
Aalborg Universitet

A Walk in the Clouds

Routing through VNFs on Bidirected Networks

Förster, Klaus-Tycho; Parham, Mahmoud; Schmid, Stefan

Published in:
Algorithmic Aspects of Cloud Computing

DOI (link to publication from Publisher):
10.1007/978-3-319-74875-7_2

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Förster, K.-T., Parham, M., & Schmid, S. (2018). A Walk in the Clouds: Routing through VNFs on Bidirected
Networks. In Algorithmic Aspects of Cloud Computing: Third International Workshop, ALGOCLOUD 2017,
Vienna, Austria, September 5, 2017, Revised Selected Papers (pp. 11-26). Springer.
https://doi.org/10.1007/978-3-319-74875-7_2

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1007/978-3-319-74875-7_2
https://vbn.aau.dk/en/publications/177789c7-d230-413f-9ce9-ddc3340556d9
https://doi.org/10.1007/978-3-319-74875-7_2

A Walk in the Clouds:
Routing through VNFs on Bidirected Networks

Klaus-Tycho Foerster, Mahmoud Parham, and Stefan Schmid

Aalborg University, Denmark
{ktfoerster,mahmoud,schmiste}@cs.aau.dk

Abstract. The virtualization of network functions enables innovative
new network services which can be deployed quickly and at low cost
on (distributed) cloud computing infrastructure. This paper initiates the
algorithmic study of the fundamental underlying problem of how to effi-
ciently route traffic through a given set of Virtualized Network Functions
(VNFs). We are given a link-capacitated network G = (V,E), a source-
destination pair (s, t) ∈ V 2 and a set of waypoints W ⊂ V (the VNFs).
In particular, we consider the practically relevant but rarely studied case
of bidirected networks. The objective is to find a (shortest) route from s
to t such that all waypoints are visited. We show that the problem fea-
tures interesting connections to classic combinatorial problems, present
different algorithms, and derive hardness results.

1 Introduction

After revamping the server business, the virtualization paradigm has reached
the shores of communication networks. Computer networks have broken with
the “end-to-end principle” [37] a long time ago, and today, intermediate nodes
called middleboxes serve as proxies, caches, wide-area network optimizers, net-
work address translators, firewalls, etc. The number of middleboxes is estimated
to be in the order of the number of routers [21].

The virtualization of such middleboxes is attractive not only for cost reasons,
but also for the introduced flexibilities, in terms of fast deployment and innova-
tion: in a modern and virtualized computer network, new functionality can be
deployed quickly in virtual machines on cloud computing infrastructure. More-
over, the composition of multiple so-called Virtual Network Functions (VNFs)
allows to implement complex network services known as service chains [33]: traf-
fic between a source s and a destination t needs to traverse a set of network
functions (for performance and/or security purposes).

However, the realization of such service chains poses a fundamental algo-
rithmic problem: In order to minimize the consumed network resources, traffic
should be routed along short paths, while respecting capacity constraints. The
problem is particularly interesting as due to the need to traverse waypoints, the
resulting route is not a simple path, but a walk.

In this paper, we are particularly interested in VNF routing on bidirected
networks: while classic graph theoretical problems are typically concerned with

The final authenticated publication is available online at https://doi.org/10.1007/978-3-319-74875-7_2

undirected or directed graphs, real computer networks usually rely on links pro-
viding full-duplex communication. Figure 1 gives an example.

xs v t w

Fig. 1. In this introductory example, the task is to route the flow of traffic from the
source s to the destination t via the waypoint w. When routing via the solid red (s, w)
path, followed by the solid blue (w, t) path, the combined walk length is 5 + 3 = 8. A
shorter solution exists via the dotted red and blue paths, resulting in a combined walk
length of 2+2 = 4. Observe that when the waypoint would be on the node x, no node-
disjoint path can route from s to t via the waypoint. Furthermore, some combinations
can violate unit capacity constraints, e.g., combining the solid red with the dotted blue
path induces a double utilization of the link from v to t.

1.1 Model

We study full-duplex networks, modeled as connected bidirected graphs G =
(V,E) [13] with |V | = n nodes (switches, middleboxes, routers) and |E| = m
links, where each link e ∈ E has a capacity c : E → N>0 and a weight ω : E →
N>0. Bidirected graphs (also known as, e.g., Asynchronous Transfer Mode (ATM)
networks [10] or symmetric digraphs [22]) are directed graphs with the property
that if a link e = (u, v) exists, there is also an anti-parallel link e′ = (v, u) with
c(e) = c(e′) and ω(e) = ω(e′).

Given (1) a bidirected graph, (2) a source s ∈ V and a destination t ∈ V ,
and (3) a set of k waypoints W ⊂ V , the bidirected waypoint routing problem
BWRP asks for a flow-route R (i.e., a walk) from s to t that (i) visits all
waypoints in W and (ii) respects all link capacities. Without loss of generality,
we normalize link capacities to the size of the traffic flow, removing links of
insufficient capacity.

BWRP comes in two flavors. In the unordered version UBWRP, the way-
points W can be traversed in any order. In the ordered version, OBWRP, the
waypoints depend on each other and must be traversed in a pre-determined or-
der: every waypoint wi may be visited at any time in the walk, and as often
as desired (while respecting link capacities), but the route R must contain a
given ordered node sequence s, w1, w2, . . . , wk, t. For example, in a network with
stringent dependability requirements, it makes sense first route a packet through
a fast firewall before performing a deeper (and more costly) packet inspection.

