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Abstract

Spurious regression under long memory was studied by Tsay and Chung (2000) [JoE 96,pp. 155-182] for

a univariate model. We extend their findings for the multivariate linear regression and find that inference

drawn from the latter is also spurious. Our results hold for any finite number of independent stationary frac-

tionally integrated explanatory variables. It is shown that each estimated parameter and its t-ratio collapse

or diverge, depending on the persistence of the corresponding explanatory variable. Moreover, inference

drawn from standard test statistics, such as the joint F test and the Durbin-Watson, is spurious. Nonethe-

less, the R-squared remains a correct goodness of fit measure. Comprehensive finite sample evidence shows

that our asymptotic results hold even for small sample sizes such as 100 observations.
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1. Introduction

Spurious regression in empirical econometrics is widely understood as the failure of conventional testing

procedures when the series exhibit strong temporal properties. In economics, the level of many macroe-

conomic time series are known to behave as nonstationary processes, which is fertile ground for spurious

inference.

Spurious regression was uncovered by Granger and Newbold (1974), and later explained by Phillips

(1986), assuming independent driftless unit root processes as the data-generating process (DGP) for the

regressor and the regressand in a univariate regression. Many extensions of Phillips’ original results have

been considered. For example, the spurious regression under mean and trend stationarity, or under indepen-

dent higher-integration-order processes was studied by Hassler (1996), Marmol (1996), and Hassler (2003),

respectively. Note also that the spurious regression phenomenon can be understood as a misspecified model

from which misleading inference is drawn. In a sense, this interpretation encompasses the view of the

spurious regression as a result of strong temporal properties, as the unit roots mentioned above, merely by

assuming that the misspecification problem lies in the fact that such strong temporal properties have been

ignored in the specification. Several authors, such as McCallum (2010), Kolev (2011), Agiakloglou (2013)

and Zhang (2018), consider that non-resolved autocorrelation problems in the regression analysis lie at the

origin of spurious regression. They supported their arguments with Monte Carlo evidence. Nonetheless,

other studies, also based in Monte Carlo evidence, provide evidence that spurious regression is more than

just poorly controlled autocorrelation; see Sollis (2011), Martı́nez-Rivera and Ventosa-Santaulària (2012)

and Ventosa-Santaulària et al. (2016).

The spurious regression phenomenon1 under long memory was first examined by Cappuccio and Lu-

bian (1997), and Marmol (1998) using fractionally integrated processes of order d. Fractionally integrated

processes were introduced in time series econometrics by Granger and Joyeux (1980) and Hosking (1981).

Tsay and Chung (2000), TC hereafter, also studied the asymptotic properties of a regression with inde-

pendent stationary and nonstationary fractionally integrated processes in a univariate setting. Their results

include the earlier analytical studies of Phillips (1986), Haldrup (1994), and Marmol (1995, 1996). More

precisely, TC showed that the OLS estimates have orders of convergence which vary depending on the order

1The terms “nonsense” and “spurious” regression are not necessarily equivalent. Historically, the former is associated with
Granger and Newbold (1974), while the latter with Yule (1926), but lately the term “nonsense regression” appears in the context
of regressions that use variables integrated of order 2. In order to avoid any possible confusion, we refer to the phenomenon as
“spurious regression” and we thus consider that the “inference is misleading.”
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of integration of the processes; they may collapse, diverge, or even achieve non-degenerate limiting distri-

butions. To be more precise, TC (p. 155) found that, “as long as [the variables’] orders of integration sum

up to a value greater than 1
2 , the t-ratios become divergent and spurious effects occur.”

Although Phillips (1986) and Durlauf and Phillips (1988) suggested that it is nonstationarity that causes

spurious effects, TC’s findings suggest, however, that misleading inference can occur in a regression be-

tween two stationary I(d) processes, as long as their orders of integration sum up to a value greater than 1
2 .

They thus considered that strong dependence originates the spurious effects. In other words, the underly-

ing causes of spurious regression can be better understood as “strong temporal properties’, as explained by

Granger et al. (2001). Stochastic and deterministic trending and structural breaks in a variable are therefore

relevant sources of misleading inference, but not the only ones.2

In Granger and Newbold’s (1974) original simulation exercise, spurious regression under stationarity

was also uncovered. This case, not considered in Phillips’ (1986) paper, was later studied by Granger

et al. (2001) for positively autocorrelated autoregressive series and long moving average processes; this

is, MA(q) for q > 20 or even q > 50. Mikosch and De Vries (2006) also uncovered spurious regression

when the innovations’ distribution is fat-tailed. It is therefore important to consider the spurious regression

is not an exclusively nonstationary phenomenon. However, this avenue has been scarcely considered. We

aim to extend it by providing further theoretical and finite sample evidence that spurious regression may be

due to the persistence of the series. We therefore extend TC’s findings concerning stationary fractionally

integrated processes to the case of multivariate regression. Such an extension is important because: (i)

the assumption that there is only one explanatory variable in the model is restrictive, and; (ii) fractionally

integrated processes are quite common in empirical finance and macroeconomics. In a review of empirical

literature, Baillie (1996) notes that price series and Consumer Price Index inflation for several countries

behave as long memory processes. Moreover, he mentions applications of fractionally integrated models

to asset prices, stock returns, exchange rates and interest rates (a few recent examples can be found in

Leccadito et al. (2015) and Varneskov and Perron (2018)).

We consider a specification with an arbitrary finite number of explanatory variables, although inferior

to the sample size, independent of the regressand. We consider both stationary and nonstationary cases.

For the stationary case, our results show that, for non-correlated regressors, when the sum of the persis-

2Another interesting line of research in spurious regression focus on the effects of erroneously estimating short memory models,
such as ARMA(p,q) or even ARIMA(p,1,q) when the the variables are fractionally integrated processes. Importantly, out-of-
sample forecast errors increase; see, for instance Crato and Taylor (1996) and Arranz and Marmol (2001).
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tence parameter of the regressand and that of a specific regressor is above or equal 1
2 , the t-ratio associated

to the estimated coefficient of said regressor diverges. Conversely, when the value of this sum is below
1
2 , the t-ratio does not diverge. For correlated regressors, possibly the most relevant scenario, the conver-

gence/divergence depends on the maximum degree of persistence among the regressors. The behaviour of

the F statistic is similar to that of the t-statistics, albeit dependent on the sum of the persistence parameter

of the regressand and the highest persistence parameter of all regressors, whether they are correlated or not.

Hence, if the underlying processes are persistent enough, nonsense inference could be drawn for at least

some individual t-ratios and the F statistic. Likewise, we find that the R-squared collapses to 0 at a rate

that also depends on the sum of the order of integration of the regressand and the highest order of integra-

tion among all regressors, correctly signalling the poor fit. We contrast this behaviour with the one from a

correctly specified fractional cointegration case where the R-squared does not collapse. As for the Durbin-

Watson statistic, it converges to a value in the interval (0,2) that depends on the persistence parameter of

the process underlying the regressand. For the nonstationary case, our results extend the classical spurious

regression literature with nonstationary variables to the multivariate fractionally cointegrated case. That is,

all t-statistics and F diverge, at an even faster rate than for the stationary case, the Durbin-Watson statistic

collapses to zero, while the R-squared does not.

