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Abstract—The photovoltaic (PV) cell temperature strongly 

affects the performance and efficiency of the entire PV module. 

Thus, the accurate estimation of the cell temperature plays an 

important role in the health monitoring and energy assessment of 

PV systems. This paper proposes a multi-state dynamic thermal 

model for PV modules, considering the heat-transfer mechanisms 

between the module and its environments, as well as between 

layers. The proposed model is benchmarked against field 

measurements at Aalborg University, Denmark. The results 

demonstrate the effectiveness of the model to characterize the 

internal behavior of the PV module under varying weather 

conditions. The performance of the proposed thermal model is 

also compared with prior-art models, i.e., two benchmark models, 

a one-state thermal model and two typical empirical 

equation-based models. The comparison further confirms that the 

estimation of cell temperature using the developed model is more 

accurate, presenting a reliable prediction of power production for 

further monitoring and diagnosis. 

 

Index Terms—PV module; Cell temperature; Multi-state 

estimation; Dynamic thermal model; Solar power generation. 

I. INTRODUCTION 

ENEWABLE energy, including solar, wind and 

geothermal power, has received more and more attention 

owing to environmental concerns when using the conventional 

fossil fuel. The large amount of available solar energy makes it 

highly appealing. Photovoltaic (PV) modules, as one type of 

solar energy, absorb sunlight and generate direct current (DC) 

power. However, only a small proportion of the solar PV 

energy is converted into electricity, typically 5%-25%, and the 

remainder is either reflected or converted into heat [1], causing 

the temperature of the PV cells to increase.  

In fact, the temperature has a significant impact on the PV 

module characteristics [2]. The temperature increase results in a 

larger short-circuit current and a smaller open-circuit voltage. 

The voltage decrease is more prominent than the current 

increase, leading to a lower overall output power [3], which 
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corresponds to an efficiency decrease by approximately 0.22% 

for a temperature increase of 1℃ [4]. It was reported in [5] that 

the fill factor, diode reverse saturation current, and diode 

ideality factor might also be affected by the temperature. In 

addition, the temperature is responsible for most of chemical 

reactions that degrade modules [6]. Hence, a reliable estimation 

of the module temperature is necessary to understand the 

degradation and in turn predict its lifetime. 

Notably, the temperature under the Standard Test Condition 

(STC) is defined by the cell temperature Tc, rather than the 

ambient temperature Ta or other module temperatures, e.g., the 

backsheet temperature Tb. In practice, Tc is quite different from 

other temperatures and is difficult to measure in practice. 

According to [7], the temperature difference between Ta and Tc 

can be as high as 22 °C in outdoor tests. Therefore, with the 

direct substitution of the cell temperature by the ambient (as 

done in most literature), large errors may be introduced [8]. The 

difference further results in an over-predicted output power, 

which can lead to the false diagnosis of the PV modules. In 

general, an accurate determination of the cell temperature could 

assist the assessment of PV module performance and further 

help detect inherent faults. 

The cell temperature is affected by various factors. Firstly, it 

is correlated with atmospheric parameters, e.g., Ta, irradiance 

level G, wind speed Ws, as illustrated in [9]. Secondly, 

according to [10], the cell temperature Tc is also affected by the 

module encapsulating material, which determines the glazing- 

cover transmittance  and plate absorbance . Moreover, it has 

been discussed in [11] that the particular installation conditions 

of the module is another factor. Additionally, the electrical 

operation point that the module is working in affects the cell 

temperature Tc as well [12]. These factors make the estimation 

of the cell temperature very challenging. 

