Effects of current parenteral nutrition treatment on health-related quality of life, physical function, nutritional status, survival and adverse events exclusively in patients with advanced cancer

A systematic literature review

Tobberup, Randi; Thoresen, Lene; Falkmer, Ursula G; Yilmaz, Mette K; Solheim, Tora S; Balstad, Trude R

Published in:
Critical Reviews in Oncology/Hematology

DOI (link to publication from Publisher):
10.1016/j.critrevonc.2019.04.014

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Title: Effects of current parenteral nutrition treatment on health-related quality of life, physical function, nutritional status, survival and adverse events exclusively in patients with advanced cancer: A systematic literature review

Accepted Manuscript

Authors: Randi Tobberup, Lene Thoresen, Ursula G. Falkmer, Mette K. Yilmaz, Tora S. Solheim, Trude R. Balstad

PII: S1040-8428(19)30078-2
DOI: https://doi.org/10.1016/j.critrevonc.2019.04.014
Reference: ONCH 2734

To appear in: Critical Reviews in Oncology/Hematology

Received date: 15 February 2019
Revised date: 22 March 2019
Accepted date: 13 April 2019

Please cite this article as: Tobberup R, Thoresen L, Falkmer UG, Yilmaz MK, Solheim TS, Balstad TR, Effects of current parenteral nutrition treatment on health-related quality of life, physical function, nutritional status, survival and adverse events exclusively in patients with advanced cancer: A systematic literature review, Critical Reviews in Oncology / Hematology (2019), https://doi.org/10.1016/j.critrevonc.2019.04.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Effects of current parenteral nutrition treatment on health-related quality of life, physical function, nutritional status, survival and adverse events exclusively in patients with advanced cancer: A systematic literature review

Randi Tobberupa,b, Lene Thoresencd, Ursula G. Falkmerb,e, Mette K. Yilmaze, Tora S. Solheimc,f, Trude R. Balstadc,f

aCenter for Nutrition and Bowel Disease, Department of Gastroenterology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark

bDepartment of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark

cCancer Clinic, St. Olavs hospital, Trondheim University hospital, Postboks 3250 Torgarden, NO-7006 Trondheim, Norway

dNational Advisory Unit on Disease-Related Malnutrition, Oslo University Hospital, Sognsvannsveien 9, 0372 Oslo, Norway

eDepartment of Oncology, Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark

fDepartment of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU – Norwegian University of Science and Technology, PO Box 8905, NO-7491, Trondheim, Norway

Corresponding author: Randi Tobberup, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark. Fax: +45 29890577, E-mail: r.tobberup@rn.dk

Highlights
- Current parenteral nutrition treatment is understudied
- Health-related quality of life and physical function may be improved by current parenteral nutrition treatment during anti-neoplastic treatment in malnourished patients unable to feed enterally, but not necessarily in patients with functional gastrointestinal tract
- Nutritional status may be improved by current PN treatment, regardless of anti-neoplastic treatment and gastrointestinal function
- Current parenteral nutrition treatment is not superior to dietary counselling in patients with functional gastrointestinal tract nor to fluid treatment in terminal patients in relation to survival
- The incidence of adverse events in current parenteral nutrition treatment is low

Abstract
Background: The aim was to evaluate the effects of current parenteral nutrition (PN) treatment on clinical outcomes in patients with advanced cancer.

Methods: This review was conducted according to the PRISMA guidelines (PROSPERO ID: 4201707915).

Results: Two underpowered randomized controlled trials and six observational studies were retrieved (n=894 patients). Health-related quality of life and physical function may improve during anti-neoplastic treatment in who PN treatment is the only feeding opportunity, but not necessarily in patients able to feed enterally. Nutritional status may improve in patients regardless of anti-neoplastic treatment and gastrointestinal function. PN treatment was neither superior to fluid in terminal patients nor to dietary counselling in patients able to feed enterally in regards to survival. The total incidence of adverse events was low.

Conclusion: Current PN treatment in patients with advanced cancer is understudied and the level of evidence is weak.

Keywords: Palliative care; Intravenous nutrition; performance status; weight loss; cachexia; supportive care

1. **Introduction**

Patients with advanced cancer frequently experience weight loss. High symptom burden in combination with side effects from anti-neoplastic treatments and metabolic derangement syndromes, such as cachexia, lead to inadequate food intake, inactivity and/or functional decline, which promotes anorexia, fatigue and catabolism [1, 2]. Moreover, patients in a palliative care setting may have a life expectancy of several months to years, and some still receive anti-neoplastic treatment, making them a heterogeneous population regarding decisions for medical nutritional therapy.
Nutritional guidelines for patients with advanced cancer recommend nutritional interventions only after carefully considering the prognosis and expected benefit on health-related quality of life (HRQoL) and potential survival [2]. The treatment goals of parenteral nutrition (PN) administration should be to maintain HRQoL and performance status [2]. The guidelines recommend PN in patients with chronic insufficient dietary intake if enteral nutrition is not sufficient or feasible and/or if patients have uncontrollable malabsorption. However, the level of evidence supporting the beneficial effects of PN is weak [2]. Health care professionals are often challenged when selecting which patients with advanced cancer should receive PN and deciding when to terminate PN due to the uncertainties of expected individual benefits.

A meta-analysis from 1990 demonstrated a net harm of PN administration with trends in reduced survival and tumour response and an increased incidence of infectious complications in patients receiving PN during chemotherapy [3]. The authors concluded that routine use of PN should be strongly discouraged and that trials involving specific groups of patients should be undertaken with caution [3]. As a consequence of this conclusion, no randomized controlled trials (RCTs) involving patients with advanced cancer were conducted during the next several decades. Administration techniques have improved, and considerable changes have been made to the dosage, composition and distribution of PN macronutrients. Thus, there is a need for an updated systematic review investigating the effect of current PN administration in patients with advanced cancer. The primary aims of this systematic review are to evaluate the effect of PN administration on HRQoL and physical function (self-reported, performance status or physical performance testing). The secondary outcomes evaluated were nutritional status, survival, tolerance and dose-limiting toxicity to anti-neoplastic treatment and adverse events.
2. Methods

This systematic review was conducted according to the Preferred Reporting for Systematic Reviews and Meta-Analyses (PRISMA) statement [4]. A Cochrane technology platform was used to manage the review process [5]. The review protocol was registered at the International Prospective Register of Systematic Reviews (PROSPERO) (ID: CRD4201707915).

