall max/min values (vertical dotted lines) of the time took to reach diagonal targets as a 416	

function of arm configurations: elbow/shoulder 0 degrees (E0S0)), elbow 90 degrees flexed, shoulder 0 417	

degrees (E90S0), elbow 90 degrees flexed, shoulder 90 deg abducted with hand closed (E90S90). Targets in 418	

each quadrant and condition were accomplished both using our proposed model-based approach (model-419	

based) as well as the classic commercially available system (classic). 420	

 421	

RESULTS 422	

Our proposed real-time musculoskeletal model successfully converted EMG signals from eight forearm 423	

muscle groups into mechanical forces produced by 12 musculotendon units or MTUs (Table I) and into 424	

resulting EMG-dependent joint moments across a large repertoire of wrist-hand movement (Fig. 1A). EMG-425	

driven model-based joint moment estimates were translated into prosthesis control commands (Fig. 1B), 426	

which resulted in the prosthesis moving naturally with no need for explicit angular position control. The 427	

prosthesis movement emerging from these commands was directly used to update the kinematic-dependent 428	

state in the musculoskeletal model (Fig 1C).  429	

Results showed that our proposed paradigm enabled accurate and robust control of prosthesis WFE and 430	

WPS across a large repertoire of tasks performed at different arm configurations (Figs 3-7, Movie 1). 431	

Moreover, results showed the ability of natural control of WPS and HOC during functionally relevant 432	

clothespin tests (Figs 8, Movies 2-3) and object manipulation tests (Movies 4-7). These tests underwent 433	
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dynamic stump-prosthesis movements, enabling testing robustness to EMG non-stationarities (due relative 434	

movement between muscle fiber and electrodes) and control precision in the force domain. For all subjects, 435	

model calibration (Fig. 2) was always performed a number of days prior to real-time prosthesis control 436	

experiments. This provided evidence of the framework ability of retaining subject-specific parameter 437	

consistency across time scales, i.e. the model needed to be established once for all per subject. Subjects 438	

controlled the prosthesis throughout three series of tasks including: virtual target reaching, clothespin, and 439	

functional tasks. This Section presents quantitative results as well as the framework computational times 440	

across all series of tasks. In the reminder of this section the three intact-limbed individuals will be referred to 441	

as IL1, IL2, and IL3 respectively. The transradial amputee will be referred to as TR1 as indicated in Table II.  442	

 443	

Virtual Target Reaching Tasks 444	

The virtual target reaching tasks tested whether the proposed framework enabled subjects to control 445	

prosthesis WFE and WPS individually, sequentially, as well as simultaneously. Subjects sat in front of a 446	

monitor and were instructed to move a virtual ball-shaped cursor to reach a square-shaped target and keep 447	

the cursor within the target for ~1 second. Cursor movements were accomplished by actuating prosthesis 448	

WFE and WPS DOFs via forearm muscle contractions. Since it is known that arm posture greatly affects the 449	

performance of state of the art decoders [2], we quantified our system robustness to arm configuration, i.e. 450	

each test was repeated with the right arm in three postures: (a) fully extended elbow, (b) 90-degree flexed 451	

elbow, and (c) 90-degree flexed elbow and 90-degree abducted shoulder.  452	

During the virtual target reaching tasks subjects reached a total of 672 targets, i.e. 168 targets per subjects 453	

on average. The first three series of tests verified the precision in controlling WFE and WPS individually 454	

(i.e. first and second series, see Methods Section) as well as sequentially (i.e. third series, see Methods 455	

Section) in order to reach vertically and/or horizontally displayed targets. Importantly, in all three series, the 456	

system always allowed simultaneous DOF control, but subjects were instructed to activate the DOFs 457	

individually, testing thereby the ability for selective control. Fig. 3 depicts vertical and horizontal reaching 458	

trajectories (i.e. individual DOF control) reported for TR1 along with recorded EMGs and estimated WFE 459	

and WPS moments driving the prosthesis movement. Subjects always reached targets using linear 460	

trajectories thereby successfully actuating a single DOF at a time with high precision. Path similarity was 461	

always accomplished with R2 > 0.98 across all targets and subjects. Intact-limbed individuals and transradial 462	
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amputee reached all targets with comparable times (median\interquartile range) during the individual and 463	

sequential DOF (two DOFs controlled in sequence) control tasks: 2.2\1.6s (individual) and 4.6\3.1s 464	