The paper proceeds as follows: Section 2 presents the theoretical framework and the main asymptotic

results. Section 3 shows the finite sample evidence that confirms our theoretical results, while Section 4

concludes. Proofs for the Theorems are provided in Appendix A and Appendix B.

2. Asymptotic results

We follow TC’s notation and define a fractionally integrated process, denoted FI(dz), as a discrete-

time stochastic process zt that satisfies (1− L)dzzt = az,t , where L is the lag operator, dz is the fractional

differencing parameter, and (1−L)d is the fractional differencing operator, defined as (1−L)d =∑
∞
j=0 Ψ jL j,

where Ψ j =
Γ( j−d)

Γ( j+1)Γ(−d) and Γ(·) is the gamma function. The innovations sequence az,t is i.i.d. white noise

with zero mean and finite variance σ2
az

. A fractionally integrated process is denoted here by FI(dz). When

dz <
1
2 , zt is stationary; while for dz ∈ (−1

2 ,
1
2), it is invertible. Its autocovariance function is

γz( j) =
Γ(1−2dz)Γ(dz + j)

Γ(dz)Γ(1−dz)Γ(1−dz + j)
σ

2
az
,
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and its first autocorrelation3 is

ρz(1) =
dz

1−dz
.

When dz > 0, the process is said to have long memory since it exhibits long-range dependence in the sense

that ∑
∞
j=−∞ γz( j) = ∞. We consider both stationary and nonstationary variables.

For the stationary extension, we let the regressand be a fractionally integrated process with parameter dy,

while each of the k regressors follows a signal plus noise specification where the signal follows a fractionally

integrated process with parameter dxi , and the noise models the possible correlation between the regressors.

Let m ∈ {1,2, · · · ,k} regressors be correlated. Without loss of generality, let these correlated regressors

appear first in the specification. Our multivariate specification is given by

yt = (1−L)dyεy,t , (1)

and

xi = (1−L)dxi εi,t +wi,t , (2)

where εz,t are i.i.d. white noise with zero mean and finite variance σ2
ε,z, and dz ∈ (0, 1

2) for z = y,x1, · · · ,xk.

Furthermore, wt = (w1,t ,w2,t , · · · ,wk,t)
′ is a zero mean random vector with variance matrix Σ, ∀t, given by

Σ =



σ2
1 σ1,2 · · · σ1,m 0 0 · · · 0

σ1,2 σ2
2 · · · σ2,m 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

σ1,m σ2,m · · · σ2
m 0 0 · · · 0

0 0 · · · 0 σ2
m+1 0 · · · 0

0 0 · · · 0 0 σ2
m+2

. . . 0
...

...
...

...
...

. . . . . .
...

0 0 0 0 0 0 0 σ2
k



; (3)

that is, σi, j 6= 0 for 1≤ i, j ≤ m, i 6= j, and σi, j = 0 otherwise.4

Note that our specification allows for correlation between the regressors while simultaneously each

regressor still provides independent information by the fractionally integrated signal. These assumptions

are in line with the ones made by the estimation procedure; recall that near perfect correlation would make

3The sample autocorrelation function for stationary FI processes was studied by Hosking (1984); the nonstationary FI sample
autocorrelation function was obtained by Hassler (1997).

4We write σ2
i instead of σi,i ∀i to ease notation.
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the matrix required in OLS computationally unstable and possibly not invertible. Note that near perfect

correlation would translate in our specification to the case where regressors share the signal.

Furthermore, our specification is quite general. On the one hand, it encloses the uncorrelated case by

making m = 1, and the fully correlated one by making m = k. On the other hand, we can further allow for

some short memory autocorrelation on wt to capture the dynamics in the correlation among regressors. The

only restriction imposed on wt is that it has a moving average representation of the form wt = ∑
∞
i=0 φiνt−i

where ∑
∞
i=0 i|φi| with νt a white noise process. Note that this restriction ensures that the noise process is less

persistent than the signal. Moreover, it is satisfied by all stationary ARMA processes.5

This theoretical framework suffices to study the asymptotic behaviour of a multivariate regression under

stationary long memory processes. As for the notation we employ, let β̂ j, for j = 0,1, . . . ,k, denote the OLS

estimators of the parameters, where β̂0 is the estimator of the constant, and tβ j their associated t-statistics.

Furthermore, let F , R2, and DW denote the joint significance test statistic, the R-squared measure of fit,

and the Durbin Watson statistic, respectively.

We summarise the data generating processes considered in the stationary multivariate extension in As-

sumption 1.6 We summarise the data generating processes considered in the stationary multivariate exten-

sion in Assumption 1.7

Assumption 1. Let yt be an independent stationary fractionally integrated process of order dy as in (1),
and let xi,t for i = 1,2, . . . ,k and k < T , be signal plus noise processes given by (2). Suppose also that

E [εz,t ]
qz < ∞ with qz ≥max

{
4,− 8dz

1+2dz

}
for all z = y,x1, · · · ,xk.

Theorem 1 shows that inference drawn from a regression involving such processes can indeed be mis-

leading.

Theorem 1. Let Assumption 1 hold. Suppose that the linear specification yt = β0 + ∑
k
i=1 βixi,t + ut is

estimated by OLS. Then, as T → ∞,

i) β̂0 = Op(T dy− 1
2 );

ii) β̂i =


Op(T−

1
2 ) for d̄x1:m +dy <

1
2 ,

Op

[(
T−1 logT

) 1
2
]

for d̄x1:m +dy =
1
2 ,

Op(T d̄x1:m+dy−1) for 1
2 < d̄x1:m +dy,

5See Hamilton (1994) pp. 504.
6Note that both type-I and type-II fractionally integrated processes could be encompassed in Assumption 1 by making εz,t = 0,

for z = y,xi, ∀t ≤ 0, for type-II. See Marinucci and Robinson (2000) for further details. We would like to thank an anonymous
referee for pointing out this to us.

7Note that both type-I and type-II fractionally integrated processes could be encompassed in Assumption 1 by making εz,t = 0,
for z = y,xi, ∀t ≤ 0, for type-II. See Marinucci and Robinson (2000) for further details. We would like to thank an anonymous
referee for pointing out this to us.
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for i = 1, . . . ,m;

iii) β̂i =


Op(T−

1
2 ) for dxi +dy <

1
2 ,

Op

[(
T−1 logT

) 1
2
]

for dxi +dy =
1
2 ,

Op(T dxi+dy−1) for 1
2 < dxi +dy,

for i = m+1, . . . ,k;

iv) tβ0 = Op(T dy);

v) tβi =


Op(1) for d̄x1:m +dy <

1
2 ,

Op

[
(logT )

1
2

]
for d̄x1:m +dy =

1
2 ,

Op(T d̄x1:m+dy− 1
2 ) for 1

2 < d̄x1:m +dy,
for i = 1, . . . ,m;

vi) tβi =


Op(1) for dxi +dy <

1
2 ,

Op

[
(logT )

1
2

]
for dxi +dy =

1
2 ,

Op(T dxi+dy− 1
2 ) for 1

2 < dxi +dy,
for i = m+1, . . . ,k.

