
Aalborg Universitet

Parallel trajectory similarity joins in spatial networks

Shang, Shuo; Chen, Lisi; Wei, Zhewei; Jensen, Christian S.; Zheng, Kai; Kalnis, Panos

Published in:
VLDB Journal

DOI (link to publication from Publisher):
10.1007/s00778-018-0502-0

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Shang, S., Chen, L., Wei, Z., Jensen, C. S., Zheng, K., & Kalnis, P. (2018). Parallel trajectory similarity joins in
spatial networks. VLDB Journal, 27(3), 395-420. https://doi.org/10.1007/s00778-018-0502-0

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.1007/s00778-018-0502-0
https://vbn.aau.dk/en/publications/acddcb61-7e53-441e-923c-a5fa380a5d32
https://doi.org/10.1007/s00778-018-0502-0

Noname manuscript No.
(will be inserted by the editor)

Parallel Trajectory Similarity Joins in Spatial Networks

Shuo Shang · Lisi Chen · Zhewei Wei · Christian S. Jensen · Kai Zheng ·
Panos Kalnis

Received: date / Accepted: date

Abstract The matching of similar pairs of objects, called
similarity join, is fundamental functionality in data man-
agement. We consider two cases of trajectory similarity
joins (TS-Joins), including a threshold-based join (Tb-TS-
Join) and a top-k TS-Join (k-TS-Join), where the objects
are trajectories of vehicles moving in road networks. Given
two sets of trajectories and a threshold θ, the Tb-TS-Join
returns all pairs of trajectories from the two sets with
similarity above θ. In contrast, the k-TS-Join does not take
a threshold as a parameter, and it returns the top-k most
similar trajectory pairs from the two sets. The TS-Joins
target diverse applications such as trajectory near-duplicate

Shuo Shang· Panos Kalnis
CEMSE, King Abdullah University of Science and Technology,
Thuwal, Saudi Arabia
E-mail: jedi.shang@gmail.com, panos.kalnis@kaust.edu.sa

Lisi Chen
School of Computer and Information Technology, University of
Wollongong,
Australia
E-mail: chenlisi.cs@gmail.com

Zhewei Wei
School of Information, Renmin University of China
Beijing, China
E-mail: zhewei@ruc.edu.cn

Christian S. Jensen
Department of Computer Science, Aalborg University,
Aalborg, Denmark
E-mail: csj@cs.aau.dk

Kai Zheng
School of Computer Science and Engineering and Big Data Research
Center, University of Electronic Science and Technology of China
Chengdu, China
E-mail: zhengkai@uestc.edu.cn

detection, data cleaning, ridesharing recommendation, and
traffic congestion prediction.

With these applications in mind, we provide purposeful
definitions of similarity. To enable efficient processing of
the TS-Joins on large sets of trajectories, we develop search
space pruning techniques and enable use of the parallel
processing capabilities of modern processors. Specifically,
we present a two-phase divide-and-conquer search frame-
work that lays the foundation for the algorithms for the Tb-
TS-Join and the k-TS-Join that rely on different pruning
techniques to achieve efficiency. For each trajectory, the
algorithms first find similar trajectories. Then they merge
the results to obtain the final result. The algorithms for the
two joins exploit different upper and lower bounds on the
spatiotemporal trajectory similarity and different heuristic
scheduling strategies for search space pruning. Their per-
trajectory searches are independent of each other and can
be performed in parallel, and the mergings have constant
cost. An empirical study with real data offers insight in
the performance of the algorithms and demonstrates that
they are capable of outperforming well-designed baseline
algorithms by an order of magnitude.

Keywords Trajectory Similarity Join, Parallel Processing,
Spatial Networks, Spatiotemporal Databases

1 Introduction

The continued proliferation of GPS-equipped mobile de-
vices (e.g., vehicle navigation systems and smart phones)
and the proliferation of online map-based services (e.g.,
Bing Maps1, Google Maps2, and MapQuest3) enable the

1 https://www.bing.com/maps/
2 https://maps.google.com/
3 https://www.mapquest.com

This is a post-peer-review, pre-copyedit version of an article published in VLDB Journal. The final authenticated version is available
online at: http://dx.doi.org/10.1007/s00778-018-0502-0

2 Shuo Shang et al.

p1

: sample point in a trajectory

p3

p8

p10

: start point of a trajectory : destination point of a trajectory

τ2

p2

p7

p9

p14

p6

p4

p5

p11

p12 p13

p15

τ1τ3

τ1 = < p2 , 09:37 > , < p4 , 09:40 > , < p7 , 09:48 > , < p8 , 09:51 > , < p9 , 09:57 > , < p12 , 10:02 > , < p13 , 10:05 > , < p14 , 10:07 >

τ2 = < p3 , 08:35 > ,< p4 , 08:39> < p5 , 08:46 > , < p8 , 08:49 > , < p9 , 09:01 > , < p10 , 09:04 > , < p13 , 09:06 > , < p15 , 09:07 >

τ3 = < p1 , 09:32 > , < p6 , 09:43 > , < p7 , 09:48 > , < p8 , 09:51 > , < p9 , 09:59 > , < p10 , 10:03 > , < p11 , 10:13 >

Fig. 1 TS-Joins Example

collection and sharing of trajectories. For example, the
sites Bikely4, GPS-way-points5, Share-my-routes6, and Mi-
crosoft Geolife7 enable such sharing, and more and more
social network sites, including Twitter8, Facebook9, and
Foursquare10, are starting to support trajectory sharing and
search. This development motivates new studies of the
management and analysis of massive trajectory data. In
these settings, trajectory similarity joins (TS-Joins), includ-
ing a threshold-based TS-Join (Tb-TS-Join) and a top-k
TS-Join (k-TS-Join), constitute fundamental functionality.
Given two sets of trajectories as arguments and a similarity
threshold θ as a parameter, the Tb-TS-Join returns all pairs
of trajectories from the two sets with similarity above θ. In
contrast, the k-TS-Join does not take a similarity threshold θ
as a parameter and it returns k most similar trajectory pairs
from the two sets. The k-TS-Join is useful in cases where a
user cannot specify a purposeful similarity threshold.

The TS-Joins may bring significant benefits to diverse
applications, including trajectory near-duplicate detection,
data cleaning [2, 20], ridesharing recommendation [17, 18],
friend recommendation [18], frequent trajectory based rout-
ing [13, 20], and traffic congestion prediction [27, 28]. For
example, a database may contain several copies of a trajecto-
ry or several similar trajectories. We may conduct a TS-Join
(self join) on the database to identify duplicate or similar
trajectories, thus supporting data cleaning. For example,
having found similar trajectory pairs (τ1,τ2), (τ1,τ3), (τ1,τ4),
we may choose to retain only the representative trajectory
τ1. The identification of similar trajectories of different
commuters is also useful in ridesharing recommendation
and friend recommendation. For example, commuters may

4 https://www.bikely.com/
5 https://www.gps-waypoints.net
6 https://www.sharemyroutes.com/
7 https://research.microsoft.com/en-us/projects/geolife/
8 https://www.twitter.com/
9 https://www.Facebook.com/

10 https://www.Foursquare.com/

find potential ridesharing partners among commuters with
similar trajectories, and social networking services may
identify users with similar living trajectories and use this in
friend recommendations. We may also use a TS-Join to find
frequently traveled trajectories (e.g., trajectory τ joins with
m other trajectories, thus having travel frequency m + 1),
which may be used for route recommendation and in traffic
analyses to predict congestion.

To the best of our knowledge, this is the first study of a
trajectory similarity join that takes into account both spatial
and temporal aggregate distances. We adopt a linear com-
bination method (e.g., [18, 19]) to combine the spatial and
temporal similarity into a spatiotemporal similarity metric.
In contrast, existing trajectory similarity joins (e.g., [2, 3, 6,
10]) use a time interval threshold to constrain the temporal
proximity of two trajectories (in a fixed manner) and can be
assigned to two different categories.

Studies in the first category (e.g., [3, 10]) eliminate tra-
jectory pairs that are temporally further apart than a thresh-
old. We generalize this category of studies and compute
temporal similarity by summarizing temporal proximities of
sample point pairs from two trajectories (aggregate-distance
matching), thus obviating the need for a time threshold.

Studies in the other category (e.g., [2, 6]) utilize a
sliding window for all trajectories and eliminate pairs of
trajectories with times that fall outside the window. For
the remaining pairs, only spatial proximity is considered.
However, in the applications that motivate our study, spatial
proximity is by itself insufficient to evaluate the relationship
between different trajectories. With the approach in the
second category, a ridesharing service may recommend a
co-traveler with a very different departure time to a traveler.
Although the trajectories of the travelers may be spatially
close to each other, the travelers may not be satisfied with
the recommendation, as their preferences are not fulfilled.

An example similarity join is shown in Figure 1, where
τ1, τ2, and τ3 are trajectories and P = {τ1} and Q =

Parallel Trajectory Similarity Joins in Spatial Networks 3

{τ2, τ3}. A trajectory is a sequence of timestamped sample
points of a moving object. In the example, p1, p2, ..., p15
are timestamped sample points. Given a time interval (8:30,
10:30), existing sliding-window based trajectory similarity
joins (e.g., [2,6]) return trajectory pairs (τ1, τ2) and (τ1, τ3)

because they are spatially close to each other. However, τ1
and τ2 have very different departure times, thus rendering
a result such as this of little use in ridesharing and traffic
congestion prediction. In the applications we target, it is
difficult to obtain an appropriate query time interval. The
TS-Joins (assuming that Sim(τ1, τ3) ≥ θ in the Tb-TS-Join
and k = 1 in the k-TS-Join) return trajectory pair (τ1, τ3)
without the need for a query time interval, and the spatial
and temporal domains are considered appropriately in the
matching.

Next, unlike existing trajectory similarity joins [2, 3,
6, 10, 20], the TS-Joins are applied in spatial networks
because in many practical scenarios, the objects move in
spatial networks rather than in Euclidean space. In spatial
networks, network distance is the relevant distance between
two objects, and using Euclidean distance may lead to
errors. We assume that the sample points of trajectories in
sets P and Q have been map matched to the corresponding
spatial network (the spatial domain) according to some map-
matching algorithm (e.g., [4, 22]), and we assume that the
timestamps of all trajectory sample points are mapped to a
time axis with a 24-hour range (the temporal domain) [18].

Existing methods cannot process the TS-Joins due to
three reasons. (i) Different query spaces (Euclidean vs.
network): existing joins (e.g., [2, 3, 6, 10, 20]) are conducted
in Euclidean space rather than in a spatial network. Existing
spatial indices (e.g., the R-tree [11]) and accompanying
techniques lack effectiveness in our setting. (ii) Different
temporal matching schemes (time interval vs. aggregate
distance): most existing trajectory similarity joins are time-
interval based (e.g., [2, 3, 6, 10]), and their solutions are
inapplicable of aggregate-distance matching. They compute
different results than the TS-Joins (cf. Figure 1). (iii) Parallel
processing: an experimental study [12] shows that existing
centralized similarity join techniques (that do not take paral-
lel processing into account) are inefficient when processing
very large data sets. Existing centralized trajectory similarity
joins (e.g., [2, 3, 6, 10, 20]) can process at most 500 K
trajectories (based on reported experiments), while the TS-
Joins are able to process 10 M trajectories with a reasonable
runtime (e.g., processing 10 M × 2 M trajectories for non-
self Tb-TS-Join in 220 seconds and for non-self k-TS-Join
in 820 seconds. The k-TS-Join takes longer because it does
not have a threshold that enables search space pruning). A
comparison between the TS-Joins and existing studies is
shown in Table I. Section 7 covers related work in more
detail.

Table I: Comparison to existing trajectory similarity joins
Studies Space Temporal matching Parallel Data
[2] Euclidean Sliding-window based No 50 K
[6] Euclidean Sliding-window based No 250 K
[3] Euclidean Time-threshold based No 150 K
[10] Euclidean Time-threshold based No 2 K
[20] Euclidean Spatial join only No 500 K
TS-
Joins

Network Aggregate-distance
matching

Yes 10 M

We initially propose a relatively straightforward ap-
proach to the TS-Joins (Tb-TS-Join and k-TS-Join) called
temporal-first matching. We apply a hierarchical grid index
in the temporal domain. Then we refine the candidate
trajectory pairs in the same leaf node (trajectories in the
same node are temporally similar) by computing their s-
patiotemporal similarities. By merging the results from the
leaf nodes toward the root, the join result is obtained when
the root is reached. The computations at each index level
occur in parallel. Following this framework, we develop
two algorithms, called TF-Matching and k-TF-Matching
that compute the Tb-TS-Join and the k-TS-Join, respec-
tively. The main difference between TF-Matching and k-
TF-Matching is the pruning techniques they employ. The
trajectory-similarity lower bound in TF-Matching is defined
according to the threshold θ. In contrast, k-TF-Matching has
no threshold, so the upper and lower bounds, the pruning
within a thread, and the merging among different threads
must be reworked.

The two new algorithms are enabled by four specific
technical contributions: pruning in leaf nodes, pruning a-
mong different nodes, merging, and parallel processing. The
only similarity between the proposed algorithms and the
sliding-window based trajectory similarity methods [2, 6] is
that the similarity-join computation in a leaf node is equiv-
alent to the processing of a query issued within a temporal-
matching window (the first contribution). The optimization
techniques in sliding-window based methods cannot be used
in our algorithm because of the different query spaces
(Euclidean vs. network) and the different temporal matching
schemes (time interval vs. aggregate distance).

The temporal-first matching has three main limitations.
First, it is driven by the temporal domain and thus has
weak spatial pruning power. As a result, large numbers of
pairs must be considered. Second, while having many leaf
nodes enables more parallel processing, this also increases
the merging cost. Third, it is potentially costly to acquire
network distances when computing spatial similarities.

To process the TS-Joins more efficiently, we propose
a two-phase divide-and-conquer search framework. In the
trajectory-search phase, for each trajectory τ , we explore
the spatial and temporal domains concurrently to find tra-
jectories that are similar to τ . In the spatial domain, network
expansion [9] is adopted from each sample point of τ ,

4 Shuo Shang et al.

while in the temporal domain, we expand the search from
each timestamp of τ . The trajectory-search processes are
independent of each other, enabling parallel processing, and
the merging cost is constant (uncorrelated to the number of
threads used for parallel processing). The two-phase algo-
rithm has a stronger pruning power. The network distances
for similarity computation can be derived directly during
the trajectory-search process. A time complexity analysis
indicates that the two-phase approach is considerably better
than the temporal-first matching approach. Following this
framework, we develop two specific algorithms, called two-
phase and k-two-phase that compute the Tb-TS-Join and
the k-TS-Join, respectively. The main difference between
two-phase and k-two-phase is their pruning techniques. In
two-phase, an upper bound on the spatiotemporal similarity
is defined and employed for pruning the search space,
and a heuristic scheduling strategy is proposed to schedule
multiple so-called query sources in order to improve effi-
ciency. The bound and scheduling are defined according to
threshold θ. In contrast, k-two-phase has no threshold, so
the upper and lower bounds, the pruning within a thread, the
merging among different threads, and the heuristic search
strategy must be reworked.

