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Abstract: This paper proposes a comprehensive planning framework including a main problem and two sub-

problems to enhance the resilience of power distribution network (PDN) and water distribution network (WDN) 

with multiple microgrids against hurricanes. The main problem which is formulated in stochastic programming 

aims to minimize the investment cost of resilience improvement strategies and the expected inaccessibility 

values of loads to power and water under hurricanes. Line hardening in PDN, upgrading the energy storage size 

in microgrids and water tanks in WDN are considered as three clean candidate strategies. In analyzing each 

scenario of the main problem, the microgrids which are connected to the PDN are modeled as emergency 

sources through the first stochastic sub-problem that can restore disconnected loads and water pumps. Water 

pumps as critical loads are equipped with emergency generators with limited fuel capacity. If there are some 

water pumps which cannot be restored in each scenario of the main problem, their emergency generators will be 

scheduled with the second sub-problem of the model. The proposed model is tested on the modified IEEE 33-

bus PDN with multiple microgrids and a designed WDN, and the effectiveness of the proposed method is 

validated accordingly. 

Keywords: Microgrids, resilience improvement planning, stochastic linear programming, power network, water 

network. 

1. INTRODUCTION 

The U.S. Hurricane Sandy in 2012 caused inaccessibility of approximately 7 million people to electric power 

(Bie et al., 2017). This hurricane also resulted in many water pumps outages and accordingly loss of clean water 

in New York City (Zhang et al., 2016). 90 % of faults due to natural disasters occurs in power distribution 

networks (PDNs) (Advisers, 2013). Therefore, PDN as an vital energy sector must be prepared in the operation 

and planning phases to face the low-probability but high-impact events (Espinoza et al., 2016). To do so, a 

number of challenges in terms of the following questions should be addressed: Which resilience improvement 
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strategies should be adopted? How should they be modeled and implemented to satisfy the planer’s needs? 

Finally, which solution methodology can be used to efficiently yield optimal solutions? 

In this regard, (Yuan et al., 2016) proposed a two-stage robust programming model to solve the resilience 

improvement planning of a PDN with lines hardening and fuel-based distributed generators (DGs) placement as 

candidate strategies. In the same work, due to the limitation of robust programming, only a predetermined 

number of power lines is assumed to be damaged against hurricanes. Furthermore, it is assumed that if a power 

line is chosen to be hardened, this line wouldn’t be damaged in case of an event occurrence. However, in reality, 

line hardening denotes a process to decrease the failure probability of a power line against extreme events. 

Another limitation of the mentioned work is that the studied PDN is a simple network having no tie line for 

power rerouting. Therefore, reconfiguration of the network as an important operational tool is not available to 

restore the disconnected loads. (Lin and Bie, 2018) built a tri-level hardening plan to enhance the resilience of a 

PDN. Although, reconfiguration of the PDN is used in the proposed model to restore the disconnected loads 

with fuel-based DGs, the mention limitations in the previous work including the number of lines that can be 

damaged against hurricanes and hardening of a power line have not been solved. Furthermore, in both previous 

works, the fragility function of a power line is not considered to calculate the failure probability of a power line 

against hurricane severity denoting that all the power lines have the same probability to be damaged against any 

hurricane. (Ma et al., 2018) solve the resilience improvement planning problem through a tri-level optimization 

model and the candidate strategies are reported as line hardening and vegetation management. In the first level, 

the problem identifies vulnerable distribution lines and select hardening strategies. In the second level, 

considering the hurricane speed and fragility function of each power line, the set of damaged power lines is 

determined and the worst-case scenario for PDN damage is realized. Finally, the third level tries to minimize the 

load shedding cost according to load priorities and the set of damaged lines. Although diesel generators exist in 

the studied PDN, reconfiguration of the network due to the limitation of the proposed mathematic model is not 

considered. 

DGs have an important role on the resilience improvement of the PDNs, especially when the reconfiguration of 

the network is also considered. In the previous works, all DGs which are implemented are fuel based DGs. This 

strategy has two main challenges. First, due to the adverse impact of fossil fuels on the environment, the design 

of recent energy systems in any conditions such as stand-alone (Giallanza et al., 2018; Mandal et al., 2018), 

urban (Chen et al., 2018) and even remote communities (Halabi and Mekhilef, 2018) is based on the CO2 

emission reduction. The second challenge is to provide enough fuel for DGs during an emergency period which 
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might take a long time. Moreover, storing a large amount of fuel to handle such a situation is difficult, 

dangerous and expensive.  

One of the most effective strategies for enhancing the resilience of distribution systems is to incorporate 

microgrids. Microgrids are small power networks that could be operated in islanded or grid-connected mode 

while accommodating different energy sources (e.g., dispatchable generators, renewable energies such as solar 

and wind) and energy storages (Dragicevic et al., 2017). The lessons learned from natural disasters show 

microgrids are appropriate option to enhance the resilience. The Sendai microgrid survived for two days in 

islanded mode during the March 2011 earthquake and tsunami in Japan (Che et al., 2014). (Li et al., 2014) 

implemented microgrids for load restoration capabilities after faults in distribution systems. In the same work, 

microgrids are modeled with specified active and reactive power, and spanning tree search is utilized to solve 

the restoration problem. (Gao et al., 2016) presented another approach for restoring the critical loads of 

distribution networks by microgrids. In this sense, the concept of Continuous Operating Time (COT) is 

proposed to determine the maximum time that a microgrid can supply electricity to critical loads. The problem 

is solved with a two-stage heuristic approach. A strategy table including the different feasible restoration paths 

is built in the first stage, and the best path is determined thereafter using integer linear programming. (Xu et al., 

2018) similar to (Li et al., 2014) implemented microgrids to restore critical loads in distribution systems, while 

their stability during load restoration is also considered. The lifeline of DGs and local battery affect the 

availability of microgrids during and after natural disasters (Kwasinski et al., 2012). In addition to the 

information presented in (Kwasinski et al., 2012). (Krishnamurthy and Kwasinski, 2016) believe more 

parameters such as microgrid architecture, transportation time of fuel, existing diesel generators, and power 

electronic interfaces should be considered to quantify microgrid availability during natural disasters. Demand 

response (DR) as an efficient tool to change the load for a specific goal such as power loss or CO2 minimization 

is one of the key enabling technologies for microgrids (Shariatzadeh et al., 2015). DR can play an efficient role 

in the interaction between a microgrid and a PDN. 

So far many works such as (Zeng et al., 2014) have studied the problem of providing enough water resources for 

a city or society in long periods, however, supplying water in shorter periods specially during harsh conditions 

triggered after a natural disaster is also vital. Similar to PDN, a malfunction in water infrastructure under 

hurricanes impacts cities and societies. Direct damages of a WDN against hurricanes is much less compared to a 

PDN. Buried water pipes are not vulnerable against hurricanes. Although, water tanks can be damaged in 

hurricanes, the number of water tanks in a WDN is much less compared to other components. Therefore, they 
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can be hardened well. Especially, recent water tanks are designed to withstand wind speed of 150 mph. 

