

Aalborg Universitet

Time in therapeutic range and risk of thromboembolism and bleeding in patients with a mechanical heart valve prosthesis

Havers-Borgersen, Eva; Butt, Jawad H; Vinding, Naja E; Torp-Pedersen, Christian; Gislason, Gunnar; Køber, Lars; Fosbøl, Emil L

Published in:

The Journal of Thoracic and Cardiovascular Surgery

DOI (link to publication from Publisher): 10.1016/j.jtcvs.2019.02.061

Creative Commons License CC BY-NC-ND 4.0

Publication date: 2020

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Havers-Borgersen, E., Butt, J. H., Vinding, N. E., Torp-Pedersen, C., Gislason, G., Køber, L., & Fosbøl, E. L. (2020). Time in therapeutic range and risk of thromboembolism and bleeding in patients with a mechanical heart valve prosthesis. The Journal of Thoracic and Cardiovascular Surgery, 159(1), 74-83.e4. https://doi.org/10.1016/j.jtcvs.2019.02.061

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

Accepted Manuscript

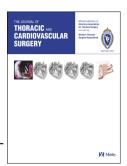
Time in Therapeutic Range and Risk of Thromboembolism and Bleeding in Patients with Mechanical Heart Valve Prosthesis

Eva Havers-Borgersen, MB, Jawad H. Butt, MD, Naja E. Vinding, MD, Christian Torp-Pedersen, MD, DMSc, Gunnar Gislason, MD, PhD, Lars Køber, MD, DMSc, Emil L. Fosbøl, MD, PhD

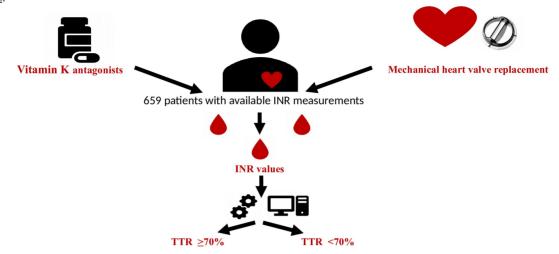
PII: S0022-5223(19)30506-9

DOI: https://doi.org/10.1016/j.jtcvs.2019.02.061

Reference: YMTC 14201


To appear in: The Journal of Thoracic and Cardiovascular Surgery

Received Date: 9 July 2018


Revised Date: 24 January 2019 Accepted Date: 12 February 2019

Please cite this article as: Havers-Borgersen E, Butt JH, Vinding NE, Torp-Pedersen C, Gislason G, Køber L, Fosbøl EL, Time in Therapeutic Range and Risk of Thromboembolism and Bleeding in Patients with Mechanical Heart Valve Prosthesis, *The Journal of Thoracic and Cardiovascular Surgery* (2019), doi: https://doi.org/10.1016/j.jtcvs.2019.02.061.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Methods:

Results: Low quality of VKA treatment defined as TTR<70% is associated with a higher risk of thromboembolism but not bleeding compared with high quality of VKA treatment defined as TTR≥70%. Further, mechanical mitral valves are associated with a lower TTR compared with mechanical aortic valves.

<u>Implications</u>: These results emphasize the importance of monitoring VKA therapy in mechanical heart valve patients.

Time in Therapeutic Range and Risk of Thromboembolism and Bleeding in 1 **Patients with Mechanical Heart Valve Prosthesis** 2 3 Running title: Mechanical Heart Valves and Oral Anticoagulation 4 Eva Havers-Borgersen, MB; ¹ Jawad H. Butt, MD; ¹ Naja E. Vinding, MD; ¹ Christian Torp-5 Pedersen, MD, DMSc;² Gunnar Gislason, MD, PhD;³ Lars Køber, MD, DMSc;¹ Emil L. Fosbøl, 6 MD, PhD¹ 7 8 ¹ Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. 9 ² Department of Health Science and Technology, Aalborg University, Aalborg, Denmark. 10 ³ Department of Cardiology, Herlev and Gentofte University Hospital, Hellerup, Denmark. 11 12 **Address for Correspondence:** 13 Eva Havers-Borgersen 14 Department of Cardiology 15 16 Rigshospitalet, Copenhagen University Hospital Blegdamsvej 9, 2100 København, Denmark 17 Tel: 0045 31361995 18 E-mail: eva.havers-borgersen@regionh.dk / evaborgersen@gmail.com 19 20 Conflict of interest 21 EHB: None declared 22

JHB: None declared

NEV: None declared

CTP: Consultant fees and research funding from Bayer and Biotronic

23

24

25

26	GHG: Research grants from Bayer, Bristol-Myers Squibb, Pfizer, AstraZeneca, and Boehring
27	Ingelheim
28	LK: None declared
29	ELF: Previous research funding from Janssen and Janssen and Bristol-Myers
30	
31	<u>Funding:</u> This work was supported by the Danish Council for Independent Research.
32	
33	Word count: 3416

35 Glossary of Abbrevations

- VKA: vitamin K antagonists

37 - OAC: oral anticoagulation

38 - INR: International Normalized Ratio

39 - TTR: Time in Therapeutic Range

40 - ICD: International Classification of Diseases

- NCSP: NOMESCO Classification of Surgical Procedures

42 - ATC: Anatomical Therapeutic Chemical classification

- MAV: mechanical aortic valve

- MMV: mechanical mitral valve

- MHV: mechanical heart valve

47 Central Message

- 48 We show that low versus high quality of vitamin K antagonist therapy, defined as time in
- therapeutic range <70% versus $\ge 70\%$, is associated with a higher risk of thromboembolism but not

50 bleeding.

Perspective Statement

Oral anticoagulation with vitamin K antagonists (VKA) is recommended after mechanical heart valve replacement. However, data regarding the association between the quality of VKA treatment and the risk of complications are sparse. This manuscript contributes with important research findings emphasizing the importance of monitoring the VKA therapy in mechanical heart valve patients.

59	ABSTRACT
60	Objective: Oral anticoagulation with vitamin K antagonists (VKA) is recommended after
61	mechanical heart valve replacement. However, data regarding the association between the quality of
62	VKA treatment and the risk of complications are sparse.
63	Methods: Patients undergoing mechanical heart valve replacement (1997-2012) with available data
64	on International Normalized Ratio (INR) values were identified in Danish registries. The quality of
65	VKA treatment between discharge after valve replacement and 6 months post-discharge (index) was
66	assessed as time in the rapeutic range (TTR) \geq 70% or <70% reflecting the percentage of time in
67	therapeutic INR interval. Patients were followed from index until occurrence of an outcome of
68	interest (i.e. thromboembolism and bleeding), death, or end of study (December 31, 2012).
69	whichever came first. The risk of outcomes according to quality of VKA treatment was estimated
70	with multivariable Cox regression.
71	Results: In total, 659 patients undergoing mechanical heart valve replacement were included in the
72	study. Median number of INR measurements in the 6-month period after surgery was 13 (IQR 8-
73	19). Median TTR was 54.9% (IQR 39.0-72.9) and 29.1% of patients had a TTR≥70%. Median
74	follow-up was 6.1 years. The risk of thromboembolism was significantly lower in the group with
75	TTR>70% compared with TTR<70% (Hazard ratio (HR) 0.44, 95% CI 0.22-0.85), while no
76	significant difference concerning risk of bleeding among groups was found (HR 0.63, 95% CI 0.36-
77	1.08).
78	Conclusion: In patients undergoing mechanical heart valve replacement, TTR<70% in the 6-month
79	period after surgery was associated with an increased risk of thromboembolic events but not
80	bleedings compared with TTR>70%.
81	