The present paper expands on a previous study [16].
Specifically, we propose a novel top-k TS-Join (k-TS-Join)
that retrieves the top-k most similar trajectory pairs from
two trajectory sets without taking a threshold θ as a query
parameter. Leveraging the frameworks of the TF-Matching
and two-phase algorithms, we develop new k-TF-Matching
and k-two-phase algorithms that enable parallel processing
(cf. Sections 3.2 and 4.2). Unlike the Tb-TS-Join, the k-
TS-Join has no threshold that it can use for pruning. Thus,
we develop new upper and lower bounds and rework the
pruning and scheduling within a thread and the merging
among different threads (cf. Equations 13–17, and 28–31).
Next, we add a new trajectory similarity measure that takes
the visiting sequence of sample points into account when
matching trajectories, and we extend the TF-Matching, k-
TF-Matching, two-phase, and k-two-phase algorithms to
support this new similarity measure (cf. Section 5). We also
report on experiments that offer insight into the performance
of the two new algorithms (cf. Section 6.3, Figures 10–14,
including 34 subfigures) and the four extended algorithms
(cf. Section 6.4, Figures 15–16, including 12 subfigures) in
different settings.

To sum up, the contributions of the paper are as follows.

– We propose two novel network-based trajectory simi-
larity joins, called TB-TS-Join and k-TS-Join, that use
aggregate-distance matching to quantify similarity, thus
targeting applications such as trajectory near-duplicate
detection, ridesharing recommendation, route planning,
and traffic congestion prediction.

– The TS-Joins use new metrics to evaluate trajectory sim-
ilarity in the spatial and temporal domains (Section 2).

– We develop two temporal-first baseline algorithms, TF-
Matching and k-TF-Mathcing, that enable parallel TB-
TS-Join and k-TS-Join processing (Sections 3.1 and
4.1).

– We develop two-phase and k-two-phase algorithms,
each with effective pruning and scheduling techniques
that enable parallel TB-TS-Join and k-TS-Join process-
ing (Sections 3.2 and 4.2).

– We extend the TF-Matching, k-TF-Matching, two-phase,
and k-two-phase algorithms to scenarios where the visit-
ing sequence of sample points is to be taken into account
when matching trajectories (Section 5).

– We conduct extensive experiments on large trajectory
sets that offer insight into the performance of the devel-
oped algorithms (Section 6).

The rest of the paper is organized as follows. Section 2
introduces the spatial network setting and the trajectory sim-
ilarity metrics used in the paper, and it defines the problem.
The temporal-first matching and k-temporal-first matching
algorithms are covered in Section 3, while the two-phase
and k-two-phase algorithms are covered in Section 4. The
two-phase and k-two-phase algorithms are further extended
to support practical scenarios in Section 5, which is followed
by a presentation of experimental results in Section 6.
Related work is covered in Section 7, and conclusions and
research directions are presented in Section 8.

2 Preliminaries

2.1 Spatial Networks and Trajectories

A spatial network is modeled as a connected, undirected
graph G = (V,E, F,W), where V is a vertex set and
E ⊆ {{vi, vj}|vi, vj ∈ V ∧ vi 6= vj} is an edge set.
A vertex vi ∈ V represents a road intersection or an end
of a road, and an edge ek = {vi, vj} ∈ E represents a
road segment that enables travel between vertices vi and
vj . Function F : V ∪ E → Geometries maps a vertex to
the point location of the corresponding road intersection and
maps an edge to a polyline representing the corresponding
road segment. Function W : E → R assigns a real-valued
weight W (e) to an edge e that represents the corresponding
road segment’s length.

The shortest path between two vertices vi and vj is
a sequence of edges linking vi and vj such that the sum
of the edge weights is minimal. Such a path is denoted
by SP (vi, vj), and its length is denoted by sd(vi, vj).
Euclidean-space based spatial indices (e.g., the R-tree [11])
and accompanying techniques are ineffective in network
environments due to loose lower bounds. For simplicity,

Parallel Trajectory Similarity Joins in Spatial Networks 5

we assume that the data points considered (e.g., trajectory
sample points) are located on vertices. It is straightforward
to also support data points on edges. Assume a data point p
is on an edge e with given network distances to the two end
vertices ea and eb. Then, a new vertex is created for p and
edge e is replaced by edges (ea, p) and (p, eb).

Raw trajectory samples obtained from GPS devices
are typically of the form of (longitude, latitude, time).
We assume that all trajectory sample points have already
been map matched onto the vertices of the spatial network
using some map-matching algorithm (e.g., [4, 22]) and that
between two adjacent sample points pa and pb, the object
movement always follows the shortest path connecting pa
and pb. A trajectory is defined as follows.

Definition: Trajectory
A trajectory τ of a moving object is a finite, time-ordered
sequence 〈v1, v2, ..., vn〉, where vi = (pi, ti), i ∈ [1, n],
with pi being a sample point (equal to some vertex in G.V)
and ti being a timestamp.

The value of a timestamp is set to be within the range
of 24 hours, and the date is not taken into account because
in many practical scenarios like urban transportation, most
movements occur daily.

Notice that the modeling of spatial networks and trajec-
tories align with previous studies [14, 15, 18, 19].

2.2 Trajectory Similarity Functions

Given a sample point v = (v.p, v.t) and a trajectory τ , the
spatial network distance d(v.p, τ) and the temporal distance
d(v.t, τ) between v and τ are defined as follows.

d(v.p, τ) = min
vi∈τ
{sd(v.p, vi.p)} (1)

d(v.t, τ) = min
vi∈τ
{|v.t− vi.t|} (2)

Given trajectories τ1 = 〈v1, v2, ..., vm〉 and τ2 = 〈v1,
v2, ..., vn〉, the spatial and temporal similarities, SimS(τ1, τ2)

and SimT(τ1, τ2), between them are defined as follows.

SimS(τ1, τ2) =

∑
vi∈τ1 e

−d(vi.p,τ2)

|τ1|
+

∑
vj∈τ2 e

−d(vj .p,τ1)

|τ2|
(3)

SimT(τ1, τ2) =

∑
vi∈τ1 e

−d(vi.t,τ2)

|τ1|
+

∑
vj∈τ2 e

−d(vj .t,τ1)

|τ2|
(4)

Here, |τ | denotes the number of sample points in a trajectory.
We extend Euclidean based trajectory similarity [7] to make

it fit into spatial networks. We ensure that the similari-
ty measures are symmetrical, such that SimS(τ1, τ2) =

SimS(τ2, τ1) and SimT(τ1, τ2) = SimT(τ2, τ1). In contrast,
most of existing trajectory similarity measures (e.g., [7, 17,
18,21]) are asymmetrical; thus, they cannot be used directly
in the TS-Join.

Note also that spatial and temporal similarities are in
the range [0, 2]. Finally, we use a linear combination
method [17–19] to combine spatial and temporal similarities
(Equations 3 and 4), and the spatiotemporal similarity is
defined as follows.

SimST(τ1, τ2) = λ·SimS(τ1, τ2)+(1−λ)·SimT(τ1, τ2) (5)

Here, parameter λ ∈ [0, 1] controls the relative importance
of the spatial and temporal similarities. We support queries
with arbitrary values of λ.

2.3 Problem Definition

The two queries considered are defined as follows.

Definition: Tb-TS-Join
Given sets P and Q of trajectories and a threshold θ, the
threshold-based trajectory similarity join (Tb-TS-Join) finds
the set A of all trajectory pairs from the two sets whose
spatiotemporal similarity no smaller than θ, i.e., ∀(τi, τj) ∈
(P ×Q) \A (SimST(τi, τj) < θ).

Definition: k-TS-Join
Given sets P and Q of trajectories, the top-k trajectory
similarity join (k-TS-Join) finds a set A of k most similar
trajectory pairs from the two sets, i.e., |A| = k and
∀(τi, τj) ∈ A (∀(τ ′i , τ ′j) ∈ (P × Q) \ A (SimST(τi, τj) ≥
(τ ′i , τ

′
j))).

The problem addressed is that of processing the two
types of join efficiently given the setting and similarity
definition provided in Sections 2.1 and 2.2.

We initially consider the self-join scenario (i.e., P = Q)
and then cover the case P 6= Q in Sections 3.1.5 and 4.1.6.

3 Baseline Algorithms

We propose two baseline algorithms, TF-Matching and k-
TF-Matching, to compute the Tb-TS-Join and k-TS-Join,
respectively.

6 Shuo Shang et al.

τ2

τ1

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

n1 n2 n3 n4 n5 n6 n7 n8 n10 n11 n12

n23

time

n9

n13 n14 n15 n16 n17 n18

n19 n20 n21

n22

v9.p

v1.p

v2.p
v3.p v4.p v5.p

v6.p v7.p v8.p

v10.p

v11.p v12.p

v13.p v14.p

n1n1

grid index

Temporal Domain

Spatial Domain

Level 0

Level 1

Level 2

Level 3

Fig. 2 An example of TF-Matching

3.1 TF-Matching

3.1.1 Basic Idea

Temporal-first matching (TF-Matching) is a straightforward
baseline approach to computing the Tb-TS-Join. Initially,
we index the temporal domain using a hierarchical grid
structure. Then we refine trajectory pairs in the same leaf
node by computing their spatiotemporal similarities (Sec-
tions 3.1.2 and 3.1.3). By merging the results from the leaf
nodes toward the root, the join result is obtained when the
root is reached (Section 3.1.4). A pair of upper and lower
bounds are used to prune the search space in the spatial and
temporal domains. The computations at each grid level can
be performed in parallel.

3.1.2 Grid Index

The grid index structure [8] is established as follows. First,
we partition the temporal domain into α equal-sized time
slots, each of which corresponds to a leaf node. Next, we
build up a tree structure in a bottom-up manner. Assume that
there are k nodes at the current level (initially k = α). Then
we build bk2 c parent nodes. We do this recursively until there
is one parent, which is the root node. The height of the tree
is dlog(α)e + 1. An example is shown in Figure 2, where
n1, n2, ..., n23 are nodes and n23 is the root. To find a value
for α that yields high performance, we conducted extensive
experiments when establishing the grid index.

The temporal range range(τ) of a trajectory τ =

〈v1, v2, ..., vi〉 is defined by the timestamps of its start and
end sample points, i.e., range(τ) = [v1.t, vi.t]. When we
add a new trajectory τ to the index, it is stored in the lowest
node n that fully covers its temporal range, i.e., range(τ) ⊆
range(n) and range(τ) is not contained in the range of any

child of n. If we delete a trajectory from the index, we can
simply remove it without any other changes.

Example: Consider trajectories τ1 and τ2 in Figure 2,
where range(τ1) = [6:15, 7:30] and range(τ2) = [6:20,
7:35]. We insert them into the grid index top-down. Both
τ1 and τ2 are stored in node n4 (range(n4) = [6:00, 8:00])
because range(τ1) ⊆ range(n4), range(τ2) ⊆ range(n4),
and n4 is a leaf node. Given a trajectory τ3 and range(τ3)

= [9:45, 10:30], τ3 is stored in n15 (range(n15) = [8:00,
12:00]) because range(τ3) ⊆ range(n15), and range(τ3) *
range(n5), range(τ3) * range(n6) (n5 and n6 are child
nodes of n15).

3.1.3 Upper and Lower Bounds

In the example in Figure 2, trajectories τ1 and τ2 are stored
in leaf node n4, and they are temporally close to each other.
We estimate the upper bound on the temporal similarity
SimT(τ1, τ2) (Equation 4) as follows.∑
vi∈τ1

e−d(vi.t,τ2) ≤ |τ1| and
∑
vj∈τ2

e−d(vj .t,τ1) ≤ |τ2|

⇒ SimT(τ1, τ2).ub = 2 ≥ SimT(τ1, τ2) (6)

Here, |τ | is the number of sample points in τ . By substituting
Equation 6 into Equation 5, we have that

λ · SimS(τ1, τ2) + (1− λ) · SimT(τ1, τ2) ≥ θ

⇒ SimS(τ1, τ2) ≥
θ − (1− λ) · 2

λ
= LBS , (7)

where LBS is a global lower bound on the spatial similarity
of all “qualified” trajectory pairs in the same leaf node, and
LBS is suitable for all leaf nodes. If SimS(τ1, τ2) < LBS ,
the spatiotemporal similarity of (τ1, τ2) is less than θ, and
(τ1, τ2) can be pruned safely.

Lemma 1. Given any two trajectories τ1 and τ2, we have
that

∀v ∈ τ1(d(v.p, τ2) ≥ min
vi∈τ2

{d(vi.p, τ1)}). (8)

Proof: Assume that d(v.p, τ2) = sd(v.p, v′.p), where v′.p
is the sample point spatially closest to v.p among all sample
points in τ2. According to Equation 1, for sample point
v′.p, we have that d(v′.p, τ1) = minvi∈τ1{sd(v′.p, vi.p)} ≤
sd(v.p, v′.p) = d(v.p, τ2). Therefore, we have that

d(v.p, τ2) ≥ d(v′.p, τ1) ≥ min
vi∈τ2

{d(vi.p, τ1)}.

By substituting Equation 8 into Equation 3, we estimate
the upper bound SimS(τ1, τ2).ub of the spatial similarity
between τ1 and τ2 as follows.∑

vi∈τ1

e−d(vi.p,τ2) ≤ |τ1| · e−minvi∈τ2{d(vi.p,τ1)} ⇒

Parallel Trajectory Similarity Joins in Spatial Networks 7

SimS(τ1, τ2).ub

= e−minvi∈τ2{d(vi.p,τ1)} +

∑
vj∈τ2 e

−d(vj .p,τ1)

|τ2|
(9)

According to Equation 9, we only need to compute half
of the exact spatial similarity to get the upper bound. To
compute the minimum distance from a sample point v to
a trajectory τ , we expand network expansion from v, and
the first scanned sample point v′ in τ is just the sample point
closest to v (sd(v.p, v′.p) = d(v.p, τ)). Assume τ has m
sample points, and τ ′ has n sample points, to compute the
exact similarity, we have to conduct (m+ n) times network
expansions. By using Equation 9, we only need to conduct
m times network expansions to get the upper bound on
spatial similarity.

For any trajectory pair (τ1, τ2) in the same leaf node,
if its spatial-similarity upper bound SimS(τ1, τ2).ub (Equa-
tion 9) is less than the global lower bound LBS of the spatial
similarity (Equation 7), (τ1, τ2) cannot have a spatiotempo-
ral similarity that exceeds θ. Hence, (τ1, τ2) can be pruned
safely. For the remaining trajectory pairs, we compute their
exact spatiotemporal similarities, and maintain the qualified
pairs, i.e., SimST(τ1, τ2) ≥ θ.

Notice that the computations in different leaf nodes are
independent. Thus, we can perform these computations in
parallel.

