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Severinsen2, Tarec C. El-Galaly1,2 and Martin Bøgsted1,2

Abstract

Background: The mortality risk among cancer patients measured from the time of diagnosis is often elevated in
comparison to the general population. However, for some cancer types, the patient mortality risk will over time reach
the same level as the general population mortality risk. The time point at which the mortality risk reaches the same
level as the general population is called the cure point and is of great interest to patients, clinicians, and health care
planners. In previous studies, estimation of the cure point has been handled in an ad hoc fashion, often without
considerations about margins of clinical relevance.

Methods: We review existing methods for estimating the cure point and discuss new clinically relevant measures for
quantifying the mortality difference between cancer patients and the general population, which can be used for cure
point estimation. The performance of the methods is assessed in a simulation study and the methods are illustrated
on survival data from Danish colon cancer patients.

Results: The simulations revealed that the bias of the estimated cure point depends on the measure chosen for
quantifying the excess mortality, the chosen margin of clinical relevance, and the applied estimation procedure. These
choices are interdependent as the choice of mortality measure depends both on the ability to define a margin of
clinical relevance and the ability to accurately compute the mortality measure. The analysis of cancer survival data
demonstrates the importance of considering the confidence interval of the estimated cure point, as these may be
wide in some scenarios limiting the applicability of the estimated cure point.

Conclusions: Although cure points are appealing in a clinical context and has widespread applicability, estimation
remains a difficult task. The estimation relies on a number of choices, each associated with pitfalls that the practitioner
should be aware of.

Keywords: Statistical cure, Cure point, Cancer survival

Background
One of the most important aims of cancer patients is to
become cured, which in general is different from reaching
complete remission due to the risk of relapse, lethal side
effects from the treatment, and late toxicities. However,
for some cancer survivors the mortality risk reaches the
same level as the general population mortality risk. This
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suggests a possible formulation of cure, namely statisti-
cal cure, which is achieved if the patients survive until the
point at which the patient and general population mor-
tality risks become similar [1]. The time point at which
the patients become statistically cured is termed the cure
point and its estimation is the main focus of this paper.
The problem of estimating cure points may be gener-

alized by considering when the risk of a certain event in
exposed individuals equals that of unexposed individuals.
One example is smoking cessation, which is associated
with a short term increased risk of developing type 2
diabetes, that over time gradually approaches that of non-
smokers [2]. The ex-smoker may be interest in knowing
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when this risk is "normalized". Another example involves
the fertility of women who have terminated the use of
oral contraceptives, which is typically inferior to that of
women who exclusively used diaphragms [3, 4]. However,
as time progresses, the fertility returns to the level of pre-
vious diaphragm users. In this case the time at which the
fertility level equals that of the control group may be of
interest. In the present article, we only consider estima-
tion of survival-related cure points for cancer patients,
although the statistical problem applies to other diseases
and endpoints.
Let h and h∗ be the hazard function of the patients

and the general population, respectively. Inspired by Rabi-
nowitz and Ryan [5], the cure point could be defined as

tε = inf
{
t| for all s ≥ t, h(s) − h∗(s) ≤ ε

}
, (1)

where ε is somemargin of clinical relevance (MOCR), e.g.,
0. Similarly to previous studies focusing on cure point esti-
mation, the cure point could be estimated by sequentially
testing for a difference between the patient and general
population mortality (if ε = 0) [6–8]. The cure point
estimate is then the time point from which a significant
difference is no longer observed. A similar time-varying
test-statistic was established by Rabinowitz and Ryan [5].
However, as discussed by Rabinowitz and Ryan, with this
approach it cannot be determined whether statistical cure
has actually occurred or if there is simply not enough
data to show a significant excess risk. As a consequence,
with larger sample size, the cure point estimate will likely
increase. The estimate can therefore only be considered a
lower confidence bound for the cure point, which is dif-
ficult to interpret in a clinical context. Thus, approaches
that directly involve hypothesis testing are not appropriate
for cure point estimation.
Estimation of cure points without relying on classical

hypothesis testing has previously been carried out in both
applied and methodological studies [8–14]. In this arti-
cle, we review and discuss existing methods and introduce
two new approaches for cure point estimation from cancer
survival data. The performance of the discussed meth-
ods is evaluated in a simulation study and we illustrate
the methods on survival data from Danish colon cancer
patients.

Methods
Let T be the random survival time of each patient and D
the random cause of death variable, which is either cancer
or other causes. We denote the hazard and survival func-
tion of a patient with covariate vector z at time t by h(t|z)
and S(t|z), respectively, and those of the general popula-
tion, typically matched on variables such age, gender, and
calendar year, by h∗(t|z) and S∗(t|z), respectively. To avoid
basing the cure point estimation on hypothesis testing,
researchers have pursued approaches based on a dynamic

evaluation of the difference between the patient and gen-
eral population mortality. Dynamic measures are used to
provide conditional risks or rates given a certain history.
For instance, it may be of interest to quantify the patient
survival given that a patient has survived 2 years fol-
lowing the cancer diagnosis. The difference between the
patient and general population mortality can be quanti-
fied by various measures, e.g., the excess hazard function,
relative survival, or the loss in expectation of life [15]. In
the present article, we term measures that dynamically
quantify the difference in patient and general population
mortality comparison measures and we estimate the cure
point as the time point at which the applied comparison
measure reaches someMOCR. Thus, in order to carry out
cure point estimation, the investigator has to choose:

1) A comparison measure, G(t|z), which dynamically
quantifies the difference between the patient and
general population mortality.