For both UBWRP and OBWRP, we are interested both in feasible solu-
tions (respecting capacity constraints) as well as in optimal solutions. In the
context of the latter, we aim to optimize the cost |R| of the route R, i.e., we
want to minimize the sum of the weights of all traversed links. As we will see,

computing an optimal route R∗ can be hard in general, and hence, we also study
α−competitive approximation algorithms, where for any computed tour R holds:
|R| ≤ α · |R∗|.

1.2 Contributions

We initiate the study of the waypoint routing problem on bidirected networks.
We put the problem into perspective with respect to classic combinatorial prob-
lems (in particular Steiner Tree problems, variants of Traveling Salesman prob-
lems, and link-disjoint paths problems), and present a comprehensive set of al-
gorithms and hardness results.

Unordered bidirected waypoint routing UBWRP. We first show that
while any UBWRP instance is feasible, as each link is traversed only once in
each direction, computing optimal solutions is NP-hard: no polynomial-time
approximation scheme (PTAS) exists unless P=NP. On the positive side, by
leveraging connections to metric TSP, we show that an ≈ 1.53-approximation
is possible on general graphs. But also optimal solutions are possible in polyno-
mial time, namely if the number of waypoints is small, namely k ∈ O(log n): a
practically very relevant case. In fact, if the network is planar, we can solve the
problem even up to k ∈ O(log2−ε n) many waypoints in polynomial time (for
any constant ε > 0), using a connection to Subset TSP.

Ordered bidirected waypoint routing OBWRP. Due to a connection to
link-disjoint paths, it holds that feasible routes can be computed in polynomial
time for OBWRP if k ∈ O(1). Moreover, while finding optimal routes is NP-
hard in general, we show that polynomial-time exact solutions exist for cactus
graphs with constant link capacities.

1.3 Related Work

While routing through network functions is a standard application in the area
of computer networking, we curently witness the emergence of two new trends
which change the requirements on routing: (1) (virtualized) network functions
are increasingly deployed not only at the edge but also in the network core [14];
(2) network functions are being composed or “chained” to provide more com-
plex services, a.k.a. service chains [19],[31],[34]. Traversing these network func-
tions may entail certain detours, i.e., routes do not necessarily follow short-
est paths and may even contain loops, i.e., form a walk rather than a simple
path [5],[15],[16],[30].

Waypoint Routing Amiri et al. [1] recently provided first results on the or-
dered waypoint routing problem. In contrast to our work, Amiri et al. [1] focus
on directed and undirected graphs only and do not consider approximation al-
gorithms; however, finding a feasible solution to the ordered waypoint routing
problem is NP-hard on undirected graphs, and for directed graphs already for
a single waypoint. The same limitation holds for the work by Amiri et al. [2]
on the unordered waypoint problem on undirected graphs. Moreover, under unit

capacities, the undirected problem in [2] also has a different structure, and, e.g.,
it is not possible to establish the connection to Steiner Tree and Traveling Sales-
man problem variants as discussed in this paper. On the positive side, it is easy
to see that their algorithm to compute optimal unordered solutions on bounded
treewidth graphs in XP time also applies to our case; however, their hardness
results do not.

Link-Disjoint Paths Closely related to the (ordered) waypoint routing problem
is the study of link-disjoint paths: Given k source-destination pairs, is it possible
to find k corresponding pairwise link-disjoint paths? For an overview of results
on directed and undirected graphs, we refer to the work of Amiri et al. [1].

For bidirected graphs, deciding the feasibility of link-disjoint paths is NP-
hard [10]. When the number of link-disjoint paths is bounded by a constant,
feasible solutions can be computed in polynomial time [22]. Extensions to multi-
commodity flows have been studied in [23],[39] and parallel algorithms were
presented in [26],[27]. To the best of our knowledge, the joint optimization (i.e.,
shortest total length) of a constant number of link-disjoint paths is still an open
problem. In comparison, we can solve UBWRP for a super-constant number of
waypoints optimally.

Besides simple graph classes such as trees, we are not aware of algorithms
for a super-constant number of link-disjoint paths on directed graphs, which are
also applicable to bidirected graphs. We refer to [32] for an annotated tableau.
In contrast, we in this paper optimally solve OBWRP on cactus graphs with
constant capacity.

Traveling Salesman and Steiner Tree problems The unordered problem
version is related to the Traveling Salesman problem (TSP): there, the task is to
find a cycle through all nodes of an undirected graph, which does not permit any
constant approximation ratio [12], unless P=NP: for the so-called metric version,
where nodes may be visited more than once (identical to the TSP with triangle
inequality), performing a DFS-tour on a minimum spanning tree (MST) gives a
2-approximation, see, e.g., [12] again. The best known approximation ratio for
the metric TSP is 1.5 [11] (3/2+1/34 ≈ 1.53 for s ̸= t, called the s− t Path TSP
[38]) and no better polynomial-time approximation ratio than 123/122 ≈ 1.008
is possible [24], unless P=NP. Throughout this paper, when referring to (any
variant of) TSP, we usually refer to the metric version on undirected graphs.

A related problem is the NP-hard [18] Steiner Tree problem (ST) on undi-
rected graphs: given a set of terminals, construct a minimum weight tree that
contains all terminals. If all nodes are terminals, this reduces to the (polyno-
mial) MST problem. The currently best known approximation ratios for ST are
ln 4 + ε < 1.39 [9] (randomized) and 1 + ln 3

2 ≈ 1.55 [36] (deterministic).
Note that both the Steiner Tree and the Traveling Salesman problem are

oblivious to link capacities. Notwithstanding, we can make use of approximation
algorithms for both problems for UBWRP in later sections.

