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Abstract The recent introduction of wind power futures written on the German wind power
production index has brought with it new interesting challenges in terms of modeling and pricing.
Some particularities of this product are the strong seasonal component embedded in the underlying,
the fact that the wind index is bounded from both above and below, and also that the futures are
settled against a synthetically generated spot index. Here, we consider the non-Gaussian Ornstein-
Uhlenbeck type processes proposed by Barndorff-Nielsen and Shephard (2001) in the context of
modeling the wind power production index. We discuss the properties of the model and estimation
of the model parameters. Further, the model allows for an analytical formula for pricing wind power
futures. We provide an empirical study, where the model is calibrated to 37 years of German wind
power production index that is synthetically generated assuming a constant level of installed capacity.
Also, based on one year of observed prices for wind power futures with different delivery periods,
we study the market price of risk. Generally, we find a negative risk premium whose magnitude
decreases as the length of the delivery period increases. To further demonstrate the benefits of our
proposed model, we address the pricing of European options written on wind power futures, which
can be achieved through Fourier techniques.

Key Words: wind power futures, weather derivatives, Ornstein-Uhlenbeck process, market price
of risk

1. Introduction

Following the significant expansion in wind turbine installations that some European
countries have experienced over the past years, the demand for financial instruments
that can be used to address the problem of volumetric risk in wind power generation
has grown. This has led to the launch of a standardized product written on the wind
power production index, namely the so-called wind power futures (or wind index
futures). Currently, wind power futures can be traded on NASDAQ OMX and the
European Energy Exchange (EEX) on the German wind power production index.
The index is obtained by measuring the German wind power generation relative
to the available installed capacity; hence, the index has a lower bound of 0 and
an upper bound of 1, corresponding to a 0% and a 100% wind power utilization,
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respectively.
To clarify the payoff structure of wind power futures, let us denote by F (t, T ) the

wind power futures price at time t and delivery during day T , with 0 ≤ t < T and
0 ≤ F (t, T ) ≤ 1. Further, let P (T ) be the wind index measured at day T . Then, a
long position in a wind power futures contract entered at time t ≤ T for delivery at
T yields the payoff

24(P (T )− F (t, T )) · x,

where 24 denotes the usual number of hours in a day and x denotes a known fixed
tick size. For the wind power futures traded at NASDAQ OMX and EEX, x = 100
EUR. Moreover, the futures are settled against an externally provided spot index
P (T ), which is synthetically generated based on weather data and an individual
power curve for every grid point in Germany.
Natural sellers of wind power futures are the wind power producers and companies

with considerable wind park portfolios, as they are interested in protection against
the low wind scenarios, which are likely to lower revenues. Although one could argue
that day-ahead electricity prices tend to increase in times of low wind, wind power
generators usually receive a fixed price per generated unit of electricity, and do not
participate in the wholesale market themselves. Hence, volumetric risk is the only
risk source left to be addressed, and wind power futures can be an obvious tool for
stabilizing the revenue of the wind power generators. Typical buyers are conven-
tional power plants acting in e.g. the day-ahead market, whose profitability drops
in times of high wind due to the negative relation between wind power production
and spot electricity prices.
In this paper, we propose a non-Gaussian Ornstein-Uhlenbeck process in the spirit

of Barndorff-Nielsen and Shephard (2001) to model the wind power production
index. The model is very straightforward, allowing for an easy estimation of the
parameters and analytical pricing of wind power futures, with the latter facilitating
the study of the market price of risk. Based on one year of observed German wind
power futures curves, we perform an empirical analysis of the risk premia in this
newly established market.
Wind power futures are characterized as weather derivatives, and fall in this cate-

gory together with derivatives written on temperature, rainfall, snowfall, humidity,
etc. While the existing literature on temperature derivatives is extensive and broad
in terms of modeling approach (see e.g. Davis (2001), Brody et al. (2002), Cao
and Wei (2004), Campbell and Diebold (2005), Platen and West (2005), Härdle
and López Cabrera (2012) and Benth and Šaltytė Benth (2011)), literature related
specifically to wind derivatives is very scarce. To the best of our knowledge, the first
study concerned with the pricing of wind derivatives is that of Benth and Šaltytė
Benth (2009), which was motivated by the introduction of futures and options on
wind speed indexes at different wind farm locations in the US back in 2007. How-
ever, trade in these products never really picked up, explaining perhaps the scarcity
of related studies.
Almost ten years after the first attempt to establish a market for wind deriva-

tives, the introduction of the German wind power futures on NASDAQ OMX and
EEX awakens interest again. The study of Gersema and Wozabal (2017) is the first
to provide a thorough introduction to the German wind power futures market, the
market players and their risks. Further, Gersema and Wozabal (2017) propose an
equilibrium pricing model, and based on different case studies they conclude that
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a negative risk premium is to be expected in wind power futures markets. A sec-
ond related study concerning wind power futures is that of Pircalabu and Jung
(2017), where the authors focus on the hedging benefits of wind power futures in
the context of energy trading companies entering into long-term agreements with
wind power generators, where the fluctuating wind power production is bought at
a pre-determined fixed price. Here, wind power futures are not the main focus of
the analysis, and they are thus treated on a conceptual basis, disregarding some
practical aspects concerning the data foundation in their pricing application. In
this paper, we shall address this aspect in detail, highlighting its importance.
The paper is structured as follows: In Section 2, we present the data and comment

on key features as to motivate the model choice. In Section 3, we introduce the model
for the wind power production index and provide an empirical study where the
model is applied to German data. Analytical futures prices are derived in Section 4,
and based on one year of market prices for wind power futures with different delivery
periods, the market price of risk is studied. In Section 5, we elaborate on further
applications of the proposed model in derivatives valuation. Section 6 concludes.

2. Data presentation

Since wind power futures are only traded on the German wind power index at the
moment, the empirical analysis performed in this paper is based on German data.
We consider a time series of daily wind power production indexes for the German
market, which was synthetically constructed by MeteoGroup for a period of 37
years (1 January 1979 to 31 December 2015). The synthetic index is displayed in
Fig. 1, and measures how the utilization of installed wind power capacity would
have looked like in the German market zone in the past, conditional on the present

level of available capacity and geographical location of wind turbines. Specifically,
the present level we consider here corresponds to September 2016. To construct
such an index, a bottom-up approach was implemented based on historical weather
data and power curves. Clearly, since the wind index measures the wind power
production relative to the installed capacity, it must be bounded between zero and
one. For the data in Fig. 1, the lowest and highest values recorded are 0.35% and
83.05%, respectively.
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Figure 1. Index constructed based on the total installed wind power capacity observed in September 2016.

In the context of pricing wind power futures, which is the main focus of the present
paper, we argue that fitting a model to the type of data in Fig. 1 seems much more
reasonable than considering the historical evolution of the wind index. This is an
essential point, since the wind power futures price today is clearly not influenced
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by how the available installed capacity evolved over time in Germany, but rather
on the present and ideally the future installed capacity level.