In the literature, attempts have thus been made to estimate 

the PV cell temperature. For example, in [7], Tc is roughly 

estimated from Ta and G by a linear relationship under 

steady-state conditions. While in practical applications, Ta and 

G always fluctuate dramatically. Another method to the cell 

temperature estimation is to use the Nominal Operation Cell 

Temperature (TNOCT) [13], which is a common parameter to 

indicate the cell temperature. However, this model can give 

significant errors under loading and environmental conditions 

deviating from the Standard Reference Environment (SRE) 

[14]. In [10], a modified equation was adopted considering 

actual electrical loading and thermal losses, while the 

applicability of the equation is limited by the specific mounting 
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conditions [15]. A method was then presented in [16] by 

measuring the open-circuit voltage of the module, which is yet 

difficult to apply in practice. Another way is to use temperature 

sensors attached on the backsheet of modules, while Tc is 

higher than Tb. The difference depends on the module substrate 

materials and solar irradiance level. A simple expression to 

compensate for the difference was given in [17]. However, 

compared to the fluctuated Tb, Tc is less sensitive since the solar 

cells are enclosed within the module structure [18]. There were 

many explicit and implicit empirical correlations, as listed in 

[10], which express Tc as a function of the pertinent 

environment variables. It should be noted that the correlated 

parameters are usually system-dependent, which requires the 

users to select a suitable correlation with adjusted parameters. 

In all, most of the above estimation methods are based on 

steady-state models, which assume that the PV module 

temperature follows the atmosphere conditions immediately. 

However, the temperature variation is very dynamic under 

rapidly changing conditions. The PV module gets heated up 

and cooled down gradually due to the large time constant [19]. 

This means that a steady-state model cannot be justified 

anymore, and a detailed thermal analysis of the PV module is 

necessary to predict the cell temperature variation [20]. 

Subsequently, an original thermal model for PV systems was 

introduced in [21] to estimate the module temperature, 

considering the main energy exchange processes. A similar 

thermal model was verified using experimental data both in 

winter and summer operation conditions [22]. A 3-dimensional 

(3D) numerical model was presented and validated in [23] to 

predict the thermal and electrical behavior of PV modules 

under given environmental and operational conditions.  

However, in those dynamic models, it is assumed that the 

temperature is uniform throughout different layers in the 

module, since they characterize a global energy balance on the 

module with one equivalent thermal capacity. In other words, 

the cell temperature is supposed to be equivalent to the 

backsheet temperature, as well as the front glass temperature. 

To address this, the temperature response of the PV module was 

modeled as a resistive-capacitive (RC) circuit in [19] using the 

thermal resistance and capacitance to define the conductive 

heat transfer between layers. Furthermore, a comprehensive 

thermo-electric model was introduced in [24], where five 

sections are considered to represent the layer features. A 

numerical model was developed and validated in [25] 

considering the heat balance equations and different thermal 

and electrical parameters. Nevertheless, these thermal models 

barely incorporate measuring feedback for estimation.  

In light of the above, a detailed multi-state model (MSM) 

accounting for the PV module dynamics is developed in this 

paper. The proposed model can accurately estimate the PV 

module operating temperature, where the measured backsheet 

temperature and environmental monitoring data are used. The 

equations are established according to a comprehensive 

thermo-electrical dynamic model of the PV module with 

different layers, which takes both module characteristics and 

heat exchange under variable environment parameters into 

account. The present state is updated from the previous state 

according to the dynamic equations with all monitored data to 

reflect the inertia effect. On the other hand, the proposed 

approach allows automated state correction with the difference 

between the measurement and the estimation. The estimated 

cell temperature is compared with the actual measurements 

under various weather conditions. To highlight the 

effectiveness of the proposed model, the estimated results are 

also benchmarked with prior-art models, i.e., the Sandia 

temperature model, NOCT model, a common one-state thermal 

model and two recent-developed empirical equation-based 

models. 

The rest of the paper is organized as follows: In Section 2, 

the proposed dynamic model for PV modules is presented in 

detail. The developed model has three states, representing the 

temperatures of different physical layers of PV modules. The 

models used to complete the contrast experiment together with 

the adopted performance indices are given in Section 3. In 

Section 4, the experimental set-up is described, followed by a 

comparison of the estimated results with the measurements in 

Section 5, where simulation results of the output power with 

various models are also presented. Finally, concluding remarks 

are provided in Section 6. 