(sequential) across IL1-3 whereas 2.3\1.6s (individual) and 7.1\5.1s (sequential) for TR1. 465	

The fourth series of tests verified the system ability to enable controlling WFE and WPS simultaneously. 466	

Movie 1 shows the proposed model-based framework operated in real-time for the control of the prosthesis 467	

by IL1, displaying both musculoskeletal model, recorded EMGs and estimated wrist moments. The movie 468	

also shows the concurrent control of the ball-shaped cursor for reaching a variety of diagonal targets (see 469	

user interface on external screen). Note that the cursor diagonal trajectories directly correspond to the 470	

prosthesis simultaneous actuation of WPS and WFE. Fig. 4 further depicts diagonal reaching trajectories 471	

reported for TR1 along with recorded EMGs and estimated WFE and WPS moments driving the prosthesis 472	

movement. Fig. 4 shows highly coupled production of WFE and WPS moments underlying simultaneous 473	

control of prosthesis DOFs. Moment generating patterns were substantially different during the sequential 474	

DOF tasks (Fig. 3), i.e. reduced degree of WFE and WPS moment coupling. Fig. 5 depicts representative 475	

diagonal reaching trajectories for all intact-limbed individuals. Figs 4 and 5 also show that all subjects were 476	

able to produce diagonal trajectories. Moreover, each individual displayed ability of generating optimal 477	

diagonal trajectories in specific quadrants. TR1 was particularly capable of generating diagonal trajectories 478	

in quadrants 1, 3 and 4. IL1 and IL3 were capable of generating diagonal trajectories across all quadrants 479	

whereas IL2 in quadrants 2 and 4.  480	

Intact-limbed individuals and transradial amputee reached all targets with comparable times 481	

(median\interquartile range), i.e. 3.8\2.8s across IL1-3 and 5.3\4.7s for TR1. Each individual reached targets 482	

with substantially less time using our proposed model-based framework (model-based) than when using the 483	

classic commercially available two-channel sequential control scheme based on co-contraction (classic). Figs 484	

6A and 6B respectively reports the distribution and median\interquartile range of reaching times across all 485	

targets on a subject-specific basis. Across all subjects, quadrant 1 targets were reached (median\interquartile 486	

range) in 3.4\2.9s (model-based) and 6.2\3.4s (classic). Quadrant 2 targets were reached in 4.1\3.4s (model-487	

based) and 5.9\2.6s (classic). Quadrant 3 targets were reached in 3.4\2.2s (model-based) and 7.4\3.7s 488	

(classic). Quadrant 4 targets were reached in 4.2\3.9s (model-based) and 5.8\2.4s (classic). 489	

Importantly, the performance of the proposed model-based approach was preserved across all arm 490	

postures. Fig. 7 reports reaching times across arm postures and specifically for each subject. This shows our 491	
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proposed model-based approach has no performance decay across arm configuration and consistently 492	

outperforms the robust classic control scheme. In this, reaching times were always smaller using the model-493	

based approach than when using the classic control scheme. Across all subjects, reaching times during 494	

extended elbow posture were (median\interquartile range) 3.1\2.2s (model-based) and 7.1\3.8s (classic). 495	

During elbow flexed arm posture they were 3.4\3s (model-based) and 6.2\4.9s (classic). Finally, during 496	

elbow flexed and shoulder abducted arm posture they were 3.3\2s (model-based) and 5.9\3.7s (classic). 497	

 498	

 499	

Figure 8. Speed performance during clothespin test. Performance is evaluated in terms of number of 500	

clothespins correctly picked and placed per minute (ppm) both using our proposed system (model-based) and 501	

the commercially available system (classic). Results are reported for three intact-limbed individuals (IL1-3) 502	

and one transradial amputee (TR1). Also refer to Table II. (A) Results are reported for the non-sensorised pin 503	

test. (B) Performance is evaluated in terms of number of sensorised clothespins correctly picked without 504	

triggering light sensor.  505	

 506	

Clothespin Task 507	

The clothespin task verified the ability to accurately control WPS and HOC simultaneously and 508	

proportionally across functionally relevant tasks. Subjects performed two series of tests with different pin 509	

types. Subjects picked a total of 48 non-sensorised pins (i.e. 12 pins per subject) and a total of 20 sensorized 510	

pins (i.e. 5 pins per subject).  511	

The first series of tests (Movie 2, Fig. 8A) involved picking and placing non-sensorised pins (see 512	