83

82

Word count for the abstract: 250

INTRODUCTION

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

More than 100 million people worldwide suffer from valve diseases and the prevalence is expected to increase concurrently with increasing life expectancy. Worldwide, approximately 300,000 valve replacements are carried out annually and oral anticoagulation (OAC) therapy in patients with mechanical prosthesis is crucial in order to reduce the risk of thromboembolic complications and mortality. This comes at a natural price of an increased bleeding risk; hence, tight control of OAC therapy is clinically important in finding the optimal balance between effectiveness and safety. Mechanical prostheses are recommended for patients younger than 65 years because of a long durability compared with bioprosthetic valves, yet they are associated with a higher risk of thromboembolic events and life-long OAC therapy with vitamin K antagonists (VKA) is recommended.² VKA have a slow on- and offset, a narrow therapeutic window, and a variable doseresponse relationship and exhibit several drug-drug and drug-food interactions. Further, guidelines recommend a continuous patient control in order to closely monitor the quality of the VKA treatment as variability of International Normalized Ratio (INR) or by Time in Therapeutic Range $(TTR)^{2,3}$ Although the importance of a well-regulated VKA treatment in patients with atrial fibrillation is well established^{4,5,6,7}, little work has been done to clarify the impact of TTR on the risk of complications in mechanical heart valve patients. Among AF patients, studies have shown an association between low quality of VKA treatment and the risk of outcomes, while studies on patients with mechanical heart valve patients have shown contradictory results.^{8,9,10,11} This nationwide carefully designed study sets out to examine the association between TTR and the risk of thromboembolic events and bleeding in patients with mechanical valve prostheses.

METHODS

T 4	
l lata	sources
Data	SULLES

All residents in Denmark are assigned a unique and permanent civil registration number allowing accurate linkage of nationwide administrative registries at an individual level. *The Danish National Patient Registry* contains information on all hospital admissions, diagnoses (coded according to the International Classification of Diseases (ICD) eighth and tenth revision), and surgical procedures (coded according to the NOMESCO Classification of Surgical Procedures (NCSP)) since 1978. *The Danish National Prescription Registry* holds information on all claimed prescriptions since 1995 (coded according to the Anatomical Therapeutic Chemical (ATC) classification) including date of drug dispensation, strength, and quantity. All pharmacies in Denmark are by legislation obliged to register all dispensed prescriptions in order to ensure complete and accurate registration. The *Danish National Population Registry* holds information on vital status and contains information on all deaths.

Information on INR values was obtained through registries of laboratory databases from general practitioners and from hospitals in the bigger part of Denmark including Northern Jutland and Zealand from 1st of January 1997 to 31th of December 2012.

Study population and TTR calculation

The study population comprised patients who underwent isolated mechanical aortic valve (MAV) or mechanical mitral valve (MMV) replacement (NCSP codes: KFMD00 and KFKD, respectively) in the period 1st of January 1997 to 31th of December 2012. Patients were followed from index (6 months post-surgery) until occurrence of an outcome (i.e. thromboembolism or bleeding), death, a maximum ten years of follow-up, or end of follow-up (December 31, 2012), whichever came first. Patients were excluded if they had undergone previous heart surgery, died before index, or experienced an outcome before index. Due to the low number of patients who underwent both

MAVR and MMVR (n=21), these patients were excluded from the study. The quality of VKA
treatment can be described by means of TTR reflecting the percentage of time the patient has been
in therapeutic INR interval. Current guidelines recommend an INR of 2.0-3.0 or 2.5-3.5 for patients
with MAV and MMV, respectively.2 TTR was calculated in the period from baseline (date of
discharge) to index. TTR was assessed by the Rosendaal method, calculated as the total time in
therapeutic interval divided by total time of observation. This method assumes a linear correlation
between INR measurements and requires at least three INR values ^{6,13,14} ; hence, patients with less
than three INR values before index were excluded (Figure 1). The patients excluded due to lack
of/insufficient INR values were comparable to the included patients. In order to calculate an
accurate TTR in the period from baseline to index, the TTR calculation was not started until the
patient was above the lower limit of their target therapeutic INR range i.e. 2.0 and 2.5 for patients
with MAV and MMV, respectively, thus the individual period of TTR calculation could be less than
6 months. TTR calculation was stopped if more than 60 days passed between two successive
measurements to ensure a precise analysis of the anticoagulation; hence, patients with more than 60
days between their two first INR measurements were excluded from the study (Figure 1). Thus, it is
critical to have available and sufficient INR values in order to calculate TTR. In order to accurately
access a reliable TTR, follow-up was initiated 6 months following discharge. According to current
European guidelines² TTR ≥70% is considered high quality and consequently TTR <70% is
considered low quality; thus, the study population was stratified into two groups according to their
TTR value.

Covariates

154 Comorbidities were defined as at least one hospitalization any time prior to baseline (ICD-codes in 155 Supplementary Table 1). Patients with diabetes and hypertension were identified using claimed

drug prescriptions as done previously.¹⁵ Concomitant pharmacotherapy was defined by at least one filled prescription within six months prior to baseline.

Outcomes

Outcomes included thromboembolism, bleeding events, and all-cause mortality. Thromboembolism was defined as a composite of valve thrombosis, stroke, AMI, or arterial embolism (ICD-codes in Supplementary Table 1). Bleeding was defined as a major bleeding event requiring hospital admission (ICD-codes in Supplementary Table 1). Thromboembolism have previously been validated with high positive predictive values.^{16–18}

Statistical analysis

Differences in baseline characteristics according to TTR were tested using the chi-square test for categorical variables and the Mann-Whitney test for continuous variables. Multivariable logistic regression was applied to identify baseline characteristics associated with TTR ≥70%. The cumulative incidences of thromboembolism and bleeding were estimated using the Aalen-Johansen estimator incorporating competing risk of death, whereas the cumulative incidence of all-cause mortality was estimated using the Kaplan-Meier estimator. Differences between groups were assessed using Gray's test and the log-rank test, respectively. In order to calculate hazard ratios (HR) for thromboembolism, bleeding, and all-cause mortality, we used multivariable cause-specific Cox regression models adjusted for sex, age, valve type, comorbidities listed in Table 1, and concomitant pharmacotherapy listed in Table 1. The proportional hazards assumption was tested and found valid. Relevant interactions were tested and found insignificant, unless otherwise stated. All statistical analyses were performed with SAS statistical software (SAS 9.4, SAS Institute, Cary, NC, USA). A two-sided p-value <0.05 was considered statistically significant.

Sensitivity analyses

To test the robustness of our findings, we assessed quality of VKA treatment by INR variability.
INR variability was assessed as variance growth rate described and defined by Finn et al. 19 The
variance growth rate reflects the degree to which a patient's INR deviates from his or her previous
INR not taking the intensity of anticoagulation into account. Thus, the variability refers to the
standard deviation of a linear curve of interpolated INR measurements. A mean of INR variability
of 0.75 was chosen since the median (Supplementary Table 4) was shown to be 0.75. Thus, INR
variability \geq 0.75 was considered as high deviation, whereas INR variability $<$ 0.75 was considered
as low deviation. Furthermore, a multivariable Cox regression with TTR as a time-dependent
variable was performed adjusted for the aforementioned covariates. TTR was calculated
continuously from three sequential INR values in the period from baseline to occurrence of an
outcome (i.e. thromboembolism or bleeding), death, a maximum ten years of follow-up, or end of
follow-up (December 31, 2012), whichever came first. The study population in the time dependent
analysis consisted of 670 patients, since no patients with outcomes in the follow-up period were
excluded. Moreover, propensity score stratification analyses were performed as a balancing method.
Hazard ratios were generated using Cox proportional hazards regression stratified in three groups
according to the propensity to achieve a TTR>70%. Propensity scores were calculated using a
multi-variable logistic regression with the dependent outcome as achieving a TTR>70%. The
propensity scores were generated from the covariates presented in Figure 2. The C index of the
propensity model was 0.6 indicating relatively good discrimination. Stratification on propensity
scores ensured comparison only within strata of propensity scores.