II. PROPOSED MULTI-STATE DYNAMIC MODEL  

The PV module under study in this paper is REC 245 PE, 

which is a multi-crystalline module. The entire ensemble of this 

module is consisted of five layers: glass covering, ethylene 

vinyl acetate (EVA), silicon cells, EVA and polyester 

backsheet. These layers are embedded in an anodized 

aluminum frame, whose temperature effect is not modeled in 

the paper, as the low surface area with respect to the module 

area has a negligible effect on the temperature response. Due to 

the strong heat-transfer capacity of the EVA, which results in 

an ignorable temperature change when compared to other 

layers, three dominating layers are considered, i.e., the glass 

cover, the solar PV cells, and the backsheet layer. 

Load

(Output Power)

Irradiance 

Input

Long wave Radiance 
to sky

Short wave 
Radiance

Long wave Radiance 
to ground

Heat 
Convection

Heat 
Convection

Heat 
Conduction 

between layers

 
Fig. 1.  Essential heat transfer processes of PV modules. 

The conduction, convection and radiation heat exchanges 

between the PV module and its environments, as well as the 

load consumption are described in Fig. 1. In this paper, it is 

assumed that the temperature for each layer is uniformly 

distributed [1, 25] and the PV module operates under normal 

conditions (e.g., not considering the partial shading condition 
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or others). In this way, an average temperature is sufficient to 

express the overall operational state of the module. In fact, the 

mismatch between the outputs based on the monitored cell 

temperature and the measurements can be used to detect 

abnormal conditions. Based on the temperature model in [21], 

the heat balance for different layers can be described as:  

For the glass cover: 

,

, ,

[ ( )

                               ( ) ( )]

g

m g g g m g r sky g g sky

cv a g g a cd g c g c

dT
A d C A G h T T

dt

h T T h T T

  

 

        

     

(1) 

in which Am is the area of the module,  represents the density, 

d denotes the thickness, C is the heat capacity, the subscribe g 

indicates the properties of the front glass layer, hr,sky-g is the heat 

radiation coefficient between the glass and the sky that can be 

expressed by a nonlinear mapping relationship, and hcd,g-c is the 

heat conductive coefficient between the glass layer and the cell 

layer, which can be expressed by the inverse of dg/kg + dc/kc. 

Furthermore, the sky temperature Tsky is usually described in 

different forms of the ambient temperature under various 

weather conditions [24]. In (1), hcv,a-g is the heat convection 

coefficient between the glass and ambient, which is a function 

of the wind speed, and the most-common expression of hcv,a-g = 

5.7 + 3.8  Ws is chosen in this paper.  

To further simplify the analysis and modeling, a relatively 

straightforward and simple way has been adopted to evaluate 

the thermal radiation flux between the glass and sky as a ratio 

(1) of the thermal convection flux to obtain an analytical 

solution of the temperature [26]. In this way, (1) is modified as 

1 , ,

[

    (1 ) ( ) ( )]

g

m g g g m g

cv a g g a cd g c g c

dT
A d C A G

dt

h T T h T T

 

  

      

       

       (2) 

where the heat flux ratio 1 is approximately equal to 0.2. 

For the solar cells: 

 , ,

[

    ( ) ( ) ]

c

m c c c m g c

cd c g c g cd c b c b m

dT
A d C A G

dt

h T T h T T P

   

 

        

      

         (3) 

in which the subscribe c indicates the properties of the PV cell 

layer,  is the fill factor, hcd,c-b is the heat conductive coefficient 

between the cell layer and backsheet that can be expressed by 

the inverse of dc/kc + db/kb, and the output power Pm is simulated 

with the nominal power under STC considering the actual 

measurements of the irradiance and temperature. The reason for 

choosing this simple empirical model is that the PV module is 

supposed to work at the maximum power point under normal 

operating conditions. 