Methods Section). Pins were arranged in four triplets of different stiffness as previously reported [44]. 513	
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Results showed that both intact-limbed and amputee individuals could control prosthesis WPS and HOC 514	

simultaneously while generating natural motions. This enabled individuals to complete the test with an 515	

average speed of 5.24±0.9 pins per minute (ppm) using the proposed model-based framework. In this, the 516	

amputee’s speed performance (5.5±0.4 ppm) was comparable to that of subject IL1 (5.6±0.7 ppm) and higher 517	

than that of subjects IL2 (3.67±0.5 ppm) and IL3 (5.03±0.6 ppm). Each individual completed the test with 518	

substantially better performance than when they used the commercially available sequential control scheme 519	

based on co-contraction (Fig. 8A) [9]. For the classic-control scheme, average speed performance was 520	

2.3±0.4 ppm and ranged between 1.8±0.1 ppm (subject IL2) and 2.7±0.2 ppm (subject IL3). 521	

The second series (Movie 3, Fig. 8B) involved picking and placing sensorised pins equipped with 522	

custom-made contact sensors. The sensor registered when the pin was grasped with force levels beyond 523	

predefined thresholds. This was indicated by activating a LED signaling that the subject would have 524	

“broken” the grasped object in the real world. Similarly to the first series, test underlay five pins of different 525	

stiffness as previously reported (see Material and Methods Section) [44]. The aim was to pick each pin while 526	

accurately controlling grasping force in order to open the pin enough to remove it from the bar but without 527	

using excessive forces, which would trigger the light sensor. The target force windows to successfully 528	

relocate each pin were 7-15% (yellow pins in Movies 2-3), 13-23% (red pins in Movies 2-3), 23-32% (green 529	

pins in Movies 2-3), and 35-43% (black pins in Movies 2-3) of the prosthesis maximum force. Results 530	

revealed each individual’s ability of fine controlling the prosthesis grip force while simultaneously 531	

controlling hand rotation. Movie 3 shows the amputee’s ability of grasping sensorized pins with the 532	

appropriate force level while preserving the required force level accurately during prosthesis wrist pronation-533	

supination, hence with no unwanted activations, i.e. no cross talk across DOFs. Individuals completed the 534	

sensorized clothespin test with an average speed of 2.7±0.4 pins per minute (ppm) using the proposed model-535	

based framework (Fig. 9). In this, the amputee’s speed performance (2.25±0.1 ppm) was comparable to that 536	

of intact-limbed subject IL2 (2.28±0.2 ppm) IL3 (2.58±0.2 ppm) while IL1 (3.4±0.2 ppm) displayed the best 537	

performance. Similarly to the first test, each individual completed the test with better performance than when 538	

they used the commercially available sequential control scheme based on co-contraction (Fig. 9) [9]. For the 539	

classic-control scheme, average speed performance was 1.5±0.13 ppm and ranged between 1.3 ppm (subject 540	

IL2) and 1.6 ppm (subject TR1). 541	

 542	

Page 21 of 33 AUTHOR SUBMITTED MANUSCRIPT - JNE-102513.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



J. Neural Eng.       M. Sartori, G.V. Durandau, S. Došen, D. Farina. Model-based Myoelectric Prosthesis Control.      Page 22 of 33 
	

Functional Tasks 543	

The functional tasks verified the system ability of performing real-world functions robustly and intuitively 544	

and were performed only with the proposed model-based control scheme. Results are reported in the form of 545	

a large repertoire of videos. In this, the transradial amputee could successfully perform tasks involving fine 546	

control actions (Movies 4-5) as well as manipulation of different objects (Movies 6-7). Fine control actions 547	

are displayed in Movie 4, showing TR1 executing a block-turn task involving fine control of HOC and WPS 548	

DOFs in the precise positioning of a narrow wooden block in equilibrium on a wooden shelf. Movie 5 shows 549	

TR1 precisely controlling HOC DOF force for grasping an egg. The movie shows TR1 ability of grasping 550	

force fine control while rotating the prosthetic wrist without breaking the egg. It is worth stressing that this 551	

task was performed with no force feedback provided to the amputee. Movie 7 shows how our proposed 552	

system was transparent to mechanically induced EMG movement artefacts, preventing inadvertently 553	

activating the prosthesis DOFs, i.e. by the resulting noise. Remarkably, the proposed system always enabled 554	

amputee’s voluntary prosthesis control under high movement-artefact contaminated condition. Finally, the 555	

system proved to be robust to highly dynamic movements including grasping and manipulating heavy 556	

objects (i.e. a 1.5L water bottle, Movie 7), a tasks that would be challenging for state of the art non-invasive 557	

myoelectric systems due to underlying alterations in EMG patterns in response to object weight [2,9,11].  558	