However, the main reason of load inaccessibility to water against hurricanes is the dependency of WDN on 

PDN which mainly relates to water pumps. Water pumps in WDNs are responsible to circulate water throughout 

the system. Thus, if the electricity supply of water pumps is disconnected, the operation of WDNs will be 

interrupted or stopped accordingly. It should be noticed that the dependencies of power and water infrastructures 

to each other exist at different levels. For example, (Zeng et al., 2017) study the dependency of electricity 

generation on the capacity of water storage reservoirs in a river. Therefore, the dependency of water network on 

power networks should be considered in the resilience improvement study. If the resilience improvement of 

PDN targets only increased accessibility of loads to one commodity (either power or water), the social welfare 

will be decreased certainly. Unlike numerous works which have studied the resilience improvement of 

individual PDNs against hurricanes in recent years, a few works have investigated the resilience improvement of 

a joint PDN and WDN. (Zhang et al., 2016) showed that the dependency of water network on power network 

increases their vulnerability to cascading failures using graph theory. (Guidotti et al., 2016) studied the 

resilience of PDN and WDN against earthquake. As a result of this study, the recovery time of WDN can be 

increased if the dependency of WDN on PDN is considered. In the same study, the PDN is simply modeled 

without any technical equation related to PDN. (Najafi et al., 2018)  showed that the dependency of WDN on 

PDN could be decreased by DG (with unlimited fuel) placement in PDN, however no restoration mechanism for 

water pumps was considered. This option should be modeled in resilience studies as in reality, an emergency 

generator with limited fuel is normally considered in all pumping substation.  

This paper proposes a comprehensive planning framework including a main problem and two sub-problems to 

enhance the resilience of joint PDN and WDN with multiple microgrids against hurricanes. Three clean 

strategies including line hardening, upgrading the energy storage size in microgrids and water tanks in WDN are 

considered to enhance the resilience.  

Compared to the reviewed literature, the main contributions of the paper are listed below. 

1) A comprehensive stochastic model forming a main problem and two sub-problems is proposed to 

improve the resilience of joint PDN and WDN. The main problem minimizes the expected loads 

inaccessibility to power and water against hurricanes and investment cost of strategies. In the first sub-

problem, microgrids are modeled as energy sources. Water pumps as critical loads are equipped with 

back-up generators with limited fuel capacity. In the second sub-problem, the back-up generators of the 

disconnected water pumps are scheduled to maximize the accessibility of loads to water. 
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2) An interaction framework between microgrids and Distribution System Operator (DSO) who is 

responsible for restoration of PDN and WDN is proposed to determine the amount of energy that each 

microgrid can deliver to distribution network considering the reliability of each microgrid local load. In 

the proposed interaction, fuel arrival time to generators as an uncertain parameter is also considered. 

3) Energy storage size upgrading in microgrids is proposed as an efficient solution to enhance the 

resilience of PDN and WDN. With this strategy, each microgrid can deliver more energy to PDN in 

emergency conditions. 

4) Upgrading the water tanks size in WDN is also considered in resilience improvement planning phase to 

improve the accessibility of users to water after natural disasters. 

The rest of this paper is organized as follow. Sections 2 discusses the model description including the 

framework of the problem, formulation and solution of the proposed resilience improvement planning model for 

power-water distribution systems. Numerical case studies are presented in Section 3, and Section 4 concludes 

the paper. 

2. MODEL DESCRIPTION 

In this section, different parts of the proposed model including a general framework of the problem, 

mathematical formulation and solution methodology will be explained. 

2.1. Comprehensive resilience improvement planning framework 

Fig. 1 shows a typical PDN and its related designed WDN. In such an integrated energy system, it is assumed 

that several microgrids are connected to the PDN. Each microgrid has its local generation sources and loads that 

can be operated isolated or connected to the PDN. Two water pumps are located in the WDN which are fed by 

the corresponding nodes in the PDN. As well as, each water pump is equipped with a fuel-based DG 

(emergency generator) with limited fuel capacity. In this paper, it is assumed that microgrids only provide active 

power for distribution network and required reactive power for loads restoration is locally generated by reactive 

compensations in the distribution network as Fig. 1.  
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Fig. 1: Power distribution network with connected microgrids and related designed water network 

There are many uncertain parameters in this problem which are listed in Fig. 2. 

 

Fig. 2: Uncertain parameters in the proposed model 

The uncertainty of each parameter will be modeled with a probability distribution function presented in Section 

4. In the proposed model, all the uncertain parameters will be addressed through two Stochastic Optimization 

Programming (SOP) problems. The first SOP is the resilience improvement planning of PDN and WDN as the 

main problem of the proposed comprehensive planning framework. In this SOP, a set of scenarios with regards 

to the uncertain parameters of the hurricane, PDN and WDN are produced. During each operating scenario, the 
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interaction of microgrids and PDN will be investigated through the second SOP where the stochastic Energy 

Management System (EMS) for each microgrid as the first sub-problem of the proposed model determines the 

value of energy that can be delivered to the PDN. It is clear that scenarios in the second SOP will capture the 

uncertain parameters of each microgrid. Backward scenario reduction as a well-known method is implemented 

in this paper to reduce the number of the generated scenarios in both SOPs. This method is comprehensively 

explained in (Growe-Kuska et al., 2003).  

In case of a hurricane in a scenario of first SOP, a major part of the PDN could be damaged resulting to many 

distribution lines outages. To tackle such an emergency condition, DSO could reconfigure the network with the 

aid of tie lines switches and microgrids (which are also assumed to be owned by the DSO). Each microgrid will 

run the designed stochastic EMS (first sub-problem) with the objective of maximizing the delivered energy to 

the PDN considering the reliability of local loads. One of the most important pieces of data which is needed by 

the EMS to meet the objectives is the estimated time required to locate and repair the faulty parts and to restore 

the distribution network to its normal state, i.e. the duration of the emergency period.. The power provided by 

the microgrids to the distribution system must be available during the whole emergency period at the required 

quality. Moreover, the energy delivered by the microgrids in different hours of the emergency period must be 

proportional to the number of restored loads. However, as the aggregated load profile often varies with a 

specific coefficient at different hours, this data is also needed for EMS. With this information, each microgrid 

runs the EMS and determine the amount of energy to be delivered to the PDN in each interval of the emergency 

period.  

If the power supply of the water pumps is unavailable due to hurricanes, the operation of WDN will be 

interrupted or stopped accordingly. However, to understand the water pressure at different nodes of the system 

in different operation states of water pumps and water level in each tank, it is essential to analyze the water 

network. In this regard, a water distribution system modeling software package (EPANET) is utilized to 

accurately track the flow of water in each pipe, the pressure at each node, and the height of the water in each 

tank through the entire WDN. It is further assumed that the inaccessibility of loads to water is mainly caused by 

electric power outage during the emergency period. During each scenario of the first SOP, if the disconnected 

water pumps cannot be restored, their emergency generators will be scheduled through the second sub-problem 

of the model with the objective of maximizing the accessibility of loads to water.  

To formulate the problem in a tractable manner, several assumptions are made as follows:  First, the fragility of 

power poles and conductors in PDN are assumed to be higher than other components against hurricanes. 
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Therefore, hardening is primarily considered for these assets.  The basis for this assumption can be listed as 

follow: 1) The main important components in PDN are power poles and conductors which are responsible to 

deliver energy from energy sources to customers, 2) Similar components have also been considered in previous 

works (such as (Ma et al., 2018)) to be vulnerable in PDN against hurricane, and 3) The number of these 

components in PDN is much higher than other components. Microgrids are also assumed resilient enough 

against hurricanes (as discussed in the introduction). Finally, as there is no benchmark system for joint PDN and 

WDN studies, it is assumed that a water network is carefully designed for the existing IEEE 33-bus distribution 

system. To this end, according to Fig. 1, it is assumed that each node (except nodes 5 and 33) in PDN as a 

residential or commercial load has a corresponding node in WDN. It is further assumed that power loads in 

nodes 5 and 33 are water pumps. So, the water consumption of these loads is zero. The characteristic of pipes 

and amount of water consumption for each node in WDN are determined according to the amount of power 

consumption of each load in PDN. 