2.1 Search strategy and selection criteria

A systematic literature search was conducted by a research librarian using the Ovid MEDLINE, EMBASE, CINAHL EBSCOhost and The Cochrane Library databases on the 13th of September 2017 (Appendix 1). An updated search was conducted the 18th of May 2018. A hand search for additional relevant articles from references of key articles was also performed. Screening and eligibility assessments were conducted by two independent reviewers (RT and TRB) using the following criteria: prospective clinical trials or retrospective studies involving adults (≥ 16 years) diagnosed with any incurable/advanced cancers (defined as not curable but might respond to cancer treatment or disease-directed therapy to prolong life and reduce symptoms) who received any type or regimen of PN treatment compatible with current practices (at home or in a hospital/institution) that reported HRQoL outcomes, physical function (self-reported, performance status or physical performance testing), nutritional status (nutritional assessments, body weight or fat free mass), survival, tolerance or dose-limiting toxicity to anti-neoplastic treatment and adverse events associated with PN administration. PN treatment compatible with current practise is defined in this review as normocaloric infusion (not hypercaloric) and PN solution containing fatty acids, amino acids and glucose, preferably in all-in-one bags. Any uncertainties in assessing the eligibility of the studies were discussed among the authors until a consensus was reached. Studies were excluded if patients received treatment with curative intent, PN was administered pre-operatively, peri-operatively and/or
post-operatively to assess complications related to surgery, patients were <16 years old, patients had mixed malignant and benign diseases or the evaluated populations of cancer patients had different stages of disease (in which no subgroup analysis of an advanced cancer population was possible to retrieve), populations of less than 10 patients or less than 20 patients with more than three different cancer diagnoses, the intervention consisted of dietary counselling, enteral feeding, intravenous hydration, or the initiation of PN was not defined in studies using combined treatment with enteral nutrition strategies. Non-English articles were excluded.

2.2 Data collection process and data items

A data extraction table was developed, pilot tested and refined within the review group. Data were extracted by two review authors (RT and TRB) and evaluated independently by a third author (LT). Overall survival was assumed to be calculated from the time of initiation of PN administration, unless otherwise stated in the article.

2.3 Assessment of risk of bias

The content of each of the included RCTs was analysed using methodological risk of bias domains from the Cochrane Handbook for Systematic Reviews of Interventions at the study level [6]. All reviewers assessed the risk of bias (RoB), and any discrepancies were resolved through discussion. There is no single recommended instrument for assessing the RoB when the systematic review also includes non-randomized trials [6]. Therefore, the Institute of Health Economics (IHE) Quality Appraisal Checklist for Case Series Studies was opted for the observational studies [7]. The quality appraisal checklist consists of 20 criteria, of which 16 criteria were considered important. Pre-defined aspects considered important were determined for the study population (age, sex, cancer diagnosis, tumour stage, anti-neoplastic treatment, nutritional status and physical function, and the quality of the
description of the intervention (composition of the PN solution, administration, rate, dosage, duration and indications). When assessing the overall quality of the observational studies, the studies were categorized as good or poor quality based on pre-defined cut-off scores. A total score was calculated by summarizing scores from each of the 16 predefined criteria (3 points for yes, 2 points for partially and 1 point for no/unclear reporting) and categorized as good (score of 40-48) or poor quality (score of 16-39). A study was classified as good quality if at least 4 out of 6 reviewers scored the study at 40-48 points. RoB and confounders were assessed.

3. Results

3.1 Search results and selection of studies

The literature review retrieved 1039 papers (Figure 1). Three additional studies were identified by hand searching. After excluding duplicates and studies that did not meet the inclusion criteria based on title and abstract screening, 85 papers were selected for full-text examination. Full-text screening resulted in the exclusion of 64 papers (for reasons, see Figure 1). Additionally, 13 studies were excluded based on critically high RoB [8-20] (Appendices 2 and 3). The present review is based on the results from eight articles: two RCTs [21, 22], five prospective observational studies [23-27] and one retrospective study [28].

3.2 Risk of bias

A summary of the qualitative RoB assessment for the included studies can be seen in Tables 1 and 2. Both RCTs were underpowered, as only 47 of the planned 100 patients [22] and 31 of the planned 116 patients were enrolled [21]. Most of the observational studies had a high risk of attrition bias as well as performance bias due to poor reporting of PN administration and lack of systematic reporting of adverse events associated with PN administration.
3.3 Study and patient characteristics

Detailed study characteristics of the included trials can be seen in Table 3 and some major study characteristics are listed in Table 4. Two RCTs (n=78), five prospective studies (n=664) and one retrospective study (n=152) yielded a total of 894 patients, of who 857 received PN. The population size in the individual studies ranged from 31 to 414 and included 435 females (46%), 414 males (49%) and 45 patients (5%) whose sex was not reported. The patients’ mean age was 60.8 years (range, 16 – 90 years). Six of eight studies included different cancer diagnoses [21, 23-25, 27, 28]. A total of 28 cancer diagnoses were counted, of which gastric, colorectal, pancreatic and gynaecological cancers were the most common. In total, 223 patients (25%) received concurrent anti-neoplastic treatment [22, 24, 25, 27], and 639 patients (71%) did not [21, 23-25, 28] (Table 4). One study (n=32, 4%) did not report the use of concurrent anti-neoplastic treatment [26].

A wide range of methods were used to assess nutritional status at baseline. Four studies used validated screening or assessment tools for (risk of) undernutrition (Malnutrition Universal Screening Tool (MUST) [25], Nutritional Risk Screening 2002 (NRS2002) [22], Subjective Global Assessment (SGA) [27] or Patient-Generated Subjective Global Assessment (PG-SGA) [24]). Body mass index (BMI) was reported by two RCTs [21, 22] and by five observational studies [23, 24, 26-28]. Weight loss was reported in various ways: weight loss over the last three months [24], weight loss over the last six months [27, 28], percent weight loss of usual weight (usual not specified) [23] and weight loss without a specified time frame [22]. Oral food intake was reported by one RCT [22] and one observational study [24].
All patients were either considered at risk of undernutrition or malnourished at inclusion. Two studies used patients’ (risk of) undernutrition specifically as an inclusion criterion, of which one RCT used the score of ≥ 2 on the NRS2002 [22] and one observational study used a weight loss of $\geq 5\%$ over the previous four weeks or a BMI (kg/m^2) < 19 [26]. Additionally, three studies used nil/negligible intake per os or enteral feeding as inclusion criteria [21, 23, 24].

Baseline performance status was reported in seven of eight studies using either the Karnofsky Performance Score (KPS) [23, 24, 27, 28] or Eastern Cooperative Oncology Group (ECOG) performance status [21, 22, 25] (Table 3 and 4). The two RCTs had performance status as an inclusion criterion: ECOG performance status of 0-2 [22] or ECOG performance status of 3 or 4 [21]. The mean performance status at baseline reported in the observational studies was a KPS of 60 (range, 20-100) [23, 24, 27, 28] and ECOG performance status of 1.5 (standard deviation (SD), 0.5) [25].

All studies reported the indications for initiating PN (Table 3). In 79 % of the patients, the primary PN indication was compromised gastrointestinal function (obstruction, short bowel syndrome or fistula formation) [21, 23-28] (Table 4). No or negligible food intake/enteral nutrition was the primary PN indication in 16% of the patients [21, 23, 24, 26]. Lastly, in the remaining 5 % of the patients, PN was provided to patients in an attempt to prevent functional decline in malnourished patients not otherwise indicated for PN (functional gastrointestinal tract and food intake above 75 % of the energy and protein requirement in most of the patients) [22].