 559	

Computational Time 560	

Across all subjects and tests the proposed framework generated prosthesis control commands with average 561	

speeds 35±11ms. This includes the total net delay from the EMG recording to final prosthesis actuation. In 562	

this, 90% of control commands produced in one single time frame were generated within 55ms. This is well 563	

within the human perceivable delay in motor execution [45,46].  564	

   565	

DISCUSSION 566	

We presented a paradigm of man-machine interfacing where the complete information extracted from an 567	

individual’s composite neuromusculoskeletal system (i.e. from neuromuscular activation to skeletal joint 568	

mechanics) is used to control a robotic multi-functional prosthetic limb. We tested this paradigm on three 569	

intact-limbed individuals and on one transradial amputee during a range of tasks involving real-time control 570	
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of a physical prosthesis. The results showed performance and control capabilities superior than state of the 571	

art non-invasive myocontrol approaches.  572	

Our proposed neuro-mechanical interface addressed a major limit in current state of the art decoders, i.e. 573	

the inability of synthetizing the mechanisms that the neuro-musculo-skeletal system uses to control 574	

biological joints. State of the art consolidated approaches to the control of artificial limbs are based on 575	

machine learning for establishing a single mapping function between EMG and joint kinematics. In this 576	

context, there currently exist commercial systems based on pattern recognition (e.g. Coapt LLC) that showed 577	

important clinical use [47,48]. Moreover, recent regression based methods have shown levels of robustness 578	

to noise [49]. However, current machine learning approaches still display sensitivity to electrode 579	

replacement as well as lack of robustness to arm postures, thus providing control paradigms that are sensitive 580	

to external conditions.  581	

We propose an alternative idea based on a biomimetic model-based decoder, i.e. a computational model 582	

that explicitly synthesizes the dynamics of the musculo-skeletal system as controlled by neural surrogates, 583	

i.e. EMG-derived muscle activation signals (Fig. 1). Although online modelling was previously employed in 584	

lower limb prostheses [50] and robotic exoskeleton [51,52] scenarios, our study proposes a paradigm never 585	

presented for online myoelectric prosthesis control in transradial amputees. Forearm EMG recordings are 586	

used to drive forward physiologically correct models of the human musculoskeletal system in real-time, 587	

rather than regressing “all the way to” joint angles. This provides a completely new approach to decode 588	

amputees’ phantom limb function and concurrently control upper limb prostheses. This model-based 589	

biomimetic approach enabled for the first time decoding a transradial amputee’s phantom limb mechanical 590	

moments (Figs 3-4) and concurrently mimicking biological wrist function in artificial limbs in real-time 591	

(Movies 1-7). Whether joint moments could be reliably decoded from an amputee’s residual muscles EMG 592	

to robustly control a prosthetic wrist-hand represented an unanswered scientific question that this work 593	

directly addressed. In our paradigm, the prosthesis is the physical device that converted EMG-predicted joint 594	

moments into joint angles, thus eliminating the need for numerically integrating dynamic equations of 595	

motions. This is different from current solutions operating at the kinematic-level, including (1) model-free 596	

decoders, sensitive to unseen motor tasks and time scales [5] and model-based methods [21] that integrate 597	

forward dynamic equations of motion, which is a computationally expansive and numerically unstable step 598	

[23].  599	
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Removing the need for integrating the equation of motion is central for simulating large-scale models, an 600	

important element especially relevant for individuals who underwent targeted muscle reinnervation surgical 601	

procedures, who require regaining control of large sets of skeletal DOFs. Our proposed biomimetic model-602	

based approach enables control intuitiveness. In this, subjects do not have to learn to produce a specific 603	

EMG pattern for prosthesis control. They only need to move their own biological or phantom limb, whose 604	

mechanical function is directly captured by the neuro-mechanical interface and concurrently rendered in the 605	

real-world by the controlled prosthetic limb.  606	

Results have demonstrated that our method provided an advanced and reliable prosthesis control across 607	

tests involving reaching ~600 virtual targets from three arm postures, manipulation of 48 non-sensorised 608	

clothespins, 20 sensorised clothespins as well as manipulation of real-world objects during tasks mimicking 609	

daily living scenarios. The subjects could successfully activate prosthesis DOFs simultaneously (WFS and 610	