 For the backsheet: 

, , ,

[ (1 )

    ( ) ( ) ( )]

b

m b b b m g b

r b gnd b gnd cv b a b a cd c b b c

dT
A d C A G

dt

h T T h T T h T T

   

  

         

        

(4) 

where the subscribe b represents the properties of the backsheet 

layer, hr,b-gnd is the heat radiation coefficient between the 

backsheet and the ground, Tgnd indicates the temperature of the 

ground, and hcv,b-a denotes the heat convection coefficient 

between the backsheet and ambient. Considering that the 

thermal radiation flux between the backsheet and ground is a 

ratio (denoted by 2) of the thermal convection flux, (4) can be 

modified as  

2 , ,

[ (1 )

    (1 ) ( ) ( )]

b

m b b b m g b

cv b a b a cd c b b c

dT
A d C A G

dt

h T T h T T

   

  

         

       

       (5) 

Taking the actual mounting situation, open-racked and low 

frame into account, the ratio 2 is chosen as 0.52. 

According to the datasheet, the thickness of the front glass is 

3 mm with an area of 1.65 m2. Certain material parameters of 

the layers are listed in Table 1 summarizing the preferences in 

[1, 24, 27, 28]. These parameters are assumed to be 

independent of the temperature. 

TABLE 1 

PARAMETERS USED TO ESTABLISH THE COMPREHENSIVE THERMAL MODEL 

 Value 

 Front glass Multi-crystalline solar cell Polyester backsheet 

d (m) 0.003 0.0003 0.0001 

 (kg/m3) 3000 2330 1200 

C (J/kgK) 500 677 1250 

k (W/mK) 1.8 148 0.2 

To solve the above equations, including instantaneous 

irradiance level and ambient temperature, as well as wind speed, 

a dynamic model is established. The temperatures of different 

layers at the time instant k+1 are calculated as 

( 1) ( )  i

i i

dT
T k T k sampling interval

dt
                (6) 

where k is the present-instant, and dTi/dt is the temperature 

changes of different layers that can be calculated according to  

(2), (3), and (5). 

 When considering the state vector x(k) to represent the 

temperatures of different layers [Tg Tc Tb]T in Step k and the 

input vector u(k) to include the irradiance and ambient 

temperature, the dynamics of the PV module can be described 

by a multi-state model (MSM) that is expressed as 

( 1) [ ( ), ( ), ( )] ( )

( ) [ ( ), ( ), ( )] ( )

k f k k k w k

y k g k k k v k

  


 

x x u θ

x u θ
                (7) 

in which (k) is consisted of constant materials parameters and 

the time-varying wind speed, w(k) and v(k) represent the noise 

terms related to sensor uncertainties subject to the Gaussian 

distribution, and y(k) is an output (i.e., the measured backsheet 

temperature). 

 The next-instant state x(k+1) is then predicted based on the 

present state x(k) and the instantaneous input u(k) considering 

(k). Actually, the measured backsheet temperature can be used 

as a feedback to correct the estimated state. In this way, the 

proposed MSM is improved by introducing an observer (i.e., 

MSM-O). Flowchart of the implementation procedure of the 

MSM-O is shown in Fig. 2. 

III. BENCHMARK MODELS AND PERFORMANCE INDICES 

Numerous models to estimate the PV module temperature 

have been proposed in the literature. In this section, to highlight 
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the effectiveness of the proposed model, it is compared with 

five representative ones, which are briefly described in the 

following. The two benchmark models are the Sandia thermal 

model and NOCT model. Those are the most commonly and 

widely used for module temperature correction. 

 

Start

Initial model state x(1)

Present state x(k):

Front glass temperature(k)

Cell temperature(k)

Backsheet temperature(k)

Input u(k):

Irradiance(k)

Ambient temperature(k)

Parameter θ(k):

Wind speed(k)

Material parameters

Forthcoming state x(k+1):

Front glass temperature(k+1)

Cell temperature(k+1)

Backsheet temperature(k+1)

Output y(k):

Measured backsheet 

temperture(k)

Last data

Output the estimated results 

End

Yes

Feedback correction

Iteration

No

 
Fig. 2.  Flowchart of the MSM-O, in which x(1) means the given initial value of 

temperatures that are chosen to be equal to the ambient temperature and 

backsheet temperature without loss of generality. 