Ethics

	Meeli ilb immeelini
204	The study was approved by the Danish Data protection Agency (reference no: 2007-58-0015/GEH-
205	2014-012, I-suite no: 02720). Ethical approval is not required for retrospective register-based
206	studies in Denmark.
207	
208	RESULTS
209	Population
210	A total of 659 patients undergoing mechanical heart valve (MHV) replacement were included in the
211	study; of these, the majority (80.0%) underwent mechanical aortic valve replacement (Figure 1)
212	The median age of the study population was 58.0 years (interquartile range (IQR) 50-64) and 70.1%
213	were men. The median amount of INR measurements in the 6-month period after surgery was 13
214	(IQR 8-19). Baseline characteristics for the overall study population and according to TTR are
215	shown in Table 1.
216	
217	Time in therapeutic range
218	Overall, 29.1% of the study population had a TTR ≥70%. Median TTR was 54.9 (IQR 39.0-73.1)
219	and was higher among patients with MAV than patients with MMV (58.9% and 37.0%
220	respectively) (Table 2). The median of the average INR value was 2.6 among patients with MMV
221	(therapeutic range 2.5-3.5) and 2.4 among patients with MAV (therapeutic range 2.0-3.0). Results
222	from the multivariable logistic regression on factors associated with a TTR ≥70% are shown in
223	Figure 2. In general, baseline characteristics in the two groups were similar, though TTR <70% was
224	associated with mechanical mitral valve replacement (Odds Ratio 0.17, 95% confidence interval
225	(95% CI) 0.17-0.53, P<0.001). Among the excluded 21 patients who underwent both MAVR and
226	MMVR, the median TTR was 51.4% (IQR 29.4-57.8%) and 19.1% of patients had a TTR>70%.

227

228

Outcomes

229	During a median follow-up of 6.1 years, 79 patients experienced a thromboembolic event (AMI
230	n=20, stroke n=57, arterial embolism n=3, valve thrombosis n=2). In total, 66 of the patients with a
231	TTR <70% and 13 of the patients with a TTR ≥70% had a thromboembolic event. A significant
232	difference was found when looking at the unadjusted cumulative incidence curve (P=0.011) (Figure
233	3). Also, in the multivariable model (Table 3) the risk of thromboembolism was significantly lower
234	in the group with TTR ≥70% compared with TTR <70% (Hazard ratio (HR) 0.44, 95% CI 0.22-
235	0.85, P=0.015).
236	During the follow-up period, 94 patients experienced a bleeding event. When stratified
237	according to TTR, 69 of the patients with a TTR <70% and 25 of the patients with a TTR ≥70%
238	experienced a bleeding event. In the cumulative incidence curve (Figure 4) and in the multivariable
239	analysis (Table 3), no significant difference was found concerning risk of bleedings among groups
240	(TTR <u>></u> 70% vs. TTR<70%) (P=0.60 and HR 0.63, 95% CI 0.36-1.08, P=0.094, respectively).
241	Patients with a history of stroke, ischemic heart disease, atrial fibrillation, or hypertension were
242	at risk of for thromboembolic events, whereas patients with prior bleeding event, a history of
243	hypertension, or abnormal liver function were at risk of a new bleeding event. Supplementary Table
244	2 and 3 summarize factors associated with thromboembolic events and bleedings, respectively.
245	Among patients experiencing a first-time outcome (i.e. thromboembolic event or bleeding), 3 and 9
246	patients experienced a recurrent thromboembolic event or bleeding, respectively.
247	During the follow-up period, 95 patients died and the incidence of mortality was shown to be
248	lower in the group with TTR ≥70% compared with the group with TTR <70% (n=21 and n=74,
249	respectively). TTR ≥70% was shown to be associated with a similar risk of mortality compared
250	with TTR <70% in the cumulative incidence curve (P=0.15) (Figure 5) and in the multivariable
251	analysis (Table 3) (HR 0.84, 95% CI 0.50-1.42, P=0.52).

252

253

Sensitivity analyses

254	A sensitivity analysis was performed using INR variability as an alternative way of describing the
255	quality of anticoagulation treatment. Median INR variability was 0.75 (IQR 0.49-1.16). Overall,
256	67.7% of the population group had INR variability <0.75; however, it concerned 55.2% of the
257	MAV patients and 29.6% of the MMV patients (Supplementary Table 4). In unadjusted analyses,
258	INR variability ≥0.75 was associated with higher risk of bleedings and death (P=0.0001 and
259	P=0.0012, respectively) when compared with INR variability <0.75, while no significant difference
260	was found with respect to risk of thromboembolism (P=0.15). In adjusted analyses, no significant
261	difference between the two groups (INR variability ≥0.75 vs. <0.75) was found concerning the risk
262	of thromboembolism (HR 0.63, 95% CI 0.37-1.07, P=0.087), bleedings (HR 0.72, 95% CI 0.44-
263	1.18, P=0.20), and mortality (HR 0.68, 95% CI 0.43-1.07, P=0.096) (Supplementary Table 5).
264	Additionally, a multivariable Cox regression analysis with TTR as a time-dependent covariate
265	was performed. The median amount of INR measurements per patient was 44 (IQR 19-90). No
266	differences were found in terms of risk of thromboembolism (HR 0.87, 95% CI 0.30-2.52, P=0.80),
267	bleeding (HR 1.23, 95% CI 0.51-2.97, P=0.65), or all-cause mortality (HR 1.57, 95% CI 0.64-3.89,
268	P=0.33) between patients with TTR <70% and patients with TTR \geq 70%.
269	Further, propensity score stratification analyses were performed yielding similar findings as the
270	main results (Hazard ratio (HR) 0.51, 95% CI 0.27-0.95 and HR 0.59, 95% CI 0.33-1.06 for
271	thromboembolism and bleeding, respectively).

DISCUSSION

In this study, we examined the association between the quality of VKA treatment, as measured by TTR, and the risk of adverse outcomes in patients undergoing MHV replacement. Our study yielded three principal findings. First, baseline characteristics were found similar between the two groups (TTR <70% vs. TTR \geq 70%) with the exception that MMV patients more often had TTR <70%. Second, TTR was found lower in MMV patients compared with MAV patients. Third, TTR <70%

was	associated	with an	n increased ri	sk of thro	omboembolis	m but not	bleeding	and all-cause	e mortality,
com	npared with	TTR >	70% in patie	nts with N	ИНV.				

Few studies have examined the association between baseline characteristics and quality of VKA treatment, though their findings have not been consistent. A Korean study showed no significant associations between variables and quality of VKA treatment in an adjusted model.⁶ Also, Wypasek et al. found in a multiple regression analysis that MAV patients with TTR ≥60% did not differ from patients with TTR <60% with respect to demographic or cardiovascular risk factors, yet, coronary artery disease and previous stroke were associated with higher TTR, while CYP2C9*2 allele variant was associated with lower TTR.¹⁴ In studies on AF patients, variables associated with TTR have been summarized in the SAMe-TT2R2 score (female sex, age <60 years, medical history [more than two comorbidities], treatment [interacting drugs, eg. Amiodarone], tobacco use [doubled], race [doubled]); a higher score was associated with an increased risk of labile INR (reflected as low TTR) and outcomes.^{20,21} Hence, the current research gives an ambiguous picture of the association between baseline characteristics and the quality of TTR; thus, our study emphasizes the fact that it is difficult to predict which patients are susceptible of a low quality of VKA treatment.