2) An estimation procedure to compute the comparison
measure.

3) A MOCR for the comparison measure.

These choices are closely related since the choice of com-
parison measure should be related to both the possibility
to define aMOCR, which is associated with its interpreta-
tion, and the ability to accurately compute the comparison
measure. In the following, we describe different com-
parison measures, their interpretation, and methods to
compute them. In particular, we describe the conditional
relative survival [11], the relative survival of the uncured
[9], and the probability of cure [13], which have previ-
ously been used for cure point estimation and introduce
two new measures for estimating cure points, namely the
probability of cancer-related death [16] and the loss of
lifetime [17] (see Table 1 for an overview).

Previously used dynamic measures of excess mortality
Conditional relative survival
The relative survival function, R(t|z), is the ratio of the
all-cause survival to the expected survival, i.e., R(t|z) =
S(t|z)/S∗(t|z). Under some assumptions [18], the rela-
tive survival can be interpreted as the net survival, i.e.,
the survival of patients with a particular disease in the
hypothetical scenario, where only deaths due to the dis-
ease are possible. However, these assumptions are usually
not identifiable from the data and hence can be hard to
justify [19].
Dal Maso et al. [11] estimated the cure point as the time

at which the conditional relative survival,

G(t|z) = R(t + u|z)
R(t|z) , (2)

was sufficiently high (e.g., >95%) for a certain time win-
dow, e.g., u = 5 years.
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Table 1 Overview of comparison measures dynamically quantifying the difference between the patient and general population
mortality

Comparison measure Notation Interpretation Computability Reference

Conditional relative survival R(t+u|z)
R(t|z) Challenging Feasible [11]

Relative survival of the uncured Su(t|z) Challenging Challenging [9]

Probability of cure P(Y = 1|T > t, z) Intuitive Challenging [13]

Probability of cancer-related death P(T ≤ t,D = cancer|z) Intuitive Challenging [16]

Loss of lifetime
∫ ∞
t S∗(u|z)du
S∗(t|z) −

∫ ∞
t S(u|z)du
S(t|z) Intuitive Challenging [17]

However, determining a MOCR for the conditional
relative survival requires in depth understanding of its
meaning and scale. This can be challenging if the rela-
tive survival is interpreted as the net survival, because it
reflects the survival in a hypothetical scenario. Even if the
relative survival is not given a net survival interpretation,
it remains a relative measure for which a MOCR is diffi-
cult to define because it neglects the absolute difference
in mortality risk. Thus, the conditional relative survival
may not be appropriate for cure point estimation. How-
ever, this approach is computationally feasible as various
estimators for the relative survival exist [18, 20].

Curemodels
Approaches based on functional parts of curemodels have
previously been proposed for cure point estimation. Cure
models are particularly useful in scenarios with a plateau
in the relative survival, which indicates that the patient
mortality risk reaches the same level as the general popu-
lation mortality risk [9]. Given some covariates, the main
objective in cure models is to estimate the level at which
the relative survival plateaus, also known as the cure pro-
portion, which we denote by π(z). This is commonly done
by formulating the relative survival as

R(t|z) = π(z)+[ 1 − π(z)] Su(t|z). (3)

If the relative survival is interpreted as the net survival,
π(z) is simply the probability of never experiencing a
disease-related death [21]. This suggest that some individ-
uals will be "cured" of the disease and hence never expe-
rience a disease-related death while others are uncured
and eventually will die from the disease. Thus, the patient
population is considered a mixture of cured and uncured
individuals. The function Su(t|z) is the net survival of the
uncured patients, with Su(0|z) = 1 and limt→∞ Su(t|z) =
0, and we have that limt→∞ R(t|z) = π(z).
If a net interpretation is not given to the relative sur-

vival, π(z) can instead be interpreted on an observational
level. That is, the population is considered a mixture of
cured individuals with the same survival distribution as
the general population and uncured individuals with a

worse survival described by Su(t|z)S∗(t|z). The cure pro-
portion, π(z), provides the proportion of individuals with
the same survival as the general population [21].
Due to the fact that mainly cured individuals remain

alive once Su(t|z) becomes sufficiently low, Lambert et
al. proposed to compute the cure point as the time at
which Su(t|z) reaches some MOCR (e.g., 10% or 5%), i.e.,
G(t|z) = Su(t|z) [9]. This approach was also used by
Chauvenet et al. [10]. However, following the argument in
“Conditional relative survival” section, it can be difficult
to choose a MOCR for Su(t|z) if a net survival interpreta-
tion is given. If not, Su(t|z) remains a relative measure and
thus has the same disadvantages as the conditional relative
survival approach.
Let Y be an unobserved indicator, which is 1 if an

individual belongs to the cured group and 0 otherwise.
Another cure model-based measure is the conditional
probability of cure given survival until time t,