Furthermore,

vii) R2 =


Op
(
T−1

)
for d̄x1:k +dy <

1
2 ,

Op
(
T−1 logT

)
for d̄x1:k +dy =

1
2 ,

Op

[
T 2(d̄x1:k+dy−1)

]
for 1

2 < d̄x1:k +dy;
viii) F =


Op (1) for d̄x1:k +dy <

1
2 ,

Op (logT ) for d̄x1:k +dy =
1
2 ,

Op

[
T 2(d̄x1:k+dy)−1

]
for 1

2 < d̄x1:k +dy;

ix) DW P→ 2−2ρy(1) =
2(1−2dy)

1−dy
;

where d̄xr:s := max{dxi | r ≤ i≤ s}; and P→, and Op(·) are short for convergence in probability and order in
probability, respectively.

Proof: See Appendix A.

Theorem 1 shows that, independently of the persistence of the series, all of the OLS-estimated coef-

ficients for the stationary case collapse to zero asymptotically. This is not surprising given that there is

no linear relationship between the variables. Nonetheless, the rate of convergence of each estimator varies

depending on the values of dxi ,dy, and whether they are correlated with other regressors.

For the non-correlated regressors with dxi + dy <
1
2 , the convergence rate is the usual T−

1
2 , while for

dxi +dy =
1
2 , the convergence case is slightly slower. If dxi +dy >

1
2 , the convergence rate explicitly depends

on the value of dxi + dy: as the value of this sum approaches 1, the order in probability of the estimator

approaches Op (1). In other words, the more persistent the processes are, the slower the rate of convergence

of the estimators.8

For correlated regressors, these orders of convergence are maintained by considering the rate of the more

persistent series. Nonetheless, note that adding regressors to the specification does not make the estimates

diverge in both cases.

8The estimate of the constant term β̂0 also collapses at a rate dependent solely on dy; the more persistent the regressand, the
slower the estimate collapses.
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Moreover, Theorem 1 shows that nonsense inference could be drawn via the t-statistics. The slower rate

of convergence of the estimators determines the rate of convergence of the t-statistics.

We focus first on the non-correlated regressors. Note that for regressors with dy + dxi <
1
2 , the t-ratio

associated to β̂i does not diverge. This does not necessarily mean there are no distortions; the limiting

distribution may well depart from the standard normal, as we illustrate through finite sample evidence. For

dy + dxi =
1
2 , the t-ratios slowly diverge at rate (logT )

1
2 . Such a rate ensures, asymptotically, that the null

hypothesis is eventually rejected, although the required sample size could be relatively large due to the

rather slow convergence rate. Finally, for dy + dxi >
1
2 , the t-ratios diverge, and the rate of divergence is

directly dependent on dy +dxi .

For correlated regressors, the distortions get propagated. Given that the rate of convergence for corre-

lated regressors depends on the maximum degree of persistence, it takes only one regressor to have memory

such that dy +dxi ≥ 1
2 , to make all t-statistics diverge.

Note that the t-ratios diverge in TC because they assume that the orders of integration of yt and xt ,the

sole regressor, are either always superior to 1
4 , or the sum of dx and dy is superior to 1

2 , which allows one of

the orders in integration to be below 1
4 . In our case, it can be seen clearly that whether the t-ratios diverge

or not depends on the persistence of the regressand, and that of the specific regressor to which the t-ratio

considered is associated to if it is a non-correlated regressor, or to the persistence of the maximum regressor

if they are correlated. In other words, when all FI variables have a relatively low persistence parameter, the

risk of drawing misleading inference from the regression analysis is rather low; this is, the estimators of the

parameters collapse faster towards zero, and the t-ratios do not diverge. Nonetheless, if the regressors are

correlated, and the persistence of at least one of them is marginally stronger such that the sum of its order

of integration and that of the regressand is greater or equal to 1
2 , all t-ratios diverge.

Furthermore, Theorem 1 shows that the standard statistical tools to draw inference from the regression

provide contradictory information. On the one hand, note that the coefficient of determination R2 converges

in probability to zero for all cases. Consequently, as the sample size increases, the declining R2 correctly

reflects the fact that the regressors do not explain the variation in the variable used as regressand. On the

other hand, observe that the joint F test diverges if maxk{dxk}+dy ≥ 1
2 , which would falsely indicate that at

least one of the explanatory variables is linearly related to the regressand. Finally, Granger and Newbold’s

(1974) rule of thumb for detecting a spurious regression, R2 > DW , no longer applies in view of Theorem

1 given that the asymptotic value of DW depends solely on the memory parameter dy such that DW is in

8



the interval (0,2).

It is useful to contrast the results of Theorem 1 with those of a fractionally cointegrated regression,

arguably, the antipode of a spurious regression; see Johansen and Nielsen (2012) for a technical explanation

of fractional cointegration. The processes are generated as stated in Assumption 2.

Assumption 2. Let xi,t , for i = 1,2, . . . ,k with k < T , and εt be independent stationary fractionally inte-
grated processes that satisfy (1− L)dzzt = az,t , for z = xi, ε, where az,t are i.i.d. white noises with finite
variance σ2

a,z, and dx is the order of integration of processes xi,t and dy is the order of integration of process

εt , such that 0 ≤ dy < dx <
1
2 . Assume also that E [az,t ]

qz < ∞ with qz ≥ max
{

4,− 8dz
1+2dz

}
for all z = xi, ε.

Finally, let yt be generated as a linear combination of the previous processes: yt = α+∑
k
i=1 βixi,t + εt .

Given these data generating processes, Theorem 2 shows that the R2 does not collapse but instead

converges to a numerical value within zero and one, correctly reflecting the proportion of variance mimicked

by the linear combination of the regressors.

Theorem 2. Let Assumption 2 hold. Suppose that the linear specification yt = β0 + ∑
k
i=1 βixi,t + ut is

estimated by OLS. Then, as T → ∞,

i) β̂0
P→ α;

ii) β̂i
P→ βi, for i = 1, . . . ,k;

iii) tβ0 = T 1
γε(0)

α;

iv) tβi = T γxi (0)
γε(0)

βi, for i = 1, . . . ,k;

v) R2 P→
[

1− γε(0)
∑

k
i=1 β2

i γxi (0)+γε(0)

]
.

Proof: See Appendix A.

Theorem 2 show that OLS estimation of parameters α and βi, i= 1, . . . ,k, converge in probability to their

true values. As for the R2, it asymptotically takes a value greater than 0 as long as at least one coefficient

is different from 0. The R2 is increasing in βi and γxi(0), and decreasing in γε(0). The intuition behind

this result is straightforward: the variance of the estimated residuals, εt , is truly the regressand’s variance

not explained by the linear combination of the regressors. In other words, the R2 works as traditionally

expected; this is, as a goodness of fit measure. The above result, coupled with the one obtained in Theorem

1, allows us to suggest to the practitioner to employ the R2 as a vehicle to assess the goodness of fit, and

even the validity of the regression. It could be argued that the R2 could further be used to test whether there

is a genuine linear relationship between the variables or not. Unfortunately, the limit expressions of the

R2 in both cases, spurious and fractionally integrated, make it clear that there are many unknown nuisance

parameters that would make it rather hard to design a reliable test.
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In keeping with our intent of generalising TC’s results, we now turn our attention to the case of spuri-

ous multivariate regression under fractionally integrated nonstationary processes. The assumptions for the

nonstationary case are detailed in Assumption 3.