2.2. Problem formulation 

In this section, the proposed model including the main problem and two sub-problems is formulated. The main 

problem of the model is a stochastic programming with two objective functions. The first objective function 

(���) minimizes the expected inaccessibility values of loads to power and water under hurricanes. 

( )
0

0
1 , , , , , ,

1 1

(1 ) (min 1 )
s l s s

s

N N t T

s l t s l t l t s l t
s l t t

OF IVP IVWρ α β
+

= = =

− −= +∑ ∑∑  (1) 

where , ss N  and sρ  are index, number of scenarios and probability of each scenario in the main problem of the 

model, respectively. l  and lN  are index and number of loads in both PDN and WDN, respectively. 0, st t  and sT

are time index, the initial time of the emergency period in scenario s and emergency period in scenario s due to 

hurricane, respectively. ,l tIVP  and ,l tIVW are inaccessibility value of load l to power and water at time t, 

respectively.  

In equation (1), � is a binary variable that indicates the state of loads in the PDN. 

1 if load is connected

0 if load is disconected
α 

= 


 (2) 

� is the accessibility function of loads to water which is shown in Fig. 3. In other words, � indicates the 

satisfaction level of consumers’ access to water after a natural disaster such as a hurricane. Water accessibility 

of a load is proportional to water pressure in the node including the load. A minimum water pressure is required 

to obtain the full satisfaction level.  
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1

29  pressure head (m)
 

Fig. 3: Satisfaction function of the loads to water 

The second objective function of the problem (���) minimizes the budget or in other words investment cost of 

resilience improvement strategies. 

2 , , , ,
1 1 1 1 1

min

p stra water stra
k bat Tank tsN N N Nmg

H Batt Tank
k k m bs m bs d ts d ts

k m bs d ts

OF C C Cλ
= = = = =

= Ω + Ψ +∑ ∑∑ ∑ ∑  (3) 

where k and p
kN  are index and number of power lines in PDN, respectively. m and mg are index and number of 

microgrids, respectively. bs  and stra
batN  are index and number of strategies for battery size, respectively. d and 

water
TankN  are index and number of water tanks in WDN, respectively. ts and stra

tnkN  are index and number of 

different strategies for water tank size, respectively. ,,k m bsΩ Ψ  and  ,d stλ  are binary variables determining line k 

is hardened or not, battery size in microgrid m is upgraded to strategy bs or not and size of water tank d is 

upgraded to strategy ts or not, respectively. 

The size of each battery or each water tank can be upgraded only with one of the related strategies which is 

indicated in (4). 

{ } { }

{ } { }
tan

,
1

,tan
tan

0,1 1,2,...,

0,1 1,2,...,

stra
bat

stra

N

m bat
bat

N
water

d Tank

m mg

d Nλ

=


Ψ ∈ ∈



 ∈ ∈


∑

∑
 (4) 

For each scenario, the DSO should solve the restoration problem. The DSO has two options to restore the loads. 

The first option is the reconfiguration of the main network which is supplied by the substation and the second 

one is the system partitioning through intentional islanding of a microgrid or microgrids. To apply the latter, 

DSO should know the amount of energy that each microgrid can deliver to the PDN during an emergency 

period. Therefore, each microgrid has to solve the designed stochastic EMS as the first sub-problem of the 

model described in (5)-(22). 

The decision variables in the EMS of each microgrid are categorized into the following two groups. The first 

group consists of here-and-now variables which are made before the realization of the stochastic process. The 

second group consists of wait-and-see decisions, which are made after knowing the realization of the stochastic 
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process (Conejo et al., 2010). In this paper, the amount of active power delivered to the PDN is considered as a 

here-and-now decision variable while others, such as dispatchable generators power output, and amount of load 

shedding are wait-and-see variables. According to (5), the objective of EMS for each microgrid is to maximize 

the delivered energy to PDN considering the expected energy not served locally. The first term of (5) is a 

deterministic function and the second term is the recourse function. 

{ } { }
0 0

, , , ,
1

max 1,2,..., 1,2,...,
s

s s

s s

N TT
s s s
t m s m t s m s

st t t t

pdeliv pshed m mg s Nρ
′

′ ′
′== =

  
− ∈ ∈      

∑ ∑∑  (5) 

where s ′ and sN ′  are index and number of scenarios in the EMS for microgrids (first sub-problem). ,
s
s mρ ′  is the 

probability of scenario s′ of the first sub-problem in microgrid m in scenario s of the main problem. ,
s
t mpdeliv  is 

amount of active power delivered by microgrid m at time t to distribution system in scenario s of the main 

problem. , ,
s
t s mpshed ′  is amount of load shedding at time t in scenario s ′  of the first sub-problem in microgrid m 

in scenario s of the main problem. With this objective function, the reliability of each microgrid local loads is 

also considered. 

There are three categories of loads in a microgrid: 1) shiftable (pshift), 2) curtailable (pcl) and 3) fixed (Anvari-

Moghaddam et al., 2017). The constraints that must be satisfied in the stochastic EMS for each microgrid are 

expressed as follows. If the generation is lower than the demand at some hours, and if the microgrid operator 

cannot address this issue with shiftable and curtailable load, then some loads will be disconnected (pshed) to 

avoid system instability.  

DR program is an efficient tool that can be implemented by each microgrid to increase the amount of active 

power delivered to PDN. Equation (6) is related to the DR program, which determines the amount of load 

shifted from time interval t to time interval tꞌ in each scenario. 

{ }
0

0

0 0
, , , , , , , , [ , ], {1,2,..., }, {1,2,. 1,2.. } .,, ,..

s s

s

t T
s s s

t s m t t s m t t s m s s s s
t t

spshf pshift pshift t t t T s N sm m Ng
+

′ ′ ′ ′ ′ ′
′=

 
′= − ∈ + ∈ ∈

 
∈ 


∑  (6) 

where , , ,
s
t t s mpshift ′ ′  is amount of load which is shifted from time t to time �� in scenario 	� of the first sub-

problem in microgrid m in scenario s of the main problem. , ,
s

t s mpshf ′  is total load which is shifted to or from time 

t in scenario 	� of the first sub-problem in microgrid m in scenario s of the main problem. 

For each scenario of the first sub-problem, the supply-load power balance is formulated as follows: 

{ }, , , , , , , , , , , , , , ,
1 1

0 0
, , , ,

,

[ , ], {1,2,..., }, {1,2,...

1,2,

, }

...,

m mC G
s s s s s s s
t s m c t s m t s m t s m g t s m t m t s m

c g

s s
t s m t s m s s s s

s

load pcl pshf pshed p pdeliv pdcr

pchr prdg t t t T s N m g

s N

m

′ ′ ′ ′ ′ ′
= =

′ ′ ′

 
− + − = − + 

 
 ′− + ∈ + 

∈
∈ ∈

∑ ∑
 (7) 
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where , ,
s
t s mload ′ , , ,

s
t s mpshed ′  , , ,

s
t s mprdg ′  , , ,

s
t s mpdcr ′  and , ,

s
t s mpchr ′  are active power demand, amount of load 

shedding, power output of renewables generations (wind and solar), charging and discharging power of battery 

at time t in scenario 	� of the first sub-problem in microgrid m in scenario s of the main problem, respectively. c 

and mC  are index and number of curtailable loads in microgrid m, respectively. , , ,
s
c t s mpcl ′  is amount of load c  

curtailment at time t in scenario 	� of the first sub-problem in microgrid m in scenario s of the main problem. g 

and mG  are index and number of generators in microgrid m, respectively. , , ,
s
g t s mp ′  is active power of generator g 

at time t in scenario 	� of the first sub-problem in microgrid m in scenario s of the main problem. 