G(t|z) = P(Y = 1|T > t, z)

= P(T > t|Y = 1, z)P(Y = 1|z)
P(T > t|z)

= S∗(t|z)π(z)
S∗(t|z)R(t|z) = π(z)

R(t|z) , (4)

which was proposed for cure point estimation by Bous-
sari et al. and Romain et al. [13, 14]. The cure point was
estimated as the time point at which the probability of
cure was sufficiently close to one, e.g., exceeding 95%. This
measure provides a more intuitive interpretation than
Su(t), but relies on accurate estimation of π(z). Indeed,
identifiability is a major issue in cure models, which may
lead to highly biased estimates of π(z). For a discussion
on identifiability of cure models, we refer the reader to
the study by Hanin and Huang [22]. Solutions to avoid
the issue of identifiability, also applied by Boussari et al.
and Romain et al., are available and will be discussed in
Section 4.

Alternative dynamic measures of excess mortality
Conditional probability of cancer-related death
The severity of a cancer can be assessed through the
cumulative incidence of cancer-related death which can



Jakobsen et al. BMCMedical ResearchMethodology           (2020) 20:71 Page 4 of 13

be derived from either cause of death information or rela-
tive survival. By using the cumulative incidence, we derive
the probability,

G(t|z) = P(D = cancer|T > t, z)

= P(D = cancer,T > t|z)
P(T > t|z)

= P(T<∞,D =cancer|z)−P(T≤ t,D =cancer|z)
P(T> t|z) ,

(5)

where P(T < ∞,D = cancer|z) = P(D = cancer|z) is the
probability of dying due to the cancer given covariates z.
The function in (5) is the conditional probability of even-
tually dying from cancer given survival until time t. Since
all patients are bound to die at some point, computing
1 − P(D = cancer|T > t|z) yields the conditional proba-
bility of eventually dying from other causes than cancer.
For a given MOCR, the cure point can then be estimated
as the time at which the probability of cancer-related
death falls below the margin. Although this function pro-
vides an understandable measure of the dynamic cancer-
related mortality risk, computing P(D = cancer|z) gener-
ally requires extrapolation beyond the available follow-up.
Techniques, often involving parametric survival models,
are available to carry out extrapolation but this may lead
to biases. To cope with this, Eloranta et al. [16], who
originally introduced (5), considered models that ensure
P(D = cancer) = P(T ≤ tc,D = cancer) for a finite time
point tc. However, we do not require this restriction
for now.

Loss of lifetime
Due to its straightforward interpretation, the
mean residual lifetime, which can be computed by∫ ∞
t S(u|z)du/S(t|z), is occasionally used as an alternative
to conventional effect measures in survival analysis.
In addition to the already introduced measures, we
consider the loss of lifetime function, given as the differ-
ence between the mean residual lifetime of the general
population and the patient population, i.e.,

G(t|z) =
∫ ∞
t S∗(u|z)du

S∗(t|z) −
∫ ∞
t S(u|z)du

S(t|z) . (6)

This function yields the conditional number of years lost
due to the cancer given survival until time t after the diag-
nosis. Similarly to the probability of cancer-related death,
the cure point can be defined as the time at which the
loss of lifetime reaches some MOCR. Also here, the mea-
sure generally requires extrapolation beyond the available
follow-up. To avoid extrapolation, a restricted loss of life-
time measure could be used, where ∞ in (6) is replaced by
some upper limit, τ , within the follow-up. However, the
interpretation of the restricted loss of lifetime is slightly
more awkward as compared to the unrestricted loss of

lifetime, which makes it difficult to define a MOCR. Gen-
erally, this would depend on the chosen upper limit, τ .
Therefore, we do not consider the restricted loss of life-
time here.

Computational considerations
Extrapolation
In order to compute the loss of lifetime and probability of
cancer-related death from right-censored follow-up data,
extrapolation of the involved survival functions and cause-
specific hazard functions beyond the available follow-up
is required. For the loss of lifetime function, the expected
survival, S∗(t|z), can be extrapolated using the method
of Ederer et al. [23] (Ederer I) and by making assump-
tions about the future population mortality rates [15].
For extrapolating the patient survival, S(t|z), a common
strategy is to incorporate external data to provide accu-
rate extrapolations [24]. In particular, parametric relative
survival models enable extrapolation by decomposing the
patient survival into

S(t|z) = R(t|z)S∗(t|z). (7)