WPS, WPS and HOC) across a large range of tasks, and they could proportionally modulate the ratio of the 611	

DOF activations, as demonstrated by the diagonal trajectories with different slopes in Figs 4-5. Furthermore, 612	

subjects successfully activated single DOFs and transitioned between DOFs sequentially, with minimal cross 613	

talk between DOF-specific command signals, which has shown to be a challenge for regression-based 614	

methods [53]. Our method consistently and significantly outperformed commercially available benchmark 615	

systems (i.e. robust two channel command interface, commercial benchmark) during multi-DOF tasks but 616	

also during single-DOF tasks where commercial benchmarks would be expected to best perform. This was 617	

evident in the case of the amputee subject, an especially encouraging result.  618	

Fig. 3 shows that in some cases, subjects did not reach a given target via a single muscle contraction but 619	

rather via a sequence of brief contractions. This resulted in a number of trajectories underling a sequence 620	

torque pulses, dictating virtual cursor movement along a straight path with a variable velocity. Future work 621	

will assess whether practice will enable subjects to minimize the number of contractions needed to reach a 622	

give target. Fig. 4, shows that certain DOF combinations were achieved via minimally overlapped moment 623	

curves. While this is in line with literature studies on natural wrist rotations [54–58], it may also be a 624	

consequence of the fact that certain DOF-combinations are more intuitive than others. This may be 625	

especially relevant for the amputee subject who performed the tasks with no visual feedback on the 626	

prosthesis (please see Movie 1). Future work will also assess to what extent the lack of intrinsic muscle 627	

EMGs may contribute to decoded joint moments across coordinated wrist-hand tasks.   628	
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Our proposed approach demonstrated decoding robustness across a large variety of wrist-hand tasks 629	

(Movie 1) performed across different arm configurations (Figs. 6-7), and during dynamic tasks (i.e. Movies 630	

4-7). Movie 6 demonstrated our system ability to generate no unwanted prosthesis movement when EMG 631	

electrode cables underwent mechanically induced movement artefacts. Although this is not representative of 632	

commercially available systems schemes (i.e. involving no external cables that could be perturbed), these 633	

results show the potential robustness of our system to external movement artefact that may nevertheless 634	

come from interaction with the environment. Moreover, it enabled performing highly dynamic motor tasks 635	

including manipulating heavy objects (Movie 7).  636	

Our system robustness (which was comparable to the most robust benchmark system in the market) 637	

derived from the fact that any joint moment estimate must always exist within the musculoskeletal model 638	

operational space and be therefore physiologically plausible. This cannot be achieved with current machine 639	

learning decoders that, when trained in one condition, would produce unrealistic estimates (i.e. outside the 640	

physiological space) in novel conditions. Machine learning decoding solutions are not constrained by any 641	

physiologically plausible structure. Our proposed approach establishes a subject-specific model of an 642	

individual’s musculoskeletal system. In this, the musculoskeletal model linear scaling and parameter non-643	

linear calibration (i.e. see Methods Section, Fig. 2) directly determine how EMG signals are processed by the 644	

subject’s musculoskeletal system, i.e. how they are converted into muscle force and further projected onto 645	

skeletal DOFs. This effectively reduces the space of potential solutions as EMGs can be mapped only onto 646	

mechanical forces that are contained within the musculoskeletal model operational space. Current methods 647	

map EMG signals into control commands with no physiological constraints, thus dealing with large solution 648	

spaces that contain large portions of non-physiologically plausible solutions.  649	

Results were obtained on a small number of subjects. Future work will be directed in testing the 650	

generalization of the results to a greater population encompassing subjects with different levels of 651	

amputations as well as comparison of our methodology with respect to state-of-the-art pattern recognition 652	

techniques. Our proposed method demonstrated applicability in amputees who underwent traumatic injuries. 653	

Future work will assess whether this method can be translated to individuals affected by congenital limb 654	

absence. This will require a systematic research to investigate whether motor task learning can be induced in 655	

such individuals undergoing physiotherapy training coupled with the proposed real-time system. Further 656	

research is also needed to investigate to what extent Hill-type muscle models may contribute to reduce EMG 657	
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noise artefacts in online myocontrol scenarios. In this context, computational muscle models may enable 658	

simulating musculotendon viscoelasticity, which may act as a dynamic filter for reducing the impact of noise 659	

remaining in the EMG after linear envelope computation. Although our results provided evidence of 660	

robustness to arm configurations further work is necessary to assess robustness to other sources of noise. 661	