2.1 Seasonality

Aside from the wind index being bounded on [0,1], another key feature is the yearly
seasonality we observe in the data illustrated in Fig. 1. To emphasize the annual pat-
tern, we complement the time series plot in Fig. 1 with the empirical autocorrelation
function of the index in Fig. 2(a). Following the related literature (see e.g. Benth et

al. (2008), Härdle and López Cabrera (2012), and Benth and Šaltytė Benth (2011)),
the yearly seasonality can be addressed by the following seasonality function:

Λ(t) = a1 + a2 sin(2πt/365) + a3 cos(2πt/365). (1)

Fitting this function to the wind index by ordinary least squares yields the param-
eter estimates reported in Table 1. In Fig. 2(b), the wind power production index
is plotted together with the fitted seasonal function. For better clarity, we display
a snapshot of the last 10 years, i.e., from year 2006 to 2015.

Table 1. OLS estimates for the

parameters of the seasonal func-
tion.

Estimate Standard error

â1 0.2164 0.0014
â2 0.0102 0.0020
â3 0.0839 0.0020
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(a) Empirical autocorrelation function
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Figure 2. Empirical autocorrelation function of the synthetic wind power production index and fitted
seasonal function.

3. A model for the wind power production index

Motivated by the two key features of the wind index enhanced in Section 2, i.e.,
boundedness on [0,1] and yearly seasonality, we specify a model for the wind power
production index as follows. Let (Ω,F ,P) be a complete probability space with a
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filtration {Ft}t≥0 satisfying the usual conditions. We denote by P the wind power
production index obtained by measuring the wind power production relative to the
available installed capacity, implying that P (t) ∈ [0, 1] for all t.
We define P (t) as

P (t) = Λ(t) exp(−X(t)), (2)

where Λ(t) describes the deterministic seasonal component of the wind power pro-
duction index and X(t) follows a non-Gaussian Ornstein-Uhlenbeck process as in
the stochastic volatility model proposed by Barndorff-Nielsen and Shephard (2001).
Specifically,

dX(t) = α(µ−X(t))dt+ dL(t), (3)

with L being a driftless subordinator, and µ > 0, α > 0 denoting two constants.
From standard theory, the solution of the Ornstein-Uhlenbeck process is

X(t) = X(0)e−αt + µ(1− e−αt) +

∫ t

0
e−α(t−s)dL(s),

where X(0) = ln(Λ(0)/P (0)). The constant µ is connected to Λ(t), and its purpose
is to ensure that P (t) never exceeds 1. In order to elaborate on this, we include the
following Proposition regarding the stationarity of X(t).

Proposition 3.1. Let ℓ(dz) denote the Lévy measure corresponding to the Lévy
process L(t). If

∫

|z|>2
ln |z|ℓ(dz) <∞,

then X(t) given by the Ornstein-Uhlenbeck process in Eq. (3) has a limiting distri-
bution. The stationary solution of X(t) is

X(t) = µ+

∫ t

−∞
e−α(t−s)dL(s),

where L here is a two-sided Lévy process.

We refer to Sato (1999), Thm. 17.5, for a proof and more details on this result.
Regarding the stationary solution X, we refer to an extensive discussion in Basse-
O’Connor et. al (2014).
Returning to the connection between µ and Λ(t), let M = max(Λ(t)). Then, we

must have that

max(P (t)) = max(Λ(t) exp(−X(t))

≤M exp(−min(X(t))).

Owing to L being a subordinator, it follows from the stationary solution in Propo-
sition 3.1 that X(t) ≥ µ. Further, since we also have that 0 ≤ P (t) ≤ 1, we choose
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µ such that M exp(−µ) = 1. Thus, we let

µ = lnM, (4)

and obtain an exact upper bound of 1 as a possible case. This way of introducing
seasonality in the model has its advantages and disadvantages, and we refer to
Appendix A for a detailed discussion on the subject.
Next, we state the limiting distribution of X(t)− µ for a specific case, since this

will be used in our empirical study.

Proposition 3.2. If L(t) is a compound Poisson process with exponentially dis-
tributed jumps,

L(t) =

N(t)∑

k=1

Jk, (5)

where N(t) is a Poisson process with frequency λ and Jk are independent identically
distributed exponential random variables with density function

fJ(x) = κe−κx, (6)

then the limiting distribution of X(t)−µ, where X(t) evolves according to Eq. (3),
is the Gamma distribution with density function given by

fΓ(x) =
κλ/αxλ/α−1e−κx

Γ(λα)
. (7)

Proof. See Appendix B.1.

While the model proposed in this section captures key features of the wind index,
there are other alternatives when it comes to modeling data with range [0,1]. In
particular, we mention the Jacobi processes. A Jacobi process, which is in fact an
extension of the Heston model, will have values in any desirable positive interval
[Ackerer et. al (2017)]. In our case, we could consider a process of the type

dP (t) = −a(P (t)− b)dt+
√
cP (t)(1− P (t))dW (t),

where a > 0, c > 0, 0 < b < 1 and W denotes a Brownian motion.
On one hand, the Jacobi approach is simpler compared to our proposed model

in that the wind index is modeled directly, and the Lévy process is replaced by a
Brownian motion. On the other hand, since we let ln (Λ(t)/P (t)) be an Ornstein-
Uhlenbeck, our approach is advantageous from a calibration perspective. In fact,
estimation of model parameters for the Jacobi process is not straightforward cf.
Gouriéroux and Valéry (2002). Furthermore, the marginal distribution of the Jacobi
process is fixed to the beta distribution, whereas our model allows for great flexibility
in choosing marginal distributions. In terms of derivatives pricing, both models have
their advantages when it comes to the pricing of wind power futures. For the Jacobi
process, making use of its polynomial property could result in simple (possibly
explicit) expressions for the futures price. Regarding our proposed process, explicit

6
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pricing formulas for wind power futures are attainable, as we shall illustrate later
in the paper. Unlike our model however, it is unclear how a measure change is
included in the Jacobi model as to preserve the Jacobi-structure. In light of the
discussion above, we favor the model in Eqs. (2)-(3), and shall not pursue the Jacobi
processes in the present paper. Nevertheless, we stress that the Jacobi approach is
an interesting and unexplored alternative for modeling the wind power production
index.

3.1 An empirical analysis on German wind index data

In this section, we turn to the empirical study of the German wind index time
series in Fig. 1. Recalling that the seasonal function entering Eq. (2) has already
been estimated in Section 2.1, an estimate for µ immediately follows from Eq. (4).

We obtain M̂ = 0.3009, implying that

µ̂ = −1.2010. (8)

Using the expression for P (t) in Eq. (2), the variable X(t)− µ is then constructed
by

X(t)− µ = −

(
ln

(
P (t)

Λ(t)

)
+ µ

)
. (9)

According to Appendix A, our way of incorporating seasonality in the model intro-
duces the potential of having

X(t)− µ < 0. (10)

When considering the time series X(t) − µ, we do indeed observe negative values;
however, the percentage of negative data points is very low, corresponding to 0.95%,
which we find acceptable.
Next, we consider the parameter α entering the dynamics of the X(t) process cf.