In connection to the operation of dispatchable generators, certain constraints must also be met. First, active 

power of each generator should be scheduled in an allowable range.  

{ }
min max 0 0
, , , , , , , , , , , {1,2,..., }, [ , ],

{1,2,..., }, {1,2,..
1,2,..

,
.

. }
,

s s s
g m g t s m g t s m g m g t s s

s
m m s s

s

p u p p u g G t t t T

s N m
s N

mg

′ ′ ′

′

 ≤ ≤ ∈ ∈ +
 

′∈ ∈
∈

  
 (8) 

where min
,g mp  and max

,g mp  are minimum and maximum active power of generator g in microgrid m, respectively. 

, , ,
s
g t s mu ′  is commitment status identifier of generator g at time t in scenario 	� of the first sub-problem in 

microgrid m in scenario s of the main problem. 

Ramping down/up limits of each generator are indicated by the following expressions: 

{ }
0 0

, , , , 1, , , 1
{1,2,..., }, [ , ],

{1,2,..., }, {1,2,..
,2,...,

., }

s s DN
g t s m g t s m g m m

s
s s s

s

p p R g G t t t T

s N m m
s N

g

′ ′−

′

 − ≤ ∈ ∈ +
 ∈

′∈ ∈  
 (9) 

{ }
0 0

, 1, , , , , , 1
{1,2,..., }, [ , ],

{1,2,..., }, {1,2,.
,2,..

.
.

}
,

.,

s s UP
g t s m g t s m g m m

s
s s s

s

p p R g G t t t T

s N m mg
s N′ ′−

′

 − ≤ ∈ ∈ +
 ∈

′∈ ∈  
 (10) 

where ,
DN
g mR  and ,

UP
g mR  are ramp down and up rate of generator g in microgrid m, respectively. 

Start-up and shut-down constraints of each generator are expressed as follows: 

{ }
0 0

, , , , , , , , , , 1, , {1,2,..., }, [ , ],

                                                  
1

    {1,2,.
,2,...

.., }, {1,2,... }
,

,

s s s s
g t s m g t s m g t s m g t s m m s s s

s

s

y z u u g G t t t T

s m g
s

N
N

m

′ ′ ′ ′−

′

 − = − ∈ ∈ +
 

′∈ ∈  
∈  (11) 

{ }
0 0

, , , , , , 1 0 {1,2,..., }, [ , ],

                                     {1,2,..., }, {1,2,..
1,2,.

., }
..,

s s
g t s m g t s m m s s

s
s

s

y z g G t t t T

s N m m
s N

g

′ ′

′

 + − ≤ ∈ ∈ +
 

′
∈

∈ ∈  
 (12) 

where , , ,
s
g t s my ′  and , , ,

s
g t s mz ′  are start-up and shut-down identifiers of generator g at time t in scenario 	� of the first 

sub-problem in microgrid m in scenario s of the main problem, respectively. 

The capacity of the feeder which connects microgrid m to the PDN is expressed as: 

{ }max 0 0
, , [ , ], {1,2 1,2,,. ..., } ..,t m s m s s s spdeliv Cap st t t m NT mg ≤ ∈ + ∈ ∈   (13) 

where max
mCap  is the maximum energy import/export of microgrid m. 
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The following expressions are related to the battery operation. The following constraint enforces the state of 

charge (SOC) to be within the allowable limits:  

{ }min max 0 0
, , [ , ], {1,2,..., }, {1,2,... 1,2,..., ,}s

m t s m m s s s s sSOC SOC SOC t t t T s N m mg s N′ ′′ ≤ ≤ ∈ ∈+ ∈ ∈   (14) 

where min
mSOC  and max

mSOC are minimum and maximum active power of battery in microgrid m, respectively. 

, ,
s
t s mSOC ′ is state of charge of battery at time t in scenario 	� of the first sub-problem in microgrid m in scenario s 

of the main problem, respectively. 

The next constraint indicates the relationship between charging/discharging rates and the SOC:  

{ }
, , 0 0

, , 1, , , , [ , ], {1,2,..., },

                                                                       {1,2,..., }

1,2,...,

s
t s ms s s

t s m t s m t s m m s s s s
m s

pdcr
SOC SOC pchr t t t T s N

m mg

s N
η

η
′

′ ′ ′ ′−

 
′= + − ∈ + ∈ 

∈
∈ 

  

 (15) 

where mη  is efficiency of battery charging or discharging  in microgrid m. 

Charging/discharging rates are defined as follows: 

{ }
max

1, , 0 0
, ,

( )
0 [ , ], {1,2,..., },

                                                           {1,2,...,

1,2,..

}

.,

s
m t s ms

t s m s s s s
sm

SOC SOC
pchr t

s N
t t T s N

m mg

η
′−

′ ′

 −
′≤ ≤ ∈ + ∈ 

 ∈
 ∈ 

 (16) 

{ }
min 0 0

, , 1, ,0 ( ) [ , ], {1,2,..., },

                                                              {1,2,.
1,2,..

..
.,

, }

s s
t s m t s m m s s

s
m s spdcr SOC SOC t t t T s N

m mg
s N

η′ ′ ′− ′ ≤ ≤ − ∈ + ∈
 

∈  
∈  (17) 

Some loads in each microgrid are allowed to be curtailed at certain hours as follows: 

{ }
,max 0 0

, , , , , , , {1,2,..., }, [ , ],

                                             {1,2,.
1,2,.

.., }, {1,2,...
.

,
.

}
,

s s cur
c t s m c t s m c m m s s s

s

s

pcl lc load c C t t t T

s
s N

N m mg

′ ′

′

 ≤ ∈ ∈ +
 

′∈ ∈ 
∈

 
 (18) 

{ }

0

0

,max 0 0
, , , , {1,2,..., }, [ , ],

                                       {1,2,..., }, {1, 2

1,2,...,

,..., }

s s

s

T t
s cur
c t s m c m m s s s

t t

s

ss N
lc Tload c C t t t T

s N m mg

+

′
=

′

 
≤ ∈ ∈ + 

 
 ′∈

∈

∈ 

∑  (19) 

where ,max
,

cur
c mload  and ,max

,
cur
c mTload  are maximum active power and maximum duration of curtailable load c in 

microgrid m, respectively. , , ,
s
c t s mlc ′  is load c status identifier at time t in scenario 	� of the first sub-problem in 

microgrid m in scenario s of the main problem, respectively. 

The maximum amount of load that can be shifted from time interval t to other time intervals is expressed as: 

{ }
0

0

,max 0 0
, , , [ , ], {1,2,..., }, {1,2,. 1,2.., ,...,}

s s

s

T t
shift

t t s m m s s s s
t t

spshift load t t t T s N m mg s N
+

′ ′ ′
′=

 
′≤ ∈ + ∈ ∈ 

  
∈∑  (20) 

The amount of available fuel capacity in each microgrid is limited as: 

{ }

0
,

0

0 0
, , , {1,2,..., }, [ , ],

                                     {1,2,..., }, {1,2,...,

1,2,

}

...,

s
s s m

s

t FAT
s avial
g t s m m m s s

t

s

s
s

t

p Fuel g G t t t T

s N m

s N

mg

′+

′
=

′

 
≤ ∈ ∈ + 

 
 ′∈ ∈ 

∈∑  (21) 
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where ,
s

s mFAT ′  is fuel arrival time to microgrid m in scenario 	� of the first sub-problem in scenario s of the main 

problem. According to (21), fuel consumption in a microgrid is simply modeled to be proportional to the active 

power of generators. However, it should be noted that a generator has different fuel consumption rates in its 

operating range. As mentioned earlier, the power that the microgrid should provide to the PDN must be 

proportional to the load variation in the PDN. Therefore, the following constraint adjusts the power sold 

according to load variations in the PDN: 

{ }0 0
, , , , , [ , ], {1,2,... 1,2, } ,...,

ht m s t s t m s s s sspdeliv lf p s Ndeliv t t t T m mg ∈ = ∈ + ∈   (22) 

where 
,t slf  is the load variation profile in the emergency period in scenario s which is normalized based on the 

lowest demand load at time �
 in the examined period and is reported by DSO to the microgrid. 