3.4 Intervention

The composition of PN solutions was reported in most studies, albeit the degree of reported details varied (Table 3). Four studies reported using all-in-one bags [22, 24, 27, 28], three studies partially
reported the composition of PN macronutrient solution [21, 25, 26], while one study failed to describe the composition of PN [23]. The method of PN administration was reported by four studies and included via a central venous catheter (CVC) [22, 23, 25, 28], transthoracic venous port [22] or peripherally inserted central catheter (PICC) line [22]. The administration rate was described by five studies [22, 24-27]; in four studies PN was preferably delivered during the night [22, 24-26], and one study reported using daily cyclic infusions [27]. None of the studies reported the infusion rate (e.g., continuous infusion or ml/min). The planned energy dose ranged between 20-35 kcal/kg/day [23-25, 27, 28] and 25 kcal/kg/day in five out of seven days [26]. The planned protein dose ranged between 1.0 and 2.5 g/kg/d [23-28]. In one RCT, PN contributed 25-35% of the planned intake (30 kcal/kg/day and 1.5 g protein/kg/day), as the patients had a substantial oral intake [22]. One study did not report a planned dose of either calories or protein and reported only the amount of calories administered (average 1286 kcal/day) [21]. Additionally, three studies reported the calories administered but did not confirm whether patients reached target goals [22, 24, 27]. The duration of PN administration varied among the studies, ranging from a median of 9 days [21] to 6 months [22]. Two studies reported administering PN until death or close to death in all patients [21, 28] and until death in approximately 66% of the patients in one study [23]. The median duration of PN administration was < 1 month in one study [21], 1-3 months in three studies [23, 25, 28] and > 3 months in four studies [22, 24, 26, 27].

3.5 Effects of PN on HRQoL

Three studies provided data on HRQoL (n=210) (Table 5). HRQoL was assessed by different methods (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30 (EORTC QLQ-C30) [24, 27] and EORTC QLQ-C15-PAL [22]) and measured at different time points (monthly [24, 27] and every 6 weeks [22]), with various lengths of follow-up (3 months [27], 4
months [24] or 24 weeks [22]). In one RCT, a significantly higher mean (95% confidence interval (CI)) score of +16 (0.6, 31) points in HRQoL at 12 weeks was reported in favour of PN compared to control treatment (p<0.05), but not at week 6, 18 or 24 [22]. In one observational study, HRQoL was unchanged after one month but significantly improved after two (+12 points, p=0.02) and three months (+24 points, p=0.02) [27]. Another observational study reported significant improvement over time during four months using analysis of repeated measures (p<0.001), with +6 points at one month, +14 points at two months, +19 points at three months and +14 points at four months [24]. In summary, the effect of current PN treatment on HRQoL in patients with advanced cancer is poorly investigated. PN was superior in a transient manner to dietic counselling in patients with functional gastrointestinal tract while undergoing anti-neoplastic treatment. In patients where PN is the only viable feeding option, HRQoL may improve after a minimum of two months on PN in malnourished patients while undergoing anti-neoplastic treatment. Although statistical significance was reached, the reported effect sizes does not necessarily reach clinical relevant improvements in HRQoL (< 20 %).

3.6 Effects of PN on physical function

Three studies provided data on self-reported physical function from subscales of HRQoL questionnaires (n=210) [22, 24, 27] (Table 5). An RCT found no difference between patients receiving PN and control subjects at any time during the 24 weeks of intervention [22]. The two observational studies reported improved self-reported physical function over time ((+4 points at one month, +8 points at two months, +17 points at three months and +14 points at four months; p<0.001 for repeated measures) [24] and after two (+14 points, p=0.02) and three months (+16 points, p=0.005) but not after one month (+3 points, p=0.39) [27]).
One RCT [22], one prospective study [27] and one retrospective study [28] reported a change in performance status as assessed by health providers’ perception of patients’ function (KPS) or physical performance tests (strength or endurance) (n=251) (Table 3). Patients randomized to receive PN or control treatment both improved on the 6-minute walk test and in terms of hand grip strength from baseline to week 24 in the RCT, although no significant difference between the two arms was found [22]. In the prospective study, there was a significant increase in KPS after one (+6 points, p=0.01), two (+10 points, p=0.01) and three months (+15 points, p=0.002) [27]. In the retrospective study, there was no change in KPS after one month in subgroups of survivors after >60 and >90 days [28], but no data from patients who survived less than 60 or 30 days were reported.

In summary, the effect of current PN treatment on physical function in patients with advanced cancer is poorly investigated. PN was not superior to dietetic counselling in malnourished patients with functional gastrointestinal tract undergoing active anti-neoplastic treatment. However, PN may be beneficial in malnourished patients when PN is the only feeding opportunity and who still receive anti-neoplastic treatment, but not in patients not undergoing anti-neoplastic treatment.

3.7 Effects of PN on nutritional status

Nutritional status was reported in 4 of 8 studies (n=283) [22, 26-28] (Table 5). In one RCT, the mean (95% CI) BMI and fat free mass was significantly increased at week 12 in favour of the supplementary PN arm compared to the control arm (mean (95% CI): +1.65 (0.4, 2.9) BMI (kg/h²), p<0.05; +6.44 kg (2.9, 10.0) FFM (kg), p<0.01) [22]. No differences between the two arms on any nutritional status outcomes were observed at the other time points (week 6, 18 or 24) [22]. Two observational studies (n=251) reported an increase in mean body weight (kg) by 1.5 kg in subgroups of survivors after >60 and >90 days [28] and 1.6 kg after one month [27], 2.4 kg after 2 months [27] and 4.6 kg after 3
months [27] (p<0.05). One observational study reported a mean increase in BMI of 0.5 kg/m² at one month in subgroups of survivors after >60 and >90 days (p=0.0001) [28]. No data were presented for survivors after <60 days [28]. Another observational study reported a median increase in BMI of 0.7 kg/m² (no effect per time unit or p value reported) [26]. One observational study reported nutritional status using the SGA global rating, and the of patients in category SGA-A (well nourished) changed from zero patients at baseline, to two patients at 1 month and three patients at 2 months, SGA-B (moderately malnourished) changed from 19 patients at baseline to 20 patients at 1 month, 13 patients at 2 months, and 12 patients at 3 months, while the number of patients in category SGA-C (severely malnourished) decreased from 33 patients at baseline to 17 patients at 1 month, 6 patients at 2 months and one patient at 3 months [27].

In summary, current PN treatment seems to be superior to dietetic counselling in a transient manner in regards to BMI and fat free mass in malnourished patients with functional gastrointestinal tract, while undergoing anti-neoplastic treatment. When PN is the only feeding opportunity, PN may improve nutritional status in malnourished patients regardless of anti-neoplastic treatment after 2-3 months of PN treatment.