MMV have been shown to be more thrombogenic than MAV.²² The relative risk of prosthetic valve thrombosis have shown to be twice as high for MMV compared with MAV²³, and also, the risk of mortality has been shown to be highest for patients with a MMV prosthesis.¹⁰ Overall, studies have shown that the risk of outcomes is higher in MMV patients compared with MAV patients.^{11,22,24} We found that MMV patients had lower quality of VKA treatment compared with MAV patients, and since lower TTR is associated with higher risk of outcomes, MMV patients are, prima facie, at higher risk of outcomes compared with MAV patients.

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

Several studies have shown an association between increased risk of bleeding with increasing INR and increased risk of thromboembolic events with decreasing INR.^{3,13} Also, studies have shown that lack of anticoagulation treatment results in a thromboembolic rate of up to 12% per year for MAV patients and 22% per year for MMV patients, and that VKA treatment reduces these risks to 1-4 % per year.²⁵ In our study, patients with TTR <70% had a significant higher risk of thromboembolism compared with patients with TTR >70%, and trends towards differences were observed regarding the risk of bleeding and all-cause mortality among groups. In the sensitivity analysis on INR variability, trends towards differences concerning the risk thromboembolism, bleeding, and allcause mortality were found, although no differences in outcomes were found in the time-dependent analysis among groups. The quality of VKA treatment is usually defined over a longer period of time as in our six months follow-up, but since the INR value can change rapidly, the timedependent analysis could give a more precise picture of the risk of outcomes at any given time. However, the amount of INR measurements showed great variance in our study population and as a result of the limited amount of INR measurements in some patients, the time-dependent analysis has limited power because of its time specific nature. Previous studies have focused on Cox regression analyses on TTR or INR variability, and the risk of outcomes in MHV patients has been associated with lower quality of TTR. Grzymala-Lubanski et al. found that the risk of thromboembolic events, bleeding, and death was significantly higher at lower TTR levels in MHV patients 10,11, while other studies found that high INR variability was associated with significant higher risk of thromboembolic events, bleeding, and mortality in MHV patients. 19,26 The majority of these studies included rather small study populations. More work has been done regarding the quality of VKA treatment and the risk of outcomes in AF patients. Björck et al found that the risk of bleeding, thromboembolism, and mortality was higher at

TTR <70% and INR variability above mean when compared with TTR >70% and INR variability

below mean⁵. Likewise, Gallagher et al. found that AF patients with TTR >70% had lower risk of stroke and mortality when compared with patients with TTR <70%.¹³ The studies on AF patients included large study populations compared with the studies on MHV patients, hence, our study is important because of a relatively large and representative study population of MHV patients. Thus, our study has the advantage of a more complete analysis that supports the current evidence on the association between low TTR (<70%) and high INR variability (\geq 0.75) and a higher risk of adverse outcomes.

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

329

330

331

332

333

334

335

Strengths and limitations

The main strength of our study is the combination of complete administrative registries including data on hospital admissions, deaths, and filled prescriptions in Denmark in combination with data on INR values. This retrospective study was carried out on every patient with accessible data; however, the main limitation was the number of patients with accessible blood samples. In addition, patients can have their INR values analysed at general practitioners or by self-monitoring at home without reporting the result; thus the laboratory databases might not be fully representative, although we tried to overcome this challenge with the restriction of 60 days between measurements. Due to exclusion criteria, the study population is smaller than the total population undergoing mechanical heart valve replacement. Further, TTR was calculated in a 6-month period, and so it cannot be excluded that TTR could change later on. Moreover, additional events may have occurred in the first six months post-discharge but these events are not included due to the nature of this study. We tried to overcome this challenge in the time-dependent analysis, however, due to a great variance of the amount of INR measurements per patient this analysis has limited power. Thus, more INR measurements will be needed in order to strengthen this sensitivity analysis. Additionally, patients may require anticoagulation interruption during surgical procedures etc. possibly affecting the risk of outcomes which we do not have available data on to take into account.

In the propensity score stratification analyses, similar results were found compared	with the main
analysis; the difference in risk of bleeding was non-significant between groups	s, however, a
tendency towards a difference was found. The Cox analyses were adjusted	for relevant
demographics, comorbidities, and use of medication, yet the influence of potential co	nfounders and
thereby residual confounding cannot be omitted.	

Conclusions

Our study supports the existing knowledge that low quality of VKA treatment, defined as TTR <70%, is associated with a higher risk of thromboembolic events compared with high quality of VKA treatment (TTR ≥70%), and also that MMV was associated with lower TTR compared with MAV. Therefore, it is essential to emphasize the awareness of the monitoring of anticoagulant therapy in every patient on OAC VKA treatment. For graphical overview of methods, results, and implications of the study, see also graphical abstract.

368 <u>Acknowledgements</u>

369 None

371	<u>LEGENDS</u>
372	Central picture Cumulative incidence of thromboembolism in patients with mechanical heart
373	valves according to quality of VKA treatment (TTR ≥70% vs. TTR<70 %). TTR, Time in
374	Therapeutic Range.
375	
376	Figure 1 Selection of the study population. INR: International Normalized Ratio
377	
378	Figure 2 Baseline characteristics associated with TTR <70% and TTR >70%.
379	TTR: Time in therapeutic range. CI: Confidence intervals. COPD: Chronic obstructive lung disease.
380	
381	Figure 3 Cumulative incidence of thromboembolism in patients with mechanical heart valves
382	according to quality of VKA treatment (TTR ≥70% vs. TTR <70%). TTR: Time in therapeutic
383	range. VKA: vitamin K antagonists.
384	
385	Figure 4 Cumulative incidence of bleeding in patients with mechanical heart valves according to
386	quality to quality of VKA treatment (TTR \geq 70% vs. TTR <70%). TTR: Time in the rapeutic range.
387	VKA: vitamin K antagonists.
388	
389	Figure 5 Cumulative incidence of mortality in patients with mechanical heart valves according to
390	quality of VKA treatment (TTR \geq 70% vs. TTR <70%). TTR: Time in therapeutic range. VKA:
391	vitamin K antagonists.
392	

393	Graphical abstract Association between quality of VKA treatment (TTR ≥70% vs. TTR <70%)
394	and risk of outcomes in patients with mechanical heart valves and implications of the findings.
395	VKA: vitamin K antagonists. TTR: Time in therapeutic range.
396	
397	Video The importance of monitoring the VKA therapy in patients with mechanical heart valves
398	VKA: vitamin K antagonists.
399	

