Vibrational Properties of Nanograins and Interfaces in Nanocrystalline Materials

Stankov, S.; Yue, Yuanzheng; Miglierini, M.; Sepiol, B.; Sergueev, I.; Chumakov, A. I.; Hu, L.; Svec, P.; Rüffer, R.

Publication date: 2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Vibrational Properties of Nanograins and Interfaces in Nanocrystalline Materials

S. Stankov1, Y. Z. Yue2,3, M. Miglierini4, B. Sepiol5, I. Sergueev1, A. I. Chumakov1, L. Hu2,3, P. Svec6, and R. Rüffer1

1European Synchrotron Radiation Facility, BP220, 38043 Grenoble, France
2Section of Chemistry, Aalborg University, 9000 Aalborg, Denmark
3Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, 250061 Jinan, China
4Department of Nuclear Physics and Technology, Slovak University of Technology, 81219 Bratislava, Slovakia
5Fakultät für Physik, Universität Wien, 1090 Vienna, Austria
6Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia

The vibrational dynamics of nanocrystalline Fe\textsubscript{90}Zr\textsubscript{7}B\textsubscript{3} was studied at various phases of crystallization by 57Fe nuclear inelastic scattering of synchrotron radiation. The average sizes of the nanograins were determined by the Rietveld refinement of the X-ray diffractograms, while the volume fraction of the interfaces was obtained from the conversion electron Mössbauer spectra by applying a well established fitting model [1, 2]. The density of phonon states (DOS) of the nanograins was separated from the DOS of the interfaces for a wide range of grain sizes and interface thicknesses. Surprisingly, DOS of the interior and the surface of the nanograins do not vary with the grain size and closely resembles that of the bulk material down to 2 nm. The anomalous enhancement of the phonon states at low and high energies observed in the DOS of the nanocrystalline materials [3], originates entirely from the vibrational modes of the interface exhibiting a characteristic DOS of a significantly disordered matter. The low energy enhancement of phonon states scales linearly to the volume fraction of the interfaces and perfectly obeys the Debye law for the interface thickness below 0.5 nm.

The obtained results give an unambiguous evidence that the anomalous dynamics and thermodynamics of nanocrystalline solids originate from the disordered interfaces, while thermodynamical properties of the nanograins are essentially bulklike and to a large extent size-independent. These findings are of significant importance for the continuously increasing number of technological applications of the nanocrystalline materials. In particular they reveal that tailoring of certain thermo-elastic properties requires to control precisely the volume fraction of the nanograins rather than of their sizes.

Corresponding author: Svetoslav Stankov, stankov@esrf.fr

Keywords: nanocrystalline Fe\textsubscript{90}Zr\textsubscript{7}B\textsubscript{3}, vibrational density of states, nuclear inelastic scattering