3.8 Effects of PN on survival

Data on survival were available from seven studies (n=862) [21-25, 27, 28] (Table 5). In the RCT involving terminal patients, the median overall survival (mOS) was 8 days (95% CI: 5.7-10.3) in the control group compared to 13 days (95% CI: 3.1-22.9) in the PN group [21]. In the other RCT, the mOS was 169 (95% CI: 88-295) days in the control group versus 168 (95% CI: 88-268) days in the supplemental PN group [22]. The difference in mOS between patients receiving PN compared to subjects in the control groups in both RCTs was not statistically significant [21, 22]. In the three of
the observational studies, the mOS in months was 3 (95% CI: 2.7-3.3) [23], 5.1 (95% CI: 2.8-7.3) [27] and 4.7 (range, 1-42) months [24]. In the two observational studies reporting survival in days, the mOS (range) was 40 (2-702) [25] and 45 (6-1269) days [28]. In summary, survival between patients receiving and not receiving current PN treatment is poorly investigated and both RCTs were underpowered. PN is neither superior to dietetic counselling in patients with functional gastrointestinal tract undergoing anti-neoplastic treatment, nor superior to fluid administration in terminal patients.

3.9 Effects of PN on tolerance and dose-limiting toxicity of anti-neoplastic treatment

No studies reported outcomes on tolerance or dose-limiting toxicity of anti-neoplastic treatment.

3.10 Effects of PN on adverse events

Adverse events were systematically reported in four of eight studies (n=245) [22, 24-26] (Table 5). One observational study reported no adverse events [26]. One RCT reported catheter-related infections in two patients but no episodes of severe catheter-related blood stream infection [22]. One observational study reported catheter-related infections in 3.6% of the patients [25], while another observational study reported an incidence of catheter-related bloodstream infection of 0.33 per 1000 catheter-days [24]. Two additional studies reported discontinuation of PN due to PN-related complications (n=466) [23, 27]: catheter-related complications in nine of 414 patients (incidence: 2.2%) [23], sepsis in two of 52 patients [27] and elevated liver function tests in two of 52 patients [27]. Death due to PN/CVC complications was reported in five of 414 patients (incidence: 1.2%) [23] and liver dysfunction in one patient after nine months on PN [27]. In summary, the incidence of adverse events of current PN treatment were acceptable, but lack of systematic reporting was observed.
3.11 Losses to follow-up

Losses to follow-up were reported in or could be retrieved from all studies. Three studies assessed survival as the only outcome, and all patients were included in the survival analysis [21, 23, 25]. One study performed an analysis in survivors over the previous 60 and 90 days; however, they presented conflicting numbers of losses to follow-up between the text and tables [28]. No patients were lost to follow-up in one study [26], while the remaining three studies reported losses to follow-up by stating the number of patients included at each time point of assessment [22, 24, 27]. The cumulative losses to follow-up were 27 of 163 patients at one month (17%) [24, 27], 11 of 47 patients at six weeks (23%) [22], 65 of 163 patients at two months (40%) [24, 27], 116 of 210 patients at three months (55%) [22, 24, 27], 57 of 111 patients at four months (51%) [24], 25 of 47 at 18 weeks (53%) [22] and 30 of 47 patients at six months (64%) [22]. The main reason for loss to follow-up was death or worsening of the clinical state (98 of 210 patients (47%) [22, 24, 27]). Other reasons included weaning from PN to oral feeding or enteral nutrition, change in home care company, refusal to continue PN or adverse events [23, 24, 27].

4. Discussion

This systematic review selectively assessed the effect of current PN treatment exclusively in patients with advanced cancer. Since the launch of PN treatment, the most important advancement in this therapy is the reduction of the glucose load by implementing fatty acids in the PN solution and reducing the caloric load to match the caloric demand, as well as improving the hygiene protocols. Trials using outdated PN strategies (hypercaloric, glucose rich PN therapies) were thus excluded in order to assess the effects of PN treatment more compatible with today’s practice. The evidence level of all outcomes is weak, due to the few high quality trials. Effects on HRQoL and physical function are based on the findings from one RCT and three observational studies. The RCT was conducted in
malnourished patients with functional gastrointestinal tract during anti-neoplastic treatment. Two of the observational studies were conducted in malnourished patients in who PN was the only viable feeding option and received concurrent anti-neoplastic treatment. One retrospective study that assessed physical function was conducted in malnourished patients in who PN was the only viable feeding option without concurrent anti-neoplastic treatment. In malnourished patients receiving anti-neoplastic treatment and in who PN was the only available feeding route, PN may improve HRQoL, physical function and nutritional status after two months of PN treatment. On the contrary, malnourished patients receiving anti-neoplastic treatment, with a moderate spontaneous food intake and who could be fed via enteral route, PN was not superior to dietary counselling in regards to HRQoL, physical function, nutritional status or survival during a six month intervention, apart from a transient effect on HRQoL and nutritional status at three months. In malnourished patients, no longer candidates to receive anti-neoplastic treatment, current PN treatment can improve nutritional status, but not physical function.

Unlike simple undernutrition (non-disease-related malnutrition [1]), a negative energy balance and muscle loss in patients with cancer cachexia is characterized by a combination of reduced food intake and catabolism driven by systemic inflammation [29]. Earlier practices of hypercaloric PN aimed to reverse catabolism, particularly by use of high doses of glucose [3]. High energy-dense lipid emulsions have later been integrated into PN solutions, thus reducing the glucose load and high volume infusion. Furthermore, the use of soybean oil rich in pro-inflammatory n-6 polyunsaturated fatty acids (PUFAs) has been replaced with olive oil and fish oil, which are rich in anti-inflammatory n-3 PUFAs [30, 31]. Cachexia cannot be reversed by nutritional support alone [29]; thus, hypercaloric PN is no longer the standard of care. Nevertheless, the optimal PN treatment for these patients is still questioned as the energy requirement, and whether these patients have an anabolic potential in
response to energy balance is uncertain [29, 32]. Following the meta-analysis on survival and adverse events from 1990 evaluating RCTs using hypercaloric and glucose-rich PN solutions [3], two previous systematic reviews have assessed the clinical effects of PN in patients with inoperable malignant bowel obstruction [33, 34]. Both reviews failed to provide a conclusion on HRQoL due to the use of non-validated QoL tools used by the majority of the individual studies [33, 34]. Furthermore, these reviews included studies using outdated PN treatment, such as hypercaloric PN, and consequently cannot be used to evaluate the efficacy of current PN treatment.

The studies conducted in recent years have predominantly been observational, and these studies can provide important information about prevalence and adverse events. Nevertheless, observational studies cannot provide reliant effect sizes for key questions regarding the effects of PN on clinically relevant outcomes due to bias and confounding factors. The observed effects could, for instance, be a response to anti-neoplastic treatment, symptom alleviation and loss of patients with initially poor nutritional/clinical status (“survivalism”) and underpin the importance of a control group when the effects of an intervention are evaluated. The importance of an actual control group is exemplified by one RCT in which both arms showed increased physical performance and a transient increase in muscle mass in 40% of the patients in the control arm [22].