3.1.4 Merging

Having computed the spatiotemporal similarities of the
trajectory pairs in the leaf nodes, we merge the computation
results from the leaf level to the root level iteratively
(bottom-up). We merge two leaf nodes na and nb to their
parent node nc (e.g., merging n3, n4 to n14 in Figure 2).
Besides the qualified trajectory pairs in na and nb, we also
need to consider the trajectory pairs (τ , τ ′) in the following
three cases:

(1) range(τ) ⊆ range(na) ∧ range(τ ′) ⊆ range(nc)

(2) range(τ) ⊆ range(nb) ∧ range(τ ′) ⊆ range(nc)

(3) range(τ) ⊆ range(na) ∧ range(τ ′) ⊆ range(nb)

In the first two cases, we use the same lower and upper
bounds (Equations 7 and 9) and pruning techniques as we
use for trajectory pairs in the same node (cf. Section 3.1.3).
The qualified trajectory pairs are stored in nc.

To explain the third case, we assume that τ = 〈v1, v2, ..., vi〉,
τ ′ = 〈v′1, v′2, ..., v′j〉, range(na) = [t1, t2], and range(nb) =
[t3, t4]. We define the minimum temporal distance dT (τ, n)
as follows.

dT (τ, n) = min{|τ.t.lb− n.t.ub|, |τ.t.ub− n.t.lb|} (10)

Here, τ.t.lb and τ.t.ub are the lower and upper bounds of tra-
jectory τ ’s timestamps, i.e., τ.t.lb = v1.t and τ.t.ub = vi.t,
and n.t.lb and n.t.ub are the lower and upper bounds (left
and right boundaries) of range(n). For example, range(n4)
= [6:00, 8:00], and n4.t.lb = 6:00 and n4.t.lb = 8:00.

We define the temporal-similarity upper bound SimT(τ, τ
′)

in the following manner. Because d(vi.t, τ ′) ≥ dT (τ, nb),
we have that

∑
vi∈τ e

−d(vi.t,τ ′) ≤ |τ | · e−dT (τ,nb) and∑
vj∈τ ′ e−d(vj .t,τ) ≤ |τ ′| · e−dT (τ

′,na). By subsitituting
them into Equation 4, we have

Sim′T(τ, τ
′).ub = e−dT (τ,nb) + e−dT (τ

′,na). (11)

By substituting Equation 11 into Equation 7, the global
lower bound on the spatial similarity for trajectories in the
third case is defined as follows.

SimS(τ, τ
′) ≥ θ − (1− λ)(Sim′T(τ, τ ′).ub)

λ
= LB ′S (12)

If LB ′S > 2, all trajectory pairs in the third case can be
pruned. Otherwise, for a trajectory pair (τ, τ ′), if its spatial-
similarity upper bound SimS(τ, τ

′).ub (Equation 9) is less
than the global lower bound LB′S of the spatial similarity
(Equation 12), (τ, τ ′) is pruned. For the remaining trajectory
pairs, we compute their exact spatiotemporal similarity and
store the qualified pairs in nc. As a result, all the qualified
trajectory pairs in [nc.lb, nc.ub] are found.

When merging non-leaf nodes (e.g., merging n19 and
n20 to their parent node n22), we propose an approach
that aims to further prune the search space. Assume that
τ is stored in nd, that τ ′ is stored in ne, and that nd
and ne are descendant nodes of nf and ng (e.g., n3 and
n8 are descendant nodes of n19 and n20). According to
Equations 11 and 7, the upper and lower bounds of temporal
similarity are computed respectively as follows.

Sim′T(τ, τ
′).ub = 2e−dT (nd,ne)

SimT(τ, τ
′) ≥ θ − λ · 2

(1− λ)
= LBT

Sim′T(τ, τ
′).ub < LBT ⇔ dT (nd, ne) > ln(

2− 2λ

θ − 2λ
)

Here, dT (nd, ne) is computed according to Equation 10.
If the minimum distance between nd and ne exceeds
ln(2−2λθ−2λ), we prune all trajectory pairs {(τ, τ ′)| range(τ) ⊆
range(nd) ∧ range(τ ′) ⊆ range(ne)}.

The merging processes of different node pairs (e.g.,
n3 and n4, n5, and n6) at the same level of the tree are
independent. Thus, we can again apply parallel processing.
Having merged the computation results from the leaf nodes
all the way to the root node, the solution in [0:00, 24:00] is
found. Notice that during the merging phase, we only follow
the partitioning imposed by the index to merge the data of
each node; the index structure is not updated.

8 Shuo Shang et al.

Algorithm 1: TF-Matching
Data: a grid indexing tree Tg , a trajectory set P , a threshold θ
Result: {(τ, τ ′)|SimST(τ, τ ′) ≥ θ, ∀τ, τ ′ ∈ P }
H ← ∅;1
for each leaf node n in Tg do2

compute LBS ;3
for each trajectory pair (τ, τ ′), range(τ) ⊆ range(n)4
and range(τ ′) ⊆ range(n) do

compute SimS(τ, τ ′).ub;5
if SimS(τ, τ ′).ub < LBS then6

prune (τ, τ ′);7

compute SimST(τ, τ ′);8
if SimST(τ, τ ′) ≥ θ then9

store (τ, τ ′) in n;10

H.add(n);11

while H 6= ∅ do12
if n, n′ ∈ H, n.parent = n′.parent then13

merge n, n′, and n.parent;14
compute and store qualified trajectory pairs in15
n.parent;
H.add(n.parent);16
H.remove(n);17
H.remove(n′);18

if |H| = 1 then19
return all qualified trajectories;20

The pseudocode of TF-Matching is shown in Algorithm
1. A set H is used to maintain the processed nodes of the
current level of the tree, and the computation is bottom-
up. Initially, for each leaf node n, we compute the global
lower bound LBS of the spatial similarity (Equation 7) for
trajectory pairs in n (lines 1–3). Then, for each trajectory
pair (τ, τ ′) in n, we compute its spatial similarity upper
bound (Equation 9), and if its upper bound is less than LBS ,
this pair is pruned (lines 4–7). Otherwise, we compute the
exact spatiotemporal similarity of (τ, τ ′), and if it is no less
than θ, we store (τ, τ ′) in n (lines 8–10). Having refined all
trajectory pairs in n, we add n to heapH (line 11). When all
leaf nodes have been added to H , we merge the results from
the leaf nodes towards the root node. If two nodes n and n′

have the same parent node and their child nodes are not in
H , we merge the results for n, n′, and their parent node (e.g.,
n3, n4, and n14 in Figure 2) and store the qualified trajectory
pairs in n.parent. Next, we add n.parent toH , and remove
n and n′ from H (lines 12–18). If H = 1, the root node is
reached, and all qualified trajectory pairs are returned (lines
19–20).

3.1.5 Complexity Analysis

Let |P | denote the cardinality of trajectory set P , and let
|τavg| denote the average number of samples in a trajectory
in P . We use |V | and |E| to denote the numbers of vertices
and edges in G. Then O(|V | log |V | + |E|) is the time

complexity of computing the network distance between a
vertex and a trajectory. TF-Matching follows the filter-and-
refine paradigm, and the time complexity of the filter phase
is O((|V | log |V | +|E|)|τavg| |Tsp|), where Tsp is the set of
scanned trajectory pairs. Notice that we compute the spatial
upper bound (Equation 9) for most trajectory pairs. Only in
the third merging case (see Section 3.1.4), if two nodes nd
and ne at non-leaf level are sufficiently far apart temporally,
trajectory pairs (τ, τ ′), where τ ∈ nd and τ ′ ∈ ne, can be
pruned directly (i.e., it is unnecessary to visit these pairs).
Next, we have Tsp ∪ Tdp = P 2, where Tdp is the set of
trajectory pairs pruned in the third merging case.

The time complexity of verifying candidates by comput-
ing their exact spatiotemporal similarities is O((|V | log |V |
+|E|)|τavg| |C|), where |C| is the cardinality of the can-
didate set, C ⊆ Tsp ⊆ P 2. The total time complexity
is O((|V | log |V | + |E|)|τavg| |Tsp|) + O((|V | log |V | +
|E|)|τavg| |C|) = O((|V | log |V | + |E|)|τavg| |Tsp|). In
the worst case, i.e., Tdp = ∅ the time complexity is
O((|V | log |V |+ |E|)|τavg| |P |2).

We proceed to consider the case where P 6= Q. First,
TF-Matching supportsP 6= Q directly. When computing the
spatiotemporal similarity in leaf nodes and merging trajecto-
ries in different nodes, we only need to select trajectory pairs
from P and Q. Let |τavg| denote the average numbers of
samples in trajectories in P and Q. Then the time complex-
ity of TF-Matching is O((|V | log |V | + |E|)|τavg| |T ′sp|),
where T ′sp ∪ T ′dp = P × Q. In the worst case, the time
complexity is O((|V | log |V |+ |E|)|τavg||P | |Q|).

The computations for nodes at the same tree level occur
in parallel. We initially process the leaf nodes and then
process dlogαe levels for merging, where α is the number
of leaf nodes. Intuitively, given multiple cores and threads, it
is possible to accelerate the computation at the leaf level by
generating many leaf nodes and processing them in parallel.
However, more leaf nodes also leads to more tree levels,
which increases the merging cost.

3.2 k-TF-Matching Algorithm

3.2.1 Basic Idea

We follow the framework of TF-Matching (Section 3.1) and
propose a new k-TF-Matching algorithm as a baseline for
computing the k-TS-Join. As for TF-Matching, we index the
temporal domain using a hierarchical grid structure. We re-
fine trajectory pairs in the same leaf node by computing their
spatiotemporal similarities. By merging the results from the
leaf nodes toward the root, the join result is obtained when
the root is reached. Because the k-TS-Join does not have
a threshold to prune the search space (unlike the Tb-TS-
Join), we define new upper and lower bounds and rework the
pruning in the same grid and the merging among different

Parallel Trajectory Similarity Joins in Spatial Networks 9

grids. We initially consider the self-join scenario (i.e., P =

Q) and it is trivial to support P 6= Q. For the k-TF-Matching
algorithm, when computing the spatiotemporal similarity in
leaf nodes and merging trajectories in different nodes, we
only need to select trajectory pairs from P and Q.

3.2.2 Pruning in Leaf Nodes

Initially, we randomly select a set Pk of k trajectory pairs
and compute their similarities. The lowest similarity among
them is used as the global top-k lower bound LBh−1

k for the
leaf level (h is the hight of the tree and level h−1 is the leaf
level).

LBh−1
k = min

(τi,τ ′
i)∈Pk

{SimST(τi, τ
′
i)}, (13)

where Pk = {(τ1, τ ′1), (τ2, τ ′2),..., (τk, τ ′k)}.
Then we refine trajectory pairs in the same leaf node n

by computing their spatiotemporal similarities. For a trajec-
tory pair (τ1, τ2), if we know its exact spatiotemporal simi-
larity, we put it in set Pns . We maintain a top-k heap Pnk ⊆
Pk∪Pns such that |Pnk | = k and ∀(τ1, τ2) ∈ Pnk (∀(τ ′1, τ ′2) ∈
Pk ∪Pns \Pnk (SimST(τ1, τ2) ≥ SimST(τ

′
1, τ
′
2))). We define

a global top-k lower bound LBn
k of leaf node n.

LBn
k = min

(τ1,τ2)∈Pnk
{SimST(τ1, τ2)} (14)

The value of LBn
k changes dynamically during query pro-

cessing. Initially Pns = ∅ and LBn
k = LBh−1

k .
By substituting Equations 14 and 6 into Equation 7 and

by using LBn
k to replace θ, we estimate the global top-k

spatial lower bound LBn
Sk of leaf node n as

SimS(τ1, τ2) ≥
LBn

k − 2 · (1− λ)
λ

= LBn
Sk , (15)

where τ1 and τ2 are two trajectories in the same leaf node
(see the example in Figure 2). For each trajectory pair
(τ1, τ2), we estimate its spatial upper bound SimS(τ1, τ2).ub

according to Equation 9. If SimS(τ1, τ2).ub < LBn
Sk , pair

(τ1, τ2) can be pruned safely. For the remaining trajectory
pairs, we compute their exact spatiotemporal similarities and
put them in set Pns .

Notice that the computations in different leaf nodes are
independent. Thus, we can perform these computations in
parallel. For each leaf node n, we maintain its top-k heap Pnk
for the following merging operations. Because |Pnk | = k, we
can guarantee that no result pair is missing.

3.2.3 Merging

Having computed the spatiotemporal similarities of the
trajectory pairs in the leaf nodes, we merge the results from
the leaf nodes toward the root. We merge the top-k heaps
of all leaf nodes and define a new top-k heap P ′k for level

h − 2 of the tree, such that ∀(τ1, τ2) ∈ P ′k(∀(τ ′1, τ ′2) ∈⋃m
i P

ni
k \ P ′k(SimST(τ1, τ2) ≥ SimST(τ

′
1, τ
′
2))), where ni

is a leaf node and i ∈ [1,m]. The value of the global top-k
lower bound is updated as follows.

LBh−2
k = min

(τi,τ ′
i)∈P ′

k

{SimST(τi, τ
′
i)} (16)

By substituting Equation 16 into Equations 14 and 15
and by using the value of LBh−2

k to replace that of LBh−1
k ,

we get the global top-k lower bound LBnc

k and the global
top-k spatial lower bound LBnc

Sk of node nc. The values of
LBnc

k and LBnc

Sk change dynamically during query process-
ing.

We merge two leaf nodes na and nb to their parent node
nc (e.g., merging n3, n4 to n14 in Figure 2). In addition
to merging their top-k heaps, we also need to consider
the trajectory pairs (τ , τ ′) according to the following three
cases:

(1) range(τ) ⊆ range(na) ∧ range(τ ′) ⊆ range(nc)

(2) range(τ) ⊆ range(nb) ∧ range(τ ′) ⊆ range(nc)

(3) range(τ) ⊆ range(na) ∧ range(τ ′) ⊆ range(nb)

For the first two cases, we use the spatial-similarity
upper bound SimS(τ1, τ2).ub (Equation 9) and the global
top-k spatial lower bound LBnc

Sk to prune the search space.
For the remaining trajectory pairs, we compute their exact
spatiotemporal similarity and store them in Pncs . The top-k
heap Pnck changes correspondingly.

For the third case, by substituting Equations 16 and 11
into Equation 12 and by using the value of LBnc

k to replace
that of θ, the global lower bound on the spatial similarity for
trajectories is defined as follows.

Sim′T(τ, τ
′).ub = e−dT (τ,nb) + e−dT (τ

′,na)

SimS(τ, τ
′) ≥

LBnc
k − (1− λ)(Sim′T(τ, τ ′).ub)

λ
= LBnc

Sk
′

(17)

If LBnc

Sk
′ > 2, all trajectory pairs in the third case can be

pruned. Otherwise, for a trajectory pair (τ, τ ′), if its spatial-
similarity upper bound SimS(τ, τ

′).ub (Equation 9) is less
than the global spatial lower bound LBnc

Sk
′ (Equation 17),

(τ, τ ′) is pruned. For the remaining trajectory pairs, we
compute their exact spatiotemporal similarity and store them
in Pncs . The top-k heap Pnck changes correspondingly.