Assumption 3. Let yt and xi,t , for i = 1,2, . . . ,k and k < T , be independent nonstationary fractionally
integrated processes of orders dy and dxi , respectively, that satisfy (1−L)dzzt = εz,t , where εz,t are i.i.d. white
noises with zero mean and finite variance σ2

ε,z, and dz ∈
(1

2 ,1
)

for z = y,xi. Suppose also that E [εz,t ]
qz < ∞

with qz ≥max
{

4,− 8dz
1+2dz

}
for all z = y,xi.

Theorem 3 shows that, for the nonstationary case, the behaviour of statistics associated to individual

regressors does not depend on the order of integration of other regressors, nor does it depend on the number

of regressors.

Theorem 3. Let Assumption 3 hold. Suppose that the linear specification yt = β0 + ∑
k
i=1 βixi,t + ut is

estimated by OLS. Then, as T → ∞,

i) β̂0 = Op(T dy− 1
2 );

ii) β̂i = Op
(
T dy−dxi

)
, for i = 1, . . . ,k;

iii) tβ0 = Op(T
1
2 );

iv) tβi = Op

(
T

1
2

)
, for i = 1, . . . ,k;

Furthermore,

v) R2 = Op (1); vi) F = Op (T ) ;

vii) DW P→ 0.

Proof: See Appendix B.

Theorem 3 is in line with the results from classical studies on spurious regressions with nonstationary

variables. All t-statistics diverge at rate Op

(
T

1
2

)
, the F diverges at rate Op(T ), and the R2 is Op(1). In

this sense, Theorem 3 extends the results from spurious regressions with nonstationary variables to the

multivariate fractionally integrated case.

3. Finite sample results

Our theoretical findings point the risk of drawing misleading inference from an OLS-estimated regres-

sion model using long-range dependent series. Furthermore, this risk increases as the sample size grows; we

confirm this in finite samples. For the simulations,9 all error terms are sampled from Normal distributions,

with a multivariate Normal for the correlated case. We generate the fractionally integrated processes using

9Codes for the Monte Carlos analysis are available at: https://github.com/everval/Spurious_Multivariate
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the algorithm based on the fast Fourier transform, see Jensen and Nielsen (2014), with initial values set to

zero. The simulated sample sizes are T = 100; T = 1,000; and T = 10,000.

Table 1 shows the simulation results for the stationary scenario where maxk{dxk}+ dy <
1
2 . The re-

gressand is generated as an FI(dy) processes, equation (1), while the regressors as FI(dxi) plus possibly

correlated noise, equation (2). In all simulations, we consider three regressors under three scenarios: i) they

are all independent, ii) the first two are correlated while the last one is not, and iii) they are all correlated.

Table 1: Spurious regression, stationary variables, maxk{dxk}+dy <
1
2 .

yt ∼ FI(dy) x1,t ∼ FI(dx1)+w1 x2,t ∼ FI(dx2)+w2 x3,t ∼ FI(dx3)+w3

dy σ2
ε,y dx1 σ2

ε,x1
σ2

1 dx2 σ2
ε,x2

σ2
2 dx3 σ2

ε,x3
σ2

3

0.25 2 0.20 1 1 0.15 0.75 0.75 0.10 0.75 0.40

σ1,2 = 0; σ1,3 = 0; σ1,2 = 0.4; σ1,3 = 0; σ1,2 = 0.4; σ1,3 = 0.6;
σ2,3 = 0 σ2,3 = 0 σ2,3 = 0.3

T 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

RRtβ0 0.4554 0.6736 0.8188 0.4514 0.6737 0.8176 0.4534 0.6855 0.8175
RRtβ1 0.0618 0.0792 0.0914 0.0622 0.0861 0.0977 0.0707 0.0905 0.1036
RRtβ2 0.0568 0.0656 0.0735 0.0569 0.0656 0.0791 0.0597 0.0688 0.0744
RRtβ3 0.0583 0.0642 0.0637 0.0563 0.0567 0.0672 0.0600 0.0705 0.0759
R2 0.0326 0.0035 0.0004 0.0326 0.0035 0.0004 0.0333 0.0036 0.0004
RRF 0.0647 0.0789 0.0927 0.0630 0.0811 0.1010 0.0686 0.0895 0.1047
DW 1.4973 1.3797 1.3467 1.4977 1.3808 1.3465 1.5010 1.3789 1.3464

RRt and RRF account for rejection rate of the t-ratio and the F tests at a 5% nominal size, respectively.
The number of replications is 10,000.

As the Table shows, the rejection rates of the t-tests remain relatively stable for all sample sizes and

all correlation cases. Nonetheless, they also show that the distribution has heavier tails, since the actual

rejection rates are systematically above the nominal 5% for relatively high values of dxi . This is in line

with Theorem 1 given that under the three scenarios, the t statistics are always Op(1). As for the F joint

significance test statistic, its behaviour is analogous to that of the t-ratios. This provided that all degrees of

memory are such that their sum with the degree of memory of the regressand is less than 1
2 . Moreover, our

simulations show that, as the sample size increases, the R2 collapses to zero, whilst the DW approaches the

value shown in Theorem 1. Thus, Table 1 shows that under lightly persistent series, the spurious regression

problem may be less acute.
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The spurious phenomena is nonetheless more severe when at least one the regressors shows high per-

sistence, and it spreads throughout to correlated series. This can be seen in Table 2 which shows the results

for the scenario where maxk{dxk}+ dy ≥ 1
2 . The Table presents the results for a specification with three

regressors, x1,x2 and x3, such that, dx1 +dy >
1
2 , dx2 +dy =

1
2 , and dx3 +dy <

1
2 . We consider the same three

correlation scenarios as for Table 1.

Table 2: Spurious regression, stationary variables, maxk{dxk}+dy ≥ 1
2 .

yt ∼ FI(dy) x1,t ∼ FI(dx1)+w1 x2,t ∼ FI(dx2)+w2 x3,t ∼ FI(dx3)+w3

dy σ2
ε,y dx1 σ2

ε,x1
σ2

1 dx2 σ2
ε,x2

σ2
2 dx3 σ2

ε,x3
σ2

3

0.35 2 0.25 1 1 0.15 0.75 0.75 0.10 0.75 0.40

σ1,2 = 0; σ1,3 = 0; σ1,2 = 0.4; σ1,3 = 0; σ1,2 = 0.4; σ1,3 = 0.6;
σ2,3 = 0 σ2,3 = 0 σ2,3 = 0.3

T 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

RRtβ0 0.6005 0.8076 0.9155 0.5929 0.8058 0.9151 0.5982 0.8135 0.9098
RRtβ1 0.0800 0.1360 0.2182 0.0816 0.1458 0.2195 0.0922 0.1614 0.2499
RRtβ2 0.0612 0.0768 0.0972 0.0620 0.0806 0.1155 0.0646 0.0867 0.1077
RRtβ3 0.0602 0.0754 0.0817 0.0597 0.0665 0.0855 0.0687 0.0935 0.1192
R2 0.0347 0.0042 0.0005 0.0349 0.0042 0.0005 0.0361 0.0044 0.0006
RRF 0.0781 0.1320 0.2109 0.0789 0.1365 0.2220 0.0888 0.1541 0.2391
DW 1.2627 1.0599 0.9841 1.2628 1.0615 0.9839 1.2666 1.0595 0.9837

RRt and RRF account for rejection rate of the t-ratio and the F tests at a 5% nominal size, respectively.
The number of replications is 10,000.