Eq. (3), and note that

X(t+ 1)− µ = e−α(X(t)− µ) +

∫ t+1

t
e−α(t+1−s)dL(s). (11)

Clearly, it follows from Eq. (11) that α can be obtained by fitting an AR(1) model
to X(t) − µ, and by using the relation φ = exp(−α), where φ denotes the slope
coefficient in the AR(1). However, this procedure requires residuals to be normally
distributed, which is not the case here. Recalling that the lag s correlation between
observations s periods apart can be expressed as

Corr(X(t+ s), X(t)) = φs = e−αs,

we fit instead the function exp(−αt) to the sample autocorrelation of X(t)−µ using

7
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nonlinear least squares1, and obtain

α̂ = 0.5455 (12)

with a standard error of 0.0011. For comparison purposes, we provide in Appendix C
detailed results from implementing the AR(1)-estimation approach, including a
residual analysis.
To get an idea of the goodness-of-fit of the proposed exponential function, we plot

in Fig. 3 the empirical autocorrelation function together with the fitted exponential.
The fit is satisfactory, capturing rather well the sample autocorrelations at the
first lags, which are also the most significant. We do however note that the fitted
exponential drops to zero slightly quicker than the sample autocorrelation does.
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Figure 3. Fitted exponential to the empirical autocorrelation function of X(t)− µ.

The remaining part of the fitting procedure relates to estimating the parameters
of the stationary distribution of X(t)− µ, i.e. the Gamma distribution cf. Proposi-
tion 3.2. The choice of a Gamma distribution is motivated by its correspondence to
an L(t) being a compound Poisson process with exponential jumps, as well as its
reasonable description of the data which we shall illustrate shortly.
Due to the presence of dependence, fitting the Gamma distribution to the ac-

tual data (the positive part) would not necessarily yield accurate estimates. Con-
sequently, we wish to fit the Gamma distribution to an iid sample generated from
the actual data. To achieve this, we consider the ‘opposite’ of a block bootstrap,
in the sense that we do not wish to generate a bootstrapped sample that preserves
the autocorrelation structure the we observe in the data; on the contrary, we wish
to ensure independence. Specifically, we follow the procedure described below to
obtain a sample with the desired properties:

(1) Estimate an optimal block-length l by following the procedure in Politis and
White (2004) and Patton et. al (2009).2

(2) Draw a number x1 ≥ 0 from the empirical distribution of X(t) − µ and let
B1,l = {x̃1, x̃2, . . . , x̃l} denote the block consisting of l consecutive indexes, with
x̃1 corresponding to the position of x1 in X(t)− µ.

(3) Let T̃ equal the length of the original time series (T̃ = 13, 514 cf. Fig. 1) and
repeat the following for j = 2, . . . , T̃ .

1We applied the nlinfit function in Matlab.
2The procedure is intended for e.g. carrying out the so-called stationary block bootstrap introduced in
Politis and Romano (1994), which is generally applicable for stationary weakly dependent time series.
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(a) Draw (with replacement) a new number zj ≥ 0 from the empirical distri-
bution of X(t)− µ, and let z̃j be the corresponding index.

(b) If z̃j ⊆ Bj−1,l, discard the draw and repeat step (a). Otherwise, set xj = zj ,
Bj,l = {x̃j , . . . , x̃j+l−1} and proceed.

We implement the above procedure with l̂ = 45, and fit a Gamma distribution to the
generated bootstrap sample of the data of length T̃ . Stressing that the parameter
α in Eq. (3) coincides with α in Eq. (7), we retrieve λ̂ and κ̂ conditional on α̂
cf. Eq. (12). By repeating this N = 10, 000 times, a bootstrapped distribution

of {(λ̂i, κ̂i)}
N
n=1 is produced. Based on these bootstrapped distributions, we then

obtain the estimates reported in the first column block of Table 2. For comparison,
we also fit a Gamma distribution to the actual data (the positive part). The results
are displayed in the second column block of Table 2, and we find that they are
very similar to the ones obtained with the bootstrap method. To provide some
evidence for the goodness-of-fit of the Gamma distribution, we plot in Fig. 4 an
example of a bootstrapped sample of the data and the empirical distribution of
X(t) − µ, together with corresponding fitted Gamma distributions. Disregarding
the few negative values in the empirical distribution of X(t) − µ, the results show
that the Gamma distribution provides an acceptable fit to the data.

Table 2. Parameter estimates for the Gamma distribution, conditional on α̂.

Bootstrap procedure Empirical distribution of X(t) − µ

Estimate Standard error Estimate Standard error

λ̂ 1.3649 0.0183 1.3645 0.0157
κ̂ 1.6201 0.0207 1.6187 0.0206

X(t) - µ
0 2 4 6

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5 Sampled data
Fitted Gamma

(a) Example of a bootstrapped sample
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(b) Empirical distribution

Figure 4. Bootstrapped and empirical distribution of X(t) − µ together with the corresponding fitted

Gamma distribution.

We remark in passing that other stationary distributions could be chosen as long
as they are within the class of self-decomposable distributions. However, a different
choice of a stationary distribution does not always result in the Lévy process being
easily characterisable, as is the case with the Gamma distribution. For detailed
discussions on self-decomposability, we refer the interested reader to Barndorff-
Nielsen and Shephard (2001) and Halgreen (1979).
Based on the empirical results obtained in this section, we conclude that the

model proposed in Eqs. (2)-(3) provides a good overall fit and is thus a reasonable
model for the German wind power production index.
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4. Pricing of wind power futures

Motivated by the recent introduction of futures written on the German wind power
production index, we derive in this section futures prices based on our proposed
model. We denote by F (t, T ) the wind power futures price at day t ≥ 0, with
delivery at day T ≥ t. As it is usual in these types of markets, if we want to
consider martingale pricing, we must define the futures price as the conditional
expectation of the wind index at delivery, since the buy-and-hold argument does
not hold. The expectation is not to be taken under the objective measure P, but
under a pricing measure Q that is equivalent to P, and hence, Q-dynamics for the
wind power production index must be established.
Since wind is naturally not a tradable asset, there are many potential martingale

measures Q. In order to choose such one, we consider here the class of parametrized
equivalent measures that can be obtained from the Esscher transform [Esscher
(1932)]. Restricting our discussion to a constant market price of risk which we
shall denote by θ, and following Benth et al. (2008), we define the probability Q

through

dQ

dP

∣∣∣∣
Ft

= exp
(
θL(t)− ψL(1)(−iθ)t

)
, (13)

with ψL(1) being the cumulant function of L(1) defined as

ψL(1)(x) = lnE[eixL(1)]. (14)

Furthermore, to ensure that the Esscher transform is well-defined, we assume that
there exists a non-negative constant c such that

E[ecL(1)] <∞. (15)

Hence, the Esscher transform is well-defined for all θ ≤ c.
Narrowing the discussion down to our context, where we let L(t) be a compound

Poisson process with exponentially distributed jumps, the cumulant function of L(1)
becomes

ψL(1)(x) = λ
ix

κ− ix
. (16)

For a detailed derivation of this result we refer to the proof in Appendix B.1. Also,
since we have established that the limiting distribution is the Gamma distribution,
we get explicit conditions for the non-existence of the cumulant, as we shall illustrate
shortly.
In the following proposition, we derive an explicit expression for the futures price.