The major limitations of this review were the lack of well-designed RCTs. Both RCTs were underpowered and did not comply with indications for PN treatment according to guidelines [2]. Patients in one study were terminally ill with days or a few weeks of expected survival [21], while the majority of patients in the other RCT had a nutritional intake above 75% of the estimated requirement and a functional gastrointestinal (GI) tract [22]. PN administration is neither indicated in terminally ill patients nor the first choice of nutritional support in patients with ≥75% of
recommended nutritional intake and a functional GI tract [2]. A multicentre phase III RCT involving patients with advanced cancer aimed at study the effect of PN on HRQoL was recently completed [35]. The inclusion criteria comply with indications for PN administration according to guidelines and will, if positive, identify causal effects of PN on HRQoL and other important outcomes in patients with advanced cancer. Future studies must provide detailed descriptions regarding PN administration, including planned and administered dosages, sufficiency of caloric intake compared to nutritional requirements, composition, infusion rate, and duration, to gather information on the optimal PN treatment. For better reporting of nutritional interventions, investigators can find guidance using a checklist [36].

4. Conclusion

This systematic review is the first to evaluate the effects of current PN treatment exclusively in patients with advanced cancer. The evidence is weak for all outcomes and is predominantly based on observational studies. During anti-neoplastic treatment, PN seems to improve HRQoL and physical function in patients who PN is the only viable feeding option, but not necessarily in patients able to be fed enterally. Regardless of anti-neoplastic treatment and GI function, nutritional status seems to be improved by current PN treatment in malnourished patients. No benefit on survival of PN in terminal patients or patients able to feed enterally were reported. The frequency of adverse effects was low; however, a lack of systematic reporting was observed. Further RCTs with sufficient number of patients of clinically homogenous subgroups are urgently needed.

Conflict of interest

All authors have contributed to the review and writing process, and none have conflicts of interest to declare. No funding was granted or associated with this review/manuscript.
Acknowledgements

The authors thank Conni Skrubbeltrang, research advisor at the Medical library, Aalborg University Hospital for help with the systematic searches and valuable input on the process and Henrik Højgaard Rasmussen, Professor at Centre for Nutrition and Bowel Disease, Department of Gastroenterology, Faculty of Medicine, Aalborg University Hospital, Aalborg University, for valuable criticism.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Contributors

All authors contributed to the planning process, risk of bias assessment, analysis and interpretation of data. RT and TRB acquired the data and drafted the article, which was critically revised for important intellectual content by the remaining authors. All authors have approved the final article.

References

5. Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available at www.covidence.org
Carcinomatosis.

Vitae
Randi Tobberup, RD, PhD scholar, Dept. of Medicine, Dept. of Clinical Medicine, Aalborg University Hospital, Aalborg University, Denmark.

Lene Thoresen, RD, PhD, Cancer Clinic, St Olavs University hospital, Trondheim, and the National Advisory Unit on Disease-Related Malnutrition, Oslo University Hospital, Norway.

Ursula Falkmer, MD, PhD, Professor in Clinical Oncology, Dept. of Oncology, Clinical Cancer Research Center, Dept of Clinical Medicine, Aalborg University Hospital, Aalborg University, Denmark.
Mette Yilmas, MD, senior consultant, Dept of Oncology, Clinical Cancer Research Center, Aalborg University Hospital, Denmark.

Tora S. Solheim, MD, PhD, ass. Professor in Palliative Medicine, Cancer Clinic, St Olavs University hospital, Trondheim, Dept. of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway.

Trude R. Balstad, RD, PhD, post doc at Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway.
Figure 1. Flow chart for the study selection process. The figure provides details of reasons for exclusion of full text articles.

Studies excluded based on poor quality appraisal, as assessed by a total score < 40 on the IHE Quality Appraisal Checklist for case series studies.
Table 1. Summary of risk of bias of randomized controlled trials

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obling et al.</td>
<td>2017</td>
<td>Low Risk Restricted randomization method minimization by use of MinimPy web-based program</td>
<td>Low risk Web-based</td>
<td>High risk No blinding of patients or personnel</td>
<td>High risk No blinding of outcome assessment</td>
<td>Low risk Number of patients reported for each outcome at all time points</td>
<td>High risk Underpowered</td>
</tr>
<tr>
<td>Oh et al.</td>
<td>2014</td>
<td>Unclear risk Patients were randomized, but the method explaining the randomization procedure was unknown</td>
<td>Low risk Allocation concealment performed by research staff of Seoul Medical Center Research Institute and was judged as a central allocation</td>
<td>Low risk Lack of blinding is unlikely to influence survival outcome</td>
<td>Low risk Lack of blinding is unlikely to influence survival outcome</td>
<td>Low risk All patients accounted for in survival analysis</td>
<td>High risk Underpowered</td>
</tr>
</tbody>
</table>
Table 2. Summary of risk of bias of observational studies

<table>
<thead>
<tr>
<th>Author year</th>
<th>Selection bias and confounding</th>
<th>Performance bias</th>
<th>Detection bias</th>
<th>Attrition bias</th>
<th>Reporting bias</th>
<th>Overall bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotogni et al. 2017</td>
<td>No comment</td>
<td>Authors did not report administration route</td>
<td>No comment</td>
<td>No comment</td>
<td>Large drop out</td>
<td>Moderate</td>
</tr>
<tr>
<td>Guerra et al. 2016</td>
<td>Tumour stage not reported, but patients not considered candidates for further chemotherapy were excluded</td>
<td>Authors did not describe dose given</td>
<td>No comment</td>
<td>Unknown whether all patients died, as this was not explicitly reported; Kaplan-Meier curve suggested that some patients are still alive</td>
<td>No comment</td>
<td>High</td>
</tr>
<tr>
<td>Bozzetti et al. 2014</td>
<td>Missing information of indication for PN in one-third of the population</td>
<td>Dose administered and composition of PN not described</td>
<td>Large range of performance status at baseline makes interpretation of results difficult</td>
<td>No comment</td>
<td>No comment</td>
<td>High</td>
</tr>
<tr>
<td>Vashi et al. 2014</td>
<td>Unknown whether patients were recruited consecutively</td>
<td>Administration route not described</td>
<td>No comment</td>
<td>No comment</td>
<td>Large drop out</td>
<td>Moderate</td>
</tr>
<tr>
<td>Study</td>
<td>Issues</td>
<td>Statistical method</td>
<td>Dropout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelzer et al. 2010</td>
<td>Unsure whether patients were recruited consecutively and whether patients received concurrent oncologic therapy; performance status at baseline not reported</td>
<td>No comment</td>
<td>Large drop out</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santarpi a et al. 2006</td>
<td>No comment</td>
<td>Definitions of “improvement”, “stable” and “decreased” KPS not described</td>
<td>No comment</td>
<td>No comment</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Study characteristics