The Ederer I method enables extrapolation of S∗, while
extrapolation of R is possible from any parametric model.
Thus, extrapolation is carried out by modelling the rela-
tive survival given data with limited follow-up and then
making assumptions about how the relative survival con-
tinues beyond the follow-up. Based on long term survival
data and simulations, a recent assessment of different
models for computing the loss of lifetime function did not
demonstrate any consistently superior relative survival
model [17]. In general, extrapolation beyond the available
follow-up is hazardous as even a well-fitting model may
extrapolate poorly and the accuracy of the extrapolation
cannot be validated.
For the conditional probability of cancer-related death,

the cancer-specific cumulative incidence is computed by

P(T ≤ t,D = cancer|z) =
∫ t

0
S(u|z)λ(u|z)du, (8)

where λ is the cancer-specific hazard function. Cause of
death information is required to compute (8), but these
are often incomplete or difficult to determine. Instead of
relying on exact cause of death information, parametric
relative survival models can be used to compute (8) by
making the decomposition S(t|z) = S∗(t|z)R(t|z), assum-
ing λ(t|z) = h(t|z)−h∗(t|z), and using a parametric model
to extrapolate both functions [25]. Again, S∗(t|z) can be
extrapolated using the Ederer I method.
The cure model in (3) is typically fitted using simple

parametric models, e.g., a Weibull model for Su, such that
the relative survival approaches π(z) as time approaches
infinite [9]. Therefore, if (4) does not reach the chosen
MOCR within the follow-up, extrapolation is needed to
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compute the cure point. This is directly enabled by the
parametric cure models.

Flexible parametric relative survival models
As a flexible alternative to simple parametric survival
models, such as theWeibull or log-normalmodel, Royston
and Parmar introduced a fully parametric proportional
hazards model with the log cumulative baseline hazard
modelled by restricted cubic splines [26]. This model
was extended to relative survival by Nelson et al. who
modelled the log cumulative baseline excess hazard by
restricted cubic splines [27]. That is, the relative survival
is specified by,

log
[− log(R(t|z))] = s0(x, γ ) + zTβ , (9)

where s0 is a restricted cubic spline and x = log(t). We
refer to this model as the NRS model.
Andersson et al. altered the base functions of the

restricted cubic splines in (9) to establish a cure model,
which we will refer to as the ARS model [28]. In this
model, the excess hazard is restricted to be zero beyond
the last knot of the splines, resulting in a flat relative sur-
vival after this point. Thus, the last knot can be considered
a strict cure point because h(t|z) − h∗(t|z) = 0 beyond
this point. The knots of the splines are decided upon by
the user prior to the model fitting, which implies that
the strict cure point is defined by the user. A common
approach is to place the last knot at the last uncensored
event time [26, 28], but alternatives can easily be applied.
This model is particularly useful for computing (4) and (5)
as extrapolation is not needed if the last knot is placed
within the follow-up. If tc is the last knot of the splines,
then π(z) = R(tc|z) and P(Y = 1|T > t, z) = 1 for all
t ≥ tc in (4) and P(D = cancer) = P(T ≤ tc,D = cancer)
in (5).
Lastly, we consider the flexible mixture cure (FMC)

model introduced by Jakobsen et al. [17], where Su(t) is
modelled by the splines of the Royston-Parmar model, i.e.,

R(t|z) = π(z)+[ 1 − π(z)] exp(− exp(s0(x, γ ) + zTβ)).
(10)

Due to their flexibility, these three models often provide
similar relative survival estimates within the follow-up,
but differ in their tails, which controls the trajectory
beyond the follow-up. The NRS model is linear on the
log-log scale beyond the last knot, while the ARS model
is constant after the last knot. The splines of the FMC
model are also linear beyond the last knot, but the relative
survival is bounded downwards by π(z). The rationale for
introducing the FMC model is its capability to compute
(4) without the assumption of a strict cure point within
the follow-up. The NRS, ARS, and FMC models can all
be used to compute both (6) and (5), but only the cure

models, ARS and FMC, can be used to computed (4). All
models can be fitted with maximum likelihood.

Cure point estimation
Assume that Ĝ(t) is a monotone estimator of the chosen
comparisonmeasure,G(t), based on a parametric survival
model. For a chosenMOCR, ε, the cure point is estimated
by solving the equation

Ĝ(t|z) = ε, (11)

with respect to t. The estimated cure point is denoted t̂ε .
The variance of t̂ε derived by applying the delta method
after appropriate smoothing of the general population
survival (see Supplementary A for details) is

Var
[
t̂ε

] ≈
(

∂G(t, z)
∂t

|t=t̂ε

)−2
Var [G(t, z)] |t=t̂ε , (12)

where Var [G(t, z)] |t=t̂ε is the variance of G(t̂ε , z) with-
out taking into account the uncertainty of t̂ε , i.e., the
point-wise variance of G evaluated at t̂ε . Note, the vari-
ance is inversely proportional to the derivative of G(tε |z),
which implies a small variance whenever the compari-
son measure is steep and a large variance whenever the
comparison measure is flat.
We implemented the presented method for estimat-

ing cure points and computing their confidence intervals
in the R-package cuRe (https://github.com/LasseHjort/
cuRe). The package contains functions for fitting the FMC
model as well as computing the probability of cure (4),
the probability of cancer-related death (5), and the loss of
lifetime (6). The comparison measures can be computed
using both the NRS, ARS, and the FMC model, except for
the probability of cure, which can only be computed from
cure models.