Proposition 4.1. Let 0 ≤ t ≤ T and assume that P (t) and X(t) evolve according
to the model in Eq. (2) and Eq. (3), respectively. Further, let L(t) be a compound
Poisson process as specified in Proposition 3.2. Assuming that the exponential mo-
ment condition in Eq. (15) holds for a c ≥ 0, we have that the wind power futures

10
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price F (t, T ) is given by

F (t, T ) = Λ(T )Hθ(t, T )

(
P (t)

Λ(t)

)exp(−α(T−t))

, (17)

where

Hθ(t, T ) = exp
(
−µ(1− e−α(T−t))

)(κθ + e−α(T−t)

κθ + 1

)λθ/α

,

and

κθ = κ− θ,

λθ =
λκ

κ− θ
.

Proof. See Appendix B.2.

Since P (t) ≤ 1, it follows that EQ[P (T )|Ft] ≤ 1, and so F (t, T ) ≤ 1; moreover, if
P (t) ≥ 0, we also have that F (t, T ) ≥ 0.
Considering the expression for F (t, T ) in Proposition 4.1, we note that the con-

dition θ < κ must be imposed to ensure exponential integrability of L and thus the
existence of an Esscher transform. Since the estimated κ is positive cf. Table 2, we
have no sign restriction on the market price of risk θ. Also note that while the distri-
butional properties of the jump process remain unchanged, the jump intensity and
jump size are impacted by the Esscher transform: L(t) is still a compound Poisson
process with exponentially distributed jumps, but now with intensity λθ and mean
jump size 1/κθ. A positive θ will emphasize the jump intensity and the mean jump
size, while a negative θ will have the opposite effect.
According to Eq. (17), the shape of the futures curve T → F (t, T ) depends ex-

plicitly on the seasonal function Λ, a function Hθ that incorporates the market
price of risk θ and a term that includes today’s spot wind power index P (t). The
seasonal component gives a contribution to the futures curve corresponding to the
fitted seasonal function plotted in Fig. 2(b).
To illustrate the contribution from the second term entering the expression for

F (t, T ), we plot in Fig. 5 the evolution of Hθ(t, T ) as a function of θ for five different
maturities, and using the parameter estimates for α, λ and κ obtained in Sec. 3.1
for the German data. When considering the different maturities T , we observe that
Hθ(t, T ) converges very fast to a fixed shape as T increases; with no market price of
risk, that is θ = 0, the contribution from the second term is very close to 1 meaning
that the futures price is almost unaffected by this term. Generally, we observe that
a negative θ implies a value of Hθ(t, T ) > 1 and hence an increase in the futures
price. Equivalently, a positive θ implies a decrease in the futures price.
Unlike the first two terms, the third term in Eq. (17) gives rise to a stochasti-

cally varying shape for the futures curve in the short end. As the time to maturity
increases, this term will either decrease or increase to 1 depending on whether
P (t) > Λ(t) or P (t) < Λ(t). To depict this behavior, we set t = 0 and α to its esti-
mated value from Sec. 3.1, and plot in Fig. 6 two situations: First, we let P (0) = 0.40
and Λ(0) = 0.30 and second, we let P (0) = 0.20 and Λ(0) = 0.30.
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Figure 5. Values of Hθ(t, T ) for θ ∈ [−1.5, 1.5] and different maturity periods. α, λ and κ are fixed to the
estimated values obtained in Sec. 3.1.
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Figure 6. The shape of the third term entering the expression for the futures price in Eq. (17). We consider
the case where Λ(0) = 0.30, and P (0) = 0.20 and P (0) = 0.40, respectively.

Combining the three terms discussed above, we obtain two futures curves which
we plot in Fig. 7. The same values for Λ(0) and P (0) as in Fig. 6 are employed,
with θ = 0 and the parameter estimates obtained for the German data. On the
short end, the shape of the futures curve is highly influenced by the behavior of
the contributing term from Fig. 6. On the long end, the shape is mostly influenced
by the seasonal function, as F (t, T ) ∼ vΛ(T ) for a constant v and T ≫ t. The
decreasing pattern of both curves in Fig. 7 in the long end is due to the yearly
seasonal cycle and the fact that the initial value of the seasonality curve, i.e. Λ(0),
corresponds to data as of 1 January. We stress that the annual pattern of the term
structure is not clear in Fig. 7 as we restrict our attention to 100 days.
Since the market price of risk is rarely zero in reality, we also investigate the

contribution to the futures curve implied by θ = ±0.1; that is, we again compute
Hθ(t, T ), but now for two fixed values of θ and maturities T ∈ [1, 50]. The results are
displayed in Fig. 8, showing that the contribution of a constant market price of risk
θ 6= 0 corresponds to a function that is either decreasing or increasing exponentially.

4.1 An empirical study of the market price of risk

Since wind power futures on the German wind power index have been traded for
a while now, historical futures prices quoted in the market are available, allowing
us to perform an empirical study of the market price of risk. Like with commodity
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Figure 7. Theoretical futures curves implied by the proposed model fitted to the German data. The
market price of risk θ is set to zero, and the start values for Λ(0) and P (0) set to illustrate the same

instances as in Fig. 6.
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Figure 8. Contribution of a constant market price of risk to the futures curve. Here, we consider the cases
θ = ±0.1.

futures such as power or gas futures, delivery periods for wind power futures are
usually an entire week, month, year, etc. This is in contrast with the type of curve
implied by our proposed model, which is smooth and made up of daily futures
prices (contracts with non-overlapping delivery periods). To convert the single-day
delivery prices F (t, T ) obtained with our model to prices of contract types quoted
in the market, we assume that

f(t, T1, T2) =
1

T2 − T1 + 1

T2∑

τ=T1

F (t, τ),

where T1 and T2 denote start and end delivery dates, respectively.
As we shall illustrate shortly, wind power futures prices are given in EUR/wph

(wind production hour) with a tick size fixed to EUR 100, which is used to convert
differences between futures and spot values into a monetary measure (see NASDAQ
OMX (2017)). Given a wind power futures contract with delivery during e.g. a
week, a difference of 0.01 (1%) between the value of the futures contract at time t
and the average realized index for the same delivery will yield a profit or loss of 1
(EUR/wph) × 24 (hours) × 7 (days) = 168 (EUR). With our model, we established
that 0 ≤ F (t, T ) ≤ 1, and we will simply multiply this value by 100 such that

13
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theoretical and quoted prices are comparable.
To provide an example of a wind power futures curve quoted in the market, we

illustrate in Fig. 9 the observed curve on t = 1 September 2016. The observations
correspond to NASDAQ OMX closing prices and are plotted using horizontal lines
from start to end delivery, where time is measured in days. We note that we make
up the observed curve using 13 contracts, namely 3 front weeks, 5 front months,
4 front quarters and 1 front year, relative to the valuation date t. For comparison
purposes, we also add in Fig. 9 prices implied by our model with θ = 0.
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Figure 9. Observed wind power futures curve on 1 September 2016 together with the corresponding
theoretical curve implied by our proposed model with zero market price of risk. All prices are given in
EUR/wph, and a tick size equal to EUR 100, i.e. we use the conversion 1% = 1 EUR/wph.