When merging non-leaf nodes (e.g., merging n19 and
n20 into their parent node n22 in Figure 2), we propose
an approach that aims to further prune the search space.
Assume that τ is stored in nd, that τ ′ is stored in ne, that
nd and ne are descendant nodes of nf and ng , and that nh is
the parent node of nf and ng (e.g., n3 and n8 are descendant
nodes of n19 and n20, and n22 is the parent node of n19 and

10 Shuo Shang et al.

n20). According to Equations 11 and 14, the upper and lower
bounds of temporal similarity are computed as follows.

SimT(τ, τ
′).ub = 2e−dT (nd,ne)

λ · SimS(τ1, τ2) + (1− λ) · SimT(τ1, τ2) ≥ LBnh

k

⇒ SimT(τ, τ
′) ≥

LBnh

k − λ · 2
(1− λ)

= LBnhT

SimT(τ, τ
′).ub < LBnhT ⇔ dT (nd, ne) > ln(

2− 2λ

LBnhT − 2λ
)

Thus, if the minimum distance between nd and ne ex-
ceeds ln(2−2λ

LB
nh
k −2λ

), we prune all trajectory pairs {(τ, τ ′)|
range(τ) ⊆ range(nd) ∧ range(τ ′) ⊆ range(ne)}.

The merging processes of different node pairs (e.g., pair
n3 and n4, and pair n5 and n6) at the same level of the
tree are independent. Thus, we can again apply parallel
processing. Having merged the results from the leaf nodes
all the way to the root node, the top-k solution is found.

The pseudocode of k-TF-Matching is shown in Algo-
rithm 2. The computation is bottom-up, and h is the current
level of computation. Initially, we randomly select k trajec-
tory pairs and compute their spatiotemporal similarities. The
minimum value among them is used as the global lower
bound LBh

k (Equation 13) (lines 1–2). For each trajectory
pair (τ, τ ′) in the same leaf node n, we compute its spatial
similarity upper bound (Equation 9), and if its upper bound
is less than LBn

Sk , this pair is pruned (lines 4–7). Otherwise,
we compute the exact spatiotemporal similarity of (τ, τ ′),
and if it exceeds LBn

Sk , we put it in Pnk and update the values
of LBn

k and LBn
Sk (lines 8–10). Having computed all nodes

in level h, we merge the top-k heaps of all nodes at level
h and compute the value of LBh−1

k (Equation 16). If two
nodes n1 and n2 at level h have the same parent node n3,
we merge the results for n1, n2, and n3 by computing Pn3

k ,
LBn

k , and LBn
Sk (lines 11–15). If h − 1 = 0, we reach the

root n3, and the top-k heap Pn3

k is returned. Otherwise, we
compute level h− 1 (lines 16–18).

3.2.4 Complexity

Let Pθ denote the scanned trajectory set for each trajectory
search, and let |T ′sp| denote the cardinality of the scanned
trajectory pairs. The time complexity of the k-two-phase
algorithm isO((|V | log |V |+ |E|)|τavg||T ′sp|), where T ′sp ⊆
P ×P for self join, and T ′sp ⊆ P ×Q for non-self join. The
detailed procedure is the same as Section 3.1.5.

Correctness: The k-TF-Matching algorithm follows
the “filter-and-refine” paradigm. We define a spatial upper
bound SimS(τ, τ

′).ub and a global top-k lower bound LBn
Sk

(cf. Equations 9 and 15) to prune the search space in each
node. When LBn

Sk > SimS(τ, τ
′).ub, pair (τ, τ ′) is pruned.

It is clear that the pruned pairs cannot be a solution because
their upper bounds are less than the global lower bound.

Algorithm 2: k-TF-Matching
Data: a grid indexing tree Tg , a trajectory set P
Result: top-k trajectory pairs
h← Tg .hight− 1;1
compute LBh

k ;2
for each leaf node n in Tg do3

for each trajectory pair (τ, τ ′), where4
range(τ) ⊆ range(n) and range(τ ′) ⊆ range(n) do

compute SimS(τ, τ ′).ub;5
if SimS(τ, τ ′).ub < LBn

Sk then6
prune (τ, τ ′);7

compute SimST(τ, τ ′);8
if SimST(τ, τ ′) ≥ LBn

Sk then9
update Pnk , LBn

k , and LBn
Sk ;10

while true do11
compute

⋃
n∈levelh P

n
k and LBh−1

k ;12
if n1, n2 ∈ level h, n1.parent = n2.parent = n3 then13

merge n1, n2, and n3;14
compute Pn3

k , LBn
k , and LBn

Sk ;15

if h− 1 = 0 then16
return Pn3

k ;17

h← h− 1;18

Next, we refine the candidates by computing their exact
similarities, and we find the result by merging the top-k
results of all nodes. Because (1) the trajectory pairs pruned
cannot be a solution, (2) the computation in the refinement
is exact, and (3) the global top-k result is a subset of the
union of the top-k results of all nodes, the k-TF-Matching
algorithm computes a correct solution to the k-TS-Join.

4 Two-Phase Search

We propose a two-phase and a k-two-phase algorithms to
compute the TB-TS-Join and k-TS-Join efficiently.

4.1 Two-phase Algorithm

4.1.1 Basic Idea

TF-Matching has three main drawbacks. First, it is driven by
the temporal domain and so has weak spatial pruning power.
The algorithm has to process a large number of trajectory
pairs, which adversely affects the performance. Second,
more leaf nodes (more threads) leads to a higher merging
cost, which counts against parallel processing. Third, it may
need additional computation to acquire network distances
to compute spatial similarities (Equations 1 and 3), again
decreasing performance.

To process the Tb-TS-Join more efficiently, we devel-
op a two-phase algorithm based on a divide-and-conquer
strategy (see Figure 3(a)). (1) In the trajectory-search phase,

Parallel Trajectory Similarity Joins in Spatial Networks 11

for each trajectory τ ∈ P , we explore the spatial and
temporal domains concurrently and search for trajectories
close to τ . In the spatial domain, network expansion [9]
from each trajectory sample point is used to explore the
spatial network, while in the temporal domain, we expand
the search from each timestamp of τ . An upper bound on
the spatiotemporal similarity is defined to enable pruning
of the search space in the spatial and temporal domains.
Moreover, a heuristic scheduling strategy is proposed to
schedule multiple so-called query sources (sample points
in the spatial domain, and timestamps in the temporal do-
main) effectively, which aims to further enhance efficiency.
Compared to TF-Mathcing, the two-phase algorithms have
a stronger pruning power. The search process of different
trajectories are independent, so the trajectory searches can
be processed in parallel. In addition, the network distances
for the similarity computation can be derived directly during
the trajectory-search processes. (2) In the merging phase, we
combine the computation results of all trajectories and find
the solution to the Tb-TS-Join. In contrast to TF-Matching,
the merging cost is now uncorrelated to the thread count.
The two-phase algorithm has better time complexity than
the temporal-first matching algorithm.

4.1.2 Expansion Search

Consider the example in Figure 3(b), where τ1, τ2, τ3,
and τ4 are trajectories, and we search for the trajectories
close to τ1 in the spatial and temporal domains (τ1 is the
“query trajectory”). Trajectory τ1 = 〈v1, v2, ..., v5〉, sample
points {v6, v7} ∈ τ2, and v6.p and v7.p are the samples
closest to v3.p and v4.p. Sample points {v8, v9, ..., v12} ∈
τ3, and v8.p, v9.p,...,v12.p are the samples closest to v1.p,
v2.p,...,v5.p.

In the spatial domain, network expansion is performed
from each sample point vi.p ∈ τ1 using Dijkstra’s algorith-
m [9]. The explored space is a “circular” region (vi.p, rsi),
where the radius rsi is the network distance from the center
vi.p to the expansion boundary. Dijkstra’s algorithm always
selects the vertex with the minimum distance label for
expansion (initially rsi = 0). Hence, if v′.p ∈ τ ′ is the first
sample point scanned by the expansion from v.p, v′.p is the
sample point closest to v.p, i.e., d(v.p, τ ′) = sd(v.p, v′.p).
For example, in Figure 3(b), d(v3.p, τ2) = sd(v3.p, v6.p),
and d(v4.p, τ2) = sd(v4.p, v7.p).

In the temporal domain, we expand the search from each
timestamp vi.t ∈ τ1. The explored space is a time range
[vi.t − rti, vi.t + rti], where rti is the radius of the range.
Initially rti = 0, and then it is increased by one second (the
minimum scale of the time axis) at each time, step by step,
to form a larger scanned range until the targets are found.
Similar to the Dijkstra’s algorithm, if v′.t ∈ τ ′ is the first

Trajectories

… … ...

Search for close
trajectories

Merging Join results

(a) Parallel mechanism

τ3

τ1

Spatial Domain

0 x

2rt1

y

τ4

Temporal Domain

0

time

v1.t

v2.t 2rt2

v3.t

v4.t

v5.t

2rt3

2rt4

2rt5

v5.p

rs5v4.p

rs4

rs3
v3.p

v2.prs2
v1.prs1

v8.p

v9.p

v10.p
v11.p v12.p

τ2

v6.p v7.p

(b) Trajectory search

Fig. 3 An example of the two-phase algorithm

timestamp scanned by the expansion from v.t, v′.t is the
timestamp closest to v.t, i.e., d(v.t, τ ′) = |v.t− v′.t|.

If a trajectory τ is scanned by the expansions from all
sample points in τ1, we compute the spatial similarity of
(τ, τ1) according to Equation 3; this type of trajectory is
called “spatially fully scanned,” e.g., τ3. If a trajectory is
scanned by the expansions from a part of sample points
in τ1, it is called “spatially partly scanned,” e.g., τ2. If a
trajectory is unscanned by the expansions from any sample
points in τ1, it is called “spatially unscanned,” e.g., τ4. Sim-
ilarly, in the temporal domain, such trajectories are called
“temporally fully scanned,” “temporally partly scanned,”
and “temporally unscanned.”

4.1.3 Upper Bound Computation

If a trajectory is spatially partly scanned (e.g., τ2 in Fig-
ure 3(b)) or spatially unscanned (e.g., τ4), for a sample point
vi.p ∈ τ1, the lower bound on network distance between
vi.p and τ2 is defined as follows.

d(vi.p, τ2) ≥ d(vi.p, τ2).lb =
{
sd(vi.p, v

′
i.p) if Case 1

rsi if Case 2

(18)

Case 1: τ2 has been scanned by the expansion from vi.p, and
v′i.p ∈ τ2 is the closest point to vi.p.
Case 2: τ2 has not been scanned by the expansion from vi.p.

12 Shuo Shang et al.

By substituting Equation 18 into Equation 8, for any
sample point v′i.p ∈ τ1, we have that

d(v′i.p, τ2) ≥ min
vi∈τ1

{d(vi.p, τ2).lb}. (19)

Then we merge Equations 18 and 19 into Equation 3, and the
spatial similarity upper bound SimS(τ1, τ2).ub is derived.∑

vi∈τ1

e−d(vi.p,τ2) ≤
∑
vi∈τ1

e−d(vi.p,τ2).lb

∑
v′i∈τ2

e−d(v
′
i.p,τ1) ≤ |τ2| · min

vi∈τ1
{d(vi.p, τ2).lb} ⇒

SimS(τ1, τ2).ub

=

∑
vi∈τ1 e

−d(vi.p,τ2).lb

|τ1|
+ e−minvi∈τ1{d(vi.p,τ2).lb}

(20)

Similarly, in the temporal domain, if a trajectory τ2
is temporally partly scanned or temporally unscanned, for
a timestamp vi.t ∈ τ1, the lower bound on the distance
between vi.t and τ2 is defined as follows.

d(vi.t, τ2) ≥ d(vi.t, τ2).lb =
{
|vi.t− v′i.t| if Case 3
rti if Case 4

(21)

Case 3: τ2 has been scanned by the expansion from vi.t, and
v′i.t ∈ τ2 is the point closest to vi.t.
Case 4: τ2 has not been scanned by the expansion from vi.t.

We then extend Lemma 1 (Equation 8) to apply to the
temporal domain. Specifically, by substituting Equation 21
into Equation 8, for any sample point v′i.t ∈ τ2, we have that

d(v′i.t, τ2) ≥ min
vi∈τ1

{d(vi.t, τ2).lb}. (22)

Then, we merge Equations 21 and 22 into Equation 4,
and the temporal similarity upper bound SimT(τ1, τ2).ub is
derived. ∑

vi∈τ1

e−d(vi.t,τ2) ≤
∑
vi∈τ1

e−d(vi.t,τ2).lb

∑
v′i∈τ2

e−d(v
′
i.t,τ1) ≤ |τ2| · min

vi∈τ1
{d(vi.t, τ2).lb} ⇒

SimT(τ1, τ2).ub

=

∑
vi∈τ1 e

−d(vi.t,τ2).lb

|τ1|
+ e−minvi∈τ1{d(vi.t,τ2).lb}

(23)

Next, we combine the spatial and temporal similarity
upper bounds (Equations 20 and 23). Thus, if a trajectory
τ2 is not both spatially and temporally fully scanned, we
compute the upper bound on the spatiotemporal similarity
SimST(τ1, τ2).ub as follows.

SimST(τ1, τ2).ub

= λ · SimS(τ1, τ2).ub+ (1− λ) · SimT(τ1, τ2).ub (24)

For all partly scanned trajectories, we define a global
upper bound UB as follows.

UB = max
τ2∈Pps

{SimST(τ1, τ2).ub}, (25)

where Pps ⊆ P is the current set of partly scanned trajecto-
ries. The value of UB changes during query processing.

If a trajectory is unscanned in both the spatial and tempo-
ral domains, we do not maintain its spatiotemporal similarity
upper bound to reduce the computation and storage costs.
Assume that trajectory τ1 is the query trajectory, τ2 is partly
scanned, and τ4 is unscanned in both domains. According to
Equations 18 and 21, we have that ∀vi ∈ τ1(d(vi.p, τ2).lb ≤
d(vi.p, τ4).lb) and ∀vi ∈ τ1(d(vi.t, τ2).lb ≤ d(vi.t, τ4).lb).

Referring to Equations 20, 23, and 24, we have SimST

(τ1, τ2).ub ≥ SimST(τ1, τ4).ub. Therefore, SimST(τ1, τ4).ub

cannot be the global upper bound UB , and it is not necessary
to maintain the spatiotemporal similarity upper bound on τ4.

4.1.4 Scheduling Strategy

We propose a heuristic strategy to schedule the expansions
from different sample points and timestamps (so-called
“query sources”) in the spatial and temporal domains in
order to make the search focus on trajectories that are most
likely to be in the result.

Assume τ = 〈v1, v2, ..., vm〉 is the query trajectory.
We give each query source q ∈ {v1.p, v2.p, ..., vm.p} ∪
{v1.t, v2.t, ..., vm.t} a priority label q.label and maintain a
heap H of descending order on the value of q.label on the
query sources. The values of priority labels change during
the search in the two domains. We search the top-ranked
query source until a new query source takes its place. The
priority label is defined as follows.

q.label =
∑

τ ′∈Pps\q.s

{SimST(τ, τ
′).ub} (26)

Here, Pps ⊆ P is the set of spatially and temporally partly
scanned trajectories, and q.s is the set of trajectories that
have been scanned from query source q. For example, in
Figure 3(b), τ1 is a query trajectory and v1.p, v2.p, ..., v5.p
are query sources in the spatial domain. We have that
v1.p.s = {τ3}, v2.p.s = {τ3}, v3.p.s = {τ2, τ3}, v4.p.s =

{τ2, τ3}, and v5.p.s = {τ3}. Trajectory τ2 is spatially
partly scanned, τ3 is spatially fully scanned and temporally
partly scanned, and τ4 is temporally partly scanned. Thus,
Pps = {τ2, τ3, τ4}. For query source v1.p.s, Pps \ v1.p.s =
{τ2, τ3, τ4} \ {τ3} = {τ2, τ4}, and for query source v3.p.s,
Pps \ v3.p.s = {τ2, τ3, τ4} \ {τ2, τ3} = {τ4}.