Future work will also perform systematic analyses to quantify to what extend the model scaling and 662	

calibration procedures (see Methods Section) can be retained for a subject across time scales, i.e. involving 663	

longitudinal testing over a number of consecutives weeks.  664	

 665	

CONCLUSION 666	

This study showed the potential of the proposed control method to enable the first real-time multi-DOF 667	

myoelectric technology that decodes an amputee’s phantom limb musculoskeletal mechanics and could be 668	

employed in real-world scenarios to control a total of three DOFs including forearm pronation-supination, 669	

wrist flexion-extension and hand opening-closing. Future work will couple our proposed model-based 670	

approach with deconvolution-based decoding of motor neuron discharges from high-density 671	

electromyograms and enable bionic limb control in higher-dimensional DOF spaces [1,30]. Integrating 672	

model-based paradigms as a mechanism to constrain and control prosthetic wrist-hand rotation within 673	

physiologically plausible operational spaces has the potential to bring prosthetic technology closer to match 674	

biological joint function with implications for both upper and lower limb rehabilitation technologies. It will 675	

enable individuals to control artificial limbs by estimating physiological activations in their residual muscles, 676	

hence control intuitiveness. It will enable decoding “any” movement (i.e. not only those learned in a specific 677	

regime) because it synthetizes the underlying neuromuscular processes, hence control robustness and 678	

extrapolation to unseen conditions. It will enable predicting internal somatosensory variables (i.e. 679	

muscle/tendon length, tension), which will help restore amputees’ somatosensory processes in advanced 680	

closed-loop neuro-prostheses. 681	

 682	
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Movie 1. Graphical user interface during wrist control tasks. The proposed model-based framework 832	

operated in real-time for the simultaneous control of the prosthesis wrist flexion-extension (WFE) and 833	

pronation-supination (WPS) by IL1 (Table II). The movie displays the musculoskeletal model, recorded 834	

EMGs and estimated joint moments (see laptop) and the concurrent control of the ball-shaped cursor for 835	

reaching a variety of diagonal targets (see user interface on external screen). Note that the cursor diagonal 836	

trajectories directly correspond to the prosthesis simultaneous actuation of WPS and WFE. After every target 837	

is successfully reached, the prosthesis automatically resets to its neutral position. 838	

 839	

Movie 2. Non-sensorised clothespin test. The transracial amputee subject picking and placing non-840	

sensorised pins arranged in four triplets of different stiffness as previously reported (22). The amputee 841	

controls prosthesis wrist pronation-supination and hand opening-closing simultaneously while generating 842	

natural motions. 843	

 844	

Movie 3. Sensorised clothespin test. The transracial amputee subject picking and placing sensorised pins of 845	

different stiffness. The target force windows to successfully relocate each pin are 7-15% (yellow pin), 13-846	

23% (red pin), 23-32% (green pin), and 35-43% (black pin) of the prosthesis maximum force. The movie 847	

shows the amputee’s ability of fine controlling the prosthesis grip force while simultaneously controlling 848	

hand rotation, while not triggering the light sensor. 849	

 850	

Movie 4. Block turn test. The transradial amputee executes a block-turn task involving fine control of 851	

prosthesis wrist pronation-supination and hand opening-closing simultaneously in the precise positioning of 852	

a narrow wooden block in equilibrium on a wooden shelf. 853	

 854	

Movie 5. Egg manipulation. The transradial amputee precisely controls hand opening-closing grip force for 855	

grasping an egg. The movie shows the amputee’s ability of fine grasping force control while rotating the 856	

prosthetic wrist without breaking the egg. 857	

 858	

Movie 6. Cable induced movement artefacts. How our proposed system being transparent to mechanically 859	

induced cable-related movement artifacts visibly present in the recorded electromyograms. Despite the 860	
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artificially induced noise condition the prosthesis does not inadvertently activate unwanted degrees of 861	

freedom. The movie also shows amputee’s voluntary prosthesis control under noise condition. 862	

 863	

Movie 7. Manipulation of heavy objects. Our proposed system enabling grasping and manipulating heavy 864	

objects including a 1.5L water bottle, a task that would be challenging for state of the art non-invasive 865	

myoelectric systems. 866	
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