Prize-Collecting and Subset variants In particular, if W ⊊ V , we can utilize
the prize-collecting versions of (path) TSP and ST, called (PC-PATH2) PCTSP
and PCST [3]. Here, every node is assigned a non-negative prize (penalty), s.t. if

the node is not included in the tour/tree, its prize is added to the cost. For
all three prize-collecting variants above, Archer et al. [3] provide approximation
ratios smaller than 2: (1) PCTSP: 97/49 < 1.979592, (2) PC-PATH2: 241/121 <
1.991736, (3) PCST: 1.9672 (randomized) and 1.9839 (deterministic).

Contained in PC-TSP is Subset TSP, first proposed in [4, Sec. 6], which
asks for a shortest tour through specified nodes [28]. Klein and Marx [29] give aÄ
2O(
√
k log k) +W

ä
· nO(1) for planar graphs, where W is the largest link weight.

They also point out that classic dynamic programming techniques [6],[20] have
a runtime of 2k ·nO(1) for general graphs. The path version is not considered, we
show how to apply any optimal Subset TSP algorithm to UBWRP with s ≠ t.

Conceptually related (to the non-metric TSP) is the K-cycle problem, which
asks for a shortest cycle through K specified nodes or links, i.e., a vertex-disjoint
tour. Björklund et al. [7] give a randomized algorithm with a runtime of 2K ·nO(1).

1.4 Paper Organization

We begin with studying UBWRP in Sec. 2: after giving an introduction to
waypoint routing in Sec. 2.1, we give hardness and (approximation) algorithm
results via metric and subset TSP in Sec. 2.2. We then consider the ordered
case in Sec. 3, tackling constant k in Sec. 3.1, we study hardness in Sec. 3.2, and
finally provide a cactus graph algorithm in Sec. 3.3. Lastly, we conclude in Sec. 4
with a short summary and outlook.

2 The Unordered BWRP

We start our study of bidirected waypoint routing with a short tour d’ horizon
of the problem in Sec. 2.1, discussing the case of few waypoints and first general
approximations via the Steiner Tree problem. We then follow-up in Sec. 2.2
by showing that UBWRP and metric TSP are polynomially equivalent, i.e.,
algorithmic and hardness results can be reduced. We also establish connections
to the subset and prize-collecting TSP variants.

2.1 An Introduction to (Unordered) Waypoint Routing

First, we examine the case of a single waypoint w, which requires finding a
shortest s− t route through this waypoint. Note that for a single waypoint, the
two problem variants UBWRP and OBWRP are equivalent.

One waypoint: greedy is optimal. We observe that the case of a single
waypoint is easy: simply taking two shortest paths (SP s) P1 = SP (s, w) and
P2 = SP (w, t) in a greedy fashion is sufficient, i.e., the route R = P1P2 is
always feasible (and thus, also always optimal in regards to total weight).

Suppose this is not the case, that is, P1∩P2 ̸= ∅. Among all nodes in P1∩P2,
let u and v be, resp., the first and the last nodes w.r.t. to the order of visits
in R. Let P xy

i denote the sub-path connecting x to y in Pi. Thereby we have

s u v

w

t
P su

1
Puv

1,2

P vw
1

P
vt

2

P
wu
2

P̄ w
u2

Fig. 2. The directed path from u to v
is traversed two times in R.

s u v t
Rsu

i (u, v) Rvt
j

R
vu
j

R̄vu
j

Fig. 3. The link (u, v) is traversed mul-
tiple times in R.

R = P1P2 = P su
1 Puv

1 P vw
1 Pwu

2 Puv
2 P vt

2 (Fig. 2). Let P̄ be the reverse of any walk
P obtained by replacing each link (x, y) ∈ P with its anti-parallel link (y, x).
Observe that for P ′1 = P su

1 P̄wu
2 and P ′2 = P̄ vw

1 P vt
2 , the feasible route R′ = P ′1P

′
2

is shorter than R, contradicting P1 and P2 both being shortest paths.

Being greedy on the right order is optimal. Next, we show that even more
waypoints can be handled efficiently as long as their number is limited: if the
optimal traversal order is known, selecting shortest paths in a greedy fashion is
again optimal, but to find the optimal order, k! has to be tractable.

We first give an auxiliary lemma, which will also be of later use. We note
that Klein and Marx gave an analogous construction for undirected graphs in [29,
Figure 1]. The idea can be explained with Fig. 3: when a link (u, v) is traversed
at least twice, we can take a shortcut from u to v. Iterating this idea ensures at
most one traversal per link.

Lemma 1. Any (unfeasible) route R that traverses some link (u, v) more than

once, can be efficiently transformed into a shorter route R̂ that traverses each
link at most once.

Proof. There is at least one link that is being shared by at least two sub-routes
along R. For every k, l : k < l, denote the set of all links e ∈ Rk ∩Rl by W . Let
(u, v) ∈ W be a link traversed by Ri and Rj s.t. i < j = argminl((u, v) ∈ Ri∩Rl)
(Fig. 3). Thus, R = RiRj = Rsu

i (uv)Rvu
j (uv)Rvt

j . Now consider the new route

R′ = Rsu
1 R̄vu

2 Rvt
2 . Note that R′ might still traverse (u, v) more than once. Repeat

the same procedure for (u, v) until this is not the case. Each time we choose the
two sub-routes that preceed any other sub-route traversing (u, v). This ensures
the other parts of R will not be skipped after this transformation. Now we remove
this link from W . Since we included additional links for the rerouting, there
might be some link (u′, v′) ∈ R̄vu ∩ R, (u′, v′) ̸= (u, v), that is being traversed
more than once in R′, but not in R. Add all such links to W . Repeating the
same procedure for every (x, y) ∈ W transforms R′ into a new route R′′ that
traverses (x, y) at most once. On the other hand, for each newly included link
we exclude its anti-parallel link during the transformation. Therefore the new
route is shorter by at least one link, i.e. |R′′| < |R|. Hence, there can be only

O(|R|) iterations, the last of which necessarily ends up at the desired route R̂
satisfying the lemma. ⊓⊔

Using this idea, we can now show that in an optimal ordering, the shortest
paths will not overlap.