Simulation study
Simulation design
To illustrate the issue of estimating cure points when
based on comparison measures where extrapolation is
needed, we conducted a simulation study. Data were sim-
ulated according to three relative survival scenarios using
a net survival approach, where the time to disease-related
death,TD, and the time to death from other causes,TP, are
assumed independent [29]. The survival times TD were
simulated from the relative survival, R(t), and TP was sim-
ulated from the a general population survival function,
S∗(t). The observed event time was T = min(TD,TP).
Introducing censoring, the observed follow-up time was
min(T ,C), where C is the censoring time, and the status
indicator was given by 1[T ≤ C].
The general population survival function, S∗, was

derived using a Danish life table from the Human mortal-
ity database [30]. For simplicity, all patients were assumed
to be 60-year-old females diagnosed in 1980. The relative

https://github.com/LasseHjort/cuRe
https://github.com/LasseHjort/cuRe
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survival, R(t), was simulated from the mixture cure model
in (3) using a Weibull distribution for Su. We considered
three scenarios with varying cure proportions (see Figure
B1 and Table B1 for the relative survival trajectories and
parameters, respectively). We selected relatively low cure
proportions in the simulations to obtain a large number of
events, which is generally advantageous for model fitting.
In scenario 1 and 3, the relative survival reaches a plateau
early in the follow-up, while the plateau is reached at the
end of follow-up in scenario 2. To mimic registry data, the
censoring distribution was chosen to be uniform(0, 10).
The simulations were repeated 500 times using a sample
size of 2,000.

Simulation results
For a given clinical relevant margin, ε, and comparison
measure, G(t), the true cure point, tε , was obtained by
inserting the true mixture cure model into G(t) and solv-
ing (11). Cure point estimates, t̂ε , were obtained by fitting
a relative survival model to the simulated data, insert-
ing into G(t) and solving (11). We considered 4 relative
survival models for this purpose:

• The ARS model with knots placed at the 0, 20, 40, 60,
80, 99, and 100 percentiles of the uncensored
follow-up times.

• The FMC model with knots placed at the 0, 25, 50,
75, and 100 percentiles of the uncensored follow-up
times. The cure proportion was modelled using a
logit link function as suggested by Lambert et al. [9].

• The NRS model with knots placed at the 0, 20, 40, 60,
80, and 100 percentiles of the uncensored follow-up
times.

• The Weibull mixture cure model from which the
data were simulated. This model was included to
assess the performance of the “true” model.

The bias of the cure point was computed by the mean
absolute deviation, i.e., 1

500
∑500

j=1 |t̂ε,j − tε|, where t̂ε,j is the
cure point estimate in the jth simulation. The confidence
interval of t̂ε,j was obtained using (12). The average confi-
dence interval length is reported alongside the cure point
bias in Table 2 for each scenario, the four models, and for
varying MOCR. The cure point was calculated using the
probability of cure in (4), the probability of cancer-related
death in (5), and the loss of lifetime in (6).
Overall, the cure point bias seems to decrease with

increasing MOCR. This is likely a result of the trajectory
of the true comparison measures. As the true compari-
son measure in each scenario approaches zero, the slope
decreases, and the measure flattens out (Figure B.2). This
implies that even small differences between the estimated
and true comparison measure can yield relatively large
biases in the estimated cure point whenever small values

of the MOCR are considered (see Fig. 1). This problem is
less pronounced for largerMOCRs, as the slope of the true
comparison measure also becomes numerically larger at
the true cure point.
The true Weibull model yields the most accurate cure

point estimates, but provides wide confidence intervals
especially in scenario 2, where the relative survival only
flattens out by the end of follow-up. More biased cure
points were obtained by the FMC and ARS models. Par-
ticularly in scenario 2, these models produced cure points
biases exceeding half a year. Notably, the FMC model
produced wider confidence intervals compared to the
ARS models. This can be explained by the identifiability
issues associated with the FMC model and the restriction
of the ARS model ensuring a constant relative survival
beyond its last knot. The former may also explain why
a confidence interval could not be computed in 1/500
simulations.
Because the NRS is not a cure model, it could not

be used to estimate the cure point based on the con-
ditional probability of cure. The cure point bias of the
NRS model based on the two remaining comparison mea-
sures was slightly higher compared to the true model in
scenario 1 and 3. However, in scenario 2, the bias was
extremely large. This is likely due to the extrapolation
needed to compute these two comparison measures. The
data were simulated from a Weibull mixture cure model,
which only becomes flat by the end of the follow-up.
When data points are drawn, which introduces random
variation, the NRS model may fail to capture that the true
relative survival contains a plateau, which yields biased
extrapolations.
To conclude, the NRS model seems to provide too

biased results, while the true Weibull model will often be
too simple in practice. The use of either the ARS or FMC
model is likely the best choice for cure point estimation,
but large confidence intervals may occur with the FMC
model.