Focusing on the uncorrelated case, the Table shows the different rate of divergence of each t-statistic

depending on the persistence level of its associated regressor. The results show that a practitioner with as

few as 100 observations may obtain spurious results for highly persistent regressors. Moreover, the Table

shows how the spurious problem gets propagated to correlated regressors. In particular, note the increase

in rejection rates for each extra variable once we allow it to be correlated to the highly persistent regressor.

In the most severe case, the Table shows that even if the sum of the degree of memory of the regressor and

the regressand is less than 1
2 , as it is the case for the third regressor, but it is correlated with another whose

memory does add to more than 1
2 , its t-statistic starts to diverge. Thus, under correlated regressors, it takes

only one regressor to have a degree of memory such that its sum with that of the regressand is more than 1
2 ,

to obtain divergent t-statistics for all of them.
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Moreover, comparing Tables 1 and 2 exhibits how the behaviour of the F statistic depends on the sum

maxk{dxk}+ dy. When the value of this sum is lower than 1
2 , Table 1, the statistic is relatively stable.

When the value of this sum is instead greater or equal to 1
2 , Table 2, F starts to grow as the sample size

increases. Nevertheless, the R2 statistic always collapses to zero, although at different speeds depending

on the persistence of the regressors. Finally, the Durbin-Watson statistics converge to the value obtained in

Theorem 1, which only depends on the degree of memory of the regressand.

The results for the R2 statistic are of particular interest when compared with results from a correctly

specified regression in Table 3. The Tables shows four variables, yt , x1,t ,x2,t , and x3,t , where there is a

fractional cointegration relationship between them: the three regressors are FI(dxi), with dxi > 0.2, but the

linear combination (yt−0.70−0.2x1,t−0.3x2,t−0.4x3,t)∼ FI(0.2) is less persistent. This data-generating

process reflects a genuine relationship between the variables, at odds with the spurious ones simulated

previously. Table 3 shows that in this case the rejection rates of the t-statistics are far greater than those

obtained with independent variables, and, notably, the R2 are away from zero, correctly indicating that the

relationship is not spurious.

Table 3: Correctly specified fractional cointegration.

yt = 0.70+0.2x1,t +0.3x2,t +0.4x3,t +ut ;

zt ∼ FI(dz); σ
2
ε,x1

= 1; σ
2
ε,x2

= 0.75; σ
2
ε,x3

= 0.75; σ
2
u = 0.5; du = 0.2

dz = 0.25 dz = 0.35 dz = 0.45
z = x1,x2,x3 z = x1,x2,x3 z = x1,x2,x3

T 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

RRtβ0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
RRtβ1 0.958 1.000 1.000 0.966 1.000 1.000 0.974 1.000 1.000
RRtβ2 0.984 1.000 1.000 0.987 1.000 1.000 0.990 1.000 1.000
RRtβ3 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
R2 0.443 0.434 0.436 0.468 0.480 0.492 0.506 0.554 0.595

RRt and RRF account for rejection rate of the t-ratio and the F tests at a 5% nominal size, respectively.
The number of replications is 10,000.

To summarise, for fractionally integrated stationary regressors, the less persistent the series, the smaller

the spurious regression phenomenon. Nonetheless, it takes only one highly persistent regressor for spurious

phenomena to appear. Notwithstanding, the R-squared remains a relatively reliable tool for identifying
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misleading inference. It is quite small under any circumstance where there is not a real linear relationship

between the regressors and the regressand. Should the practitioner encounter a small R-squared, she should

be wary that her regression might be of little use.

Turning our attention to the nonstationary case, Table 4 shows the results from simulations with non-

stationary fractionally integrated variables. The Table is in line with the results from Theorem 3, which

is in turn in line with classical results on spurious regressions with nonstationary variables, see Ventosa-

Santaulària (2009) for a review.

Table 4: Spurious regression, nonstationary variables.

yt ∼ FI(dy); x1,t ∼ FI(dx1); x2,t ∼ FI(dx2); x3,t ∼ FI(dx3)

dy = 0.60; dx1 = 0.60; dy = 0.80; dx1 = 0.80; dy = 0.75; dx1 = 0.70;
dx2 = 0.60; dx3 = 0.60 dx2 = 0.80; dx3 = 0.80 dx2 = 0.65; dx3 = 0.60

T 100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

RRtβ0 0.6931 0.8931 0.9643 0.7216 0.9081 0.9732 0.7617 0.9204 0.9760
RRtβ1 0.3906 0.7395 0.9041 0.5701 0.8538 0.9530 0.5250 0.8354 0.9434
RRtβ2 0.3841 0.7331 0.9024 0.5665 0.8482 0.9515 0.4854 0.8164 0.9374
RRtβ3 0.3904 0.7395 0.9039 0.5644 0.8517 0.9522 0.4524 0.7860 0.9248
R2 0.1537 0.1064 0.0867 0.3140 0.2955 0.2931 0.2257 0.1914 0.1780
RRF 0.7082 0.9762 0.9984 0.9096 0.9969 1.0000 0.8342 0.9917 1.0000
DW 0.8174 0.3891 0.2112 0.5143 0.1244 0.0306 0.5726 0.1767 0.0597

RRt and RRF account for rejection rate of the t-ratio and the F tests at a 5% nominal size, respectively.
The number of replications is 10,000.

Table 4 shows that the rejection rates of the t-statistics are higher than those obtained with stationary

variables. This can be explained given the faster rate of divergence than for the stationary case. Similarly,

the rejection rates for the F test are far higher than for the stationary case. Furthermore, the Table shows the

asymptotic collapse of the Durbin-Watson statistic. In finite samples, the rate of convergence of the Durbin-

Watson statistic depends on the degree of persistence, the closer the process is to a unit root process, the

closer the statistic is to zero. This, coupled with the asymptotic behaviour of the R-squared statistic, R2 ∼

Op(1), allows us to partly recover Granger and Newbold’s (1974) rule of thumb for detecting a spurious

regression, R2 > DW , for nonstationary variables with high degree of persistence. Nonetheless, note that

if the degree of memory is only slightly above 1
2 , and thus close to the stationary region, the rule of thumb

still fails to suggest that the regression may be spurious. Thus, care should be taken with using the rule of
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thumb when the practitioner suspects that the nonstationary variables may be fractionally integrated.

4. Concluding remarks

We studied the asymptotic and finite sample behaviour of the OLS-estimated multivariate regression

with an arbitrary finite number of fractionally integrated regressors. We consider both stationary and non-

stationary cases. Our findings extend the literature in several directions.