Lemma 2. Given the permutation σ of waypoints in the (first visit) order of an
optimal route R∗, we can efficiently construct a route Rσ s.t. |Rσ| = |R∗|.

Proof. Let Wσ = wσ1
wσ2

...wσk
be the order we intend to visit the waypoints,

and R′ be an empty route. For each consecutive pair wσi
and wσi+1

add the
shortest path links of SP (wσi

, wσi+1
) and SP (wσi+1

, wσi
) to R′. We claim that

R′ is a feasible, and constitutes an optimal solution to UBWRP. For the sake
of contradiction assume this is not the case. Using Lemma 1 we can construct
a feasible route R̂ s.t. |R̂| < |R′|. This implies that for some shortest path

SP (wσi , wσj), |i − j| = 1, when replaced by the path R̂wσi
wσj , yields a shorter

route, contradicting the optimality of SP (.). ⊓⊔

This directly implies the following Theorem 3, which is essentially a brute-
force approach. We note that implications from the connections between UB-
WRP and metric TSP in the next section will improve Theorem 3 in such a way
that k ∈ O(log n) becomes tractable.

If the order of visits in R∗ was part of the input, then by Lemma 2 the
union of shortest paths between consecutive waypoints would be necessarily a
feasible and therefore an optimal solution. Since this is not the case (i.e. we
cannot know the optimal order in advance), one can iterate over all permutations
of waypoints and apply Lemma 2. Then the best of all these iterations will
give an optimal route. Thus, for constants c and c′ = c + c log c, there are

k! =
Ä

c logn
log logn

ä
! < (c log n)(

c log n
log log n) = ((c log n)

logn
)

c
log log n < (nc log cnc) ∈ O(nc′)

iterations. After multiplying by the cost of O(k) calls to SP (.), the polynomial
time follows immediately. Thus we have the following theorem:

Theorem 3. For k ∈ O
Ä

logn
log logn

ä
, UBWRP is polynomially solvable.

We now turn our attention to the general case of k ∈ O(n). We first establish
a connection to (Steiner) tree problems as well as to the Traveling Salesman
problem. Subsequently, we will derive stronger results leveraging the metric TSP
(Sec. 2.2).

UBWRP is always feasible. Interestingly, UBWRP is always feasible. We
begin with the case of s = t: first, compute a minimum spanning tree TU in the
undirected version of G, in GU . Then, traverse T with a DFS-tour starting at s,
using every directed link in the bidirected version of TU exactly once. As every
node v ∈ V will be visited, so will all waypoints W .

The case of s ̸= t is similar: Removing the links from the unique s − t-path
s, v1, v2, . . . , vp, t decomposes TU into a forest, still containing all nodes in V . We
now traverse as follows: Take a DFS-tour of the tree attached to s, then move
to v1, take a DFS-tour of the tree attached to v2, . . . , until lastly arriving at t,
then taking a DFS-tour of the tree attached to t, finishing at t.

Approximations via the Steiner Tree problem. For W = V , the above
MST approach directly yields a 2-approximation, cf. TSP in [12]. The 2-approximation
fails though when W ̸= V : e.g., if only one node is a waypoint, visiting all other
nodes can add arbitrarily high costs. However, there is a direct duality to the

Steiner Tree problem: When setting all waypoints (including s, t) as terminals,
an optimal Steiner Tree for these terminals in GU is a lower bound for an op-
timal solution to UBWRP: taking the link-set of any route R in GU contains
the links of a Steiner Tree as a subset. Hence, the construction is analogous
to the MST one for W = V . As the best known approximation ratio for the
Steiner Tree problem are ln 4+ε < 1.39 [9] (randomized) and 1+ ln 3

2 ≈ 1.55 [36]
(deterministic), we obtain approximation ratios of 2 ln 4 + ε < 2.78 (rand.) and
2 + ln 3 ≈ 3.09 (det.), for any constant ε > 0.

2.2 Hardness and Improved Approximation

Next, we show that metric TSP (denoted ∆TSP for the remainder of this section
for clarity) is equivalent to our problem of UBWRP on general graphs, in the
sense that their corresponding optimal solutions have identical cost.

Theorem 4. Let I be an instance of UBWRP on a bidirected graph G and let
I ′ be an instance of the (path) ∆TSP on the metric closure of the correspond-
ing GU restricted to W ∪ {s, t}. The cost of optimal solutions for I and I ′ are
identical.