Analysis of danish cancer registry data
Data description
To exemplify the application of the considered approach
for cure point estimation, we analyzed patient data from
colon cancer patients retrieved from the Danish Colorec-
tal Cancer Group Database [31]. The registry ensures
accurate follow-up on deaths by merging with the Dan-
ish Civil Registration System [32]. The selection of colon
cancer was based on a previous study displaying statis-
tical cure in patients ≥20 years of age [12]. All patients
≥20 years of age diagnosed between 2000 and 2016 were
included. Follow-up was measured as the time from diag-
nosis until death or censoring (June 2017). Danish gen-
eral population mortality rates were retrieved from the
HumanMortality Database [30]. When mortality rates for
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Table 2 Bias and CIL of the cure point estimate in simulated data

ARS model FMC model NRS model Weibull mixture

ε tε Bias CIL(t̂ε) Bias CIL(t̂ε) Bias CIL(t̂ε) Bias CIL(t̂ε)

Conditional probability of cure

Scenario 1

0.05 3.39 0.67 0.65 0.18 0.87 0.11 0.53

0.10 2.90 0.42 0.65 0.13 0.61 0.09 0.45

0.15 2.58 0.27 0.59 0.10 0.49 0.08 0.40

Scenario 2

0.05 6.04 1.13 0.61 1.39 4.94 0.42 2.08

0.10 4.59 0.59 0.70 0.85 3.09 0.31 1.55

0.15 3.73 0.37 0.71 0.59 2.18 0.25 1.26

Scenario 3

0.05 2.17 0.15 0.71 0.44 0.65 0.10 0.48

0.10 1.63 0.09 0.42 0.13 0.39 0.07 0.36

0.15 1.27 0.07 0.32 0.08 0.31 0.06 0.29

Conditional probability of cancer-related death

Scenario 1

0.05 3.39 0.66 0.66 0.18 0.86 0.52 1.76 0.11 0.53

0.10 2.89 0.41 0.65 0.13 0.61 0.30 1.25 0.09 0.44

0.15 2.57 0.27 0.59 0.10 0.48 0.23 0.97 0.08 0.39

Scenario 2

0.05 5.95 1.06 0.62 1.23 4.59 18.95 11.43 0.40 1.99

0.10 4.52 0.54 0.70 0.77 2.86 11.94 12.48 0.30 1.49

0.15 3.67 0.34 0.71 0.54 2.00 7.62 11.66 0.24 1.20

Scenario 3

0.05 2.17 0.14 0.70 0.19 0.64 0.33 1.09 0.10 0.48

0.10 1.62 0.09 0.41 0.10 0.38 0.20 0.67 0.07 0.35

0.15 1.26 0.07 0.31 0.07 0.30 0.15 0.49 0.06 0.29

Loss of lifetime

Scenario 1

1.00 3.34 0.60 0.64 0.16 0.80 0.34 1.47 0.10 0.50

2.00 2.86 0.36 0.61 0.12 0.57 0.21 1.01 0.09 0.42

3.00 2.55 0.23 0.55 0.09 0.45 0.16 0.77 0.08 0.37

Scenario 2

1.00 5.52 0.79 0.61 0.85 3.43 8.81 7.48 0.33 1.63

2.00 4.20 0.38 0.67 0.52 2.13 4.67 6.72 0.25 1.22

3.00 3.42 0.24 0.66 0.36 1.48 2.60 5.17 0.20 0.99

Scenario 3

1.00 2.15 0.13 0.64 0.16 0.59 0.22 0.92 0.09 0.46

2.00 1.62 0.08 0.38 0.08 0.36 0.13 0.55 0.07 0.34

3.00 1.27 0.06 0.29 0.06 0.29 0.10 0.40 0.06 0.28

The cure point estimates were based on the probabiltiy of cure, the probability of cancer-related death, and the loss of lifetime function. The NRS model was not evaluated
for the latter measure since this is not a cure model. ARS: relative survival model by Andersson et al. [28], FMC: flexible mixture cure model by Jakobsen et al. [17], NRS: relative
survival model by Nelson et al. [27], CIL: confidence interval length
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Fig. 1 Illustration of how the cure point bias may be larger whenever the comparison measure is flat. Even though the comparison measure is more
biased around 3 years compared to 10 years, the cure point bias is larger around 10 years. Thus, in this illustration, selecting a small MOCR leads to
higher cure point bias. MOCR: margin of clinical relevance

calendar years beyond those available in the life table were
needed, the age- and sex-specific rates from the last avail-
able calendar year were used. The study was approved by
the Danish Data Protection Agency (2008-58-0028). For
illustrative purposes, we only consider the FMC model
here. The FMC model was fitted using four knots placed
at the 0, 33, 67, and 100 percentiles of the uncensored
follow-up times and a logit link function for the cure
proportion.