<table>
<thead>
<tr>
<th>Publication Authors (year published), study period, country</th>
<th>Population</th>
<th>PN indication</th>
<th>PN intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized controlled trials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obling et al. (2017)</td>
<td>N=47 (22 PN vs. 25 control)</td>
<td>Medical related, Food/nutrition related</td>
<td>Composition of PN solution, administration, rate, dose planned, dose administered and duration of PN</td>
</tr>
<tr>
<td>Sex: Female (n=7 vs. 10), male (n=15 vs. 15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age: mean (range): 67.4 (41.5-81.6) vs. 65.9 (43.3-88.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>Cancer diagnosis: GI cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour stage: locally advanced or metastatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-neoplastic treatment: CT (n=20 vs. n=23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS: KPS 0 (n=1 vs. 5), 1 (n=12 vs. 13), 2 (n=9 vs. 7)</td>
<td>Medical related: to prevent and treat functional decline accompanying cachexia in patients at nutritional risk (≥ 2 by NRS2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS: WL < 5% (n=1 vs. 7), 5-10% (n=6 vs. 4), > 10% (n=15 vs. 14). Sarcopenia assessed by BIA (n=2 vs. 1), sarcopenia assessed by handgrip strength (n=9 vs. 9). NRS2002: score ≥2 (all patients)</td>
<td>Food/nutrition intake: > 75% of energy requirement (n=20 vs. 23), > 75% of protein requirement (n=10 vs. 12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusion criteria: Incurable GI cancer, age > 18, PS 0-2, NRS2002 >2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria: functional or actual short bowel syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oh et al. (2014)</td>
<td>N=31 (15 PN vs. 16 control)</td>
<td>Medical related: Feeding via enteral route not possible</td>
<td>Composition: any type of marketed amino acid and fat emulsion allowed, including ready to use products</td>
</tr>
<tr>
<td>Sex: Female (n=6 vs. 6), male (n=10 vs. 9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age: mean (SD): 60.4±12.6 vs. 59.1 ±9.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical related: to prevent and treat functional decline accompanying cachexia in patients at nutritional risk (≥ 2 by NRS2002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composition: any type of marketed amino acid and fat emulsion allowed, including ready to use products</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table provides a summary of the study characteristics, including population details, PN indication, and intervention for the randomized controlled trials mentioned. The PN intervention section details the composition, administration, rate, dose planned, and duration of PN.
June-December 2011
Republic of Korea

Cancer diagnosis:
Hepatobiliary/pancreas (n=8 vs. 2), colon (n=3 vs. 4), stomach (n=0 vs. 4), breast (n=2 vs. 1), neuroendocrine (n=0 vs. 2), lung (n=0 vs. 1), prostate (n=0 vs. 1), melanoma (n=1 vs. 0), salivary gland (n=0 vs. 1), leukaemia (n=1 vs. 0)

Tumour stage: advanced terminal cancer, no further plans of active treatment

Anti-neoplastic treatment: None

PS: ECOG 3 (n=11 vs. 6), ECOG 4 (n=5 vs. 9)

NS: BMI < 18.5 (n=4 vs. 1)

Inclusion criteria: advanced cancer with no further plans for anti-neoplastic treatment, inability to feed via an enteral route, age > 19, life expectancy ≤ 12 weeks, PS 3-4, presence venous access, admission to hospital for a minimum of 1 day

Exclusion criteria: cardiac or renal disease that restricted administration of fluid, electrolyte imbalance, poorly controlled diabetes, indication of unsuitability

Food/nutrition related: no feeding per os

Administration: NR
Rate: NR

Dose planned, mean (SD): 1286.6 kcal/d (108.3) and 59.6 g protein/d

Dose given, average: 1286 kcal/day

Duration: until death or withdrawal of consent, not further specified

Control arm:
Intravenous fluid therapy with a maximum of 30 mL/kg/d (fluid consisted of saline, half saline or dextrose water). Maximum calories administered limited to under 20 kcal/kg/d (physician decision)

Dose, mean: 374.7±71.7 kcal/d

Prospective observational studies
Cotogni et al. (2017)
Italy

N= 111

Sex: female (n=54), male (n= 57)
Age, median (range): 62 (32-79)

Cancer diagnosis: stomach (n=38), colorectal (n=21), pancreas/biliary (n=20), oesophagus (n=10), lung (n=10), ovary (n=2), other (n=10)

Medical related:
Intestinal (sub)obstruction (n=90), short bowel syndrome (high output ileostomy/fistula) (n=14), EN not

Composition: all-in-one bag
Administration route: NR
Rate: 10-14 hours overnight

Dose planned: 20-25 kcal/kg/d (bedridden), 25-30 kcal/kg/d (outpatients) + 1.0-1.5 g amino acids/kg/d

Dose given, median: 1000-1250 kcal/d
Tumour stage: stage III (n=25), stage IV (n=86)

Anti-neoplastic treatment: CT (n=61), RT (n=2), CRT (n=9)

PS: KPS, median (range): 70 (60-80)

NS: PG-SGA B (n=41) or PG-SGA C (n=70); WL, median (range): 11.7% (0-38.3%); BMI, median (range): 20.7 (13.5-29.5)

Inclusion criteria: adult cancer patients candidates for PN according to ESPEN guidelines, proven and prolonged failure to meet nutrition requirements by oral/enteral route with impending risk of death due to malnutrition, life expectancy > 2 months, KPS > 50, control of pain, absence of severe organ dysfunction, presence of environmental conditions compatible with PN

Exclusion criteria: Not specified

Guerra et al. (2015)

N: 55

Sex: not reported

Age, mean (SD): 60 (4.3)

2007-2012

Cancer diagnosis: gastrointestinal (n=38), gynaecological (n=10), other (n=37, urinary, unknown and pelvic)

Tumour stage: NR, stated as advanced cancer

Anti-neoplastic treatment: CT (n=26)

PS: ECOG, mean (SD): 1.5 (0.5)

NS: BMI, mean (SD): 21.6 (4.3); malnourished (assessed by MUST) (n=43)

Food/nutrition related: tolerated or feasible (n=7)

Duration: median (range): 137 days (21-576)

Food/nutrition related: inadequate oral/enteral intake

Medical related: SBO with peritoneal carcinomatosis

Food/nutrition related: NR

Medical related:

Composition: glucose 3-6 g/kg/d, amino acids 1.0 g/kg/d, lipids < 1 g/kg/d, EAA 7-10 g/d + vitamins/trace elements added if needed

Administration: Peripherally CVC

Rate: Intermittent infusion, primarily at night-time

Dose planned: 20-35 kcal/kg/d

Dose given: NR

Duration: mean (SD): 54.13 days (114.99) (GI), 60.7 days (44.49) (gynaecological), 34.29 days (57.53) (other cancers)
Inclusion criteria: advanced cancer and intestinal occlusion with peritoneal carcinomatosis, considered candidates for active chemotherapy

Exclusion criteria: patients not considered candidates for ongoing chemotherapy

Bozzetti et al. (2014)
N = 414
Sex: female (n=190), male (n=224)
Age, median (range): 62 (16-90)

2004-2011
Cancer diagnosis: head & neck (n=50), stomach (n=92), small bowel-biliary (n=10), colorectal (n=84), ovary (n=51), pancreas (n=46), other (n=81)
Tumour stage: metastatic (n=276), vital organ metastasis (n=170), locoregional disease (n=105)

Anti-neoplastic treatment: None
PS: KPS, median (range): 60 (20-100)
NS: WL (habitual weight), median (range): 24% (-8 to -56); WL (previous 6 months), median (range): 16% (-44 to -50); BMI, median (range): 19.5 (12.8-30.0)