Proof. We start with s = t for UBWRP. By setting V = W ∪ {s, t}, the first
reduction follows directly. For the other direction, we first construct an instance
of ∆TSP. Then, an optimal solution to ∆TSP must imply an optimal solution to
UBWRP and vice versa. Let G′U be the metric closure of GU restricted to nodes
in W ∪{s, t}. An optimal TSP cycle C∗ in G′U (after replacing back the shortest
path links) corresponds to a route RC∗ on GU s.t. |RC∗ | = |C∗|. Furthermore,
RC∗ possibly violates some link capacities in G. Using Lemma 1 we turn RC∗

to a route R′C∗ feasible for UBWRP. We claim that R′C∗ is optimal. Assume
this is not the case, i.e. |R′C∗ | > |R∗|. Let σ be the permutation corresponding
to the order of waypoints in R∗. By Lemma 2, we can construct a feasible route
Rσ, such that |Rσ| = |R∗| and it uses only the shortest path links chosen by
SP (wσi

, wσ(i+1) mod k
), 0 ≤ i ≤ k. That is, for the cycle Cσ induced by σ on the

links of G′, we have |Cσ| =
∑k

i=0 |SP (wσi
, wσ(i+1) mod k

)| = |Rσ|
Lemma 2

= |R∗| <
|R′C∗ | ≤ |RC∗ | = |C∗| (by Lemma 1), which contradicts C∗ being optimal.

It remains to show, given R∗ and the order of waypoints therein, σ, the cycle
Cσ is optimal for ∆TSP (i.e. |Cσ| = |C∗|). Assume |Cσ| > |C∗|. As it was shown

previously, we can construct a route R′C∗ s.t. |R′C∗ | Lemma 1
= |C∗| < |Cσ|

Lemma 2
=

|R∗|, which contradicts the optimality of R∗. The proof construction for s ̸= t
is analogous, replacing the TSP cycle with a path from s to t. ⊓⊔

No PTAS for UBWRP, but good approximation ratios. As already seen
in the proof of Theorem 4, solutions between the corresponding instances of UB-
WRP and (path) ∆TSP can be efficiently transformed to one of less or identical
cost. As such, we can make use of known algorithms and complexity results, re-
sulting in the following two corollaries regarding hardness and approximability:

Corollary 5. UBWRP is an NP-hard problem, no better polynomial-time ap-
proximation ratio than 123/122 ≈ 1.008 is possible [24], unless P=NP.

Corollary 6. For s = t, UBWRP can be approximated in polynomial time with
a ratio of 1.5 [11]. For s ̸= t, a ratio of 3/2 + 1/34 ≈ 1.53 can be obtained [38].

Relations to (0,∞)-PC-TSP & Subset TSP. In the prize-collecting (PC)
variant, the classical Steiner Tree problem can be formulated as a (0,∞)-PC-ST:
the terminals must be included (∞), while all other nodes are not relevant (0).
In an analogous fashion, one can solve the (0,∞)-PC-(path)-TSP on undirected
graphs GU , where the nodes with ∞ are the waypoints (and s, t).

As such, we can now apply all algorithmic and hardness results from the
(0,∞) variant of the prize-collecting (path) TSP. However, the known results on
the prize-collecting version of TSP are weaker than the ones of ∆TSP: this fact
is not surprising, as PC-TSP is a generalization of its (0,∞) variant and ∆TSP.

The (0,∞)-PC-TSP with s = t may also be formulated as the Subset TSP,
which asks for a (shortest) closed tour that visits a subset of nodes.

At this point one may wonder why to bother with the Subset TSP, given
the parallels between UBWRP and the general metric TSP? As pointed out
by Klein and Marx [29], the metric closure can destroy graph properties, e.g.,
planarity. For a more concrete example, consider the metric closure of a tree with
unit link weights, removing unit weight properties. Hence, focusing on Subset
TSP allows for algorithms with better approximation ratios on special graph
classes.

Leveraging Subset TSP results for UBWRP. Klein and Marx [29] consider
the Subset TSP problem as a cycle rather than a path. For planar graphs with k

“waypoints”, they give an algorithm with a runtime of
Ä
2O(
√
k log k) +W

ä
·nO(1),

where W is the size of the largest link weight. Furthermore, they point out
that the classic TSP dynamic programming techniques [6],[20] can be applied to
Subset TSP (with s = t), solving it optimally in a runtime of 2k · nO(1).

We show an extension to s ̸= t, which enables us to use “cycle” algorithms
as a black box: create a new node st, which serves as start and endpoint of
the cycle, connecting st to two new waypoints ws, wt, and in turn ws to s and
wt to t, where all new links have some arbitrarily large weight γ, see Fig. 4.
W.l.o.g., we can assume that an optimal cycle solution of this modified graph
starts with the path st, ws, s. It is left to show that the subsequent tour ends
with t, wt, st: if not, the two nodes ws, wt would be traversed three times, which
is a contradiction to optimality due to the choice of their incident link weight
γ. Observe that instead of setting γ to “∞”, γ = W · n2 suffices. Hence, we can
use the algorithms froms [6],[20], [29] for the path version of subset TSP, and
therefore, for UBWRP.

Corollary 7. UBWRP can be solved optimally in a runtime of 2k · nO(1) for

general graphs and in a runtime of
Ä
2O(
√
k log k) +W

ä
· nO(1), where W is the

maximal link weight, for planar graphs.

. . . s ws st wt t . . .
γ

γ

γ

γ

γ

γ γ

γ

Fig. 4. Illustration of how to add the node st to the graph, connecting it to both s and
t via ws and wt, respectively. Observe that a tour must traverse both ws, wt.

I.e., on general graphs, setting k ∈ O(log n) is polynomial. For planar graphs,
we can fix any 0 < x < 1 with k ∈ O(log1+x n), W ∈ nO(1) for polynomiality.

3 Ordered BWRP

The ordered version of BWRP turns out to be quite different in nature from the
unordered one. First, we observe that while every BWRP instance is feasible,
there are infeasible OBWRP instances due to capacity constaints. E.g., consider
Figure 5 with unit capacities and two waypoints. A special case is k = 1, which
is identical to the unordered case, i.e., routing via one waypoint is always feasible
and can be solved optimally in polynomial time.

s w2 w1 t

Fig. 5. In this unit capacity network, the task is to route the flow of traffic from s to
w1, then to w2, and lastly to t. To this end, the link from w2 to w1 must be used twice.