Generally, our model produces prices that are above the quoted prices in the mar-
ket, translating to the fact that θ > 0 according to our discussion earlier. Further,
note the strong seasonality pattern in both the theoretical and the market quoted
futures curves, with winter contracts being much more expensive than summer con-
tracts.
Having an explicit futures price formula facilitates the calibration of θ, which can

be achieved through a minimization of the distance between theoretical and observed
prices. To distinguish between theoretical prices implied by our model and market
prices, let fθ(t, T1, T2) denote the theoretical price, emphasizing its dependence on
θ. Further, let fObs(t, T1, T2) denote the corresponding closing price observed in the
market. To extract the implied market price of risk associated with the contracts in
Fig. 9, we consider the following:

θ̂(t, T1, T2) = min
θ

|fObs(t, T1, T2)− fθ(t, T1, T2)|.

Implementing this procedure3 yields a market price of risk per contract and valua-
tion date. The obtained values are tabulated in Table 3, confirming that the implied
values for θ̂ are generally positive.
Next, we briefly turn our attention to the risk premium, defined as

RP (t, T1, T2) = fObs(t, T1, T2)− fθ=0(t, T1, T2).

Owing to our model construction, notice that we will generally have an alternating
sign between the implied market price of risk and the risk premium, i.e. θ > 0

3We applied the fmincon function in Matlab.
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Table 3. The implied market price of risk on 1

September 2016.

Contract Delivery Implied θ̂
type period 1 September 2016

1 Week 1 0.2411
2 Week 2 0.0980
3 Week 3 0.2385
4 Month 1 0.1213
5 Month 2 0.1140
6 Month 3 0.0437
7 Month 4 -0.0005
8 Month 5 0.0382
9 Quarter 1 0.0684
10 Quarter 2 0.0252
11 Quarter 3 0.0268
12 Quarter 4 0.0634
13 Year 1 0.0376

implies RP < 0 and vice versa.
So far in our analysis, we have restricted our attention to a single observed futures

curve. Based on this, it is of course difficult to comment on general tendencies
regarding the market price of risk in the wind power futures market. In a stylized
situation, to have a time series for a given contract could be very interesting, since
this would render the time series properties of the market price of risk visible.
However, it may be problematic that the contracts move in time to maturity (time
to start of delivery), suggesting that the various market prices of risk are not directly
comparable. An alternative approach would be to find one market price of risk every
day, given by a θ that minimizes the distance of the theoretical curve to all the
available futures contracts that day. Then, we would get a series of market prices of
risk for the whole market. This hides potential dependencies on time to delivery and
length of delivery, but will nonetheless reveal the risk premium sign, and potentially
if there are any interesting time series properties for the market price of risk. To
gain more insight, we address next both types of investigations mentioned here.
The data we consider are observed wind power futures curves for the period from

1 February 2016 to 31 January 2017, amounting to a total of 257 curves. Each
curve consists of 13 observed prices corresponding to the contract types specified in
Table 3. Further, we consider static parameter estimates, that is, the ones obtained
in Sec. 3.1. Ideally, the model should be recalibrated each day in the interval from
1 February 2016 to 31 January 2017, but lack of a synthetic index time series
constructed for each of the valuation dates impedes such analysis. Nevertheless, we
do not believe that the market has undergone significant changes in the period 1
February 2016 to 31 January 2017 relative to September 2016, thus justifying our
study.
Performing the same analysis as the one given in Table 3 on all wind power futures

curves yields a time series of implied θ̂s for each one of the 13 contract types. In
Fig. 10, we plot some examples. Despite the lack of direct comparability caused by
the presence of a strong seasonal effect, Fig. 10 highlights some interesting features.
First, notice that the implied market price of risk corresponding to shorter deliveries
is more volatile. Especially the front week contract series exhibits a singular behav-
ior, with one possible explanation being the valuable information encompassed in
short-term weather forecasts. Since this forward-looking information is not included
in our model, the computed values for θ̂ for the front week contracts contain both
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Figure 10. Implied θ̂s obtained by minimizing the distance between the observed futures prices and the
theoretical prices for a given day and contract type. The time series stretches from 1 February 2016 to 31
January 2017.

a market price of risk as well as a sort of information premium. For longer delivery
periods or start deliveries that lie further away from the valuation date, the infor-
mation from weather forecasts becomes less reliable and hence its effect diminishes.
Second, we mention that the market for wind power futures is still very illiquid, and
especially Figs. 10(e) and 10(f) illustrate this through the long periods with an un-

changed implied θ̂. Illiquidity can also explain the increased volatility for contracts
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with shorter delivery lengths as these contracts roll more often, thus ‘forcing’ the
price to change regardless of the trading activity.
Averaging across the implied θ̂s for each of the contract types produces the values

displayed in Fig. 11. We observe that all mean values are positive, consolidating
our earlier findings relating to a positive θ (and hence a negative risk premium).
Also notable is the decay in mean values with the length of delivery period. Possible
explanations for this behavior can be different actors operating in different segments
of the market, viable weather forecasts for very near and short delivery periods,
illiquidity and seasonality.
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Figure 11. Mean implied θ̂ per contract type, obtained by averaging across the daily implied θs corre-
sponding to each of the contract types. The numbering of contract types coincides with that of Table 3.

Next, we compute a single implied θ at each t, based on all contracts making up
the futures curve. That is, we consider the following minimization problem:

θ̂(t) = min
θ

K∑

k=1

∣∣∣∣f
Obs
(
t, T

(k)
1 , T

(k)
2

)
− fθ

(
t, T

(k)
1 , T

(k)
2

) ∣∣∣∣,

where K = 13 in our case, since each curve consists of 13 wind power futures
contracts. As mentioned previously, an investigation of this type would produce
more comparable values for the market price of risk. The results are presented in
Fig. 12, yielding that the implied θ̂ for the whole market is positive, which is not
surprising considering our previous empirical findings.