Having known the amount of energy that each microgrid can deliver during emergency period, the DSO solves 

the restoration problem for each scenario. 

In each time interval within each scenario of the main problem and for each network (main or islanded), the 

following load flow equations and constraints must also be satisfied. As mentioned before, the main power 

network is supplied by substation and each islanded network will be supplied by one or more microgrids.  

Power balance equations in (23)-(24) show that the power injection at bus i should be equal to the load demand 

at bus i. 

, 0 0
, , , , , , , , , ,( cos sin ) {1,2,..., }, [ , ],

                                                                          {1,2,..., }, {1,2,..., 1}

w w w w w w s
i t s i t s j t s ij ij t s ij ij t s b s s s

j

s
s

P V V G B i N t t t T

s N w W

θ θ= + ∈ ∈ +

∈ ∈ +

∑
 (23) 

, 0 0
, , , , , , , , , ,( sin cos ) {1,2,..., }, [ , ],

                                                                          {1,2,..., }, {1,2,..., 1}

w w w w w w s
i t s i t s j t s ij ij t s ij ij t s b s s s

j

s
s

Q V V G B i N t t t T

s N w W

θ θ= − ∈ ∈ +

∈ ∈ +

∑
 (24) 

where w is an index for power network  (islanded or main). sW  is the number of islanded network in scenario s 

of the main problem. i and j are bus indices. ,w s
bN  is the number of buses in network w in scenario s of the main 

problem. ijG  and ijB  are conductance and susceptance of the line which connects bus i and j, respectively. , ,
w
ij t sθ  

and , ,
w

i t sV  are difference phase voltage angle between bus i and j and voltage magnitude at bus i in network w at 

hour t in scenario s of the main problem, respectively. , ,
w

i t sP  and , ,
w
i t sQ  are active and reactive power of the load 

at bus i at hour t in network w  in scenario s of the main problem. 

Bus voltage line current and should be limited as shown in (25) and (26). 

, 0 0
min , , max {1,2,..., }, [ , ], {1,2,..., }, {1,2,..., 1}w w s s

i t s b s s s sV V V i N t t t T s N w W≤ ≤ ∈ ∈ + ∈ ∈ +  (25) 

max , 0 0
, , {1,2,..., }, [ , ], {1,2,..., }, {1,2,..., 1}

ij

w w s s
ij t s b s s s sI I i N t t t T s N w W≤ ∈ ∈ + ∈ ∈ +  (26) 
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where minV  and maxV  are minimum and maximum allowable voltage magnitude in the PDN. , ,
w
ij t sI  and 

max
ijI  

are the line flow between bus i and j in network w at hour t in scenario s of the main problem and the maximum 

allowable line current capacity between bus i and j, respectively. 

According to (27), the structure of the main network or each islanded microgrid should be radial. 

, , 1 {1,2,..., 1}w s w s s
b lineN N w W= + ∈ +  (27) 

where ,w s
lineN  is the number of power lines in network w in scenario s. 

Furthermore, for each islanded network, the following constraints must be satisfied. According to (28), the total 

demanded active power of the loads plus the active power losses of distribution lines within each network 

should not exceed the exchanged power between the microgrid(s) and the DSO. The same should be satisfied 

with reactive power as shown in (29). 

,,

0 0
, , , , ,

1 1

[ , ], {1, 2,..., }, {1, 2,..., }

w sw s
mgb

NN
w w s

i t s t s t m s s s s s
i m

P Ploss pdeliv t t t T s N w W
= =

+ ≤ ∈ + ∈ ∈∑ ∑  (28) 

, ,

0 0
, , ,

1 1

[ , ], {1, 2,..., }, {1, 2,..., }

w s w s
b bN N

w w source s
i t s t s i s s s s

i i

Q Qloss Q t t t T s N w W
= =

+ ≤ ∈ + ∈ ∈∑ ∑  (29) 

Where ,w s
mgN  is the number of microgrids in network w in scenario s of the main problem. source

iQ  is  reactive 

power of the source which is installed at bus i. ,
w
t sPloss  and ,

w
t sQloss  are active and reactive power losses of 

distribution network lines in network w at hour t in scenario s of the main problem. 

To calculate the accessibility of loads to water, it is necessary to formulate the hydraulic model of the WDN. 

There are three fundamental equations in WDN (Zhang et al., 2017). The first equation is mass conservation that 

must be satisfied at the nodes except fixed-head nodes such as reservoirs of WDN: 

{ }0 0
, , , , 0 [ , ], 1,2,..., , {1,2,..., }

n

water water
wp t s n t s s s s n s

wp LK

f F t t t T n N NR s N
∈

+ = ∈ + ∈ − ∈∑  (30) 

where n and wp are node and water pipe indices, respectively. water
nN  and waterNR  are number of all nodes and 

fixed-head nodes in WDN. nLK  is the set of all links (pipes) connected to node n in WDN. , ,n t sF  is node n 

demand at time t in scenario s of the main problem. , ,wp t sf  is pipe wp flow rate at hour t in scenario s of the main 

problem. 

Moreover, energy conservation must be satisfied in each simple loop of water network. 

{ } 0 0
, , ,

1

0 1, 2,..., , [ , ], {1, 2,..., }
lswp

wp ls t s s s s s
wp

h ls LS t t t T s N
=

= ∈ ∈ + ∈∑  (31) 

where ls and LS are index and number of simple loops in WDN, respectively. , , ,wp ls t sh  is hydraulic head loss of 

pipe wp  in loop ls at hour t in scenario s of the main problem. 
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The last equation represents the hydraulic head loss. This equation indicates the head loss of a pipe as a function 

of the flow through the pipe. 

y
p ph xf=  (32) 

x and y are coefficients which determined based on the Hazen-Williams model.  

As mentioned before, if the DSO cannot restore all disconnected water pumps, the back-up generators of the 

disconnected water pumps will be dispatched. Due to fuel limitation of these generators and possibility of 

having a long period of emergency, these generators should be operated in a way that the inaccessibility of loads 

to water be minimized. This objective function is indicated in (33). 

{ }
0

0
, , ,

1

min 1(1 ,2,...,)
l s s

s

N t T

l t s l t s
l t t

IVW s Nβ
+

= =

∀ ∈−∑∑  (33) 

According to (34), each generator can supply such a load for a limited duration. 

{ } { }
0

0

max
, , 1,2,..., , 1,2,...,

s s

s

t T

t wp s wp s
t t

T wp WP s N
+

=

Φ ≤ ∀ ∈ ∀ ∈∑  (34) 

where , ,t wp sΦ  is a binary variable for determining the state of backup generator which supplies water pump wp 

at time t in scenario s of the main problem. max
wpT is maximum time that backup generator can supply water pump 

wp. Other constraints related to the hydraulic system operation in WND should also be met (equations in (30)-

(32)). 