The priority label represents the significance of a query
source during search. The main goal of the scheduling
strategy is to transform trajectories from “partly scanned”

Parallel Trajectory Similarity Joins in Spatial Networks 13

to “fully scanned” as soon as possible [17, 18]. Thus, the
priority q.s of a query source should be proportional to
its “margin,” i.e., the size of Pps \ q.s. For example, in
Figure 3(b), Pps\v1.p.s = {τ2, τ4}; thus, the margin of v1.p
is 2. Moreover, a trajectory with a higher spatiotemporal-
similarity upper bound (Equation 24) is more likely to be the
solution. So, ∀τ ∈ Pps \ q.s, the value of SimST(τ1, τ).ub

is proportional to the priority of query source q.

4.1.5 Filter, Refine, and Merging

If the global upper bound UB of the partly scanned trajec-
tories is smaller than the value of threshold θ, the expansion
in the spatial and temporal domains terminates, and all
trajectories that are not fully scanned in the two domains
can be pruned safely. For each fully scanned trajectory τ ,
we have the exact values of d(vi.p, τ) and d(vi.t, τ) for
all sample points vi in τ1; thus, we can further refine the
spatial, temporal, and spatiotemporal upper bounds (refer to
Equations 20, 23, and 24).

We place all fully scanned trajectories in a candidate
set C(τ1) for trajectory τ1. For each trajectory τ ∈ C(τ1),
(τ, τ1) is a potential qualified trajectory pair. For (τ1, τ), we
maintain a parameter defined as follows.

V (τ1, τ) =

∑
vi∈τ1 e

−d(vi.p,τ)

|τ1|
+

∑
vi∈τ1 e

−d(vi.t,τ)

|τ1|

Notice that the value of V (τ1, τ) can be derived from
Equations 20 and 23 directly.

Having processed the nearest neighbor searches for all
trajectories in P , we merge the results. For each trajectory
τ ∈ P , we maintain a candidate set C(τ). For a trajectory
pair (τ1, τ2), if τ1 ∈ C(τ2) and τ2 ∈ C(τ1), we compute
their exact spatiotemporal similarity:

SimST(τ1, τ2) = V (τ1, τ2) + V (τ2, τ1) (27)

=

∑
vi∈τ1 e

−d(vi.p,τ2)

|τ1|
+

∑
vi∈τ1 e

−d(vi.t,τ2)

|τ1|

+

∑
vj∈τ2 e

−d(vj .p,τ1)

|τ2|
+

∑
vj∈τ2 e

−d(vj .t,τ1)

|τ2|

Then we compare SimST(τ1, τ2) to threshold θ. If
SimST(τ1, τ2) ≥ θ, (τ1, τ2) is a qualified pair. Otherwise,
we prune it. For other cases, i.e., τ1 /∈ C(τ2) or τ2 /∈ C(τ1),
(τ1, τ2) cannot be a qualified trajectory, and it is pruned.

The two-phase algorithm is based on a divide-and-
conquer strategy. First, for each trajectory τ in P , we
retrieve the trajectories spatiotemporally close to τ . The
trajectory-search phase is detailed in Algorithm 3. Since the
search processes for different trajectories are independent,
we can process the searches in parallel. Second, we merge
the results of the individual searches, i.e., candidate sets, to

Algorithm 3: Trajectory Search Algorithm
Data: a trajectory τ and a threshold θ
Result: candidate set C(τ)
H ← {v1.p, v2.p, ..., v|τ |.p} ∪ {v1.t, v2.t, ..., v|τ |.t};1
∀q ∈ H (q.label← 0), UB ← 0;2
q ← H.top;3
while true do4

search(q);5
for each newly scanned trajectory τ ′ do6

q.s.add(τ ′);7
if τ ′ /∈ Pps then8

Pps.add(τ ′);9

update SimST(τ, τ ′).ub;10
if τ ′ is not fully scanned then11

if SimST(τ, τ ′).ub > UB then12
UB ← SimST(τ, τ ′).ub;13

if τ ′ is fully scanned then14
Pps.remove(τ);15
update UB ;16
if SimST(τ, τ ′).ub ≥ θ then17

C(τ).add(τ ′)18

if UB < θ then19
return C(τ);20

if q 6= H.top then21
q ← H.top;22

obtain the final result. Unlike for TF-Matching, the merging
cost of the two-phase algorithm is uncorrelated to the thread
count. The merging process is detailed in Algorithm 4.

In Algorithm 3, the query arguments are a trajectory τ
and a threshold θ, and the query result is a candidate set for
τ . Initially, we select the top-ranked item q from heap H
as the current-search query source. Then we search using q.
Each newly scanned trajectory τ ′ (τ ′ has not been scanned
by the expansion from q) is added to a scanned trajectory
set q.s. If τ ′ is unscanned, we also add it to the partly
scanned trajectory set Pps (lines 1–9). Next, we update
the spatiotemporal similarity upper bound SimST(τ, τ

′).ub

(refer to Equation 24). If τ ′ is not fully scanned in the two
domains, then if SimST(τ, τ

′).ub > UB , we update the
value of UB to that of SimST(τ, τ

′).ub (lines 10–13). If τ ′

is fully scanned, we remove it from Pps. If SimST(τ, τ
′).ub

was used as UB before, we also update the value of UB . If
SimST(τ, τ

′).ub ≥ θ, we add τ ′ to the candidate set for τ
(lines 14–18). If UB < θ, the query returns the candidate set
C(τ) (lines 19–20). If q is not the top-ranked query source
in H , we update it so that this is the case (lines 21–22).

Algorithm 4 merges the candidate sets iteratively. For
each trajectory τ ′ in C(τ), we check whether τ belongs to
C(τ ′). If so, we compute the exact spatiotemporal similarity
SimST(τ, τ

′) (refer to Equation 27), and then we remove τ
from C(τ ′). If SimST(τ, τ

′) ≥ θ, we add the pair (τ, τ ′) to
result set A. Finally, result set A is returned.

14 Shuo Shang et al.

Algorithm 4: Merging Algorithm
Data: {C(τ)|∀τ ∈ P}, θ
Result: A = {(τ, τ ′)|SimST(τ, τ ′) ≥ θ, ∀τ, τ ′ ∈ P }
for each trajectory τ in P do1

for each τ ′ in C(τ) do2
if τ ∈ C(τ ′) then3

compute SimST(τ, τ ′);4
C(τ ′).remove(τ);5
if SimST(τ, τ ′) ≥ θ then6

A.add(τ, τ ′);7

else8
break;9

return A;10

4.1.6 Complexity Analysis

Let Pθ denote the set of scanned trajectories for each
trajectory search, which includes partly and fully scanned
trajectories. Let |τavg| denote the average number of sam-
ples in a trajectory in P . Then O(|V | log |V | + |E|) is the
time complexity of computing the network distance between
two vertices [9].

According to Equations 20, 23, and 24, the maximum
spatial and temporal expansion radiuses rs and rt are
inversely proportional to threshold θ. Assuming the trajec-
tories are uniformly distributed in the spatial and temporal
domains, it follows that |Pθ| is inversely proportional to
threshold θ. Thus, |Pθ| is sensitive to the value of threshold
θ and the pruning effectiveness.

The time complexity of the trajectory search phase is
O(((|V | log |V |+|E|)|τavg|+|Pθ|)|P |) = O((|V | log |V |+
|E|)|τavg| |P |+ |P | |Pθ|). For each trajectory, the trajectory
search complexity is O((|V | log |V |+ |E|)|τavg|), and |Pθ|
is the number of scanned trajectories. The time complexity
of the merging phase is O(|P | |C|), where |C| is the
cardinality of the candidate set for each trajectory. Since
C ⊆ Pθ ⊆ P , the time complexity of the two-phase
algorithm is O((|V | log |V | + |E|)|τavg| |P | + |P | |Pθ|) +
O(|P | |C|) = O((|V | log |V |+|E|)|τavg| |P |+|P | |Pθ|). If
θ is sufficiently large, the time complexity is close toO((|V |
log |V |+ |E|)|τavg| |P |).

We proceed to consider the case where P 6= Q.
The two-phase algorithm conducts trajectory searches for
all trajectories in P and Q and maintains candidate sets
for the all. The time complexity of the trajectory-search
phase is O((|V | log |V | + |E|)|τavg| |P | + |P | |Pθ| +
(|V | log |V |+|E|)|τavg| |Q|+|Q| |Qθ|) = O((|V | log |V |+
|E|)|τavg|(|P | + |Q|) + |P | |Pθ| + |Q| |Qθ|). For the
merging phase, the time complexity remains O(|P | |Cp|)
(or O(|Q| |Cq|)), Cp ⊆ Qθ ⊆ Q, and Cq ⊆ Pθ ⊆
P . The time complexity of the two-phase algorithm is
then O((|V | log |V | + |E|)|τavg|(|P | + |Q|) + |P | |Pθ| +

|Q| |Qθ| + |P ||Cp|) = O((|V | log |V | + |E|)|τavg|(|P | +
|Q|)+ |P | |Pθ|+ |Q| |Qθ|), which is sensitive to the pruning
effectiveness.

In the worst case, the time complexity of the two-
phase algorithm is O((|V | log |V |+ |E|)|τavg| |P |+ |P |2),
which is better than that of TF-Matching O(|V | log |V | +
|E|)|τavg| |P |2). In addition, the superiority of the two-
phase algorithm stems from the following two points.

First, in the filter phase, TF-Matching has to visit and
compute spatial upper bounds for the most trajectory pairs,
e.g., all trajectory pairs in leaf nodes. Only in the third
merging case (see Section 3.1.4), if two nodes nd and ne at
non-leaf level are sufficiently far apart temporally, trajectory
pairs (τ, τ ′), where τ ∈ nd and τ ′ ∈ ne, can be pruned
directly (i.e., these pairs need not be visited). All other
trajectory pairs must be visited for bound computation. The
pruning in TF-Matching simply serves to save computations
when computing exact similarities between pairs of trajec-
tories – the algorithm still needs to visit most of them. Next,
in the two-phase algorithm, |Pθ| is sensitive to the value
of threshold θ and the pruning effectiveness. Here, it is not
necessary to compute bounds for unscanned trajectories (no
need to visit them). Moreover, TF-Matching is driven by the
temporal domain and has weak spatial pruning power, while
the two-phase algorithm exploits effective spatio-temporal
bounds. The resulting pruning effectiveness is shown in
Tables III–VI (Sections 6.2.1 and 6.3.1).

Second, TF-Matching only partially supports parallel
processing, i.e., only the computations for the nodes at the
same tree level can be processed in parallel. Initially, we
process the leaf nodes and then process dlog(α)e upper
levels for merging, where α is the number of leaf nodes.
Intuitively, given multiple cores and threads, it is possible
to accelerate the computation at the leaf level by generating
many leaf nodes and processing them in parallel. However,
more leaf nodes also yields more tree levels, which increases
the merging cost (the computation is done at each tree
level, and there are (dlog(α)e + 1) levels). In contrast, the
trajectory-search processes of the two-phase algorithm are
independent of each other, and the merging cost is constant
(uncorrelated to the number of threads used for parallel
processing). Therefore, the trajectory-search processes of
the two-phase algorithm can be performed fully in parallel
(the computation is conducted only at one time).

4.2 k-Two-Phase Algorithm

4.2.1 Basic Idea

k-TF-Matching has similar drawbacks to TF-Matching:
weak spatial pruning power, a higher merging cost, and
additional computation to acquire network distances to
compute spatial similarities. To process the k-TS-Join more

Parallel Trajectory Similarity Joins in Spatial Networks 15

efficiently, we thus follow the framework of the two-phase
algorithm (Section 4.1) and develop a new k-two-phase
algorithm (see Figure 3(a)). We define a pair of new upper
and lower bounds to prune the search space effectively in
the spatial and temporal domains. The network distances for
the similarity computation can be derived directly during the
trajectory-search processes. The search process of different
trajectories are independent, so the trajectory searches can
be processed in parallel. In contrast to k-TF-Matching, it is
not necessary to compute the spatiotemporal similarity of
k randomly selected trajectories (refer to Equation 13) in
the k-two-phase algorithm. In addition, the merging cost of
k-two-phase is uncorrelated to the thread count. The k-two-
phase algorithm has better time complexity than the k-TF-
Matching algorithm.

We initially consider the self-join scenario (i.e., P = Q)
and it is trivial to support P 6= Q. We only need to conduct
trajectory searches for all trajectories in P and Q and to
maintain candidate sets for all of them.

4.2.2 Lower Bound

Let |P | denote the number of trajectories in set P , and let
m denote the number of threads. Then each thread will
process d |P |m e or d |P |m e − 1 trajectory searches. Trajectory
search is performed in the spatial and temporal domains (see
Section 4.1.2). Assuming that τ is a “query trajectory” (e.g.,
τ1 in Figure 3(b)) then if a trajectory τ ′ is fully scanned in
the spatial and temporal domains (e.g., τ3 in Figure 3(b)), we
compute its spatial lower bound SimS(τ, τ

′).lb as follows.

SimS(τ, τ
′) =

∑
vi∈τ e

−d(vi.p,τ ′)

|τ |
+

∑
vj∈τ ′ e−d(vj .p,τ)

|τ ′|

and

∑
vj∈τ ′ e−d(vj .p,τ)

|τ ′|
> 0

⇒ SimS(τ, τ
′) >

∑
vi∈τ e

−d(vi.p,τ ′)

|τ |
= SimS(τ, τ

′).lb

(28)

SimT(τ, τ
′) =

∑
vi∈τ e

−d(vi.t,τ ′)

|τ |
+

∑
vj∈τ ′ e−d(vj .t,τ)

|τ ′|

and

∑
vj∈τ ′ e−d(vj .t,τ)

|τ ′|
> 0

⇒ SimT(τ, τ
′) >

∑
vi∈τ e

−d(vi.t,τ ′)

|τ |
= SimT(τ, τ

′).lb,

(29)

where vi and vj are sample points in trajectories τ and τ ′.
By combining the spatial and temporal lower bounds, the
spatiotemporal lower bound is defined as follows.

SimST(τ, τ
′).lb = λ·SimS(τ, τ

′).lb+(1−λ)·SimT(τ, τ
′).lb

(30)

For each thread c, we store fully scanned trajectory
pairs (e.g., (τ , τ ′)) in set Pf . We maintain a top-k heap
P ck to contain the trajectory pairs with top-k lower bounds
such that |P ck | = k and ∀(τi, τ ′i) ∈ H(∀(τj , τ ′j) ∈
Pf \ P ck (SimST(τi, τ

′
i).lb > SimST(τj , τ

′
j).lb)). We define

a global spatiotemporal lower bound LBc of thread c as
follows.