In the following, we study OBWRP in three contexts: (1) polynomial-time
algorithms for computing feasible routes if k ∈ O(1) (Sec. 3.1), NP-hardness of
optimality (Sec. 3.2), and optimality on cactus graphs, for any number of way-
points and constant capacities (Sec. 3.3). The latter is practically motivated by
the fact that real computer networks often have specific topologies, and especially
router-level wide-area topologies are usually quite sparse.

3.1 A Constant Number of Waypoints is Feasible

There is a direct algorithmic connection from the link-disjoint path problem to
OBWRP with unit capacities. By setting s1 = s, t1 = w1, s2 = w1, t2 = w2,
. . . , a k + 1 link-disjoint path algorithm also solves unit capacity OBWRP for
k waypoints. This method can be extended to general capacities via a standard
technique, by replacing each link of capacity c(e) with ⌊c(e)⌋ parallel links of
unit capacity and identical weight. To get rid of the parallel links, replace each
link with a path of length two by “placing” a node on it, with the path weight
being identical to the link weight.

Hence, we can apply the algorithm from Jarry and Prennes [22], which solves
the feasibility of the link-disjoint path problem on bidirected graphs for a con-
stant number of paths in polynomial runtime.

Theorem 8. Let k ∈ O(1). Feasible solutions for OBWRP can be computed
in polynomial time.

The optimal solution already for few link-disjoint paths still puzzles researchers
on bidirected graphs, but the problem seems to be non-trivial on undirected
graphs as well: while feasibility for a constant number of link-disjoint paths is
polynomial in the undirected case as well [25],[35], optimal algorithms for 3 or
more link-disjoint paths are not known, and even for 2 paths the best result
is a recent randomized high-order polynomial time algorithm [8]. For directed
graphs, already 2 link-disjoint paths pose an NP-hard problem [17]. Results for
waypoint routing on directed and undirected graphs are analogous [1].

3.2 Optimally Solving OBWRP is NP-Hard

If we transition from a constant number to an arbitrary number of waypoints,
we can show that then solving OBWRP optimally becomes NP-hard:

Theorem 9. Solving OBWRP optimally is NP-hard.

Proof. Reduction from the NP-hard link-disjoint path problem on bidirected
graphs G = (V,E) [10]: given k source-destination node-pairs (si, ti), 1 ≤ i ≤ k,
are there k corresponding pairwise link-disjoint paths?

For every such instance I, we create an instance I ′ of OBWRP as follows,
with all unit capacities: Set s = s1 and t = tk, also setting waypoints as follows:
w1 = t1, w3 = s2, w4 = t2, w6 = s3, w7 = t3, . . . , w3k−3 = sk. We also create
the missing k − 1 waypoints w2, w5, w8, . . . , w3k−4 as new nodes and connect
them as follows, each time with bidirected links of weight γ: w2 to w1 = t1 and
w3 = s2, w5 to w4 = t2 and w6 = s3, . . . , w3k−4 to w3k−3 = sk and w3k−5 = tk−1.
I.e., we sequentially connect the end- and start-points of the paths.

Observe that OBWRP is feasible on I ′ if I is feasible: We take the k link-
disjoint paths from I and connect them via the k − 1 new nodes in I ′.

We now set γ to some arbitrarily high weight, e.g., 3k times the sum of all
link weights. I.e., it is cheaper to traverse every link of I even 3k times rather
than paying γ once. As thus, if I is feasible, the optimal solution of I ′ has a cost
of less than 2 · k · γ.

Assume I is not feasible, but that I ′ has a feasible solution R. Observe that
a feasible solution of I ′ needs to traverse the k − 1 new waypoints, i.e., has at
least a cost of 2(k− 1)γ. As I was not feasible, we will now show that traversing
every new waypoint w2, w5, . . . only once is not sufficient for a feasible solution
of I ′. Assume for contradiction that one traversal of w2, w5, . . . suffices: for each
of those traversals of such a wj , it holds that it must take place after traversing
all waypoints with index smaller than j. Hence, we can show by induction that
the removal of the links incident to the waypoints w2, w5, . . . from R contains
a feasible solution for I. As thus, at least one of the waypoints w2, w5, . . . must
be traversed twice, i.e., R has a cost of at least 2 · k · γ.

We can now complete the polynomial reduction, by studying the cost (feasi-
bility) of an optimal solution of I ′: if the cost is less than 2 · k · γ, I is feasible,
but if the cost is at least 2 · k · γ (or infeasible), I is not feasible. ⊓⊔

While many OBWRP instances are not feasible (already in Figure 5), we
conjecture that the feasibility of OBWRP with arbitrarily many waypoints is
NP-hard as well. This conjecture is supported by the fact that the analogous
link-disjoint feasibility problems are NP-hard on undirected [18], directed [17],
and bidirected graphs [10], also for undirected and directed ordered waypoint
routing [1]. We thus turn our attention to special graph classes.

3.3 Optimality on the Cactus with Constant Capacity

The difficulty of OBWRP lies in the fact that the routing from wi to wi+1 can
be done along multiple paths, each of which could congest other waypoint con-
nections. Hence, it is easy to solve OBWRP optimally (or check for infeasibility)
on trees, as each path connecting two successive waypoints is unique.

Lemma 10. OBWRP can be solved optimally in polynomial time on trees.

For multiple path options, the problem turns NP-hard though (Theorem 9).
To understand the impact of already two options, we follow-up by studying rings.