Results
In total, 42,380 colon cancer patients were included in the
study and the 5-year Kaplan-Meier estimate was 49% (95%
CI, 48-49%). The fitted FMC model is shown in Figure B3
together with a non-parametric relative survival estimate
calculated by the Ederer I method [23]. Estimates of the 5-
year relative survival, the cure proportion, the probability
of dying due to cancer, and the baseline (at time zero)
loss of lifetime are shown in Table 3. The relative sur-
vival had an immediate steep decrease which flattened
over time suggesting statistical cure. The loss of lifetime
function and the conditional probability of cancer-related
death (Fig. 2) demonstrated a similar pattern with both
approaching zero as time progresses.
Figure 3 displays the estimated cure point for the colon

cancer patients, obtained by solving (11), as function of
the chosen MOCR. Whenever the MOCR is low, small
changes to the margin implied substantial changes in
the estimated cure point, but for larger values, the cure
point was less sensitive towards the choice of margin. For

example, increasing the margin for the loss of lifetime
function from 3 years to 4 years resulted in a decrease
of the cure point estimate from 1.7 to 0.7 years, while
increasing the margin from 0.5 to 1.5 years resulted in a
decrease from 6.7 to 3.9 years.
The patients were further stratified according to age

group (-60, 60-70, 70-80, 80-), gender, and clinical stage
(Union for International Cancer Control stage I-II, III-IV)
and the FMC model was fitted to each subgroup sepa-
rately. The stratified cure point estimates computed with
the conditional probability of cancer-related death (see
Figures B.4 an B.5) as comparison measure and three
MOCRs (0.025, 0.05, and 0.075) are shown in Fig. 4. The
cure point estimates of female andmale patients displayed
similar trends. In certain strata, the confidence interval
of the cure point was wide, which makes the usability of
these estimates difficult. For other subgroups, the variance

Table 3 Relative survival estimates, cure proportion, probability
of dying due to cancer, and baseline loss of lifetime estimates for
Danish colon cancer patients. RS: relative survival

n = 42,380

Mean age (range) 72(22-105)

5-year RS (Ederer II) 0.61(0.60-0.61)

5-year RS (parametric) 0.60(0.59-0.61)

Cure proportion 0.54(0.53-0.56)

Probability of dying due to cancer 0.42(0.41-0.42)

Baseline loss of lifetime (years) 5.89(5.79-5.99)
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Fig. 2 Left: The loss of lifetime function within the first 15 years after diagnosis for Danish colon cancer patients. The dashed lines indicate cure point
estimates based on three different clinical relevant margins; 1, 2, and 3 years. Right: The conditional probability of cancer-related death within the
first 15 years after diagnosis for Danish colon cancer patients. The clinical relevant margins are 0.05, 0.10, and 0.15. The shaded areas indicate
pointwise 95% confidence intervals

was reasonably small and led to stable estimates. The
cure point for low stage patients >80 years of age was
very small, and due to the slope of the conditional prob-
ability of cancer-related death (Figures B.4 an B.5), the
corresponding confidence interval was narrow.

Discussion
Cure points enable communication of prognostic infor-
mation to cancer patients and are particularly useful for
patients attending routine follow-up. Also health care

planners may find cure points useful, e.g., for decid-
ing the duration of post-treatment follow-up programs.
If an early cure point is detected, the duration may be
adjusted accordingly, which potentially lowers the cost of
the follow-up program and avoids unnecessary patient
anxiety related to routine follow-up. However, the detec-
tion of long term toxicities is typically also a goal of routine
follow-up programs and should be considered alongside
the mortality risk. The search for surrogate endpoints to
be used in clinical trials in order to increase the pace at

Fig. 3 The estimated cure points with 95% confidence intervals against the clinical relevant margin in Danish colon cancer patients. For the loss of
lifetime function, the margin is given in years
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Fig. 4 The estimated cure point for Danish colon cancer patients stratified on age group (-60, 60-70, 70-80, 80-), gender, and stage (UICC stage I-II vs.
III-IV). The estimates are based on the conditional probability of cancer-related death (see Figures B.4 and B.5). UICC: Union for International Cancer
Control

which these are executed has been the focus of recent can-
cer studies [33, 34]. Cure points may be used to derive new
surrogate endpoints, since prolonging the study period
beyond the cure point may not be necessary. However,
long term risks cannot be observed in studies with short
follow-up and additional validation of new endpoints in
a series of clinical trials is required before they can be
applied in practice [35].
In this article, we have reviewed approaches to esti-

mate cure points from cancer survival data, discussed
their usability, and introduced two new useful measures
for cure point estimation, namely the conditional prob-
ability of cancer-related death and the loss of lifetime
function. In recent studies of lymphoma, Maurer et al.
and Hapgood et al. used sequential testing of standard-
ized mortality ratios to evaluate the survival improvement
of the patients [6, 7]. However, as previously mentioned,
approaches that directly involve hypothesis testing are
not appropriate for cure point estimation. In our previ-
ous work, we combined the same standardized mortality
ratio approach with restricted loss of lifetime estimates
within lymphoma and concluded that the patients had a
sufficiently low restricted loss of lifetime after 2 years of
event-free survival [8]. Dal Maso et al. [11] computed the
cure point of various cancers using the conditional relative
survival approach, while Chauvenet et al. [10] computed
the cure point of colorectal cancer patients as the time at