HOO KELEKENCES	100	REFE	REN	CES
----------------	-----	------	-----	-----

- 401 1. Sun JC, Davidson MJ, Lamy A, Eikelboom JW. Antithrombotic management of patients
- with prosthetic heart valves: current evidence and future trends. *Lancet*. 2009;374(9689):565-
- 403 576. doi:10.1016/S0140-6736(09)60780-7
- 2. Eacts CS, Germany CH, Rosenhek R, et al. Guidelines on the management of valvular heart
- disease (version 2012) The Joint Task Force on the Management of Valvular Heart Disease
- of the European Society of Cardiology (ESC) and the European Association for Cardio-
- Thoracic Surgery (EACTS). 2017:1-53. doi:10.1093/eurheartj/ehx391
- 408 3. Husted SE, Grove EL, Christensen TD, et al. Dansk Cardiologisk Selskab Og Dansk Selskab
- 409 for Apopleksi Dansk Thoraxkirurgisk Selskab Dansk Selskab for Klinisk Biokemi Dansk
- Selskab for Trombose Og Hæmostase Antitrombotisk Behandling.; 2012.
- 4.1 Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the Management of Atrial
- 412 Fibrillation Developed in Collaboration With EACTS. *Rev Esp Cardiol (Engl Ed)*.
- 413 2017;70(1):50. doi:10.1016/j.rec.2016.11.033
- 5. Björck F, Renlund H, Lip GYH, Wester P, Svensson PJ, Själander A. Outcomes in a
- Warfarin-Treated Population With Atrial Fibrillation. *JAMA Cardiol*. 2016;1(2):2-3.
- 416 doi:10.1001/jamacardio.2016.0199
- 417 6. Hong K, Kim Y. Quality of Anticoagulation with Warfarin in Korean Patients with Atrial
- Fibrillation and Prior Stroke: A Multicenter Retrospective Observational Study.
- 419 2017;13(3):273-280.
- 420 7. Proietti M, Airaksinen KEJ, Rubboli A, et al. Time in therapeutic range and major adverse
- outcomes in atrial fibrillation patients undergoing percutaneous coronary intervention: The
- 422 Atrial Fibrillation Undergoing Coronary Artery Stenting (AFCAS) registry. *Am Heart J*.
- 423 2017;190:86-93. doi:10.1016/j.ahj.2017.05.016
- 424 8. Tan CSY, Fong AYY, Jong YH, Ong TK. INR Control of Patients with Mechanical Heart

- 425 Valve on Long-Term Warfarin Therapy. *Glob Heart*. 2018:1-4.
- 426 doi:10.1016/j.gheart.2018.08.003
- 9. Poli D, Antonucci E, Pengo V, et al. Mechanical prosthetic heart valves: Quality of
- anticoagulation and thromboembolic risk. The observational multicenter PLECTRUM study.
- 429 *Int J Cardiol.* 2018;267:68-73. doi:10.1016/j.ijcard.2018.04.042
- 430 10. Grzymala-Lubanski B, Labaf A, Englund E, Svensson PJ, Själander A. Mechanical heart
- valve prosthesis and warfarin Treatment quality and prognosis. *Thromb Res*.
- 432 2014;133(5):795-798. doi:10.1016/j.thromres.2014.02.031
- 433 11. Grzymala-Lubanski B, Svensson PJ, Renlund H, Jeppsson A, Själander A. Warfarin
- treatment quality and prognosis in patients with mechanical heart valve prosthesis. *Heart*.
- 435 2016:1-6. doi:10.1136/heartjnl-2016-309585
- 436 12. Wallach Kildemoes H, Toft Sørensen H, Hallas J. The Danish National Prescription
- 437 Registry. Scand J Public Health. 2011;39(7_suppl):38-41. doi:10.1177/1403494810394717
- 438 13. Gallagher AM, Setakis E, Plumb JM, Clemens A, van Staa TP. Risks of stroke and mortality
- associated with suboptimal anticoagulation in atrial fibrillation patients. *Thromb Haemost*.
- 440 2011;106(5):968-977. doi:10.1160/TH11-05-0353
- 441 14. Wypasek E, Mazur P, Bochenek M, et al. Factors influencing quality of anticoagulation
- control and warfarin dosage in patients after a ortic valve replacement within the 3 months of
- follow up. *J Physiol Pharmacol*. 2016;67(3):385-393.
- 15. Olesen JB, Lip GYH, Hansen ML, et al. Validation of risk stratification schemes for
- predicting stroke nationwide cohort study. 2006:1-9. doi:10.1136/bmj.d124
- 446 16. Sundbøll J, Adelborg K, Munch T, et al. Positive predictive value of cardiovascular
- diagnoses in the Danish National Patient Registry: a validation study. *BMJ Open*.
- 448 2016;6(11):e012832. doi:10.1136/bmjopen-2016-012832
- 449 17. Krarup LH, Boysen G, Janjua H, Prescott E, Truelsen T. Validity of stroke diagnoses in a

- national register of patients. *Neuroepidemiology*. 2007;28(3):150-154.
- 451 doi:10.1159/000102143
- 452 18. Madsen M, Davidsen M, Rasmussen S, Abildstrom SZ, Osler M. The validity of the
- diagnosis of acute myocardial infarction in routine statistics: A comparison of mortality and
- hospital discharge data with the Danish MONICA registry. *J Clin Epidemiol*.
- 455 2003;56(2):124-130. doi:10.1016/S0895-4356(02)00591-7
- 456 19. van Leeuwen Y, Rosendaal FR, Cannegieter SC. Prediction of hemorrhagic and thrombotic
- events in patients with mechanical heart valve prostheses treated with oral anticoagulants. J
- 458 Thromb Haemost. 2008;6(3):451-456. doi:10.1111/j.1538-7836.2007.02874.x
- 459 20. Lip GYH, Haguenoer K, Saint-Etienne C, Fauchier L. Relationship of the SAMe-
- 460 TT2R2score to poor-quality anticoagulation, stroke, clinically relevant bleeding, and
- mortality in patients with atrial fibrillation. *Chest.* 2014;146(3):719-726.
- doi:10.1378/chest.13-2976
- 463 21. Apostolakis S, Sullivan RM, Olshansky B, Lip GYH. Factors affecting quality of
- anticoagulation control among patients with atrial fibrillation on warfarin: The SAMe-TT2
- 465 R2 score. Chest. 2013;144(5):1555-1563. doi:10.1378/chest.13-0054
- 466 22. Roudaut R, Serri K, Lafitte S. Thrombosis of prosthetic heart valves: diagnosis and
- therapeutic considerations. *Heart*. 2007;93:137-142. doi:10.1136/hrt.2005.071183
- Seiler C. Management and follow up of prosthetic heart valves. *Heart*. 2004;90(7):818-824.
- doi:10.1136/hrt.2003.025049
- 470 24. Groves P. Valve disease: Surgery of valve disease: late results and late complications. *Heart*.
- 471 2001;86(6):715-721. doi:10.1136/heart.86.6.715
- 25. Dunning J, Versteegh M, Fabbri A, et al. Guideline on antiplatelet and anticoagulation
- management in cardiac surgery. Eur J Cardio-thoracic Surg. 2008;34(1):73-92.
- 474 doi:10.1016/j.ejcts.2008.02.024

475	26.	Butchart EG, Payne N, Li HH, Buchan K, Mandana K, Grunkemeier GL. Better
476		anticoagulation control improves survival after valve replacement. J Thorac Cardiovasc
477		Surg. 2002;123(4):715-723. doi:10.1067/mtc.2002.121162
478		
479		