LBc = min
(τ,τ ′)∈P ck

{SimST(τ, τ
′).lb}, (31)

where LBc changes dynamically during query processing.
Notice that LBc is only valid when |H| = k, to guarantee
that no solution is missing.

For partly scanned trajectories, we compute their global
upper bound UB according to Equation 25. If the value of
UB is less than that of LBc , the expansions in the spatial
and temporal domains terminate, and all trajectories that are
not fully scanned in the two domains can be pruned safely.
Then, we merge the results according to the approach of the
two-phase algorithm (see Section 4.1.5).

The k-two-phase algorithm is based on a divide-and-
conquer strategy. For each trajectory τ in P , we retrieve the
trajectories spatiotemporally close to τ . Because the search
processes for different trajectories are independent, we can
process the searches in parallel. The trajectory-search in the
same thread is detailed in Algorithm 5. The merging phase is
the same as that of the two-phase algorithm (see Algorithm
4).

In Algorithm 5, the query arguments are the query tra-
jectories in thread c, and the query results are the candidate
sets for all query trajectories. Initially, the top-k heap P ck
is set to ∅, LBc is set to 0, and the value of LB is set to
that of LBk (line 1). We search each query trajectory τ in
thread c. For each newly scanned trajectory τ ′, we compute
its spatiotemporal upper bound SimST(τ, τ

′).ub, and if its
value exceeds that of UB , UB is updated to SimST(τ, τ

′).ub

(Equations 24 and 25) (lines 2–8). If τ ′ is fully scanned,
we update the value of UB and compute the value of
SimST(τ, τ

′).lb (Equation 30). If SimST(τ, τ
′).lb exceeds

LBc , we update top-k set P ck (lines 9–13). If the size of P ck
reaches k, LBc is valid. If SimST(τ, τ

′).ub ≥ LBc , we add
τ ′ to the candidate set for τ (lines 14–16). If UB < LBc,
search process for query trajectory τ terminates (lines 17–
18). Finally, candidate sets C(τ),∀τ ∈ c are returned (line
19).

16 Shuo Shang et al.

Algorithm 5: Trajectory Search in A Thread
Data: query trajectories in thread c;
Result: candidate sets C(τ),∀τ ∈ c
P ck ← ∅; LBc ← 0; LB ← LBk;1
for each query trajectory τ ∈ c do2

while true do3
search(τ);4
τ ′ is a newly scanned trajectory;5
if τ ′ is not fully scanned then6

if SimST(τ, τ ′).ub > UB then7
UB ← SimST(τ, τ ′).ub;8

if τ ′ is fully scanned then9
update UB ;10
compute SimST(τ, τ ′).lb;11
if SimST(τ, τ ′).lb > LBc then12

update P ck , and LBc ;13

if |P ck | = k then14
if SimST(τ, τ ′).ub ≥ LBc then15

C(τ).add(τ ′)16

if UB < LBc then17
break;18

return candidate sets C(τ), ∀τ ∈ c19

4.2.3 Complexity

Let Pθ denote the scanned trajectory set for each trajectory
search, and let |C| denote the cardinality of the candidate
set for each query trajectory. The time complexity of the k-
two-phase algorithm is O((|V | log |V | + |E|)|τavg| |P | +
|P | |Ps|) for self join, and isO((|V | log |V |+|E|)|τavg|(|P |+
|Q|) + |P | |Ps|+ |Q| |Qs|) for non-self join, where Ps and
Qs are set of scanned trajectories for each trajectory search.

Correctness: Similar to the k-TF-Matching algorithm,
the k-two-phase algorithm follows the “filter-and-refine”
paradigm. We define a global upper bound UB and a
global lower bound LBc (cf. Equations 25 and 31) of the
spatiotemporal similarity to prune the search space. When
LBc > UB , the search terminates. It is clear that not-
fully-scanned trajectories cannot be a solution because their
global upper bound is less than the global lower bound of the
fully scanned trajectories, meaning that they can be pruned
safely. Second, we refine the candidates by computing their
exact similarities, and we obtain the result by merging
the top-k results of all threads. Because (1) the trajectory
pairs pruned in the filtering cannot be in the result, (2) the
computation in the refinement is exact, and (3) the global
top-k result is a subset of the union of the top-k results of all
threads, the k-two-phase algorithm computes the k-TS-Join
correctly.

5 Extension

We first propose a new sequence similarity measure that
takes the visiting sequence of sample points into accoun-
t when matching trajectories. Then we extend the TF-
Matching, k-TF-Matching, two-phase, and k-two-phase al-
gorithms to support the new measure.

5.1 Sequence Similarity Measure

Given trajectories τ1 = 〈v1, v2, ..., vm〉 and τ2 = 〈v1, v2, ...,
vn〉, the spatial and temporal aggregate distances Sdist(τ1, τ2)
and Tdist(τ1, τ2) (taking the visiting sequence of trajectory
sample points into account) [7, 17, 18] from τ1 to τ2 are
defined as follows.

Sdist(τ1, τ2) = max


e−sd(τ1.head.p,τ2.head.p)

+Sdist(τ1.tail, τ2)

Sdist(τ1, τ2.tail)

(32)

Tdist(τ1, τ2) = max


e−|τ1.head.t−τ2.head.t|

+Tdist(τ1.tail, τ2)

Tdist(τ1, τ2.tail)

(33)

Here ∗.head is the first sample point of ∗, (e.g., τ1.head =

v1) and ∗.tail is the trajectory obtained by removing the
head from ∗. (e.g., τ1.tail = 〈v2, v3, ..., vm〉). The distances
Sdist(τ1, τ2) and Tdist(τ1, τ2) are asymmetrical.

By combining the spatial distances Sdist(τ1, τ2) and
Sdist(τ2, τ1) and the temporal distances Tdist(τ1, τ2) and
Tdist(τ2, τ1), we define the spatial and temporal similarities
Simo

S(τ1, τ2) and Simo
T(τ1, τ2) as follows.

Simo
S(τ1, τ2) =

Sdist(τ1, τ2)

|τ1|
+
Sdist(τ2, τ1)

|τ2|
(34)

Simo
T(τ1, τ2) =

Tdist(τ1, τ2)

|τ1|
+
Tdist(τ2, τ1)

|τ2|
(35)

These similarity measures are symmetrical, i.e., Simo
S(τ1, τ2)

= Simo
S(τ2, τ1) and Simo

T(τ1, τ2) = Simo
T(τ2, τ1).

By substituting Equations 34 and 35 into Equation 5, the
spatiotemporal sequence similarity Simo

ST(τ1, τ2) that takes
the visiting sequence into account is defined as follows.

Simo
ST(τ1, τ2) = λ · Simo

S(τ1, τ2) + (1− λ) · Simo
T(τ1, τ2)

(36)

Our search framework can support all aggregate-distance-
based similarity measures in spatial networks, including
BCT [7], NNT [21], network-based BCT [17], and network-
based spatio-temporal BCT with a sequence [18], because
the framework is based on network expansion and uses
bounds calculated using network distances. Variants of these

Parallel Trajectory Similarity Joins in Spatial Networks 17

similarity measures, such as sequenced BCT or NNT, can
also be supported. Notice that these similarity measures
cannot be used in the TS-Join directly because (1) the
original BCT and NNT are based on Euclidean space, and
(2) all of them are asymmetrical. We extend them into
spatial networks and make them symmetrical according to
Equations 3 and 4.

5.2 Temporal-First Matching

5.2.1 TF-Matching Algorithm

For each leaf node n, we compute the spatial similarity
Simo

S(τ1, τ2) for each trajectory pair (τ1, τ2) ∈ n (Equa-
tion 34). By substituting the value of Simo

S(τ1, τ2) into
Equation 7, we have that

Simo
S(τ, τ

′) ≥ θ − (1− λ) · 2
λ

= LBo
S (37)

If Simo
S(τ1, τ2) < LBo

S , trajectory pair (τ1, τ2) is pruned.
Otherwise, we compute the exact spatiotemporal similarity
Simo

ST(τ1, τ2) and compare its value to threshold θ.
The TF-Matching algorithm that takes into account the

visiting sequence of trajectory sample points is obtained by
applying Equations 32–37 in Algorithm 1.

5.2.2 k-TF-Matching

Initially, we randomly select a set Pk of k trajectory pairs
and compute their similarities. We then use the minimum
similairty as the global top-k lower bound LBh−1

k . By
substituting Equation 36 into Equation 14, we have that

LBn
k = min

(τ1,τ2)∈Pnk
{Simo

ST(τ1, τ2)} (38)

We use the value of LBn
k to replace that of θ in

Equation 37 and have that

Simo
S(τ, τ

′) ≥ LBn
k − (1− λ)(Simo

T(τ, τ
′).ub)

λ
= LBo′

S

(39)

For each leaf node n, we compute the spatial similarity
Simo

S(τ1, τ2) for each trajectory pair (τ1, τ2) ∈ n (Equa-
tion 34). If Simo

S(τ1, τ2) < LBo′

S , pair (τ1, τ2) is pruned.
Otherwise, we compute the exact spatiotemporal similarity
Simo

ST(τ1, τ2) and compare its value to threshold LBn
k .

The k-TF-Matching algorithm that takes into account
the visiting sequence of trajectory sample points is obtained
by applying Equations 32–39 in Algorithm 2.

5.3 Two-Phase Search

5.3.1 Two-Phase Algorithm

Given two trajectory sample points vi ∈ τ and vj ∈ τ ′,
the lower bounds of the network and temporal distances
between vi.p and vj .p are defined as follows.

sd(vi.p, vj .p).lb =

{
sd(vi.p, vj .p) if Case 5

rsi if Case 6
(40)

Case 5: vj has been scanned by the expansion from vi.p.
Case 6: vj has not been scanned by the expansion from vi.p.

d(vi.t, vj .t).lb =

{
|vi.t− vj .t| if Case 7
rti if Case 8

(41)

Case 7: vj has been scanned by the expansion from vi.t.
Case 8: vj has not been scanned by the expansion from vi.t.

By substituting Equations 40 and 41 into Equations 32
and 33, we have the upper bounds on the spatial and
temporal aggregate distances Sdist(τ1, τ2) and Tdist(τ1, τ2).

Sdist(τ1, τ2).ub = max


e−sd(τ1.head.p,τ2.head.p).lb

+Sdist(τ1.tail, τ2)

Sdist(τ1, τ2.tail)

(42)

Tdist(τ1, τ2) = max


e−d(vi.t,vj .t).lb

+Tdist(τ1.tail, τ2)

Tdist(τ1, τ2.tail)

(43)

By substituting Equations 42 and 43 into Equation-
s 24 and 25, the upper bound on spatiotemporal similarity
Simo

ST(τ1, τ2).ub and the global upper bound UBo are
derived.

The two-phase algorithm that takes into account the
visiting sequence of sample points is obtained by applying
Equations 32–36 and 40–43 in Algorithms 3 and 4.

5.3.2 k-Two-Phase Algorithm

By submitting Equations 34 and 35 into Equations 28, 29,
and 30, the lower bounds on the spatial, temporal, and
spatiotemporal similarities are obtained as follows.

Simo
S(τ, τ

′).lb =
Sdist(τ1, τ2)

|τ1|
(44)

Simo
T(τ, τ

′).lb =
Tdist(τ1, τ2)

|τ1|
(45)

Simo
ST(τ, τ

′).lb = λ·Simo
S(τ, τ

′).lb+(1−λ)·Simo
T(τ, τ

′).lb

(46)

The k-two-phase algorithm that takes into account the
visiting sequence of sample points is obtained by applying
Equations 32–36 and 40–46 in Algorithms 4 and 5.

18 Shuo Shang et al.

6 Experimental Study

We report on experiments with real trajectory data that offer
insight into the properties of the developed algorithms.

6.1 Settings

We use two spatial networks, namely the Beijing Road
Network (BRN) and the New York Road Network (NRN)11,
which contain 28,342 vertices and 27,690 edges, and 95,581
vertices and 260,855 edges, respectively. The graphs are
stored using adjacency lists. In BRN, we use a real taxi
trajectory data set collected by the T-drive project [24,25]12,
while in NRN, we use a real taxi trajectory data set from
New York11. Each trajectory in NRN denotes a taxi trip, and
their average length (number of vertices) is ∼80. The orig-
inal trajectories in BRN are very long, often lasting days.
We divide these trajectories into hour-long sub-trajectories,
giving them an average length of∼72. The intent is to create
trips with a realistic length and duration.

In the experiments, the indexing structure of the two TF-
Matching algorithms (cf. Section 3) and the spatial networks
of the two two-phase algorithms (when running Dijkstra’s
expansion [9], cf. Section 4) are memory resident, as the
memory occupied are 42 MB and 57 MB for BRN and 51
MB and 68 MB for NRN. Trajectories are also memory
resident for both algorithms, and they occupy 506 MB for
BRN and 3.9 GB for NRN. All algorithms are implemented
in Java and run on a cluster with 10 data nodes. Each node
is equipped with two Intelr Xeonr Processors E5-2620 v3
(2.4GHz) and 128GB RAM. To account for the case where
the trajectory data does not fit in main memory, we also
consider a disk-resident approach and report its performance
in Figure 5 (Figures 4, and 6–9 concern the memory-based
algorithms).

For the TF-Matching algorithms, for each node we store
the ids (entries) of the trajectories that overlap the timespan
indicated by the node. For the two-phase algorithms, for
each vertex in the network, we store the ids (entries) of
the trajectories that contain the vertex. The ids in each
node are stored in ascending order in an ArrayList. We
use a B+-tree to index trajectories on their ids. When
we visit a node/vertex, we first traverse the corresponding
ArrayList and retrieve the ids of the trajectories stored in the
node/vertex. Next, we traverse the B+-tree and load all of the
pages that contains the trajectories stored in the node/vertex.
To improve the loading efficiency, we use a 1GB LRU buffer
to store the retrieved pages.

Unless stated otherwise, experimental results are av-
eraged over 10 independent trails using different query

11 https://publish.illinois.edu/dbwork/open-data/
12 https://www.microsoft.com/en-us/research/publication/t-drive-

trajectory-data-sample/

inputs. The main performance metrics are runtime and the
number of trajectory visits. The number of trajectory visits
(during query processing) is used as a metric since it reflects
the number of data accesses. Since a trajectory may be
visited several times, the number of trajectory visits may
exceed the value of |P | or |Q|. In multi-threaded executions,
the runtime is the maximum runtime among all individual
threads.