4.1.1 Correlations and sign of risk premia. All the empirical analyses performed
in this section point convincingly towards a negative risk premium, implying a wind
power futures market that is in backwardation. Generally in typical commodity mar-
kets, the normal backwardation case is an expected situation, since the hedgers are
usually the producers who are willing to accept a lower price (e.g. the futures price)
than what is predicted in the spot. This seems to be the case for the German wind
power futures market as well, and a possible explanation, as also stated in Gersema
and Wozabal (2017), goes as follows: The production of single (or a collection of)
wind parks is generally much more correlated to the average German wind power
production than e.g. the production of a gas-fired power plant. Thus, wind power
futures are a more powerful hedging tool for wind power generators than for con-
ventional generators. As a result, the former group exhibits a higher demand and
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Figure 12. Daily implied θ̂s obtained by minimizing the distance between all market prices and theoretical
prices for a given valuation date. We consider historical wind power futures curves for the period 1 February
2016 to 31 January 2017.

is willing to accept a lower price when selling wind power futures – and hence the
negative risk premium in the German wind power futures market.
To substantiate the claims stated above, we perform a concise empirical investiga-

tion: On one hand, we compute the correlation between the German synthetic wind
index (cf. Fig. 1) and the historical wind power production index of 26 different
German wind parks. This data consists of daily measurements from 1 January 2012
to 31 December 2015, and is provided to us by Neas Energy. Further, the 26 wind
parks we consider differ in e.g. total installed capacity, number of wind turbines in
the park and geographical location.
On the other hand, we compute the correlation between the German synthetic

wind index and the historical day-ahead spark spread. Note that the decision to
run/not run of gas-fired power plants depends on whether or not the spark spread is
positive, and hence the spark spread is a measure for the profitability of such plants.
We compute the spark spread as the difference between the day-ahead electricity
price in Germany and the day-ahead gas price in the NetConnect Germany hub
scaled by a heat rate h, with h ∈ [1.9, 2.4]. This interval corresponds to an efficiency
between approximately 42% and 53%, which reflects a realistic level according to
e.g. figure 14 in the report by Ecofys (2014).
Since the interval from 1 January 2012 to 31 December 2015 is the ‘common

denominator’ for the many different time series we consider here, all correlations are
computed based on this time interval. The correlations between the generation of the
26 wind parks and the German synthetic wind index are illustrated in Fig. 13, hereby
also showing the approximate geographical location of each individual wind park
we consider. Fig. 13 shows a very strong positive relation (generally) between the
production index of one specific wind park and the German index. When computing
the linear correlation between the day-ahead spark spread and the German index,
we get a value of −0.47 for the lowest h, i.e. h = 1.9. Increasing h, that is assuming
a less efficient gas-fired power plant, weakens the negative relation between the
spark spread and the German index, rendering wind power futures less attractive
as hedging instruments (for h = 2.4, we get a value of −0.44).
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Figure 13. Linear correlations between the German synthetic index and the actual wind power production
index of 26 distinct wind parks.

4.2 Synthetic vs. historical wind index

An essential point in the context of pricing wind power future is the distinction
between the synthetic index (illustrated in Fig. 1) and the historical evolution of
the actual German wind power production index. To highlight the importance of
this distinction, we perform a comparison study in what follows.
Let us start with introducing the historical data we shall use for comparison:

Because data for the actual historical index is not directly available to us, we con-
struct the index using its two underlying data components. First, we consider the
total wind power production on a daily basis corresponding to the period from 1
January 2012 to 31 December 2015 (a total of 1461 observations). Second, we con-
sider monthly observations for the total installed wind power capacity for the same
period, with monthly measurements having the 1st of each month as time stamps
(a total of 49 observations, counting the measurement corresponding to 1 January
2016). The two data components are illustrated in Fig. 14(a) and Fig. 14(b), re-
spectively, revealing the impressive growth that Germany has experienced over the
considered period.
A proxy for the actual daily index P̃ is then obtained as

P̃ (t) =
W (t)

24C(t)
, (18)

whereW (t) denotes the total wind power production in Germany at day t, and C(t)
denotes the total installed capacity in Germany at day t. Since the installed capac-
ity data is measured at monthly intervals, intermediate daily values are obtained
by linear interpolation. The evolution of the index P̃ is displayed in Fig. 14(c),
confirming that all measurements lie above 0 and below 1, as expected. The mini-
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Figure 14. Historical data for Germany.

mum measurement corresponds to a value of approx. 0.01 (a 1% utilization of the
installed capacity), and the maximum measurement reaches approx. 0.76 (a 76%
utilization of the installed capacity).
Next, we perform a linear regression of the actual index against the synthetic

index, based on data in the interval 1 January 2012 to 31 December 2015 (corre-
sponding to the four years that the two indexes have in common). We obtain an
estimate for the intercept of 0.0055 (with standard error 0.0011) and an estimate
for the slope of 0.8303 (with standard error 0.0039); a scatter plot of the actual
index against the synthetic index is displayed in Fig. 15.
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Figure 15. Scatter plot of the actual index against the synthetic index.

The regression results translate to the fact that using the actual instead of the
synthetic index data for model calibration would lead to an underestimation of the
wind power futures price, which is indeed not surprising. One factor that helps ex-
plain this finding is that the synthetic index does not include information concerning
intentional temporary switch off of turbines to reduce output, whereas the actual
data does. With everything else being equal, this entails that the actual historical
index must generally yield lower values than the synthetic index. Another contribut-
ing factor - and likely the most important - is the fixed installed capacity used to
compute the synthetic index as opposed to the varying installed capacity used to
compute the actual historical index, cf. Fig. 14(b). In continuation hereof, the ex-
pansion in wind turbine installations is centered in the wind-rich northern part of
Germany, which is expected to have pulled the German index upwards. Hence, the
synthetic index which is based on the newer installed capacity numbers for Septem-
ber 2016 is expected to have a higher mean than the actual index which is based
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on a varying installed capacity. In the context of pricing wind power futures, we
are only interested in the available installed capacity on the valuation date, and not
on its historical evolution. Lastly, we mention that advancements in wind turbine
technology can also be of relevance in this context.
To investigate how the use of the actual historical index influences the conclusions

drawn in Section 4.1 regarding the risk premium, we have rerun all the computa-
tions performed in Sections 2.1, 3.1 and 4.1, based on this data. Surprisingly, not
only does the model produce lower futures prices (with θ = 0) as argued above,
but the conclusions on the risk premium change drastically. Based on the newly
calibrated model, we obtain a risk premium that is generally positive, implying a
wind power futures market that is in contango, which is in contrast with our earlier
findings. In a nutshell, using the ‘wrong’ data, i.e. the actual historical index, for
the calibration of the model parameters has a significant impact, leading to very
misleading conclusions.

5. Pricing options on wind power futures contracts

As a further demonstration of the advantages of our proposed model and the mea-
sure change using the Esscher transform, we consider here the pricing of European
options written on wind power futures. While we acknowledge that these options
are not traded on an exchange at the current time, they are potentially interesting,
and hence this section is intended to provide an outlook.
Let us consider a call option on a wind power futures contract, where the exercise

time of the option is T , the strike price is K, and r denotes a constant risk-free
rate. To simplify calculations in what follows, we further assume that the maturity
of the futures contract coincides with the exercise of the option, i.e., the call option
is written on the actual wind power production. The call option price C(t;T,K, T )
can be expressed as the discounted conditional expectation of the future payoff
under Q, which is the pricing measure under the Esscher transform cf. Section 4.
Hence,

C(t;T,K, T ) = e−r(T−t)EQ[max(F (T, T )−K, 0)|Ft]

= e−r(T−t)EQ[max(P (T )−K, 0)|Ft]

= e−r(T−t)EQ[max(A(T )eZ(T ) −K, 0)|Ft],

where

A(T ) = Λ(T ) exp(−X(t)e−α(T−t) − µ(1− e−α(T−t))),

Z(T ) = −

∫ T

t
e−α(T−s)dL(s).