Table 1 Baseline characteristics divided by TTR at time of discharge

Variable	TTR* <70	<i>TTR</i> ≥70	Standardized	
			mean differences	
Number (%)	466 (70.7 %)	193 (29.3 %)		
Median age (IQR)	58.0 (50-64)	58.0 (49-64)	-0.04	
Male sex (%)	319 (68.5 %)	149 (77.2 %)	0.20	
Comorbidities				
Ischemic heart disease	139 (29.7 %)	48 (25.0 %)	-0.09	
Acute myocardial infarction	33 (7.1 %)	7 (3.7 %)	-0.15	
Chronic heart failure	145 (31.1 %)	46 (24.0 %)	-0.15	
Atrial fibrillation	140 (30.0 %)	52 (27.1 %)	-0.05	
Stroke	56 (12.0 %)	14 (7.8 %)	-0.14	
Transient ischemic attack	36 (7.7 %)	14 (7.29 %)	0.01	
Arterial embolism	4 (0.9 %)	3 (1.6 %)	0.06	
Pulmonic embolism	11 (2.4 %)	2 (1.0 %)	-0.10	
Deep vein thrombosis	10 (2.1 %)	1 (0.5 %)	-0.14	
Diabetes mellitus	19 (4.1 %)	14 (7.3 %)	0.05	
Peripheral vascular disease	20 (4.3%)	5 (2.6%)	-0.09	
Coagulopathy	25 (5.4 %)	10 (5.2 %)	-0.01	
Prior bleeding	110 (23.6 %)	46 (24.0 %)	0.02	
Chronic obstructive lung disease	40 (8.6 %)	18 (9.4 %)	0.05	
Malignancy	73 (15.6 %)	32 (16.7 %)	0.02	
Abnormal liver function	17 (3.6 %)	6 (3.13 %)	-0.03	
Chronic renal failure	29 (6.2 %)	11 (5.7 %)	-0.02	
Aortic regurgitation	152 (32.6 %)	59 (30.7 %)	-0.03	
Aortic stenosis	240 (51.4 %)	119 (62.0 %)	0.22	

Mitral regurgitation	107 (22.9 %)	22 (11.4 %)	-0.31
Mitral stenosis	34 (7.3 %)	12 (6.3 %)	-0.31
Endocarditis	95 (20.3 %)	32 (16.7 %)	-0.10
Alcohol abuse	32 (6.9 %)	14 (7.3 %)	0.02
Hypertension	172 (36.9 %)	77 (39.9 %)	0.06
Concomitant therapy			
Statins	95 (20.4 %)	48 (24.9 %)	0.11
Beta-blockers	113 (24.3 %)	57 (29.5 %)	0.12
Calcium channel blockers	78 (16.7 %)	40 (20.7 %)	0.10
Renin-angiotensin system inhibitors	130 (27.9 %)	56 (29.0 %)	0.02
Amiadarone	21 (4.5 %)	8 (4.15 %)	-0.02
Digoxin	53 (11.4 %)	22 (11.4 %)	0.00
Acetylsalicylic acid	121 (26.0 %)	48 (25.0 %)	-0.03
ADPi†	4 (0.9 %)	2 (1.0 %)	0.02
Dipyridamol	9 (1.9 %)	5 (2.6 %)	0.044
Vitamin K antagonists	105 (22.5 %)	52 (26.9 %)	0.10
Thiazid	71 (15.2 %)	35 (18.1 %)	0.08
NSAID‡	99 (21.2 %)	41 (21.4 %)	0.04

*TTR: time in therapeutic range. †ADPi: adenosin diphosphate receptor inhibitors. ‡NSAID: non-steroidal anti-inflammatory drugs.

481

Table 2 Time in therapeutic range (TTR) according to valve type

	Combined	MAV†	MMV
TTR* <70%	467 (70.9 %)	351 (66.6 %)	115 (87.1 %)
<i>TTR</i> ≥70%	192 (29.1 %)	176 (33.4 %)	17 (12.9 %)
Median TTR, (IQR)	54.9 (39.0-73.1)	58.9 (44.5-75.0)	37.0 (23.8-54.0)
Mean TTR, (SD)	55.5 (24.0)	59.1 (22.9)	41.1 (22.9)

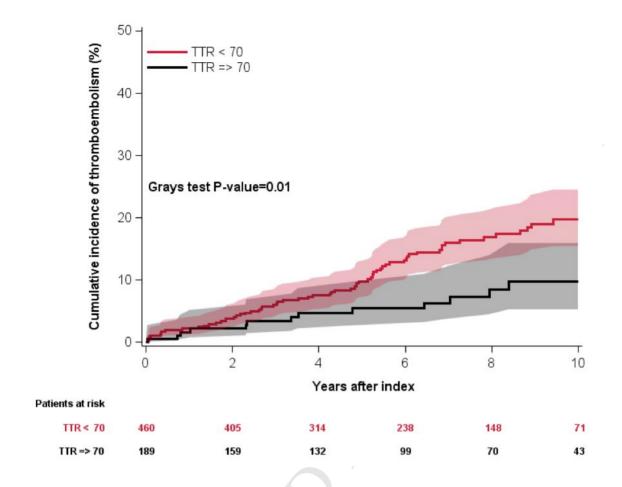
*TTR: time in therapeutic range. Combined includes all patients with a mechanical aortic or mitral valve. †MAV: mechanical aortic valve. ‡ MMV: mechanical mitral valve.

484

483

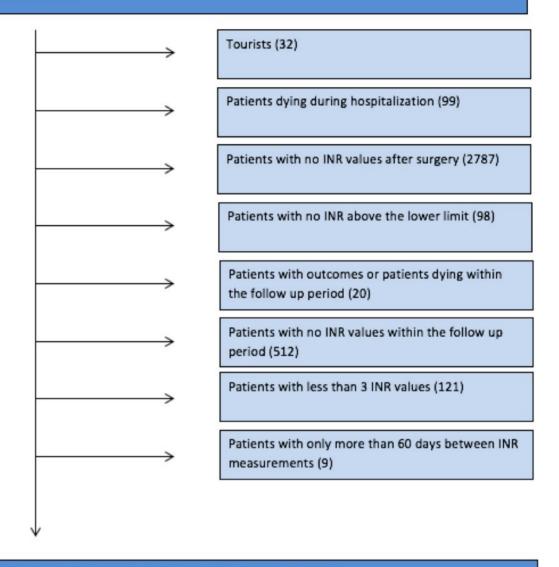
Table 3 Multivariable analysis on risk of thromboembolism, bleeding and all-cause mortality

487 depe

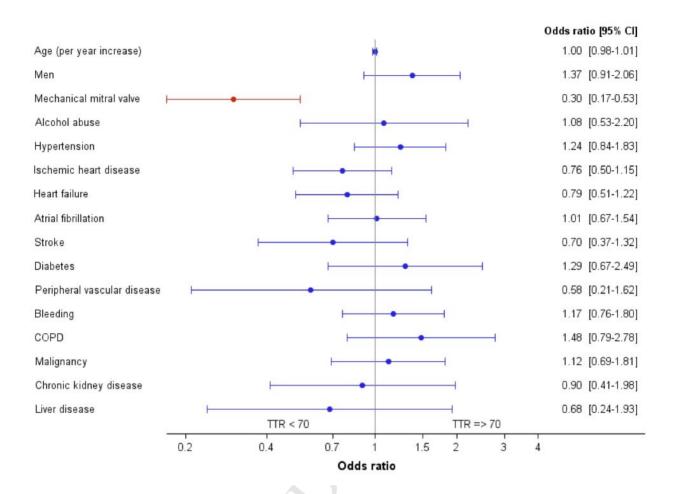

	Events (n)		Hazard ratio (95% CI)	P value	nding
	<i>TTR</i> ≥70%	TTR <70%			on
Thromboembolism	13	66	0.44 (0.22-0.85)	0.02 490	qualit
First year after index	3	10	A	491	y of
Remaining 9 years after index	10	56	Q	492	VKA
Bleeding	25	69	0.63 (0.36-1.08)	0.05	treat
First year after index	5	10	- 5	494	ment
Remaining 9 years	20	59		495	meas
after index				496	ured
All-cause mortality	21	74	0.84 (0.50-1.42)	0.52	as
First year after index	2	5		498	TTR
Remaining 9 years after index	19	69	7	499)
after index				500	,

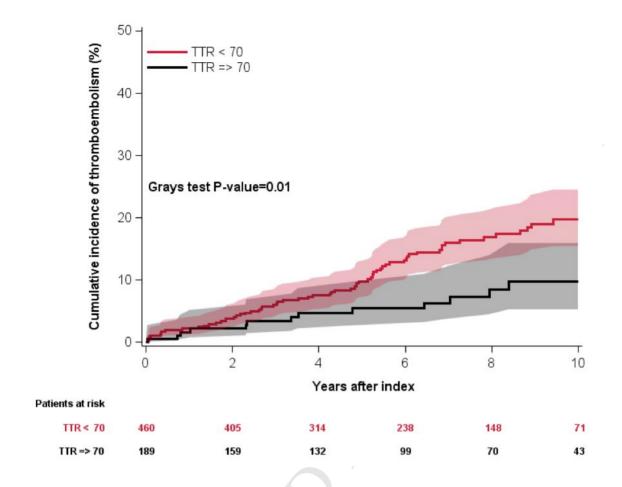
High (≥70%) vs. low (<70%) TTR is considered high vs. low TTR quality, receptively.