Lemma 11. OBWRP is optimally solvable in polynomial time on bidirected
ring graphs where for at least one link e holds: c(e) ∈ O(1).

Proof. We begin our proof with c(e) = c(e′) = 1. Observe that every routing
between two successive waypoints has two path options P , clockwise or counter-
clockwise. We assign one arbitrary path Pe to traverse e, and another arbitrary
path Pe′ to traverse e′. By removing the fully utilized e and e′, the remaining
graph is a tree with two leaves, where all routing is fixed, cf. Lemma 10.

We now count the path assignment possibilities for e, e′: by also counting the
“empty assignment”, we have at most (n+1)n options, where the optimal routing
immediately follows for each option. For these O(n2) possibilities, we pick the
shortest feasible one. I.e., OBWRP can be solved optimally in polynomial time
on rings with unit capacity. To extend the proof to constant capacities c(e) ∈
O(1), we use an analogous argument, the number of options for assignments to
e and e′ are now O

(
n2c(e)

)
∈ P. As thus, the lemma statement holds. ⊓⊔

We now focus on the important case of cactus networks. Our empirical study
using the Internet Topology Zoo1 data set shows that over 30% are cactus graphs.

Theorem 12. OBWRP is optimally solvable in polynomial time on cactus
graphs with constant capacity.

Proof. The idea is to 1) shrink the cactus graph down to a tree, 2) see if for
the relevant subset of waypoints (to be described shortly) the feasibility holds
on that tree, 3) reincorporate the excluded rings and find the optimal choice of
path segments within each ring, and 4) construct an optimal route by stitching
together the sub-routes obtained from the tree and the segments from each ring.

1 See http://www.topology-zoo.org/.

w1
w′

2

w4

w5

w′
3

s, tw2

w3

Fig. 6. In this cactus
graph, we illustrate the
algorithm of Theorem 12
w.r.t. the permutation
w1w2w3w4w5.

s, tw2

w3

w′
←

1
←

23→

4→

← 5
6
→

Fig. 7. Once the ring
links are contracted, w′

replaces the whole ring.
Consequently, the permu-
tation reduces to w′w2w3.
The sub-routes are num-
bered sequentially.

w1
w′

2

w4

w5

w′
3

1

2

3

4
5

6

7
8

Fig. 8. The permutation
induced on the ring is
w1w

′
2w

′
3w4w5. In the sub-

problem, we have s =
t = w1. The numbers rep-
resent the order of node
traversal in the optimal
route.

Let C be the cactus graph (Fig. 6) and TC be the tree obtained after con-
tracting all the links on each rings. As a result of this link contraction, those
waypoints previously residing on rings are now replaced by new (super) way-
points in TC (Fig. 7). Each super node represents either a subtree of adjacent
rings or just an isolated ring. Let W ′ denote the waypoints in TC .
Observe that any feasible route in C through W corresponds to one unique fea-
sible route in TC through nodes in W ′. Next, we show that either the feasible
route in TC (if exists) can be expanded to an optimal route for C, or there is no
feasible route in C at all. If TC is not feasible then we are done. Otherwise, let
R be the (unique) route in this tree. For each ring, R induces some endpoints
(Fig. 8), one endpoint on each node that is either a) the joint of TC and the ring,
or b) the joint with its adjacent rings. Now we focus on the subproblem induced
by this ring and the new waypoint set W ′′ (to be specified) as follows.

For each endpoints that is visited by R add a waypoint to W ′′. Then, using
the algorithm described in the proof of Lemma 11, find an optimal route Rring

visiting all the nodes in W ′′ respecting the order imposed by R. If no such route
exists, the instance is not feasible. Otherwise, remove from R every occurrence
of the super node that represents this ring to get a disconnected route. For each
missing part, reconnect the endpoints using the segment of Rring restricted to
these endpoints. Repeat this for every ring; denote the resulting route as R′.

Finally, we argue that R′ is optimal. This is the case because its pieces were
taken from sets of sub-routes, where each set, covers a disjoint–or more precisely,
vertex-disjoint up to endpoints–component of C. Moreover, the set of sub-routes
taken from an individual (disjoint) component (i.e. tree or ring) is optimal on
that component. Therefore the total length is optimal. ⊓⊔

4 Conclusion

We initiated the study of a natural problem in full-duplex networks: routing
through a given set of network functions, the so-called waypoints. We showed

that an optimal routing through a super-constant number of O(log n) unordered
waypoints can be computed in polynomial time, but that the general optimiza-
tion problem is NP-hard. Nonetheless, we provided approximation algorithms
with small constant competitive ratios for any number of waypoints, via connec-
tions to the Steiner Tree and (prize-collecting) Traveling Salesman problems. We
also presented hardness results and polynomial-time algorithms for the ordered
variant. In particular, we derived an exact polynomial-time algorithm for cactus
graphs.

We believe that our work opens several interesting directions for future re-
search. In general, while practically relevant, bidirected networks are not well-
understood today, and assume an interesting position between directed and undi-
rected networks. In particular, it would be interesting to understand for which
bidirected graph classes the ordered and the unordered waypoint routing prob-
lem permits polynomial-time algorithms, and for up to how many waypoints.
Another interesting direction for future research concerns the study of random-
ized algorithms.

Acknowledgements

Klaus-Tycho Foerster is supported by VILLUM FONDEN project ReNet and
Mahmoud Parham by AAU’s PreLytics project.

References

1. S. Akhoondian Amiri, K.-T. Foerster, R. Jacob, and S. Schmid. Charting the
Complexity Landscape of Waypoint Routing. arXiv preprint arXiv:1705.00055,
2017.