2.4. Solution Methodology 

Fig. 4 shows the procedure for solving the proposed resilience improvement planning problem. Greedy search as 

an iterative algorithm is utilized in this paper to solve the problem. In order to implement the greedy search 

algorithm, the aforementioned objective functions are mapped into the following mixed-objective function:  

{ }
1

1 1max 1, 2,...,
cost

itr itr

RIST
RIST

OF OF
OF RIST N

− −
= ∈  (35) 

where RIST and RISTN  are index and number of candidate resilience improvement strategies. costRIST  is cost of 

strategy RIST. According to (35), in each iteration of the greedy search algorithm, the problem is solved 

considering the objective function (35) which is indicating the difference of resilience improvement (expected 

inaccessibility of loads to power and water) compared to the previous iteration (itr-1) per cost of each chosen 

strategy. This iterative procedure will be continued until the maximum budget (determined by the planner) is 

exhausted.  

As can be seen from Fig. 4, the proposed model includes a main problem and two sub-problem that should be 

solved. The first sub-problem captures the interaction of the microgrids with the PDN through dedicated EMSs 
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for the microgrids in forms of (5)-(22). The aim of this part is to determine the amount of delivered energy to 

PDN by each microgrid in emergency period. According to (5)-(22), this sub-problem is linear and can be 

solved by any related solution algorithms/ solvers such as CPLEX. The main problem captures the restoration 

phase. To handle this, the results of the first sub-problem (EMS) together with a detailed analysis of the water 

network is needed. The latter is performed in EPANET considering equations (30)-(32). The restoration 

problem is solved based on the graph theory and a modified Viterbi algorithm detailed in (Najafi et al., 2018). 

The second sub-problem will be taken into consideration in each scenario if all the disconnected water pumps 

cannot be restored. The aim of this part is to schedule the back-up generators to feed the disconnected water 

pumps during emergency period. This sub-problem with the objective function outlined in (33) and constraints 

(30)-(32), (34) is solved with a genetic algorithm designed in MATLAB while having EPANET in the loop to 

analyze the WDN operation.  
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Fig. 4: Flowchart of solving the problem 

3. RESULTS 

To illustrate the effectiveness of the proposed method, the modified IEEE 33 bus PDN with connected 

microgrids and its related designed WDN as shown in Fig. 1 is studied. 

Microgrids Data: 

 It is assumed that the two microgrids in nodes 16 and 22 are similar and they are labeled as microgrids type 1. 

The microgrids in nodes 3 and 29 are also similar and named as microgrids type 2. The difference between these 

two types lies mainly on their generation mix and demand level. The parameters of dispatchable generators in 

microgrids which are obtained from (Hussain et al., 2017) are shown in Table 1. 
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Table 1: Dispatchable generators parameters in microgrid 
No. min

gp  

(kW) 

m a x
gp  

(kW) 
gA  

($) 
gB  

($/kWh) 
gSUC  

($) 
gSDC  

($) 
1 0 78 2.552 0.029 0.09 0.08 
2 0 84 2.552 0.028 0.16 0.09 
3 0 98 0.851 0.043 0.12 0.08 

Ramp up/down rates of dispatchable units are less than 1 minute. The maximum fuel available for each 

generator in the microgrid can be used to produce a total of 400 kWh electrical energy. According to Table 1, in 

microgrids of type 1, there are three dispatchable generators: No. 1, No. 2 and No. 3 while in microgrids of type 

2, there is only one generator of type No.3. 

The required data for the battery system is summarized in Table 2. This battery is available in both types of 

microgrids. 

Table 2: Battery characteristic 
Capacity 
(KWh) 

Max 
Charging/Discharging 

Power (kW) 

Min-Max 
SOC (kWh) 

Initial 
SOC 

(kWh) 

η 

100 70-100 0-100 100%=100 0.95 

The hourly load profile and solar power generation within microgrids in typical days of different seasons are 

depicted in Fig. 5. Different load coefficients are used for demand profile adjustment in different seasons as 

shown in Table. 3.  
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(B) 

Fig. 5: Demand and solar power profiles in microgrids: A) Type-1 microgrid B) Type-2 microgrid 

 

Table. 3: Peak load for each season in the microgrids 
Season Spring Summer Fall Winter 

Load coefficient 0.85 1 0.88 0.8 

To handle the stochastic energy management problem in each microgrid, different uncertainties associated with 

the load demand and renewable generation output are considered. To this end, 500 scenarios are generated 

initially based on a normal distribution function with 3% and 5% error in demand and solar power predictions, 

respectively. Then, 10 scenarios are chosen with the backward reduction algorithm. To account for other 

uncertainties related to fuel arrival time, 5 scenarios with different probabilities are extracted as shown in Table 

4. It is assumed that the minimum time of fuel delivery to both types of microgrid is 4 hours. In total, 50 

scenarios with different probabilities are produced in order to solve the first sub-problem.  

Table 4: Different scenarios for fuel arrival time in all microgrids 

( )hτ  4 5 6 7 ≥ 8 

τπ  0.4 0.3 0.15 0.1 0.05 

PDN and WDN Data: 

The maximum active/reactive power demands of PDN and water demand of WSN are depicted in Fig. 6 and 

these values in each hour of a day is determined based on the 24-hour load multiplier of the PDN and WDN 

which is illustrated in Fig. 7. It is assumed that the loads in nodes (19-22) are commercial while the rests are 

residential. 
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Fig. 6: Water, active and reactive power demands of networks 

 
Fig. 7: Load multiplier of PDN and WDN 

Value of load inaccessibility to power and water is depicted in Fig. 8. Loads in nodes 5 and 33 of distribution 

network are water pumps, thus the value of load inaccessibility to water of these nodes is zero. It should be 

noted that the dynamic value of each water pump for restoration will be determined in the restoration problem. 

In order to determine the importance of one pump, the accessibility function of loads will be obtained with 

EPANET and will be compared with the state in which the water pump is restored. The 24-hour load multiplier 

of the PDN and WDN is illustrated in Fig. 8. Other information about the IEEE 33-bus distribution system can 

be found in (Baran and Wu, 1989). 
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Fig. 8: Value of loads inaccessibility to power and water 

The uncertainty of demand in both PDN and WDN is modeled with a normal distribution function with 3% 

error. According to (Javanbakht and Mohagheghi, 2014; Ma et al., 2018; Ouyang and Duenas-Osorio, 2014), the 

fragility function of PDN poles ( ,f polep ), main transformer (substation) (,f subp ) and conductors (f,conductorp ) can 

be considered as below:  

,

,

( ) [ln(( ) / ) / ]

( ) [ln(( ) / ) / ]

f pole R R

f sub R R

p ws ws m

p ws ws m

ξ

ξ

= Φ

′ ′= Φ
 (36) 

where Φ[. ] is lognormal cumulative distribution function with mean and standard deviation �� and �� 

respectively. �� and �� depend on the structure of the pole, �� 	
� and �� 	

�depend on the local train and 

structural characteristic of the substation.  
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 ≤
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 (37) 

Where minws  is the minimum wind speed can damage the conductor and maxws  is the maximum wind speed that 

damages the conductor certainly.  

Hurricane: 

According to National Hurricane Center, The intensity of hurricanes is categorized into five groups. The best 

method to consider the intensity and occurrence time of hurricanes in the study is analyzing the historical data 

related to the region where the PDN is located. In this paper, it is assumed, the probability of occurrence of a 

hurricane is 0.8 and 0.2 for categories 1 (74-95) mph and 2 (96-110) mph, respectively. According to Fig. 2, 
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repair time of PDN is another uncertain parameter which is modeled with discrete distribution function as in 

Table. 5. 