For the stationary case, our multivariate approach shows that the asymptotic behaviour of each parame-

ter estimate and its associated t-ratio depends on the specific persistence of the regressors, and on whether

they are correlated. Under correlated regressors, probably the most relevant scenario, increasing or decreas-

ing the number of regressors in a specification may alter the asymptotic properties of the estimates. This

in the sense that if a more persistent regressor, correlated with the rest, is introduced, all t-statistics start to

diverge. We also show that irrespective of the correlation scenario, the standard joint F test provides mis-

leading inference when at least one of the regressors is highly persistent, while the R-squared works prop-

erly. Moreover, the simulation exercise confirms our asymptotic results and shows that the phenomenon of

spurious regression is more acute when the persistence of the variables grows, and it gets propagated when

they are correlated.

The behaviour of the R-squared under stationary regressors is particularly interesting when compared

with the results from a correctly specified regression. The R-squared collapses to zero when the regressors

are independent of the regressand, but not when there is a genuine fractionally cointegrated relationship. In

this sense, these results might prove useful to distinguish spurious regressions from genuine ones when the

variables behave as stationary fractionally integrated processes.

For the nonstationary case, our results extend the classical spurious regression results. All t-statistics

and the F diverge as the sample size grows, and they do so at a faster rate than for the stationary case. The

DW collapses to zero, while R-squared statistic does not.

Overall, we show that when the variables behave as long memory processes, whether stationary or not,

inference drawn from the t-ratios or the F joint test is unreliable. The conjecture that spurious regression

is a persistence problem is therefore supported.
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Appendix A. Proof of Theorems 1 and 2

To obtain the OLS estimators, along with the associated t-statistics, it is necessary to obtain the limit expression
of the sums that define them. These are summarized in Table A.5, along with their respective convergence rates. All
of the convergence rates, the under-braced expressions, can be found in Tsay and Chung (2000) or Hayashi (2000)
except for the normalization ratios of products of fractionally integrated processes and short memory processes which
follow from Osterrieder et al. (2018).

∑yt = ∑(1−L)dy εy,t = Op

(
T

1
2 +dy

)
;

∑y2
t = ∑

(
(1−L)dy εy,t

)2 = Op (T ) ;

∑xi,t = ∑(1−L)dxi εi,t +∑wi,t︸ ︷︷ ︸
Op(T

1
2 )

= Op

(
T

1
2 +dxi

)
;

∑x2
i,t = ∑

(
(1−L)dxi εi,t

)2
+

∑w2
i,t︸ ︷︷ ︸

Op(T )

+2∑(1−L)dxi εi,twi,t︸ ︷︷ ︸
Op(T

1
2 )

= Op (T ) ;

∑xi,tyt = ∑(1−L)dy εy,t(1−L)dxi εi,t +∑(1−L)dy εy,twi,t =


Op

(
T

1
2

)
if 0 < dxi +dy <

1
2 ;

Op

(√
T lnT

)
if dxi +dy =

1
2 ;

Op

(
T dxi+dy

)
if 1

2 < dxi +dy < 1;

∑xi,tx j,t
σi, j = 0

= ∑(1 − L)dxi εi,t(1 − L)dx j ε j,t + ∑(1 −
L)dxi εi,tw j,t +∑(1−L)dx j ε j,twi,t +∑wi,tw j,t︸ ︷︷ ︸

Op

(
T

1
2
)

=


Op

(
T

1
2

)
if 0 < dxi +dx j <

1
2 ;

Op

(√
T lnT

)
if dxi +dx j =

1
2 ;

Op

(
T dxi+dx j

)
if 1

2 < dxi +dx j < 1;

∑xi,tx j,t
σi, j 6= 0

= ∑(1 − L)dxi εi,t(1 − L)dx j ε j,t + ∑(1 −
L)dxi εi,tw j,t +∑(1−L)dx j ε j,twi,t +∑wi,tw j,t︸ ︷︷ ︸

Op(T )

= Op (T ) .

Table A.5: Expressions for sums in Theorem 1 with i 6= j; i, j = 1, · · · ,k. All sums range from t = 1 to t = T .

Items i) to iii)
Recall the OLS formula:

β̂ =
(
X ′X

)−1 X ′Y,

where dim(X) = T × (k+1), dim(Y ) = T ×1, and dim
(

β̂

)
= (k+1)×1.

Let

−→
~x :=


∑x1,t

∑x2,t
...

∑xk,t

 , and Ω :=


∑x2

1,t ∑x1,tx2,t . . . ∑x1,txk,t

∑x1,tx2,t ∑x2
2,t . . . ∑x2,txk,t

...
...

. . .
...

∑x1,txk,t ∑x2,txk,t . . . ∑x2
k,t

 ,
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we can rewrite X ′X as

X ′X =


T ∑x1,t . . . ∑xk,t

∑x1,t ∑x2
1,t . . . ∑x1,txk,t

...
...

. . .
...

∑xk,t ∑x1,txk,t . . . ∑x2
k,t

=

[
T
−→
~x ′

−→
~x Ω

]
.

Hence,

plim
(

β̂

)
= plim

[(
X ′X

)−1 X ′Y
]
= plim

[(
1
T

X ′X
)−1 1

T
X ′Y

]
= plim


[

1 1
T
−→
~x ′

1
T
−→
~x 1

T Ω

]−1


1
T ∑yt

1
T ∑x1,tyt

...
1
T ∑xk,tyt


 .

Define Π := ( 1
T Ω− 1

T
−→
~x 1

T
−→
~x ′)−1 and using blockwise inversion,

plim
(

β̂

)
= plim


[

1+ 1
T
−→
~x ′Π 1

T
−→
~x − 1

T
−→
~x Π

Π
1
T
−→
~x Π

]
1
T ∑yt

1
T ∑x1,tyt

...
1
T ∑xk,tyt


= plim

[
1+ 1

T
−→
~x ′Π 1

T
−→
~x − 1

T
−→
~x Π

Π
1
T
−→
~x Π

]
plim


1
T ∑yt

1
T ∑x1,tyt

...
1
T ∑xk,tyt

 .

From Table A.5, note that plim 1
T
−→
~x = 0. This in turn implies that plim(Π) = (plim( 1

T Ω))−1 = Σ
−1
X , where ΣX

is the variance matrix of (x1, · · · ,xk). Given Assumption 1, it has the same structure as Σ, the variance matrix of wt ,
equation (3).

Let ΣX ,1:m be the square matrix composed of rows 1 to m, columns 1 to m of ΣX , and let ΣX ,m+1:k be the square
matrix composed of rows m+ 1 to k, columns m+ 1 to k of ΣX . By the argument above, note that ΣX ,1:m is a full
matrix while ΣX ,m+1:k is diagonal.

By blockwise inversion,

Σ
−1
X =

[
ΣX ,1:m Om,k−m
Om,k−m ΣX ,m+1:k

]−1

=

[
Σ
−1
X ,1:m Om,k−m

Om,k−m Σ
−1
X ,m+1:k

]
,

where Or,s is a matrix of zeros with r rows and s columns. Thus,

plim
(

β̂

)
=

 1 O1,m O1,k−m

Om,1 Σ
−1
X ,1:m Om,k−m

Ok−m,1 Om,k−m Σ
−1
X ,m+1:k

 plim



1
T ∑yt

1
T ∑x1,tyt

...
1
T ∑xm,tyt

1
T ∑xm+1,tyt

...
1
T ∑xk,tyt


.