Note that A(T ) can easily be computed given P (t), the estimated seasonality func-

tion Λ̂, and the speed of mean reversion α̂. To compute the call option price based
on our model framework, it is convenient to employ Fourier techniques, as suggested
in Benth et al. (2008). Following Benth et al. (2008), we define the Fourier transform
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of a function g ∈ L1(R) as

ĝ(y) =

∫

R

g(x)e−iyxdx. (19)

If ĝ ∈ L1(R), the inverse Fourier transform can be expressed as

g(x) =
1

2π

∫

R

ĝ(y)eiyxdy.

Before proceeding to computing the price C(t;T,K, T ), we state the payoff function
in terms of the Fourier transform.

Lemma 5.1. For a > 1, we define

gT (x) = e−axmax (A(T )ex −K, 0).

Then, we have that

ĝT (y) =
K

(a− 1 + iy)(a+ iy)

(
K

A(T )

)−(a+iy)

,

where ĝT is the Fourier transform of gT .

The result in Lemma 5.1 follows from employing the definition in Eq. (19). We note
that the factor exp(−ax) in the definition of gT is introduced due to the call option
payoff not being a square-integrable function. For more details, we refer to Benth
et al. (2008), Lemma 9.1, and Carr and Madan (1999). In the next Proposition, we
derive the price C(t;T,K, T ).

Proposition 5.2. Let C(t;T,K, T ) denote the price of a call option written on a
wind power futures contract with strike K, exercise T , and delivery period of the
futures contract T . The price C(t;T,K, T ) at time t ≤ T is given as

C(t;T,K, T ) = e−r(T−t)
1

2π

∫

R

ĝT (y)Ξ(t, T )dy, (20)

where

Ξ(t, T ) =

(
κθ + (a+ iy)e−α(T−t)

κθ + a+ iy

)λθ/α

.

Proof. See Appendix B.3.

We note that by having an analytical expression for the cumulant ψQ

L(1), the call

option price C(t;T,K, T ) can easily be determined by solving the integral in Eq. (20)
numerically. Concerning the estimation of put option prices, these follow from the
put-call parity.
We conclude this section by illustrating in Fig. 16 call option prices obtained by

applying the formula in Proposition 5.2 for a series of strike indexesK. The valuation
date t equals 31 December 2015, and we consider two different maturities, 1 July
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2016 and 1 December 2016, as to emphasize the seasonal effects. Not surprisingly, the
yearly seasonality in the wind index translates to the call options being cheaper for
delivery during summer than during winter. Lastly, we note that the option prices
could be multiplied by a tick size of EUR 100 in order to achieve comparability with
the forward prices quoted in the market, see e.g. Fig 9.
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Figure 16. Estimated call option prices as functions of the strike K at t = 31 December 2015. The com-
putations are performed with r = 0, a = 1.1 and the parameter estimates obtained in Sections 2.1 and 3.1.
We assume θ = 0, and thus κθ = κ, λθ = λ.

6. Conclusion

In this paper we propose a non-Gaussian Ornstein-Uhlenbeck model for the wind
power production index. The model has appealing characteristics, among others
straightforward estimation of model parameters and analytical tractability. Moti-
vated by the recent introduction of the German wind power futures on NASDAQ
OMX and EEX, we employ the proposed model to conduct an empirical study on
German data. First, the model is fitted to a synthetically generated time series of
German wind power production indexes, revealing a good overall fit. Then, explicit
prices for wind power futures are derived in the framework of no-arbitrage pricing.
This facilitates the study of the market price of risk, which can be obtained by the
usual practice of minimizing the distance between theoretical prices produced with
our model and actual prices observed in the market. Based on historical wind power
futures curves made up of closing prices from NASDAQ OMX, we perform different
studies of the market price of risk.
Generally, we find evidence of a negative risk premium, whose magnitude de-

creases as the length of the delivery period increases. The negative risk premium
suggests that wind power producers are willing to accept a lower price when selling
wind power futures. As also argued in Gersema and Wozabal (2017), this behavior
is due to wind power futures being a more powerful hedging tool for wind power
generators than for conventional generators. This argument is enhanced by a brief
empirical study, which demonstrates that the production of individual wind parks
at different locations in Germany is more correlated to the German index than the
production of conventional generators (here gas-fired power plants). Also, we find
that the market price of risk is more volatile for shorter delivery periods, and ar-
gue that this behavior might be related to liquidity aspects and the information
contained in short-term weather forecasts, which our model does not incorporate.
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In this paper, we have restricted our attention to a constant market price of risk
θ; admittedly, it is possible to allow for e.g. a seasonally varying θ in the Esscher
transform. While it remains unclear whether this is backed by the data, one could
potentially imagine a seasonality in the market. For a more general measure change,
stochastic θ’s (even being state dependent) could be considered as well, however this
aspect is left for future research.
To highlight the importance of fitting our proposed model to a wind index that is

generated assuming a constant as opposed to a varying level of installed capacity,
we show through an empirical example that building on the ‘wrong’ data foundation
can lead to the opposite conclusion regarding the sign of the risk premium. Finally,
we address the pricing of European options written on wind power futures contracts,
as to elaborate further on the benefits of the proposed modeling approach. Since an
analytical expression for the cumulant is readily available, we show that the pricing
of calls and puts can be achieved without difficulty.

Funding

Fred Espen Benth acknowledges support from FINEWSTOCH, funded by the Nor-
wegian Research Council. Anca Pircalabu is supported by the Innovation Fund
Denmark under Grant 4135-00082B.

Appendix A. Seasonality in the non-Gaussian Ornstein-Uhlenbeck

model

The purpose of this appendix is to elaborate on issues related to seasonality in the
non-Gaussian Ornstein-Uhlenbeck model for the wind power production index. Let
us start by considering a simplified version of our model proposed in Eqs. (2)–(3),
where Λ(t) = 1 and µ = 0:

P (t) = exp(−X(t)),

dX(t) = −αX(t)dt+ dL(t).

Since L is a subordinator, it follows that X(t) is non-negative, and thus P (t) ∈ [0, 1]
is not violated with this model specification. While it is highly important to comply
with the bound restrictions for P (t), we cannot ignore the shortcoming of the above
model regarding seasonality: The wind power production index has a strong seasonal
component embedded in its dynamics, causing Λ(t) 6= 1 and µ 6= 0 in reality.
To include seasonality, one possibility is to relax the assumptions imposed on Λ(t)

and µ above. This has led to our model proposed in Eqs. (2)–(3), and based on the
variable P (t), we have argued that µ = lnM , where M = max(Λ(t)). However, if
we let m = min(Λ(t)) and instead regard the variable P (t)/Λ(t), a renewed analysis
yields that P (t)/Λ(t) ∈ [0, 1/m], while exp(−X(t)) ∈ [0, exp(−µ)] = [0, 1/M ]. Since
m < M , we have that 1/m > 1/M , implying that the span of the data P (t)/Λ(t)
will be bigger than what our model, that is exp(−X(t)), can capture. Hence, there
is a potential of having

X(t)− µ < 0,
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which is somehow in contradiction with Proposition 3.2, where we obtained a
Gamma distribution as the limiting distribution of X(t)− µ.
Despite the slight inconsistency produced with our model specification in Eqs. (2)–

(3), there are strong arguments in favor of this model. First, the above mentioned
issue proves to have very limited impact in practice and second, the task of param-
eter estimation becomes more straightforward, since Λ(t) can be fitted by ordinary
least squares, and an estimate for µ immediately follows from the established rela-
tion µ = lnM .
Lastly, we mention that there are of course other alternatives concerning the inclu-

sion of a seasonal component in the model. In our case for example, where we assume
L(t) to be a compound Poisson process with exponentially distributed jumps, such
an alternative could be to consider seasonal instead of constant intensity. Such an
approach will, in mean, provide us with a seasonally varying P (t), while satisfying
P (t) ∈ [0, 1]. However, this will come at the cost of having a complex empirical
analysis, for which reason we have not pursued this approach in the present paper.