 

Table. 5: Repair time probabilities of PDN 
Hurricane category 1 Hurricane category 2 

Hours 4 5 6 7 Hour 6 7 8 9 
Probability 0.2 0.3 0.3 0.2 Probability 0.2 0.3 0.3 0.2 

Furthermore, the monthly probabilities of hurricane occurrence within a year are obtained from (Li et al., 2016) 

which is presented in Table. 6. 

Table. 6: Monthly probabilities of hurricane occurrence within a year 
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Probability 0 0 0 0 0.01 0.03 0.05 0.25 0.38 0.22 0.05 0.01 

Candidate strategies: 

The characteristics of candidate strategies are explained in Fig. 9. 

 

Fig. 9: The characteristic of candidate strategies  

Simulation: 

Case 1: The simulation is started by analyzing one scenario and investigating the impact of battery energy 

storages size in microgrids, water tanks size and back-up generators operation in the WDN on the resilience 

improvement.  

It is considered the scenario in which a hurricane with the speed of 91.9 mph in October could cause the outage 

of lines (7-8), (12-13), (14-15), (16-17), (19-20), (23-24), (30-31) and the main feeder at point of common 

coupling. The restoration plan will be performed after hurricane at 1 P.M. The repair time of the network (i.e., 

duration of the emergency period) is 6 hours. Since the PDN is disconnected from the mains, the only way to 
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restore the loads is to incorporate microgrids. To this end, DSO asks microgrids to run the stochastic EMS and 

announce their contributions in restoration process. The amount of energy that each microgrid can deliver to 

PDN during emergency period is shown in Fig. 10. According to this Figure, microgrids type 1 can deliver more 

energy to PDN in emergency conditions compared to microgrids type 2. The restoration problem is solved 

considering two different sizes of battery in microgrids and the results are depicted in Fig. 11. As the battery 

size in microgrids in nodes 3 and 29 (type 2) is increased, more loads can be restored. Furthermore, microgrid in 

node 3 can restore load 5 which is a water pump. Therefore, by increasing the battery size as a clean strategy in 

some microgrids, the resilience of PDN and WDN will be enhanced. This clean strategy can improve the nature 

of some microgrids and prepare them as reliable sources for PDN support. Furthermore, with increasing the 

battery size in some microgrids, it is possible to expand the electrification domain to restore important loads 

such as a water pump to enhance the resilience of WDN.  

 
Fig. 10: The amount of energy deliverd by microgrids to PDN in emergency period 
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(A) 

 

 

 

(B) 

Fig. 11: The result of restoration problem: A) battery size of 100 kWh in microgrids, B) battery size of 400 kWh in microgrids 

Considering the results of restoration plan with the battery size of 100 kWh, it can be observed that none of the 

water pumps can be restored by microgrids. In this regard, Fig. 12 shows the water pressure at different nodes in 

WDN considering two different sizes of water tanks without the backup generators for water pumps.  
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(A) 

 
(B) 

Fig. 12: Water pressure at different nodes: A) tank size: diameter=5m, height= 2m, B) tank size: diameter=9.36m, height= 2.18m 

The smaller size of water tanks can provide water for all nodes with an acceptable pressure only for one hour 

while in the rest of the emergency period, the water demand cannot be met. According to Fig. 12 (B), if the 

water tanks is sized around four times bigger, the water access will last for two hours in emergency period. In 

other words, appropriate sizing of the water tanks in WDN as a clean strategy can enhance the resilience of 

WDN in emergency conditions. This strategy is now investigated when the water pumps are equipped with 

backup generators. The water pressure at different nodes is depicted in Fig. 13, when each generator can be 
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operated for three hours. In the same figure, the optimal operation of these generators is shown. According to 

Fig. 13, the water pressure at different nodes are significantly improved with optimal operation of backup 

generators. In this regard, if the smaller size of water tanks is chosen (diameter=5m, height= 2m), in some hours 

and at some nodes the water pressure is below the acceptable value. However, with bigger water tanks 

(diameter=9.36m, height= 2.18m), the water accessibility with acceptable pressure can be guaranteed during the 

emergency period.  
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Fig. 13: Water pressure at different nodes when the water pumps are equipped with backup generators: A) tank size: diameter=5m, height= 
2m, B) tank size: diameter=9.36m, height= 2.18m 

Case 2: After analyzing one scenario and investigating the impact of the two proposed strategies, the resilience 

improvement planning problem is solved in an uncertain environment. First, 1000 scenarios with regard to the 

uncertain parameters of PDN, WDN and hurricanes are produced and then 50 scenarios with different 

probabilities are obtained with backward reduction. Approximately, in 20 % of the final scenarios, the 

connection between PDN and the substation is damaged. According to Fig. 14, the problem is solved iteratively 

until the budget limit of 430000 $ is reached. In each iteration of the program, the best strategy is also identified 

and reported. Iteration 0 shows the expected loads inaccessibility values to power and water under a hurricane 

before any hardening strategy. According to Fig. 14 (c), despite the available tanks and backup generators with 

limited fuel for each water pump in the WDN, the dependency of WDN to power outage is high and the value of 

lost load touches 90000 $. Furthermore, the expected inaccessibility value of loads to power under a hurricane is 

more than 16000 $. Since the expected inaccessibility of loads to water is more than power, upgrading the size 

of water tanks in node 5 and 33 respectively to the bigger and smaller candidate sizes is chosen as an action plan 

in the first two iterations. This strategy can decrease the dependency of WDN operation to PDN significantly.  
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(C) 

Fig. 14: The results of the resilience improvement planning against hurricane in Case 2: A) Expected loads inaccessibility values to power 
and water, B) Expected loads inaccessibility values to power, C) Expected loads inaccessibility values to water  

During the third iteration, the battery size in microgrid in nodes 3 is upgraded to the bigger candidate size. By 

doing this, microgrid in nodes 3 can expand its electrification domain and restore more loads and water pumps 

which in turn enhances the resilience of PDN and WDN, simultaneously. In the next steps, the most important 

lines are chosen to be hardened. The importance of each line is determined based on its loading, length and the 

failure rate. For example, the candidate lines (1-2),(2-3),(3-4),(4-5),(5-6) for hardening are located in the main 

network where more power need to be transferred over longer distances. Furthermore, lines (3-23),(23-24) and 

(24-25) are chosen to be hardened as they distribute the power between the two biggest loads at nodes 24 and 

25. In iteration 7, the size of battery in microgrid 29 is chosen to be upgraded. Finally, it is observed that by 

allocating more budget, the PDN and WDN will be more robust against hurricanes and the expected 

inaccessibility values of loads to power and water under a hurricane will be decreased, significantly. The 

amount of budget that the planner wants to spend on resilience improvement will depend on the region where 

the networks are located and expected rate of hurricanes occurrence. 

Case 3: This case study investigates the impact of the proposed clean strategies on resilience improvement of 

PDN and WDN with changing the vulnerability rate of substation against hurricanes. The proposed model is 

solved again with 100,000 $ as budget constraint for two different conditions which are: 1) substation is not 

vulnerable against any hurricane. In other words, substation is damaged in none of the scenarios. 2) Substation 

is damaged in all the scenarios. The results are shown in Tables 7 and 8, respectively. 