 

Sandia model [17]: 

1000
c b

G
T T T                                  (8) 

where T = 3 ℃ for the module type of the Glass/cell/polymer 

sheet with open rack mounting. 

NOCT model [13]: 

( 20)
800

c a NOCT

G
T T T                            (9) 

with TNOCT = 45.7 ℃ according to the datasheet of REC 245 PE. 

 A general one-state thermal model (OSM) is also established. 

This model characterizes a global energy balance on the 

module with one equivalent thermal capacity, which is the sum 

of capacities of different layers, resulting in the uniform 

temperature throughout layers. Notably, the heat conduction 

between layers is not considered in this model. The heat 

balance equation for the entire module can be written as 

 

3

1

1 2 ,

( )

    2 + ( )

m

m i i i

i

m m cv a m m a e

dT
A d C

dt

A G h T T P



  





   

          


     (10) 

where the subscribe i (i=1,2,3) represents the properties of the 

layers, Tm is the equivalent uniform temperature of the PV 

module, m is the absorbance of the module, hcv,a-m is the heat 

convection coefficient between the module and ambient 

considering both anterior and posterior sides. 

 There are also many empirical equations available in the 

literature. Seventeen different implicit empirical correlations, 

with eleven new modified implicit ones, have been examined in 

[14]. It has been found that the proposed MRSSI correlation (11) 

can be easily used to estimate the module temperature with only 

the irradiance and ambient temperature, which is given as 
21.52567 0.01981336 0.000003451m aT T G G      (11) 

When the wind speed is available, the modified Chenni 

correlation is another model for comparison. This can be 

expressed as  

   

21.93666 0.007882 0.0000134647

      0.0138 1 0.031 1 0.042

m a

a s

T T G G

G T W

     

       
 (12) 

The following metrics are adopted to evaluate and compare 

the model performance: Normalized Root Mean Square Error 

(nRMSE), Normalized Mean Absolute Error (nMAE), 

Normalized Mean Bias Error (nMBE), Mean Absolute 

Percentage Error (MAPE), Correlation coefficient (CC), and 

R-squared Statistics (R2). 

IV. EXPERIMENTAL SET-UP 

Experimental tests were carried out on a PV outdoor test and 

monitoring platform at Aalborg University based on the 

SOL.Connect® meter mpp PV panel performance monitoring 

system. The platform consists of an I-V tracer with an 

integrated MPP tracker, an in-plane matched reference cell and 

a PT1000 temperature sensor attached on the center of the 

module back side. Additionally, a weather monitoring station 

installed nearby is recording the wind speed and ambient 

temperature. The electrical and environmental parameters are 

reported in Table 2. 

TABLE 2 

MEASUREMENTS OF ELECTRICAL AND ENVIRONMENTAL PARAMETERS 

Variable Sensor Uncertainty 

Current (A) MPP meter < 1% STC 

Voltage (V) MPP meter < 1% STC 
Irradiance (W/m2) Reference cell < 4% 

Cell temperature (℃) PT1000 (Class B) < 0.3 ℃ 

Backsheet temperature (℃) PT1000 (Class B) < 0.3 ℃ 
Ambient temperature (℃) PT100 (Class B) < 0.3 ℃ 

Wind Speed (m/s) Hygro-thermometer < 3% 

All the electrical data and rapidly changing environmental 

data are sampled every 10 seconds, as well as the cell and 

backsheet temperature. The sample rate of other environmental 

data, e.g., wind speed and ambient temperature, is one minute 

per sample. In this case, the original data is preprocessed with 

interpolation. The data recorded from 5:52 in the morning to 

18:51 in the afternoon are used to test the established model. 