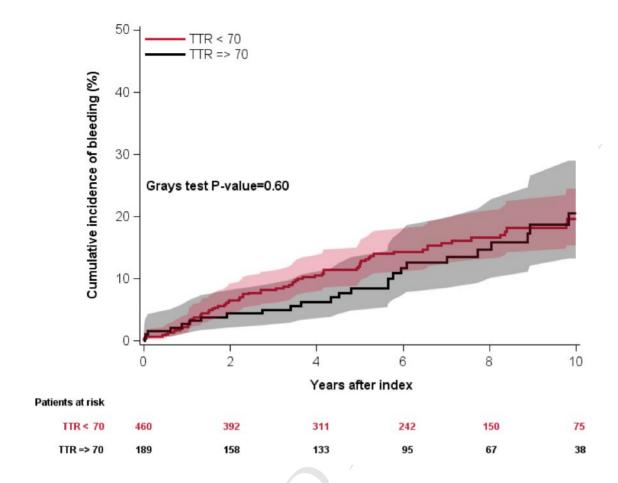
TTR ≥70% is set as reference for the analysis.

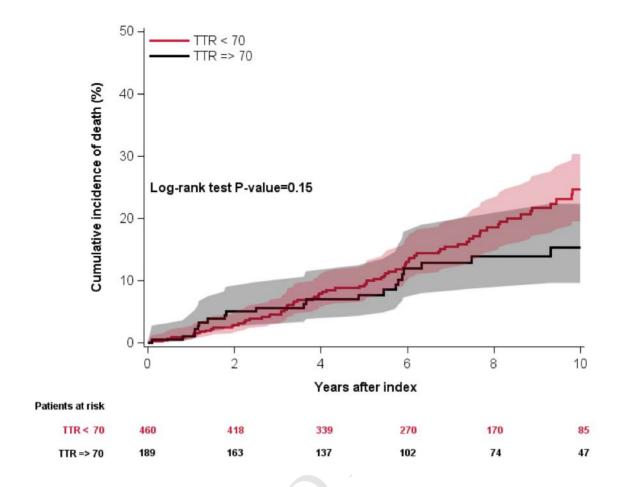

486

HR is adjusted for sex, age, valve type, comorbidities (ischemic heart disease, chronic heart failure, atrial fibrillation, prior stroke, transient ischemic attack, peripheral vascular disease, coagulopathy, bleeding, chronic obstructive lung disease, malignancy, chronic renal failure, abnormal liver function, alcohol abuse, endocarditis, hypertension, and diabetes mellitus), and concomitant pharmacotherapy (statins, beta-blockers, calcium channel blockers, RAS inhibitors, acetylsalicylic acid, and ADP inhibitors).


Patients with mechanical aortic or mitral valve prosthesis (4337)


- Aortic valve (3477)
- Mitral valve (860)




Patients in VKA with available INR values after valve substitution (659)

- Aortic valve (527)
- Mitral valve (132)

Supplemental Material

Time in Therapeutic Range and Risk of Thromboembolism and Bleeding in Patients with Mechanical Heart Valve Prosthesis

Eva Havers-Borgersen, MB; Jawad H. Butt, MD; Naja E. Vinding, MB; Christian Torp-Pedersen, MD, DMSc; Gunnar Gislason, MD, PhD; Lars Køber, MD, DMSc; Emil L. Fosbøl, MD, PhD

Supplementary Table 1 Comorbidities, pharmacotherapy, and outcomes

Comorbidity		
	ICD-codes (ICD-8 and ICD-10)	
Ischemic heart disease	ICD8: 410, 411, 412, 413, 414	
	ICD10: I20, I21, I22, I23, I24, I25,	
AMI*	ICD8: 410	
	ICD10: I21, I22	
Chronic heart failure	ICD8: 425, 428	
	ICD10: I42, I50, I110, I130, I132, J819	
Atrial fibrillation	ICD8: 42794, 42793	
	ICD10: I48	
Stroke	ICD8: 430, 431, 432, 433, 434, 436	
	ICD10: I63, I64	
TIA†	ICD8: 435	
	ICD10: G45	
Arterial embolism	ICD8: 444	
	ICD10: I74	
Pulmonic embolism	ICD8: 450	
	ICD10: I26	
Deep vein thrombosis	ICD8: 45100, 45108, 45109, 45190, 45199, 45300, 45302, 45303,	
Y	45304, 45809	
	ICD10: I801, I802, I803, I808, I809, I821, I822, I823, I828, I829	
Diabetes mellitus	ICD8: 250	
	ICD10: E10-E14	

Peripheral vascular	ICD8: 440
disease	ICD10: I70
Coagulopathy	ICD8: 286
	ICD10: D66. D67. D68, D69
Bleeding	ICD8-10: I60, I61, I62, N02, R31, R04, D62, H052A, G951A,
	S368D, K298A, K228F, I864A, K638B, K638C, K838F, K868G,
	I312, H313, H356, H431, H450, S064, S065, S066, J942, D500,
	K250, K252, K254, K256, K260, K262, K264, K266, K270, K272,
	K274, K276, K280, K282, K286, K290, K625, K661, K920, K921,
	K922, I850
Alcohol abuse	ICD8: 57109, 57110, 57710
	ICD10: F10, K70, E52, T51, K860, E244, G312, I426, O354, Z714,
	Z721, G621, G721, K292, L278A
	ATC-code: N07BB
Chronic obstructive	ICD8: 490, 491, 492
lung disease	ICD10: J42, J43, J44
Malignancy	ICD8: 140-209
	ICD10: C00-C97
Abnormal liver	ICD8: 571, 572, 573, 155, 070
function	ICD10: B15-B19, K70-K77, C22, I982, Z944, D684C, Q618A
Chronic renal failure	ICD8: 403, 404, 581, 582, 583, 584, 25002, 50039, 59009, 59320,
	75310, 75311, 75319
	ICD10: N02, N03, N04, N05, N06, N07, N08, N11, N12, N14,
	N18, N19, N26 M321B, N158, N159, N160, N162, N164, N168,

	Q612, Q613, Q615, Q619, E102, E112, E132, E142, I120, M300,
	M313, M319, T858, T859, Z992
Aortic insufficiency	ICD10: I351, I352
Aortic stenosis	ICD8: 395, 396
	ICD10: I350, Q253, I352
Mitral insufficiency	ICD8: 394, 396
	ICD10: I340, I051, I052, I348A
Mitral stenosis	ICD10: I050, I052, I342
Endocarditis	ICD8: 42100-42199, 42499
	ICD10: I33, I38, I398
Pharmacotherapy	
	ATC code
Statins	C10AA
Beta-blockers	C07, C09BX
Calcium channel	C08, C07F, C09BB, C09DB
blockers	
Renin-angiotensin	C09
system inhibitors	
Diabetes mellitus	A10
drugs	
Amiadarone	C01BD01
Digoxin	C01AA05
Acetylsalicylic acid	B01AC06
ADPi‡	B01AC04, B01AC22, B01AC24, B01AC25