Table 7: The Results of the resilience improvement planning in Case 3 (when substation is damaged in none of the scenarios) 

Iteration 
Strategy EP(1) ($) EW(2) 

($) 
EPW(3) ($) Cost($) 

0 No strategy 14883.5 67978.8 82862.3 0 
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1 To upgrade water tank size in node 5 to h=2.18m,d=6.69m 14883.5 42774 57657.5 10000 
2 To harden line 2-3 13556.6 26241.9 39798.5 40000 
3 To harden line 1-2 13303.8 23881 37184.8 10000 
4 To harden line 3-4 13069.6 16798.3 29867.9 30000 

sum 90000 
(1)EP: Expected loads inaccessibility value to power 
(2)EW: Expected loads inaccessibility value to water 
(3)EPW: Expected loads inaccessibility value to power and water 

 

  
 

Table 8: The Results of the resilience improvement planning in Case 3 (when substation is damaged in all the scenarios) 
Iteration Strategy EP($) EW($) EPW($) Cost($) 

0 No strategy 20587.4 131956.2 152543.6 0 
1 To upgrade water tank size in node 5 to h=2.18m,d=9.36m 20587.4 38605 59192.4 20000 
2 To upgrade water tank size in node 33 to h=2.18m,d=9.36m 20587.4 24663.1 45250.5 20000 
3 To upgrade battery size in microgrid in node 3 to 400 kWh 18544.2 12004 30548.8 30000 
4 To upgrade battery size in microgrid in node 29 to 400 kWh 17541.2 11294 28835.2 30000 

sum 100000 

According to Table. 7, when the substation is not vulnerable and it is available as the main energy source for 

PDN, most of the chosen strategies are line hardening.  In iteration 1, unlike Case 2, the water tank size in node 

3 is upgraded to a smaller candidate water tanks as a reliable power source is available for water pumps. In the 

next iterations, most important power lines which are the link of PDN and the substation are chosen to be 

hardened. With these strategies, the path between PDN and substation becomes more robust again hurricanes. It 

should be noticed according to Fig. 1, although line 1-2 is more important than line 2-3, this line is chosen to be 

hardened after line 2-3. The reason is that line 2-3 is longer than line 1-2, so the failure probability of line 2-3 is 

relatively higher than line 1-2 in hurricanes. 

When substation is vulnerable against hurricanes, the inaccessibility values of loads to power and water are 

increased nearly 39% and 95%. To decrease the dependency of WDN on PDN in this condition, according to 

Table 8, size of both water tanks is upgraded initially. With this two strategy, the accessibility of loads to water 

is significantly improved. Microgrids, as the only energy sources in this condition, can restore the disconnected 

loads. Therefore size of batteries in microgrids in node 3 and 29 are upgraded to 400 kWh in the next step. With 

this choice, microgrids can expand their borders and restore more disconnected loads and water pumps.   

Case 4: This case investigates the impact of microgrids on the environmental and emission concerns compared 

to the fuel-based DGs which were implemented in previous works. To this end, the contribution of fuel-based 

generators to produce energy during emergency conditions resulted from hurricanes in two states are considered 

as follow: 1) Similar to previous works, it is assumed that fuel-based DGs with different capacities equal to the 

amount of each microgrid can deliver energy to PDN and restore disconnected loads; 2) Microgrids are 

implemented to restore the disconnected loads as shown in Cases 2 and 3. It should be noted that the reduction 

of expected energy produced by fuel-based generators is equal to emission reduction. Table. 9 shows the 

expected energy produced by fuel-based generators in Cases 2 and 3 when microgrids or fuel-based DGs are 

implemented to restore the disconnected loads. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

31 
 

Table 9: Comparison between microgrids and fuel-based DGs on emission reduction  

 

Before resilience improvment planning After resilience improvment planning 

Fuel based DGs are 
implemented to 

restore the 
disconnected loads 

Microgrids are 
implemented to 

restore the 
disconnected loads 

Reduction 
Rate (%) 

Fuel based DGs 
are implemented 

to restore the 
disconnected 

loads 

Microgrids are 
implemented to 

restore the 
disconnected 

loads 

Reduction 
Rate (%) 

Case 2: 
Substation was 
vulnerable in 

20% of scenarios 

X (1) =5183.5 X=3986.6 23.1 X=5429.2 X=3987.9 26.6 

Case 3a: 
Substation was 
vulnerable in 
none of the 
scenarios 

X  =5183.5 X=3986.6 23.1 X =5183.5 X=3986.6 23.1 

Case 3b: 
Substation was 
vulnerable in all 

the scenarios 

X  =5183.5 X=3986.6 23.1 X=5499 X=3987.2 27.5 

(1)X=Expected energy produced by fuel-based generators (kWh) 

According to Table. 9, before resilience improvement and only when the microgrids with hybrid energy sources 

(instead of fuel-based DGs) are implemented to restore the disconnected loads, the expected energy produced by 

fuel-based generators will decrease by 23.1%. This amount of fuel consumption reduction that mitigates the 

total emission is highly recognized in emergency conditions resulted from hurricanes. As can be observed, when 

the size of batteries in microgrids (as a clean energy source) is upgraded to enhance the resilience in different 

cases, the dependency on fuel-based generators is further decreased. This can be clearly understood in case 3b 

where the batteries in microgrids in nodes 3 and 29 are resized to 400 kWh and the expected energy produced 

by fuel-based generators is decreased by 27.5%.  

5. CONCLUSION 

In this paper, a comprehensive model based on a main problem and two sub-problems for resilience 

improvement planning of PDN and WDN with multiple microgrids was proposed. The main problem in our 

resilience improvement studies was configured to minimize the expected inaccessibility value of loads to power 

and water against hurricanes as well as the investment cost of strategies in presence of uncertain parameters 

including the time of occurrence and intensity of hurricanes, PDN and WDN demands, power lines operational 

status against hurricanes and repair time of PDN. In analyzing each scenario of the main problem, the 

microgrids were modeled as energy sources through the first sub-problem and possible operation of back-up 

generators for water pumps restoration were included in the second sub-problem. Three clean and effective 

candidate strategies were proposed to enhance the resilience. The first strategy was upgrading the battery size in 

microgrids to restore loads and water pumps so as to enhance the resilience of PDN and WDN. The second 

strategy was identified as upgrading the water tank size in WDN to decrease the dependency of PDN operation 
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to power outages. Line hardening was the third strategy that decreased the failure probability of a power line 

against hurricanes.  

Numerical studies illustrated the effectiveness of the proposed strategies for improving the resilience of PDN 

and WDN. By investigating the dependency of WDN on PDN, the size of water tanks were upgraded. 

Microgrids as energy sources in different places of PDN expanded their borders and restored disconnected 

loads. When the vulnerability of the main source (substation) was high, batteries in microgrids were upgraded to 

bigger sizes. If the expanded borders of microgrids could also cover the water tanks, this strategy was also 

effective to enhance the accessibility of loads to water. Line hardening was the other efficient strategy for 

improving the resilience of PDN and WDN. Especially, resilience could be improved by hardening the path 

between PDN and the substation, the path between water tanks and energy sources and also the path between 

important loads and energy sources.  

Simulation results also demonstrated that implementing microgrids as cleaner energy sources instead of fuel-

based DGs for restoring the disconnected loads could highly decrease the expected energy (thus pollutant 

emissions) produced by fuel-based generators. This contribution toward a greener environment was better 

highlighted when batteries in microgrids were upgraded to bigger sizes.  

It this paper, it was also assumed that the DSO owns microgrids. Additional work will be required to investigate 

such subject matter from different ownership perspectives. To this end, the future efforts will be mainly 

dedicated to expand the proposed model for resiliency improvement of subsystems owned by different entities 

where interactions should be formed, conflicting objectives have to be met and privacy must be preserved. 
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• Clean strategies are proposed to enhance the resilience of power-water networks. 
• Microgrids as emergency sources are considered for load restoration. 
• Back-up generators of disconnected water pumps are scheduled in emergency conditions.  