The result follows from plugging the appropriate rate of convergence from Table A.5. Item i) follows directly
from 1

T ∑yt = Op

(
T

1
2+dy−1

)
= Op

(
T dy− 1

2

)
, while the results for items ii) and iii) depend on the case. Given that

Σ1
X ,1:m is a full matrix, the rate of convergence of β̂1 to β̂m depends on the memory of all m regressors, inheriting

that of the maximum. On the contrary, being Σ
−1
X ,m+1:k a diagonal matrix, the rates of convergence of β̂m+1 to β̂k only

depend on the memory of the associated regressor.
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Items iv) to vi)
First, note that

s2 =
1
T ∑ û2

t =
1
T ∑

(
yt − β̂0− β̂1x1,t − β̂2x2,t − . . .− β̂kxk,t

)2

=
1
T

(
∑y2

t −2β̂0 ∑yt +T β̂
2
0−2

k

∑
i=1

β̂i ∑xi,tyt +
k

∑
i=1

β̂
2
i ∑x2

i,t +2β̂0

k

∑
i=1

β̂i ∑xi,t +2
k

∑
i=1

∑
j>i

β̂iβ̂ j ∑xi,tx j,t

)
.

From items i) to iii), note that the term with highest order of probability is ∑y2
t , which is Op(T ), all other terms are

an order in probability strictly lower. Thus, s2 = Op(1).
Now, from the variance matrix of the estimators

tβi =
β̂i(

s2(X ′X)−1
(i,i)

)− 1
2
,

where the sub-index denotes the i-th element in the diagonal. From the computations above, we know that they all
are Op(T ). Substituting all components shows that each t-statistic has the same order of convergence as its estimator
minus one half.
Items vii) to ix)

From the R2 formula

R2 =
∑(yt − ȳ)2−∑ û2

t

∑(yt − ȳ)2 ,

we will show the order of convergence for both the numerator and denominator.
On the one hand, using (A.1), the numerator can be written as

∑(yt − ȳ)2−∑ û2
t = ∑y2

t −
1
T

(
∑yt

)2−∑ û2
t

= − 1
T

(
∑yt

)2
+2β̂0 ∑yt −T β̂

2
0 +2

k

∑
i=1

β̂i ∑xi,tyt −
k

∑
i=1

β̂
2
i ∑x2

i,t −2β̂0

k

∑
i=1

β̂i ∑xi,t

−2
k

∑
i=1

∑
j>i

β̂iβ̂ j ∑xi,tx j,t ,

which shows that β̂2
i ∑x2

i,t for i = max{di | di ≥ d j∀ j} has the highest order of probability.
On the other hand, the denominator is given by

∑(yt − ȳ)2 = ∑y2
t −

1
T

(
∑yt

)2
= Op(T ).

Replacing both, proves item vii).
To prove viii), recall that

F =
[∑(yt−y)2−∑ û2

t ]/k

∑ û2
t/[T−(k+1)]

=
[T − (k+1)]R2

k ∑ û2
t/∑(yt−y)2

,

which shows the desired result once we replace the orders of probability obtained above.
Finally, to prove ix), recall the definition of the Durbin-Watson statistic:

DW =
∑

T
t=2 (ût − ût−1)

2

∑ û2
t

=
∑

T
t=2 û2

t +∑
T
t=2 û2

t−1−2∑
T
t=2 ût ût−1

∑ û2
t

≈ 2−2
∑

T
t=2 ût ût−1

∑ û2
t

,

where in the last expression we use the fact that û2
1+û2

T
∑ û2

t
is negligible as T → ∞.
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Now,

1
T

T

∑
t=2

ût ût−1 =
1
T

[
T

∑
t=2

ytyt−1− β̂0

T

∑
t=2

yt − β̂0

T

∑
t=2

yt−1 +(T −1)β̂2
0−

k

∑
i=1

β̂i

T

∑
t=2

xi,tyt−1−
k

∑
i=1

β̂i

T

∑
t=2

xi,t−1yt +
k

∑
i=1

β̂
2
i

T

∑
t=2

xi,txi,t−1+

β̂0

k

∑
i=1

β̂i

T

∑
t=2

xi,t + β̂0

k

∑
i=1

β̂i

T

∑
t=2

xi,t−1 +
k

∑
i=1

∑
j>i

β̂iβ̂ j

T

∑
t=2

xi,tx j,t−1 +
k

∑
i=1

∑
j>i

β̂iβ̂ j

T

∑
t=2

xi,t−1x j,t

]
.

Using items i) to iii), which show that all estimators have negative orders of probability, the highest order of
probability is the one of ∑

T
t=2 ytyt−1. Noting that 1

T ∑
T
t=2 ût ût−1

P→ γy(1), and 1
T ∑ û2

t
P→ γy(0), we find that:

DW → 2−2ρy(1).

Appendix B. Proof of Theorem 3

Analogous to the stationary case, to obtain the OLS estimators, along with the associated t-statistics, it is necessary
to obtain the limit expression of the sums that define them. These are summarized in Table B.6, along with their
respective convergence rates. Table B.6 draws upon the results of TC that correspond to nonstationary processes.

∑zt = Op

(
T

1
2 +dz

)
;

∑z2
t = Op

(
T 2dz

)
;

∑xi,tyt = Op

(
T dxi+dy

)
, for i = 1, . . . ,k;

∑xi,tx j,t = Op

(
T dxi+dx j

)
, for i, j = 1, . . . ,k and

i 6= j.

Table B.6: Expressions for sums in Theorem 3 with i 6= j; i, j = 1, · · · ,k. Here, z = y, x1, . . . , xk. All sums range from t = 1 to
t = T .

Items i) and ii)
From the OLS estimator formula, it follows that

β̂0 = T−1

(
∑yt −

k

∑
i=1

β̂i ∑xi,t

)
; (B.1)

while for the rest of the estimators, by Cramer’s rule, we have that

β̂k =
∆k

∆
, (B.2)

where

∆ = det
(
X ′X

)
, (B.3)

and

∆k =

∣∣∣∣∣∣∣∣∣∣∣

T ∑x1,t ∑x2,t . . . ∑yt

∑x1,t ∑x2
1,t ∑x1,tx2,t . . . ∑x1,tyt

∑x2,t ∑x1,tx2,t ∑x2
2,t . . . ∑∑x2,tyt

...
...

...
. . .

...
∑xk,t ∑x1,txk,t ∑x2,txk,t . . . ∑xk,tyt

∣∣∣∣∣∣∣∣∣∣∣
. (B.4)
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To find the order in probability of β̂k we triangulate the matrices whose determinant is equal to ∆ and ∆k, so as
to exploit the fact that the determinant of any triangular matrix is merely the product of the elements along the main
diagonal. We find that the order in probability of said elements after triangulation to be the same as that prior to
triangulation for both ∆ and ∆k.