Appendix B. Proofs

B.1 Proof of Proposition 3.2

Because

X(t) = X(0)e−αt + µ(1− e−αt) +

∫ t

0
e−α(t−s)dL(s),

the characteristic function of X(t) becomes

E[eixX(t)] = exp
(
(X(0)e−αt + µ(1− e−αt))ix

)
E[eix

∫
t

0
e−α(t−s)dL(s)]

= exp

(
ixX(0)e−αt + ixµ(1− e−αt) +

∫ t

0
ψL(1)(xe

−α(t−s))ds

)
.

Further, the cumulant function of L(1) denoted by ψL(1) above is defined as

ψL(1)(x) = lnE[eixL(1)]

= lnE


E


exp


ix

N(1)∑

k=1

Jk



∣∣∣∣∣∣
N(1)






= ln

∞∑

n=0

e−λ
λn

n!

(
E[eixJ ]

)n

= ln
(
e−λeλE[e

ixJ ]
)

= λ(E[eixJ ]− 1),

with the second equality following from the definition of L(t). Since J is an ex-
ponentially distributed random variable with density function given in Eq. (6), its
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characteristic function entering the expression of ψL(1) is simply

E[eixJ ] =

∫ ∞

0
eixyκe−κydy =

κ

κ− ix
.

Hence,

ψL(1)(x) = λ
ix

κ− ix
.

In the limit as t→ ∞, we obtain

lim
t→∞

E[eixX(t)] = exp

(
ixµ+

∫ ∞

0
ψL(1)(xe

−αs)ds

)

= exp

(
ixµ+ λ

∫ ∞

0

ixe−αs

κ− ixe−αs
ds

)

= exp

(
ixµ+

λ

α
ln

κ

κ− ix

)

= eixµ
(
1− i

x

κ

)− λ

α

,

where we recognize the second factor of the above product as the characteristic
function of the Gamma distribution. The result follows.

B.2 Proof of Proposition 4.1

Appealing to the adaptedness of X(t) and recalling Eq. (2) and Eq. (3), we have
that

F (t, T ) = EQ[P (T )|Ft]

= Λ(T ) exp
(
−X(t)e−α(T−t) − µ(1− e−α(T−t))

)

× EQ

[
exp

(
−

∫ T

t
e−α(T−s)dL(s)

) ∣∣∣∣Ft
]
,

where Q is the pricing measure obtained from the Esscher transform. Further, since
L is a Q-Lévy process and thus characterized by independent increments, we find

EQ

[
exp

(
−

∫ T

t
e−α(T−s)dL(s)

) ∣∣∣∣Ft
]
= EQ

[
exp

(
−θ

∫ T

t
e−α(T−s)dL(s)

)]

= exp

(∫ T

t
ψQ

L(1)(ie
−α(T−s))ds

)

= exp

(∫ T−t

0
ψQ

L(1)(ie
−αs)ds

)
,

where ψQ

L(1) denotes the cumulant function of L(1) under the Esscher transformed

measure Q. Using the Radon-Nikodym derivative in Eq. (13) and the definition in
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Eq. (14), it follows that the characteristic function of L(1) under Q can be expressed
as

EQ
[
eixL(1)

]
= E

[
eixL(1)+θL(1)

]
e−ψL(1)(−iθ)

= exp(ψL(1)(x− iθ)− ψL(1)(−iθ)).

Thus,

ψQ

L(1)(x) = ψL(1)(x− iθ)− ψL(1)(−iθ).

Recalling the expression for ψL(1) stated in Eq. (16), we obtain

ψQ

L(1)(x) = λ

(
i(x− iθ)

κ− i(x− iθ)
−

i(−iθ)

κ− i(−iθ)

)

= λθ

(
ix

κθ − ix

)
,

where

κθ = κ− θ,

λθ =
λκ

κ− θ
.

Inserting all the information obtained above in the expression for F (t, T ) yields

F (t, T ) = Λ(T ) exp

(
−X(t)e−α(T−t) − µ(1− e−α(T−t)) +

∫ T−t

0
λθ

−e−αs

κθ + e−αs
ds

)

= Λ(T ) exp(−µ(1− e−α(T−t)))

(
κθ + e−α(T−t)

κθ + 1

)λθ/α(
P (t)

Λ(t)

)exp(−α(T−t))

.

The proposition follows.

B.3 Proof of Proposition 5.2

From Lemma 5.1, it follows that the call option price can be expressed as

C(t;T,K, T ) = e−r(T−t)
1

2π

∫

R

ĝ(y)EQ[e(a+iy)Z(T )|Ft]dy.

Recall from the derivation of the wind power futures price in Appendix B.2 that
the conditional expectation above is given by

EQ[e(a+iy)Z(T )|Ft] = EQ[e−(a+iy)
∫

T−t

0
e−αsdL(s)|Ft]

= exp

(∫ T−t

0
ψQ

L(1)((ai− y)e−αs)ds

)
.
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The result follows from a straightforward calculation, where the expression for
ψQ

L(1)(x) derived in Appendix B.2 must be employed.

Appendix C. Further details on the estimation of α

In this appendix, we consider the estimation of α cf. Eq. (3) by performing an
AR(1)-estimation. Recalling the discussion and notation in Section 3.1, fitting an

AR(1) to X(t)− µ yields φ̂ = 0.6067, with a standard error of 0.0070. This implies
that

α̂ = 0.4997,

which is different (but not too far) from the estimate obtained in Section 3.1.
Considering the sample autocorrelation of the resulting residuals (Fig. 1(a)) and

residuals squared (Fig. 1(b)), we note that an autoregressive model of higher order
could be beneficial. By computing the partial autocorrelation function of X(t)− µ,
this is indeed confirmed. Specifically, the pacf cuts off at lag 3, indicating that an
AR(3) is preferred. With its continuous-time analogous, the CAR(3) model, we are
however not ensured positivity, which is clearly an essential point in our modeling
of the wind power production index. The proposed Ornstein-Uhlenbeck process in
Eq. (3) is positive by design, while a similar CAR(3) process is not necessarily so.
One could check case by case, but this is somehow cumbersome, and therefore not
pursued further in the present study.
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Figure C1. The acf of residuals and residuals squared after having fitted an AR(1) to X(t)− µ.
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