Inclusion criteria: adults with no/negligible oral/enteral nutrition, incurable malignancy without major organ failure or major involvement of a vital organ or severe metabolic derangement
Exclusion criteria: patients with ascites or pleural effusion, uncontrolled symptoms, receiving PN in the

Medical related:
SBO/sub-obstruction (approx. 2/3 of patients)

Food/nutrition related:
no/negligible oral/EN

Composition: NR
Administration: CVC
Rate: daily infusion
Dose planned: at least 25 kcal/kg/d and 1 g amino acid/kg/d
Dose given: NR
Duration: until death (n=273); Premature PN discontinuation, median (range): 2 month (1-126) (n=139)
perspective to become candidates for future oncologic treatment

Vashi et al. (2014)

2009-2014

USA

N = 52

Sex: female (n=31), male (n=21)

Age, mean (SD): 53.2 (9.4)

Cancer diagnosis: pancreas (n=14), colorectal (n=11), ovarian (n=6), appendix (n=5), stomach (n=4), other cancers (n=12)

Tumour stage: stage IV, with multiple organ involvement

Anti-neoplastic treatment: all patients received either CT, RT or hormonal therapy

PS: KPS, mean (SD): 60.1 (10.8)

NS: PG-SGA B (n=19), PG-SGA C (n=33); WL previous 6 months, mean (SD): 16.9% (9.3)

Inclusion criteria: cancer, expected survival > 90 days, no PN prior to hospital admission, no associated liver or kidney problems, cancer cachexia with tumor burden involving multiple organs and compromised GI function

Exclusion criteria: patients who did not give informed consent

Medical related:

Compromised GI function

Food/nutrition related:

Poor oral intake, PN only nutritional option

Composition: Total Nutrient Admixture solution (lipids < 30E%), amino acids and dextrose) + Multivitamin Infusion-13 & Multitrace 5.

Administration: NR

Rate: daily cycled infusion

Dose planned: 25-30 kcal/kg (BMI <30), 22-25 kcal/kg of ideal body weight (BMI≥30). Protein 1.5 to 2.5 g/kg depending on BMI.

Dose given, mean (SD): 1468 kcal/d (328), 81.1 g protein/d (16.4)

(PN less than 3 months) vs. 1273 kcal/d (238), 70.0 g protein/d (14.6) (PN more than 3 months)

Duration, mean (range): 3.4 months (0.4-11.7)

Pelzer et al. (2010)

2002-2004

USA

N = 32

Sex: female (n = 14), male (n=18)

Age, median (range): 62 (47-75)

Medical related:

Gastrointestinal stenosis, gastro-paresis

Composition: Amino acids 1.2-1.5 g/kg, lipids at least 35 E%, additional vitamins or electrolyte if indicated. No additional glutamine or omega 3

Administration: NR
<table>
<thead>
<tr>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer diagnosis: inoperable pancreatic cancer</td>
</tr>
<tr>
<td>Tumour stage: IV</td>
</tr>
<tr>
<td>Anti-neoplastic treatment: Not reported</td>
</tr>
<tr>
<td>PS: NR</td>
</tr>
<tr>
<td>NS: > 5% WL previous 4 weeks OR BMI < 19</td>
</tr>
<tr>
<td>Inclusion criteria: ambulant patients with stage IV pancreatic cancer, weight loss > 5% in four weeks or BMI < 19 in spite of enteral and drug support</td>
</tr>
<tr>
<td>Exclusion criteria: not specified</td>
</tr>
</tbody>
</table>

Rate: overnight infusion to reach targeted calorie intake in 5 of 7 days
Dose planned: 25 kcal/kg/d in 5 of 7 days: amino acids 1.2-1.5 g/kg, lipids at least 35 E%, additional vitamin or electrolyte if indicated. (given dose not reported)
Dose given: NR
Duration, median (range): 18 weeks (8-35)

<table>
<thead>
<tr>
<th>Retrospective observational study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santarpia et al. (2006)</td>
</tr>
<tr>
<td>Sex: female (n= 107), male (n=45)</td>
</tr>
<tr>
<td>Age: median (range): 59.5 (22-88)</td>
</tr>
<tr>
<td>Cancer diagnosis: stomach (n=48), ovaries (n=42), colorectal (n=30), endometrium (n=7), breast (n=6), ileum (n=5), gallbladder (n=4), pancreas (n=3), kidney (n=2), skin (n=1), prostate (n=1), abdominal sarcoma (n=1), unknown (n=2)</td>
</tr>
<tr>
<td>Tumour stage: Considered terminal (unresponsive to oncologic treatment)</td>
</tr>
<tr>
<td>Anti-neoplastic treatment: None</td>
</tr>
<tr>
<td>PS: 90 patients had KPS ≤40, 40 had KPS ≥ 50, 18 had a KPS= 60 and 4 had a KPS = 70</td>
</tr>
<tr>
<td>NS: Mean (SD) WL (kg) previous 6 months: 9.5 (4.7), range WL: 2-26 kg. BMI, mean (SD): 20.1 (3.6)</td>
</tr>
<tr>
<td>Inclusion/exclusion criteria: not specified</td>
</tr>
</tbody>
</table>

Medical related: Bowel obstruction due to peritoneal carcinomatosis
Food/nutrition related: Food intake not possible
Composition: All-in-one bags containing amino acids, glucose, lipids, minerals, trace elements and vitamins
Administration: CVC
Rate: NR
Dose: 20-30 kcal/kg/d, 3-4 gram/kg body weight of carbohydrates, 1-1.5 gram/kg body weight protein and 1 gram/kg body weight of lipids
Duration: Given until 1 to 3 days before death
Table 4. Major baseline characteristics of the included trials

<table>
<thead>
<tr>
<th>Publication</th>
<th>Gastrointestinal function</th>
<th>Anti-neoplastic treatment (%)</th>
<th>Performance status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obling et al. 2017</td>
<td>Good</td>
<td>91 %</td>
<td>Good</td>
</tr>
<tr>
<td>Oh et al. 2014</td>
<td>Dysfunctional</td>
<td>0 %</td>
<td>Poor</td>
</tr>
<tr>
<td>Cotogni et al. 2017</td>
<td>Dysfunctional</td>
<td>65 %</td>
<td>Good</td>
</tr>
<tr>
<td>Guerra et al. 2015</td>
<td>Dysfunctional</td>
<td>47 %</td>
<td>Good</td>
</tr>
<tr>
<td>Bozzetti et al. 2014</td>
<td>Dysfunctional</td>
<td>0 %</td>
<td>Any</td>
</tr>
<tr>
<td>Vashi et al. 2014</td>
<td>Dysfunctional</td>
<td>100 %</td>
<td>Any</td>
</tr>
<tr>
<td>Pelzer et al. 2010</td>
<td>Dysfunctional</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Santarpia et al. 2006</td>
<td>Dysfunctional</td>
<td>0 %</td>
<td>Any</td>
</tr>
</tbody>
</table>