Dipyridamol	B01AC07	
Vitamin K antagonists	B01AA03, B01AA04	
Antiadrenergic drugs	C02A, C02B, C02C	
Thiazid	C03A, C07B, C07D	
Loop diuretics	C03C, C03EB01, C03EB02	
Spironolacton	C03DA01	
Diuretics combined	C07C, C08G, C03B, C09Ba, C09DA	
NSAID§	M01A	
Hypertension	2 or more of BB, CBB, RASi, antiadrenergics, thiazid, loop	
	diuretics, spironolacton, diuretics combined	
Outcomes		
	ICD-code	
Thromboembolism	ICD8: 410	
(valve thrombosis,	ICD10: T828, I21, I22, I63, I64, G458, G459, I74	
AMI, ischemic stroke,		
systemic embolism and		
thrombosis, TCI)		
Bleeding	I60, I61, I62, N02, R31, R04, D62, H052A, G951A, S368D,	
Bleeding	I60, I61, I62, N02, R31, R04, D62, H052A, G951A, S368D, K298A, K228F, I864A, K638B, K638C, K838F, K868G, I312,	
Bleeding		
Bleeding	K298A, K228F, I864A, K638B, K638C, K838F, K868G, I312,	
Bleeding	K298A, K228F, I864A, K638B, K638C, K838F, K868G, I312, H313, H356, H431, H450, S064, S065, S066, J942, D500, K250,	
Bleeding	K298A, K228F, I864A, K638B, K638C, K838F, K868G, I312, H313, H356, H431, H450, S064, S065, S066, J942, D500, K250, K252, K254, K256, K260, K262, K264, K266, K270, K272, K274,	

*AMI: acute myocardial infarction. † TIA: Transient ischemic attack. ‡ADPi: adenosin diphosphate receptor inhibitors. §NSAID: non-steroidal anti-inflammatory drugs. ||TCI: Transient Ischemic infarction

Supplementary Table 2 Factors associated with thromboembolic events

	Hazard ratio	P value
	(95% Confidence interval)	
Age	0.99 (0.64-2.40)	0.55
Sex (men)	1.23 (0.70-2.15)	0.21
TTR ≥70%	0.44 (0.22-0.85)	0.01
Mechanical aortic valve	1.24 (0.64-2.40)	0.53
Ischemic heart disease	2.92 (1.70-5.00)	0.0001
Heart failure	0.78 (0.44-1.38)	0.39
Atrial fibrillation	0.46 (0.24-0.86)	0.01
Stroke	12.26 (7.10-21.17)	<0.0001
Hypertension	2.28 (1.01-5.13)	0.05
Diabetes mellitus	2.12 (0.66-6.80)	0.21
Peripheral vascular disease	1.52 (0.65-3.55)	0.34
Bleeding	1.05 (0.60-1.81)	0.88
Alcohol abuse	1.41 (0.45-4.39)	0.55
Chronic obstructive lung disease	1.02 (0.46-2.24)	0.97
Malignancy	0.74 (0.37-1.51)	0.41
Abnormal liver function	1.82 (0.58-5.76)	0.31
Chronic renal failure	1.95 (0.77-4.97)	0.16

Supplementary Table 3 Factors associated with bleeding

	Hazard ratio	P value
	(95% Confidence interval)	
Age	1.01 (0.99-1.04)	0.40
Sex (men)	1.49 (0.83-2.66)	0.18
TTR ≥70%	0.63 (0.36-1.08)	0.09
Mechanical aortic valve	0.71 (0.41-1.24)	0.23
Ischemic heart disease	1.01 (0.60-1.70)	0.98
Heart failure	0.99 (0.59-1.67)	0.97
Atrial fibrillation	0.94 (0.57-1.57)	0.82
Stroke	1.61 (0.81-3.22)	0.18
Hypertension	2.61 (1.34-5.11)	0.005
Diabetes mellitus	0.77 (0.26-2.27)	0.63
Peripheral vascular disease	0.72 (0.30-1.70)	0.45
Bleeding	15.93 (8.99-28.24)	<0.0001
Alcohol abuse	1.85 (0.95-3.61)	0.073
Chronic obstructive lung disease	0.82 (0.39-1.71)	0.59
Malignancy	1.58 (0.95-2.63)	0.08
Abnormal liver function	2.62 (1.16-5.95)	0.02
Chronic renal failure	1.81 (0.88-3.73)	0.11

Supplementary Table 4 INR variability according to valve type

	Combined	MAV*	MMV†
INR variability <0.75	446 (67.7 %)	291 (55.2 %)	39 (29.6 %)
INR variability >0.75	213 (32.3 %)	236 (44.8 %)	93 (70.1 %)
INR variability median, (IQR)	0.75 (0.49-1.16)	0.70 (0.46-1.06)	1.01 (0.61-1.34)
INR variability mean, (SD)	0.94 (0.81)	0.86 (0.62)	1.25 (1.28)

Combined includes all patients with a mechanical aortic or mitral valve.

^{*}MAV: mechanical aortic valve. † MMV: mechanical mitral valve.

Supplementary Table 5 Multivariable analysis on risk of thromboembolism, bleeding and all-cause mortality depending on quality of VKA treatment using mean INR variability of 0.75 as cut-off

	Events (% of group)		Hazard ratio (95%	P value
	INR variability	INR variability	Confidence interval)	
	≥0.75	<0.75		
Thromboembolism	13.4%	10.6%	0.63 (0.37-1.07)	0.087
Bleeding	19.2%	9.4%	0.72 (0.44-1.18)	0.20
All-cause mortality	18.2%	10.6%	0.68 (0.43-1.07)	0.096

High (>0.75) vs. low (<0.75) INR variability is considered low vs. high TTR quality, receptively. INR variability <0.75 is set as reference for the analysis

HR is adjusted for sex, age, valve type, comorbidities (ischemic heart disease, chronic heart failure, atrial fibrillation, prior stroke, transient ischemic attack, peripheral vascular disease, coagulopathy, bleeding, chronic obstructive lung disease, malignancy, chronic renal failure, abnormal liver function, alcohol abuse, endocarditis, hypertension, and diabetes mellitus), and concomitant pharmacotherapy (statins, beta-blockers, calcium channel blockers, RAS inhibitors, acetylsalicylic acid, and ADP inhibitors).

Supplementary Table 6 Time-dependent multivariable Cox regression

	Hazard ratio (95% Confidence interval)	P value
Thromboembolism	0.87 (0.30-2.52)	0.80
Bleeding	1.23 (0.51-2.97)	0.65
All-cause mortality	1.57 (0.64-3.89)	0.33

Supplementary Table 7 Patients with TTR ≥70% versus TTR <70% over time (1996-2012)

Year	Patients with TTR ≥70% (%)	Patients with TTR <70%
1996	22.2%	77.8%
1997	44.4%	55.6%
1998	20.0%	80.0%
1999	27.8%	72.2%
2000	30.0%	70.0%
2001	23.8%	76.2%
2002	30.6%	69.4%
2003	17.0%	83.0%
2004	32.8%	67.2%
2005	26.5%	73.5%
2006	24.6%	75.4%
2007	30.0%	70.0%
2008	31.1%	68.9%
2009	29.4%	70.6%
2010	34.8%	65.2%
2011	48.0%	52.0%
2012	30.4%	69.6%