The initial cell temperature is chosen to be equal to the ambient 

temperature. Actually, the proposed model can also work based 

on the hybrid estimation model presented in [29], when the 

irradiance measurements are unavailable. With a Convolutional 

Neural Network (CNN)-based irradiance forecasting model 

developed in [30], the result in this paper can be used for further 

power prediction. 
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To validate the model performance under various climatic 

conditions, typical days are considered. The first condition is a 

clear day as shown in Fig. 3(a). In contrast, an overcast 

condition is the day shown in Fig. 3(b), in which the irradiance 

level is below 300 W/m2 for most time of the day. Irradiance in 

the third condition, i.e., a cloudy day, is fluctuating frequently, 

and the fourth one is a mixed day, i.e., a combination of the 

above, which are described in Fig. 3(c) and (d), respectively. 

 
Fig. 3.  Solar irradiance levels for different days representing various weather 

conditions: (a) Clear, (b) Overcast, (c) Cloudy, and (d) Mixed. 

Furthermore, data in three months, i.e., May, August, and 

October in Denmark are specifically chosen. Months in winter 

are excluded due to the lack of sunlight with an overall 

irradiance level below 100 W/m2. In fact, the sunshine duration 

is quite short in these months, resulting in the maximum power 

less than 30 W. Boxplots are drawn in Fig. 4 to show the 

diversities of irradiance in the chosen days. In addition, the 

wind speed in these chosen months varies dramatically, with a 

maximum wind velocity of 14.60 m/s, an average of 1.75 m/s, 

and the standard deviation of 1.60 m/s. 

 
Fig. 4.  Boxplots of irradiance under various weather conditions in different 

months: (a) May, (b) August, and (c) October. 

V. RESULTS AND DISCUSSION 

A. Model validation 

Two models, i.e., the MSM and MSM-O, described in the 

previous sections are established to estimate the temperatures 

of different layers in the PV module. As an example of the 

model performance, Fig. 5 shows the estimation results against 

the measurements for a clear day with detailed residual signals. 

As it can be seen in Fig. 5, the cell temperature is higher than 

the backsheet temperature to some extent, especially in the 

middle of a day. In contrast to the frequently used one-state 

model, temperatures of different layers can be estimated 

separately with the proposed model. The results in Fig. 5(b) 

show that the estimated values coincide well with the measured 

ones, indicating that the internal behaviors, subject to 

fluctuating environments, can be well described by the 

proposed MSM-O. Only small deviations are observed for short 

periods. In addition, the cell temperature can be tracked more 

accurately by introducing the measured backsheet temperature, 

whose role is to adjust the states to correct the estimated errors 

when using the proposed model. Specifically, most of the 

estimated residuals of the MSM-O are limited to below 1℃. 

 
Fig. 5.  Temperature estimation results based on the proposed model under a 
clear day: (a) MSM and (b) MSM-O. 

To validate the model performance under different weather 

conditions, the experiments are conducted on 12 typical days 

chosen from three months, referring to Figs. 3 and 4. Fig. 6 

shows the temperature residual signals under four weather 

conditions in August. 

 
Fig. 6.  Estimated temperature residuals under various weather conditions in 
August: (a) residuals for the backsheet temperature and (b) residuals for the cell 

temperature. 

As observed in Fig. 6, the MSM-O can estimate both the 

backsheet temperature and cell temperature more accurately 

under the four weather conditions compared to the MSM. In 

fact, due to the long-time outdoor exposure, PV modules will 

encounter various unpredictable problems, which may not be 

considered in the established model. Using the measured data 

as feedback can quickly correct the errors. The mean value of 

the estimated backsheet temperature residual based on the 

MSM is 0.75 ℃, while it is 0.23 ℃ with the proposed MSM-O. 

However, the model is less effective for the cell temperature 

estimation due to more uncertainties with the mean being  

1.20 ℃ and 0.49 ℃, respectively. 