We study the performance of the non-self joins, i.e.,
P 6= Q, in Sections 6.2.2–6.2.5 and 6.3.2–6.3.5 and of self
joins in Sections 6.2.5–6.2.6 and 6.3.5–6.3.6. Trajectories
in P and Q are selected randomly from real data sets. The
parameter settings are listed in Table II. Because comput-
ing network distances online is time-consuming, we pre-
computed the all-pair shortest path distances in the graph
(for the TF-Matching algorithms only, not for the two-phase
algorithms). The pre-computation is processed in parallel
with 120 threads. For BRN, the computation rumtime is
∼5 minutes, and the storage space of computation results
is ∼4 G. For NRN, the computation rumtime is ∼2 hours,
and the storage space of computation results is ∼40 G. We
denote the accelerated TF-Matchings (Section 3) by “TF-
A” and “k-TF-A” in subsequent figures. The two-phase
algorithms (Section 4) are denoted by “two-phase” and
“k-two-phase,” and the two-phase algorithms without the
heuristic scheduling strategy are denoted by “two-phase-
w/o-h” and “k-two-phase-w/o-h.”

By default, the grid indexes in TF-Matching and k-TF-
Matching employ a uniform leaf-node partitioning scheme.
We conduct experiments to find the best such partitioning.
When a leaf node is set to 1 hour in BRN and to 15 minutes
in NRN, and each node (including leaf and non-leaf nodes)
contains at most 6,560 trajectories in BRN and at most
15,265 trajectories in NRN, the index performs the best.
We also consider a balanced partitioning scheme, where
each leaf node contains the same or similar numbers of
trajectories. When the index contains 32 leaf nodes in BRN
and 196 leaf nodes in NRN, and each leaf node contains
1,032 trajectories in BRN and 3,875 trajectories in NRN on
average, the index performs the best. The algorithms using
the balanced partitioning method are denoted by “TF-A-
balance” and “k-TF-A-balance.” According to the exper-
imental results in Figures 4–14, the performance of TF-
Matching is improved by around 20% when using balanced
partitioning.

6.2 Performance of the Tb-TS-Join

6.2.1 Pruning Effectiveness

First, we study the pruning effectiveness of the algorithms
using the default settings. The experimental results are
shown in Tables III (non-self join) and IV (self join), with

Parallel Trajectory Similarity Joins in Spatial Networks 19

Table II: Parameter Settings
NRN BRN

Trajectory
cardinality |P |

1,000,000–
10,000,000/
default 1,000,000

50,000–200,000/
default 100,000

Trajectory
cardinality |Q|

500,000–2,000,000/
default 500,000

25,000–100,000/
default 50,000

Threshold θ 1.3–1.9/default 1.9 1.3–1.9/default 1.9
Preference parame-
ter λ

0.1–0.9/default 0.5 0.1–0.9/default 0.5

Thread count m 24–144/default 24
for the Tb-TS-Join,
72–144/default 120
for the k-TS-Join

24–144/default 24

k 10–50/ default 10 10–50/ default 10

Table III: Pruning Effectiveness for Non-Self Tb-TS-Join
TF two-phase two-phase-w/o-h

Candidate ratio (BRN) 0.17 0.10 0.14
Pruning ratio (BRN) 0.83 0.90 0.86
Candidate ratio (NRN) 0.12 0.04 0.06
Pruning ratio (NRN) 0.88 0.96 0.94

Table IV: Pruning Effectiveness for Self Tb-TS-Join
TF two-phase two-phase-w/o-h

Candidate ratio (BRN) 0.11 0.06 0.09
Pruning ratio (BRN) 0.89 0.94 0.91
Candidate ratio (NRN) 0.08 0.03 0.04
Pruning ratio (NRN) 0.92 0.97 0.96

the reported candidate and pruning ratios defined as follows.

Candidate ratio =

{
2|C|
|P |2 if self join
|C|
|P ||Q| if non-self join

(47)

Pruning ratio = 1− Candidate ratio,

where C is the candidate set. Comparing the pruning and
candidate ratios of TF-Matching to those of the two-phase
algorithm, we see that the candidate ratio of the two-phase
algorithm is only 54.5%–58.8% of that of TF-Matching and
that, with the help of the heuristic scheduling strategy, the
candidate ratio is improved by a factor of 40%–50%.

6.2.2 Effect of Trajectory Cardinalities

Figure 4 shows the effect of trajectory cardinalities |P | and
|Q| on the performance of the algorithms. Intuitively, a larg-
er |P | (or |Q|) causes more trajectory pairs to be processed
(refer to the complexity analysis in Sections 3.1.5 and 4.1.6),
meaning that the runtime and the number of trajectory visits
are expected to be higher for all algorithms. We see that the
two-phase algorithm outperforms TF-Matching (TF-A and
TF-A-balance) by almost an order of magnitude; and we see
that the heuristic strategy can further improve the two-phase
algorithm by almost a factor of 50% in terms of both runtime
and the number of trajectory visits. The two-phase algorithm
is able to process 1 M trajectories (|P | = 1 M and |Q| = 0.5
M) in 38 seconds and 10 M trajectories (|P | = 10 M and

5

10

15

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

200

400

600

800

1000

1200

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

100

200

300

50K 100K 150K 200K

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

2000

4000

6000

8000

10000

1M 4M 7M 10M

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) NRN

5

10

15

20

25K 50K 75K 100K

R
u
n
ti

m
e

(s
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(e) BRN

200

400

600

800

0.5M 1.0M 1.5M 2.0M

R
u
n
ti

m
e

(s
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(f) NRN

100

200

300

25K 50K 75K 100K

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(g) BRN

1000

2000

3000

4000

0.5M 1.0M 1.5M 2.0M

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(h) NRN

Fig. 4 Effect of trajectory cardinalities |P | and |Q|

5

10

15

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

200
400
600
800

1000
1200

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

5

10

15

20

25K 50K 75K 100K

R
u
n
ti

m
e

(s
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

200

400

600

800

1000

0.5M 1.0M 1.5M 2.0M

R
u
n
ti

m
e

(s
)

Cardinality |Q|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) NRN

Fig. 5 Effect of disk-based storage

20 Shuo Shang et al.

|Q| = 0.5 M) in 252 seconds on the default 24 threads (see
Figure 4(b)).

The runtime is not fully aligned with the number of tra-
jectory visits because the algorithms expend computational
effort on maintaining the bounds used to prune the search
space. The resulting cost may offset the benefits of the
reduction in the number of trajectory visits. In particular, the
filter phase of TF-Matching computes and maintain bounds
for almost all trajectory pairs.

Figure 5 shows the performance of the disk-based al-
gorithms. Their performance patterns are similar to those
of the memory-based algorithms (Figure 4). The disk-based
algorithms may need longer runtime because of disk I/O,
but the query can still be processed in reasonable runtime
(e.g., processing 10 M × 0.5 M trajectories on the default
24 threads in 300 seconds, see Figure 5(b)). Notice that the
number of trajectory visits is independent of where the data
is stored.

6.2.3 Effect of Threshold θ

20

40

60

80

100

120

1.30 1.45 1.60 1.75 1.90

R
u
n
ti

m
e

(s
)

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

200

400

600

800

1.30 1.45 1.60 1.75 1.90

R
u
n
ti

m
e

(s
)

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

50

100

150

200

250

1.30 1.45 1.60 1.75 1.90

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

1000

2000

3000

4000

1.30 1.45 1.60 1.75 1.90

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) NRN

Fig. 6 Effect of threshold θ

Next, we vary the threshold θ in Figure 6. For the
two-phase algorithm, a larger θ leads to higher pruning
effectiveness (refer to Equation 4.1.6). Thus, the larger θ
becomes, the smaller the search space becomes, and the
required runtime and the number of trajectory visits are
expected to decrease correspondingly. When θ = 1.9, the
two-phase algorithm is able to process 1 M trajectories (|P |
= 1 M and |Q| = 0.5 M) in 38 seconds. In TF-Matching,
a larger θ does not help prune the search space (refer
to Section 3.1.5), and only slightly fewer trajectories are
visited when θ increases. In contrast, a larger θ is useful in
reducing the similarity computation (see Equation 7). Thus,

the runtime of TF-A and TF-A-balance decrease when θ

increases.

6.2.4 Effect of λ

20

40

60

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

50

100

150

200

250

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

50

100

150

200

0.1 0.3 0.5 0.7 0.9

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

500

1000

1500

2000

0.1 0.3 0.5 0.7 0.9

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-balance

(d) NRN

Fig. 7 Effect of λ

Figure 7 shows the effect of varying the preference
parameter λ on efficiency. Parameter λ enables adjusting
the relative preference of spatial and temporal similarity
(see Equation 5). When λ = 1, the TS-Join is in the spatial
domain only, and when λ = 0, only temporal similarity is
considered. Figure 7 shows that the spatial domain needs
more search effort than the temporal domain.

6.2.5 Effect of Thread Count m

1000

2000

3000

4000

5000

6000

48 72 96 120 144

R
u
n
ti

m
e

(s
)

Number of Threads

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) Non-self join

1

10

100

1000

10000

48 72 96 120 144

R
u
n
ti

m
e

(s
)

Number of Threads

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) Self join

Fig. 8 Effect of thread count m

We study the effect of thread count m on the efficiency
of the algorithms using large trajectory data sets in NRN
(|P | = 10 M and |Q| = 2 M for non-self Tb-TS-Join and
|P | = 10 M for self Tb-TS-Join). The results are shown in
Figure 8.

Parallel Trajectory Similarity Joins in Spatial Networks 21

10

20

30

40

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

400

800

1200

1600

2000

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

100k

200k

300k

50K 100K 150K 200K

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

1000

2000

3000

4000

5000

1M 4M 7M 10M

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) NRN

10

20

30

40

1.30 1.45 1.60 1.75 1.90

R
u
n
ti

m
e

(s
)

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(e) BRN

200

400

600

800

1000

1200

1400

1.30 1.45 1.60 1.75 1.90

R
u
n
ti

m
e

(s
)

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(f) NRN

30k

60k

90k

120k

150k

1.30 1.45 1.60 1.75 1.90

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(g) BRN

400k

800k

1200k

1600k

2000k

2400k

1.30 1.45 1.60 1.75 1.90

N
u
m

b
er

 o
f

V
is

it
ed

 T
ra

je
ct

o
ri

es

Threshold

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(h) NRN

5

10

15

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(i) BRN

100

200

300

400

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(j) NRN

30k

60k

90k

120k

0.1 0.3 0.5 0.7 0.9

T
ra

je
ct

o
ry

 V
is

it
s

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(k) BRN

500k

1000k

1500k

0.1 0.3 0.5 0.7 0.9

T
ra

je
ct

o
ry

 V
is

it
s

Preference parameter

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(l) NRN

Fig. 9 Performance of the self Tb-TS-Join

We see that the two-phase algorithm outperforms TF-
Matching by almost an order of magnitude in term of
runtime. For the non-self join, the two-phase algorithm is
able to process 10 M × 2 M trajectories with 144 threads in
220 seconds, while for the self join, the two-phase algorithm
is able to process 10 M× 10 M trajectories with 144 threads
in 480 seconds.

In Figure 8, we increase the thread count m from 48 to
144 (3 times). This improves the runtime of the two-phase
algorithm by a factor of 2.3–2.6, while the runtime of TF-
Matching (TF-A and TF-A-balance) is improved by a factor
of around 1.9. The main reason for the smaller improvement
is that more threads (more leaf nodes) leads to a higher
merging cost (cf. Section 3.1.6).

6.2.6 Performance of the Self Tb-TS-Join

Figure 9 shows the runtime and number of trajectory visits
for the self Tb-TS-Join when varying the trajectory cardinal-
ity, the similarity threshold, and the preference parameter.
The trends of the figures are similar to those of the non-
self Tb-TS-Join. The two-phase algorithm outperforms TF-
Matching (TF-A and TF-A-balance) by almost an order
of magnitude in terms of both runtime and the number of
trajectory visits, and the heuristic search strategy improves
the efficiency by almost a factor of 50%.

6.3 Performance of the k-TS-Join

6.3.1 Pruning Effectiveness

We study the pruning effectiveness of the algorithms using
the default settings. The experimental results are shown
in Tables V (non-self k-TS-Join) and VI (self k-TS-Join).
Comparing the pruning and candidate ratios of k-TF-
Matching to those of the k-two-phase algorithm, we see
that the candidate ratio of the k-two-phase algorithm is
only 47.3%–63.6% of that of k-TF-Matching and that, with
the help of the heuristic scheduling strategy, the candidate
ratio is improved by a factor of 21.4%–38.8%. The pruning
effectiveness of k-TS-Join is a little bit weaker than that of
Tb-TS-Join (cf. Tables III and IV) because k-TS-Join has no
user-specified threshold to help the pruning.

Table V: Pruning Effectiveness for Non-Self k-TS-Join
k-TF k-two-phase k-two-phase-

w/o-h
Candidate ratio (BRN) 0.38 0.18 0.25
Pruning ratio (BRN) 0.62 0.82 0.75
Candidate ratio (NRN) 0.31 0.16 0.20
Pruning ratio (NRN) 0.69 0.84 0.80

22 Shuo Shang et al.

Table VI: Pruning Effectiveness for Self k-TS-Join
k-TF k-two-phase k-two-phase-

w/o-h
Candidate ratio (BRN) 0.22 0.14 0.17
Pruning ratio (BRN) 0.78 0.86 0.83
Candidate ratio (NRN) 0.17 0.09 0.11
Pruning ratio (NRN) 0.83 0.91 0.89

6.3.2 Effect of k

10

20

30

10 20 30 40 50

R
u
n
ti

m
e

(s
)

k

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(a) BRN

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50

R
u
n
ti

m
e

(s
)

k

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(b) NRN

50

100

150

200

10 20 30 40 50

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

k

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(c) BRN

500

1000

1500

2000

10 20 30 40 50

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

k

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-balance

(d) NRN

Fig. 10 Effect of k

Figure 10 shows the effect of k on the performance
of the algorithms. Intuitively, a larger k causes a larger
candidate set and more trajectory pairs to be processed,
meaning that the runtime and the number of trajectory visits
are expected to increase for all algorithms. We see that k-
two-phase outperforms k-TF-Matching (k-TF-A and k-TF-
A-balance) by almost an order of magnitude; and we see that
the heuristic strategy can improve the two-phase algorithm
by almost a factor of 40% in terms of both runtime and the
number of trajectory visits.

6.3.3 Effects of |P |, |Q|, and λ

Figure 11 shows the effects of |P |, |Q|, and λ on the
performance of the k-TS-Join. The trends are similar to
those of the Tb-TS-Join, and it is evident that the k-
two-phase algorithm has a clear advantage over the other
algorithms. The k-two-phase algorithm is able to process 1
M trajectories (|P | = 1 M and |Q| = 0.5 M) in 142 seconds
and 10 M trajectories (|P | = 10 M and |Q| = 0.5 M) in 971
seconds using 120 threads (see Figure 11(b)).

6.3.4 Effect of Disk-Based Storage

Figure 12 shows the performance of the disk-based algo-
rithms. Their performance patterns are similar to those of
the memory-based algorithms (Figure 11). The disk-based
algorithms need more runtime because of disk I/O, but
the query can still be processed in reasonable time (e.g.,
processing 10 M × 0.5 M trajectories in around 1,184
seconds using 120 threads, see Figure 12(b)).