2. S. Akhoondian Amiri, K.-T. Foerster, and S. Schmid. Walking through waypoints.
arXiv preprint arXiv:1708.09827, 2017.

3. Aaron Archer, Mohammad Hossein Bateni, Mohammad Taghi Hajiaghayi, and
Howard J. Karloff. Improved approximation algorithms for prize-collecting steiner
tree and TSP. SIAM J. Comput., 40(2):309–332, 2011.

4. Sanjeev Arora, Michelangelo Grigni, David R. Karger, Philip N. Klein, and Andrzej
Woloszyn. A polynomial-time approximation scheme for weighted planar graph
TSP. In Proc. SODA, 1998.

5. Nikhil Bansal, Kang-Won Lee, Viswanath Nagarajan, and Murtaza Zafer. Mini-
mum congestion mapping in a cloud. In Proc. PODC, 2011.

6. Richard Bellman. Dynamic programming treatment of the travelling salesman
problem. J. ACM, 9(1):61–63, 1962.

7. Andreas Björklund, Thore Husfeld, and Nina Taslaman. Shortest cycle through
specified elements. In Proc. SODA, 2012.

8. Andreas Björklund and Thore Husfeldt. Shortest two disjoint paths in polynomial
time. In Proc. ICALP, 2014.

9. Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner
tree approximation via iterative randomized rounding. J. ACM, 60(1):6:1–6:33,
2013.

10. Pascal Chanas. Reseaux atm: conception et optimisation. PhD thesis, University
of Grenoble, 1998.

11. Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical Report 388, Graduate School of Industrial Administration,
Carnegie Mellon University, 1976.

12. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

13. Jack Edmonds and Ellis Johnson. Matching: a well-solved class of linear programs.
In Combinatorial Structures and their Applications: Proceedings of the Calgary
Symposium, pages 88–92. Gordon and Breach, New York, 1970.

14. ETSI. Network functions virtualisation – introductory white paper. White Paper,
oct 2013.

15. Guy Even, Moti Medina, and Boaz Patt-Shamir. Online path computation and
function placement in SDNs. In Proc. SSS, 2016.

16. Guy Even, Matthias Rost, and Stefan Schmid. An approximation algorithm for
path computation and function placement in SDNs. In Proc. SIROCCO, 2016.

17. Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph
homeomorphism problem. Theor. Comput. Sci., 10:111–121, 1980.

18. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

19. Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure, Clarence
Filsfils, Thomas Telkamp, and Pierre Francois. A declarative and expressive ap-
proach to control forwarding paths in carrier-grade networks. In Proc. SIGCOMM,
2015.

20. Michael Held and Richard M. Karp. The traveling-salesman problem and minimum
spanning trees: Part II. Math. Program., 1(1):6–25, 1971.

21. J. Sherry et al. Making middleboxes someone else’s problem: Network processing
as a cloud service. In Proc. ACM SIGCOMM, 2012.

22. A. Jarry and S. Prennes. Disjoint paths in symmetric digraphs. Discrete Applied
Mathematics, 157(1):90 – 97, 2009.

23. Aubin Jarry. Multiflows in symmetric digraphs. Discrete Applied Mathematics,
160(15):2208–2220, 2012.

24. Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability
bounds for TSP. J. Comput. Syst. Sci., 81(8):1665–1677, 2015.

25. Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint
paths problem in quadratic time. J. Comb. Theory, Ser. B, 102(2):424–435, 2012.

26. Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. Processor efficient
parallel algorithms for the two disjoint paths problem and for finding a kuratowski
homeomorph. SIAM J. Comput., 21(3):486–506, 1992.

27. Samir Khuller and Baruch Schieber. Efficient parallel algorithms for testing k-
connectivity and finding disjoint s-t paths in graphs. SIAM J. Comput., 20(2):352–
375, 1991.

28. Philip N. Klein. A subset spanner for planar graphs, : with application to subset
TSP. In Proc. STOC, 2006.

29. Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for
subset TSP on planar graphs. In Proc. SODA, 2014.

30. Tamas Lukovszki and Stefan Schmid. Online admission control and embedding of
service chains. In SIROCCO, 2015.

31. J. Napper, W. Haeffner, M. Stiemerling, D. R. Lopez, and J. Uttaro. Service
Function Chaining Use Cases in Mobile Networks. Internet-draft, IETF, April
2016.

32. Guyslain Naves and András Sebö. Multiflow feasibility: An annotated tableau.
In William J. Cook, László Lovász, and Jens Vygen, editors, Research Trends in
Combinatorial Optimization, pages 261–283. Springer, 2008.

33. P. Sköldström et al. Towards unified programmability of cloud and carrier infras-
tructure. In Proc. EWSDN, 2014.

34. R. Soulé et al. Merlin: A language for provisioning network resources. In Proc.
ACM CoNEXT, 2014.

35. Neil Robertson and Paul D. Seymour. Graph Minors .XIII. The Disjoint Paths
Problem. J. Comb. Theory, Ser. B, 63(1):65–110, 1995.

36. Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph steiner tree
approximation. SIAM J. Discrete Math., 19(1):122–134, 2005.

37. Jerome H Saltzer, David P Reed, and David D Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems (TOCS), 2(4):277–288,
1984.

38. András Sebö and Anke van Zuylen. The salesman’s improved paths: A 3/2+1/34
approximation. In Proc. FOCS, 2016.

39. Rita Vachani, Alexander Shulman, Peter Kubat, and Julie Ward. Multicommodity
flows in ring networks. INFORMS Journal on Computing, 8(3):235–242, 1996.