which the relative survival of the uncured fell below 10%.
Andersson et al. used the loss of lifetime approach to eval-
uate the survival progression of colon cancer patients and
argued that the loss of lifetime was sufficiently low after
8-10 years of survival [12].
In the simulations, the bias of the cure point was com-

puted for three different cure models, namely the FMC,
ARS, and theWeibull mixture curemodel. The ARS incor-
porates a strict cure point by assuming a constant relative
survival beyond the last knot of the splines [28]. However,
estimating the cure point from a model where the strict
cure point is explicitly defined seems counter-intuitive
and the choice of strict cure point will likely have a large
influence on the final cure point estimate. Therefore, this
approach may not be ideal for the purpose of estimat-
ing cure points and we suggest that other models are
used or that the last knot of the ARS model is placed
far beyond the point at which the excess hazard can be
assumed to be zero. Nevertheless, Boussari et al. applied
this model to estimate the cure point through the proba-
bility of cure in (4) [13]. As demonstrated in the simulation
study, (4) could also be computed from regular cure mod-
els where cure occurs at an asymptote (the FMC or the
Weibull mixture cure model). However, computing (4)
would require reliable cure proportion estimates which
can be problematic in some scenarios due to identifiability
issues [21].
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The main issue associated with the loss of lifetime
function and the conditional probability of cancer-related
death is the need for extrapolation for which the accu-
racy cannot generally be quantified. This, combined with
the stochastic nature of time to event data, may lead to
biased conclusions. As no single extrapolation method is
universally superior [17], it is recommended to accom-
pany the cure point estimates with a sensitivity analysis in
which different techniques are used if these comparison
measures are used.
Deciding on a MOCR is an essential part of the present

methodology. This decision is similar to the choice of a
non-inferiority margin as done in non-inferiority stud-
ies [36]. The choice of MOCR may be based on, e.g.,
the age and gender distribution of the considered patient
population, or if single-patient cure points are of inter-
est, the specific characteristics of the patient. Therefore, it
is important that researchers with experience within the
field of research aid in deciding on a MOCR which also
emphasizes the need for considering comparison mea-
sures that are interpretable. It is generally difficult to
choose a comparison measure, an estimation procedure
for the comparison measure, and a MOCR such that both
interpretability and computability are preserved.
In addition, the sensitivity of the cure point towards the

choice of MOCR is a major issue. When the applied com-
parison measure is steep, the cure point is fairly robust
against small changes in the chosen MOCR, whereas the
cure point becomes very sensitive to small changes in
the MOCR whenever the comparison measure is flat.
Additionally, the variance of the cure point estimator is
inversely proportional to the derivative of the compari-
son measure evaluated at the estimated cure point. This
may lead to very large confidence intervals if the slope
of the comparison measure is small at the estimated cure
point, making the cure point estimate difficult to apply
in practice. Thus, computing cure points is a challenging
task and we suggest that extensive sensitivity analyses are
conducted if cure point estimates are of interest.
It is worthwhile to pay attention to the interpretation

of the cure point. If the patient mortality risk reaches
the same level as the general population mortality risk,
it may be tempting to conclude that the patients have
the expected survival they would have experienced had
they never had cancer. While this is likely of interest
to the patients, this conclusion cannot be drawn from
these analyses as the general population is typically only
matched on variables such as age, gender, and calendar
year. If a study includes patients treated with a specific
therapy, which is typically not given to frail patients, or
merely includes patients with high socioeconomic status,
the resulting patient population may be in slightly bet-
ter shape than the general population. Thus, for patients
achieving statistical cure, a significant excess mortality

riskmay still exist if compared to non-diseased individuals
with similar physical capabilities or similar socioeconomic
status. Information on physical condition and socioeco-
nomic status is typically not included in publicly available
life tables and thus cannot readily be taken into account.
Because of the varying survival trajectory of cancers,

cure points are not useful for all diseases, e.g., cancers
where statistical cure is not achieved such as bladder
cancer [15]. To accompany analyses of statistical cure, a
formal test for the assumption of statistical cure would
be convenient. Formal tests based on simple paramet-
ric models have previously been introduced [37, 38], but
these are not commonly used and suffer from a number of
practical disadvantages [39].

Conclusion
Cure point estimation is challenging and requires care-
ful selection of an interpretable measure which quantifies
the mortality difference between the patient and general
population, a MOCR, and an estimation procedure that
can accurately estimate the dynamic mortality difference.
Additionally, the cure point may be sensitive to small
changes in the MOCR while large confidence intervals
may be obtained dependent on the behavior of the com-
parison measure. Therefore, if cure points are of interest,
sensitivity analysis are encouraged and the limitations of
the applied approach should be clearly stated.
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