Good performance status defined as Eastern Cooperative Oncology Group performance status 0-2 or Karnofsky Performance Score 60-100.
Table 5. Study results

<table>
<thead>
<tr>
<th>Publication Authors (year)</th>
<th>HRQoL and physical function</th>
<th>Nutritional status</th>
<th>Survival</th>
<th>Adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized controlled trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obling et al. (2017)</td>
<td>HRQoL (EORTC QLQ-C15 PAL): Mean Δ +16.0 score in favour of PN at week 12 (p<0.05). NS at week 6, 18 or 24 (end-point)</td>
<td>Fat free mass (BIA): Mean Δ fat free mass 6.44 kg (SD 2.9-10.0), p<0.05 at week 12, in favour of PN arm. NS difference at week 6, 18 or 24.</td>
<td>mOS NS different between groups (mOS 168 days (95% CI 80-268) PN vs. 169 days (88-295) in control group) n=11 in PN arm vs. n=11 in control arm still alive at week 24, n=3 in PN arm vs. n=5 in control arm alive at 1 year (NS)</td>
<td>Catheter-related infection (n=2), no severe catheter-related bloodstream infection</td>
</tr>
<tr>
<td></td>
<td>Physical function: Self-reported physical function (EORTC QLQ-C15): NS at any time point</td>
<td>BMI: mean Δ 1.65 kg/m² (SD 0.4-2.9), p<0.05 at week 12, in favour of PN arm. NS at week 6, 18 or 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Performance testing: HGS and 6MWT NS at any time point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oh et al. (2014)</td>
<td>NA</td>
<td>NA</td>
<td>mOS in the PN group 13 (95% CI 3.1-22.9) days vs. 8 (95% CI 5.7-10.3) days in the control group. NS difference between groups.</td>
<td>NA</td>
</tr>
<tr>
<td>Prospective observational studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotogni et al. (2017)</td>
<td>HRQoL (EORTC QLQ C-30): improvement over time in global HRQoL, mean (SD) 52 (17) at baseline, 58 (17) at 1 month, 66 (17) at 2 months, 71 (14) at 3 months and 66 (16) at 4 months (p<0.001).</td>
<td>NA</td>
<td>mOS (range): 4.7 months(1-42) (n=47). n=74 alive at 3 months n=38 alive at 6 months</td>
<td>Incidence of catheter-related bloodstream infection: 0.33 per 1000 catheter-days. No PN-related mortality.</td>
</tr>
</tbody>
</table>
Physical function: Self-reported physical function (EORTC QLQ C-30) improved at all time points, mean (SD) 38 (22) at baseline, 42 (22) at 1 month, 46 (21) at 2 months, 55 (16) at 3 months, 52 (17) at 4 months (p<0.001).

Guerra et al. (2015)

mOS (range): 40 days (2-702). Outpatients survived longer than inpatients (log rank: 7.090, p=0.008). Patients who started concurrent oncologic treatment during or after PN (n=28) lived longer than those who did not (log rank: 17.316, p<0.001). Patients who started chemotherapy during or after start of PN survived longer than those who did not (log rank: 17.316, p<0.001). Twenty-eight could receive chemotherapy after PN due to improved status.

Catheter-related bloodstream infection (n=2) without affecting survival (log rank: 0.061, p=0.804)

Bozzetti et al. (2014)

mOS (95% CI): 3.0 months (2.7-3.3).

In cachectic patients (n=143): 3- and 6-month survival was n=42 and n=12

PN stopped prematurely due to catheter-related complications (n=9, 2.2%), central venous catheter complications
Vashi et al. (2014)

HRQoL (EORTC QLQ-C30):
Unchanged at 1 month, improved score at 2 months (mean $\Delta +12$, $p<0.02$) and at 3 months (mean $\Delta +16$, $p<0.02$).
Every month on PN associated with improved global HRQoL by 6.3 points ($p<0.001$).

Physical function: Self-reported physical function (EORTC QLQ-C30) improved at 2 months (mean Δ score $+14$, $p<0.02$) and at 3 months (mean $\Delta +24$, $p<0.02$).
Every month on PN associated with improved physical HRQoL domain by 6 points ($p<0.005$).

SGA global rating: Improved at all time points ($p<0.05$).
At baseline: A ($n=0$), B ($n=19$), C ($n=33$). At 1 month on PN: A ($n=2$), B ($n=20$), C ($n=17$); at 2 months on PN: A ($n=3$), B ($n=13$), C ($n=6$); at 3 months on PN: A ($n=2$), B ($n=12$), C ($n=1$).

Body weight: Improved at 1 month: mean $\Delta 1.6$, $p<0.03$, at 2 months: mean $\Delta 2.4$, $p<0.04$, at 3 months: mean $\Delta 4.8$, $p<0.04$.
Every month on PN associated with improved weight by 1.3 kg ($p=0.009$).

mOS: 5.1 months (95% CI: 2.8-7.3)

mOS: 6.4 months (KPS ≤ 50) vs. 4.6 months (KPS > 50

mOS: 3.2 months (SGA-B) vs. 6.5 months (SGA-C)

n=25 survived < 6 months, n=27 survived > 6 months, n=12 survived > 1 year (of those 5 patients survived > 2 years)

1 of 9 patients on PN > 9 months developed hepatic dysfunction

Pelzer et al. 2010

BMI, median (range): increased from 19.7 (14.4-25.9) to 20.5 (15.4-25.0) during treatment (no p value or effect per time given)

NA

No severe side effects observed

Retrospective observational study

Santarpia et al. (2006)

HRQoL: NA

Physical function: Subgroup analysis in patients alive at >60 and >90 days: NS change in KPS from baseline to 1 month

Body weight and BMI: Subgroup analysis in survivors >60 days ($n=64$) and >90 days ($n=39$):
Increased from 51.7 kg ± 10.3 (baseline) to 53.2 kg ± 10.3 (1 month) ($p<0.0001$) and 50.5 kg

mOS (range): 45 days (6-1269)

n=56 survived > 30 days, n=34 survived 31-60 days, n=25 survived 61-90 days, n=37 survived > 90 days

Not reported
±10.2 (baseline) to 52.0 kg ±10.1 (1 month) (p<0.001). Mean BMI increased from 19.6 kg/m² ±3.1 (baseline) to 20.1 kg/m² ±3.1 (1 month) (p<0.001) and 19.2 kg/m² ±3.2 (baseline) to 20.0 kg/m² ±3.2 (1 month) (p<0.0001). No results presented in survivors < 60 days.

Δ: difference; 6MWD: six-minute walk distance; BIA: Bioimpedance; BMI: body mass index; CI: confidence interval; HGS: hand grip strength; HRQoL: health-related quality of life; KPS: Karnofsky Performance Status; m: metre; mOS: median overall survival; NA: not applicable; NS: not significant; SGA: Subjective Global Assessment; SGA-A: well nourished; SGA-B: moderately malnourished; SGA-C: severely malnourished; PN: parenteral nutrition; SD: standard deviation; vs: versus