Let us first look at (B.3), the denominator in expression (B.2). Note from Table B.6 that, prior to triangulation,

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T Op

(
T

1
2+dx1

)
Op

(
T

1
2+dx2

)
. . . Op

(
T

1
2+dxk

)
Op

(
T

1
2+dx1

)
Op

(
T 2dx1

)
Op

(
T dx1+dx2

)
. . . Op

(
T dx1+dxk

)
Op

(
T

1
2+dx2

)
Op

(
T dx1+dx2

)
Op

(
T 2dx2

)
. . . Op

(
T dx2+dxk

)
...

...
...

. . .
...

Op

(
T

1
2+dxk

)
Op

(
T dx1+dxk

)
Op

(
T dx2+dxk

)
. . . Op

(
T 2dxk

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

If we add the first row multiplied by scalar −∑xi−1,t
T to the i-th row, for i = 2, . . . ,k+1, we arrive at the following

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T ∑x1,t ∑x2,t . . . ∑xk,t

0 ∑x2
1,t −

(∑x1,t)
2

T ∑x1,tx2,t − ∑x1,t ∑x2,t
T . . . ∑x1,txk,t −

∑x1,t ∑xk,t
T

0 ∑x1,tx2,t − ∑x1,t ∑x2,t
T ∑x2

2,t −
(∑x2,t)

2

T . . . ∑x2,txk,t −
∑x2,t ∑xk,t

T
...

...
...

. . .
...

0 ∑x1,txk,t −
∑x1,t ∑xk,t

T ∑x2,txk,t −
∑x2,t ∑xk,t

T . . . ∑x2
k,t −

(∑xk,t)
2

T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Table B.6 shows that all non-zero elements retain their original order in probability.
Should we continue this process for a total of k steps akin to the one described above,10 we would obtain an

expression for ∆ as the determinant of an upper triangular matrix.
Let ∆

(m)
i, j denote the element of the i-th row and j-th column at step m in the triangulation process. Then, for

m = 1, . . . ,k,

∆
(m)
i, j =

 ∆
(m−1)
i, j −

∆
(m−1)
i,m ∆

(m−1)
m, j

∆
(m−1)
m,m

if m≤ i−1,

∆
(m−1)
i, j if m > i−1,

with ∆
(0)
i, j = ∑xi−1,tx j−1,t (the element of the i-th row and j-th column before the triangulation process), and x0,t = 1

for all t.
All non-zero elements retain their order in probability at each step in the triangulation process and, consequently,

once triangulation is completed (i.e., once we are left with an upper triangular matrix). We prove this statement
through induction. We have already shown the first step in triangulation conforms to the previous statement. Then, at
an arbitrary m-th step, the term added to elements (i, j) for which i > m−1 is

−
∆
(m−1)
i,m ∆

(m−1)
m, j

∆
(m−1)
m,m

,

which is non-zero for j > m−1 and zero otherwise.
The induction hypothesis allows us to determine the order in probability of the term being added when it differs

from zero: Op

(
T dxi−1+dx j−1

)
. Therefore, at this step, the element under consideration has itself retained its original

order in probability as well if it is not rendered zero.

10At each step m, the elements of the m-th column from the (m+1)-th row onward become 0.
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Hence, we have that

∆ = Op

(
T 1+2dx1+2dx2+...+2dxk

)
. (B.5)

A similar argument may be to applied analogously to (B.4) to find that

∆k = Op

(
T 1+2dx1+2dx2+...+dxk+dy

)
. (B.6)

Dividing (B.6) by (B.5), in accordance to (B.2), concludes the proof of item ii).
As for β̂0, note that all the terms in equation (B.1) now have known orders in probability; plugging them in

concludes the proof of item i).
Items iii) and iv)

The proof of items iii) and iv) makes use of the following equation

s2 =
1
T ∑ û2

t =
1
T

(
∑y2

t −2β̂0 ∑yt +T β̂
2
0−2

k

∑
i=1

β̂i ∑xi,tyt +
k

∑
i=1

β̂
2
i ∑x2

i,t +2β̂0

k

∑
i=1

β̂i ∑xi,t +2
k

∑
i=1

∑
j>i

β̂iβ̂ j ∑xi,tx j,t

)
.

By applying the orders of convergence obtained above, we observe that all terms inside the parentheses are Op
(
T 2dy

)
.

To show item iv), we once again make use of the formula for the estimator of the variance-covariance matrix of
the estimators, which may be written as

V̂ar
(

β̂

)
= s2 1

det(X ′X)
adj
(
X ′X

)
,

where adj(X ′X) denotes the adjunct of X ′X .
The order in probability of det(X ′X) was previously determined at (B.5), whereas the order in probability of s2 is

provided above. As for the elements along the main diagonal of the adjunct, which are composed of the determinants
of minors of the matrix X ′X , we draw upon the previous triangulation argument to determine their order in probability:
if the minors were to be triangulated, the elements of the main diagonal would retain their order in probability, and
the determinant of any triangular matrix is the product of the elements along its main diagonal.

As regards the first element along the main diagonal of adj(X ′X), we have that∣∣∣∣∣∣∣∣∣
∑x2

1,t ∑x1,tx2,t . . . ∑x1,txk,t

∑x1,tx2,t ∑x2
2,t . . . ∑x2,txk,t

...
...

. . .
...

∑x1,txk,t ∑x2,txk,t . . . ∑x2
k,t

∣∣∣∣∣∣∣∣∣= Op

(
T ∑

k
i=1 2dxi

)
.

Moreover, the i-th element along the main diagonal of adj(X ′X), for i = 2, . . . ,k+1, is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T ∑x1,t . . . ∑xi−2,t ∑xi,t . . . ∑xk,t

∑x1,t ∑x2
1,t . . . ∑x1,txi−2,t ∑x1,txi,t . . . ∑x1,txk,t

...
...

. . .
...

...
. . .

...
∑xi−2,t ∑x1,txi−2,t . . . ∑x2

i−2,t ∑xi−2,txi,t . . . ∑xi−2,txk,t

∑xi,t ∑x1,txi,t . . . ∑xi−2,txi,t ∑x2
i,t . . . ∑xi,txk,t

...
...

. . .
...

...
. . .

...
∑xk,t ∑x1,txk,t . . . ∑xi−2,txk,t ∑xi,txk,t . . . ∑x2

k,t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Op

(
T 1+∑ j 6=i 2dx j

)
.

Proofs of items iii) and iv) come from the orders of convergence computed above and the formula tβi =
β̂i
s
β̂i

for

i = 0,1, . . . ,k.
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Items v) to vii)
The proofs of items v) and vi) are analogous to those of these same items in Theorem 1 and are therefore omitted

for reason of space.
Proof of item vii) comes from the fact that

DW =
∑

T
t=2 (ût − ût−1)

2

∑ û2
t

.

For which, we have that

T

∑
t=2

(ût − ût−1)
2 =

T

∑
t=2

[
(yt − yt−1)− β̂1 (x1,t − x1,t−1)− β̂2 (x2,t − x2,t−1)− . . .− β̂k (xk,t − xk,t−1)

]2
.

Note that zt−zt−1 are fractionally integrated processes of order (dz−1)∈
(
0, 1

2

)
. Consequently, ∑

T
t=2 (ût − ût−1)

2 =

Op(T ), as was shown for the stationary case, coupled with ∑ û2
t = Op(T 1+2dy) shown above, concludes the proof of

item vii).
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