6.3.5 Effect of Thread Count m

10

20

30

40

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(a) BRN

500

1000

1500

2000

2500

3000

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(b) NRN

20

40

60

25K 50K 75K 100K

R
u
n
ti

m
e

(s
)

Cardinality |Q|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(c) BRN

500

1000

1500

2000

2500

0.5M 1.0M 1.5M 2.0M

R
u
n
ti

m
e

(s
)

Cardinality |Q|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(d) NRN

Fig. 12 Effect of disk-based storage

1000

2000

3000

4000

5000

72 96 120 144

R
u
n
ti

m
e

(s
)

Number of Threads

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(a) Non-self join

1

10

100

1000

10000

72 96 120 144

R
u
n
ti

m
e

(s
)

Number of Threads

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(b) Self join

Fig. 13 Effect of thread count m

We study the effect of thread count m on the efficiency
of the algorithms using large trajectory data sets in NRN
(|P | = 10 M and |Q| = 2 M for the non-self k-TS-Join and
|P | = 10 M for the self k-TS-Join). The results are shown
in Figure 13 (note the logarithmic y-axis in Figure 13(b)).
We see that the k-two-phase algorithm outperforms k-TF-
Matching by almost an order of magnitude in term of
runtime. For the non-self join, the two-phase algorithm is

Parallel Trajectory Similarity Joins in Spatial Networks 23

10

20

30

40

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(a) BRN

500

1000

1500

2000

2500

3000

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(b) NRN

100

200

300

50K 100K 150K 200K

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(c) BRN

2000

4000

6000

8000

10000

1M 4M 7M 10M

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(d) NRN

20

40

60

25K 50K 75K 100K

R
u
n
ti

m
e

(s
)

Cardinality |Q|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(e) BRN

500

1000

1500

2000

2500

0.5M 1.0M 1.5M 2.0M

R
u
n
ti

m
e

(s
)

Cardinality |Q|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(f) NRN

100

200

300

25K 50K 75K 100K

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |Q|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(g) BRN

1000

2000

3000

4000

0.5M 1.0M 1.5M 2.0M

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |Q|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(h) NRN

10

20

30

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(i) BRN

200

400

600

800

1000

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(j) NRN

50

100

150

200

0.1 0.3 0.5 0.7 0.9

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Preference parameter

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(k) BRN

500

1000

1500

2000

0.1 0.3 0.5 0.7 0.9

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Preference parameter

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-balance

(l) NRN

Fig. 11 Effects of |P |, |Q|, and λ

able to process 10 M × 2 M trajectories with 144 threads
in 820 seconds, while for the self join, the k-two-phase
algorithm is able to process 10 M × 10 M trajectories with
144 threads in 1,750 seconds.

In Figure 13, we increase the thread count m from 72 to
144 (2 times). This improves the runtime of the k-two-phase
algorithm by a factor of 1.62–1.66, while the runtime of
k-TF-Matching (k-TF-A and k-TF-A-balance) is improved
by a factor of around 1.2. The main reason for the smaller
improvement is that more threads (more leaf nodes) leads to
a higher merging cost (cf. Sections 3.1.6 and 3.2.3).

6.3.6 Performance of the Self k-TS-Join

Figure 14 shows the runtime and number of trajectory visits
for the self k-TS-Join when varying trajectory cardinality,
k, and preference parameter α. The trends of the figures
are similar to those for the non-self k-TS-Join (cf. Fig-
ures 10–12). The k-two-phase algorithm outperforms k-TF-
Matching (k-TF-A and k-TF-A-balance) by almost an order
of magnitude in terms of both runtime and trajectory visits,
and the heuristic search strategy improves the efficiency by
almost a factor of 40%.

6.4 TS-Join Performance with Sequence Similarity

We conducted experiments to study the performance of pro-
cessing the sequential TB-TS-Join and k-TS-Join (when us-
ing the sequence similarity measure presented in Section 5).
The experimental results are shown in Figures 15 and 16.
Compared to the original TB-TS-Join and k-TS-Join, the
sequential TB-TS-Join and k-TS-Join needs more computa-
tional efforts to compute the upper and lower bounds and the
priority labels, which is due to the more complex distance
measures. Therefore, more time and trajectory accesses
are incurred. However, the trends observed in Figures 15
and 16 are still similar to those observed for the original
TB-TS-Join and k-TS-Join in Figures 4–14. In Figures 15
and 16, the two-phase (k-two-phase) algorithm is still able
to outperform the TF-Matching (k-TF-Matching) algorithm
by almost an order of magnitude in term of both runtime
and trajectory visits. The sequence similarity two-phase and
the sequence similarity k-two-phase algorithms are able to
process 10 M × 2 M trajectories with 144 threads in 250
seconds and 840 seconds.

6.5 Summary

An empirical study with real data offers insight in the
performance of the algorithms (cf. Algorithm 1–5) and

24 Shuo Shang et al.

20

40

60

80

100

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

400

800

1200

1600

2000

2400

2800

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(b) NRN

100

200

300

50K 100K 150K 200K

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(c) BRN

2000

4000

6000

8000

10000

1M 4M 7M 10M

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(d) NRN

20

40

60

80

10 20 30 40 50

R
u
n
ti

m
e

(s
)

k

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(e) BRN

100

200

300

400

10 20 30 40 50

R
u
n
ti

m
e

(s
)

k

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(f) NRN

30

60

90

120

10 20 30 40 50

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

k

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(g) BRN

500

1000

1500

10 20 30 40 50

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

k

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(h) NRN

10

20

30

40

50

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(i) BRN

100

200

300

400

0.1 0.3 0.5 0.7 0.9

R
u
n
ti

m
e

(s
)

Preference parameter

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(j) NRN

30

60

90

120

0.1 0.3 0.5 0.7 0.9

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Preference parameter

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(k) BRN

500

1000

1500

0.1 0.3 0.5 0.7 0.9

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Preference parameter

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(l) NRN

Fig. 14 Performance of the self k-TS-Join

provides evidence that the two-phase and k-two-phase al-
gorithms (cf. Algorithms 3, 4, and 5) typically are capable
of outperforming well-designed baseline algorithms (TF-
Matching and k-TF-Matching, cf. Algorithms 1 and 2) by
an order of magnitude.

7 Related Work

7.1 Trajectory Similarity Search

Trajectory similarity search [7, 17, 18, 26] typically involves
a definition step and a query processing step. First, a simi-
larity function is defined to evaluate the spatial and temporal
similarities between two trajectories, typically taking into
account spatial proximity and curve similarity. Second, an
efficient algorithm is developed to retrieve trajectories spa-
tiotemporally close to a query trajectory. Several trajectory
similarity functions are proposed for different applications.
For example, BCT [7] considers trajectory search in Eu-
clidean space, and UOTS [17] and ATSQ [26] extend these
to the spatial and textual domains, while PTM [18] ex-
tends them into spatial and temporal domains. Next, several
similarity functions exist for trajectory or time-series data,
including Dynamic Time Warping [23], Longest Common

Subsequence [1], and Edit Distance on Real sequence [5].
The definition of BCT [7] is most similar to the one we
use. Both studies target routing and ridesharing/carpooling.
We extend the Euclidean-based BCT to spatial networks,
and we also offer a symmetrical definition. In contrast,
most existing trajectory similarity functions [7, 17, 18] are
asymmetrical; thus, they cannot be used directly in the TS-
Joins.

7.2 Trajectory Similarity Join

Most existing studies on trajectory similarity join (e.g.,
[2, 3, 6, 10]) use a time interval threshold to constrain the
temporal proximity of two trajectories and can be classified
into two categories. Studies in the first category (e.g., [3,10])
eliminate trajectory pairs with sample point pairs with time
intervals that exceed the threshold. Our study generalizes
studies in this category in that we eliminate the time-interval
threshold. Studies in the other category (e.g., [2, 6]) apply a
sliding window to all trajectories. Here, pairs of trajectories
must fall into a sliding window to be candidate join result-
s. In contrast, the TS-Joins use spatiotemporal similarity,
taking into account both spatial and temporal aggregate
distances. Thus, the existing time-interval based solutions

Parallel Trajectory Similarity Joins in Spatial Networks 25

5

10

15

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(a) BRN

200

400

600

800

1000

1200

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(b) NRN

100

200

300

50K 100K 150K 200K

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(c) BRN

2000

4000

6000

8000

10000

1M 4M 7M 10M

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(d) NRN

1000

2000

3000

4000

5000

72 96 120 144

R
u
n
ti

m
e

(s
)

Number of Threads

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(e) Non-Self Join

1

10

100

1000

10000

48 72 96 120 144

R
u
n
ti

m
e

(s
)

Number of Threads

two-phase
two-phase-w/o-h

TF-A
TF-A-balance

(f) Self Join

Fig. 15 Performance for TB-TS-Join with a sequence

are not suitable for the TS-Joins (e.g., the temporal-first
matching, cf. Section 3). Moreover, in contrast to most
existing trajectory join studies (e.g., [2, 3, 6, 10, 20]), the
TS-Joins are applied in spatial networks because in many
practical scenarios, objects (e.g., commuters and vehicles)
move in spatial networks (e.g., road networks) rather than
in a Euclidean space. Thus, spatial indices (e.g., the R-
tree [11]) and corresponding optimizations are not effective
in our setting. In addition, existing trajectory similarity
join studies (e.g., [2, 3, 6, 10, 20]) are not taking steps to
exploit the parallelism in modern processors. According to
an experimental study [12], most existing similarity join
algorithms cannot achieve high performance for really large
data sets, making it relevant to pursue parallel algorithms
for very large data sets. To address this issue, we introduce
parallelism to the temporal-first matching and the two-phase
algorithm to process the TS-Joins efficiently on very large
trajectory data sets.

8 Conclusion and Future Work

We present and study novel trajectory similarity joins (TS-
Joins) in spatial networks, including a threshold-based TS-
Join (Tb-TS-Join) and a top-k TS-Join (k-TS-Join), that
target diverse applications such as trajectory duplicate de-
tection, data cleaning, ridesharing/carpooling recommen-

10

20

30

40

50K 100K 150K 200K

R
u
n
ti

m
e

(s
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(a) BRN

500
1000
1500
2000
2500
3000
3500

1M 4M 7M 10M

R
u
n
ti

m
e

(s
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(b) NRN

100

200

300

50K 100K 150K 200K

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(c) BRN

2000

4000

6000

8000

10000

1M 4M 7M 10M

T
ra

je
ct

o
ry

 V
is

it
s

(K
)

Cardinality |P|

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(d) NRN

1000

2000

3000

4000

5000

72 96 120 144

R
u
n
ti

m
e

(s
)

Number of Threads

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(e) Non-Self Join

1

10

100

1000

10000

72 96 120 144

R
u
n
ti

m
e

(s
)

Number of Threads

k-two-phase
k-two-phase-w/o-h

k-TF-A
k-TF-A-balance

(f) Self Join

Fig. 16 Performance for k-TS-Join with a sequence

dation, and traffic congestion prediction. To process the
TS-Joins efficiently, two-phase and k-two-phase algorithms
are developed based on a divide-and-conquer strategy. The
algorithms are equipped with upper and lower bounds and a
heuristic scheduling strategy that enable effective pruning
of the search space. The performance of the TS-Joins is
investigated through extensive experiments on very large
trajectory data. Two research directions are of particular
interest. The first is to study how to select a larger initial
lower bound for the k-TS-Join online. The second is to study
system-level optimizations in the TS-Joins.

References

1. R. Agrawal, K. Lin, H. S. Sawhney, and K. Shim. Fast similarity
search in the presence of noise, scaling, and translation in time-
series databases. In VLDB, pages 490–501, 1995.

2. P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras.
Efficient trajectory joins using symbolic representations. In MDM,
pages 86–93, 2005.

3. P. Bakalov and V. J. Tsotras. Continuous spatiotemporal trajectory
joins. In GSN, pages 109–128, 2006.

4. S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-
matching vehicle tracking data. In VLDB, pages 853–864, 2005.

5. L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search
for moving object trajectories. In SIGMOD, pages 491–502, 2005.

6. Y. Chen and J. M. Patel. Design and evaluation of trajectory join
algorithms. In ACM-GIS, pages 266–275, 2009.

26 Shuo Shang et al.

7. Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching
trajectories by locations: an efficiency study. In SIGMOD, pages
255–266, 2010.

8. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications. Springer,
2008.

9. E. W. Dijkstra. A note on two problems in connection with graphs.
Numerische Math, 1:269–271, 1959.

10. H. Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity
join of large sets of moving object trajectories. In TIME, pages
79–87, 2008.

11. A. Guttman. R-trees: A dynamic index structure for spatial
searching. In SIGMOD, pages 47–57, 1984.

12. Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An
experimental evaluation. PVLDB, 7(8):625–636, 2014.

13. W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding time period-based
most frequent path in big trajectory data. In SIGMOD, pages 713–
724, 2013.

14. S. Shang, L. Chen, C. S. Jensen, J. Wen, and P. Kalnis. Searching
trajectories by regions of interest. IEEE Trans. Knowl. Data Eng.,
29(7):1549–1562, 2017.

15. S. Shang, L. Chen, Z. Wei, C. S. Jensen, J. Wen, and P. Kalnis.
Collective travel planning in spatial networks. IEEE Trans. Knowl.
Data Eng., 28(5):1132–1146, 2016.

16. S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kal-
nis. Trajectory similarity join in spatial networks. PVLDB,
10(11):1178–1189, 2017.

17. S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis.
User oriented trajectory search for trip recommendation. In EDBT,
pages 156–167, 2012.

18. S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and X. Zhou.
Personalized trajectory matching in spatial networks. VLDB J.,
23(3):449–468, 2014.

19. S. Shang, K. Zheng, C. S. Jensen, B. Yang, P. Kalnis, G. Li, and
J. Wen. Discovery of path nearby clusters in spatial networks.
IEEE Trans. Knowl. Data Eng., 27(6):1505–1518, 2015.

20. N. Ta, G. Li, Y. Xie, C. Li, S. Hao, and J. Feng. Signature-
based trajectory similarity join. IEEE Trans. Knowl. Data Eng.,
29(4):870–883, 2017.

21. L. A. Tang, Y. Zheng, X. Xie, J. Yuan, X. Yu, and J. Han.
Retrieving k-nearest neighboring trajectories by a set of point
locations. In SSTD, pages 223–241, 2011.

22. C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-
matching speed: Localizing global curve-matching algorithms. In
SSDBM, pages 379–388, 2006.

23. B. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of
similar time sequences under time warping. In ICDE, pages 201–
208, 1998.

24. J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge
from the physical world. In SIGKDD, pages 316–324, 2011.

25. J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and
Y. Huang. T-drive: driving directions based on taxi trajectories.
In ACM SIGSPATIAL, pages 99–108, 2010.

26. K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards efficient
search for activity trajectories. In ICDE, pages 230–241, 2013.

27. K. Zheng, Y. Zheng, N. J. Yuan, S. Shang, and X. Zhou. Online
discovery of gathering patterns over trajectories. IEEE Trans.
Knowl. Data Eng., 26(8):1974–1988, 2014.

28. J. Zhou, A. K. H. Tung, W. Wu, and W. S. Ng. A ”semi-lazy” ap-
proach to probabilistic path prediction in dynamic environments.
In SIGKDD, pages 748–756, 2013.