In addition, Fig. 7 shows the detailed model performance 

comparison results for four typical days in August. It is 

noticeable in Fig. 7 that the addition of the backsheet 

temperature as the feedback can effectively improve the model 

performance, resulting in the significant reduction in the 
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indices of nRMSE, nMAE, nMBE and MAPE for various 

weather conditions. Additionally, larger correlation coefficient 

and R-squared statistic results show that the estimated 

temperature is in a close agreement with the measurement, 

except for the overcast day, August 19th. This can be explained 

according to Fig. 3(b), where the irradiance is below 200 W/m2 

for the whole day, representing a completely cloudy day. This 

makes the cell temperature even lower than the backsheet 

temperature due to the cooling effect. It is inevitable that the 

dynamic model will fail in this circumstance, as the proposed 

model is established based on the dynamic process of the heat 

exchange between the PV module and its surrounding 

environments. While the similar cell temperature and ambient 

temperature make the heat exchange no longer the prominent 

factor. As the output power is below 50 W through the day, the 

absolute error is negligible. 

 
Fig. 7.  Model performance comparison for the cell temperature estimation 
under different weather conditions in August: (a) Clear, (b) Overcast, (c) 

Cloudy, and (d) Mixed. 

To further evaluate the performance of the models, a simple 

empirical equation is adopted to simulate the output power of 

the PV module as 

 1 ( 25)
1000

m STC c

G
P P T                     (13) 

where the temperature coefficient  is −0.4%/℃, and the 

nominal power under STC PSTC is 245 W according to the 

module datasheet. 

 The average performance indices for three months under 

different weather conditions using the MSM and MSM-O, 

respectively, are listed in Table 3. It can be observed in Table 3 

that both models can be used under different weather conditions 

in the three months, verifying the applicability of the proposed 

models. By utilizing the observed temperature as the feedback, 

the nRMSE, nMAE, nMBE and MAPE can be further limited 

below 5%. High correction coefficient and R-squared statistic 

results show that the estimation and simulation coincide well 

with the measured ones, indicating the excellent dynamic 

model performance under fast-changing environments. As 

studied in [26], the thermal response time of a solar cell with a 

silicon thickness of 100–500 μm is around 50–250 s. This 

means that the internal thermal behavior can be fully described 

by the proposed model, coordinating with actual environment 

measurements. Results in Table 3 can further demonstrate that 

an accurate module temperature estimation is necessary to 

obtain a reliable simulation of the output power. 

TABLE 3 

AVERAGE PERFORMANCE INDICES OF THE DEVELOPED MODEL UNDER 

DIFFERENT WEATHER CONDITIONS 

 

Backsheet 

temperature 

estimation 

Cell temperature 

estimation 

Output power 

simulation 

 
n- 

RMSE 

R- 

squared 

n- 

RMSE 

R- 

squared 

n- 

RMSE 

R- 

squared 

Clear 

MSM 0.10 0.91 0.08 0.96 0.03 0.99 
MSM-O 0.04 0.98 0.03 0.99 0.02 0.99 

Overcast 

MSM 0.04 0.63 0.06 0.46 0.07 0.98 
MSM-O 0.02 0.83 0.04 0.77 0.07 0.98 

Cloudy 
MSM 0.04 0.95 0.04 0.97 0.03 0.99 

MSM-O 0.02 0.98 0.03 0.98 0.03 0.99 

Mixed 

MSM 0.17 0.83 0.14 0.90 0.04 0.99 
MSM-O 0.05 0.98 0.05 0.98 0.03 0.99 

B. Comparison with other models 

In this section, the performance of the MSM-O is compared 

with other representative models. The estimated and measured 

cell temperature under a clear day, August 21st, are compared 

in Fig. 8(a). It is observed in Fig. 8(a) that the most precise fit to 

the measured data is obtained by the proposed MSM-O. The 

NOCT model overestimates the temperature, while the 

estimated results of the other models are closer to the backsheet 

temperature, which is much lower than the actual cell 

temperature. It is worth noting that the result of the Chenni 

model, which is closer to the backsheet temperature, is lower 

than that of the MRSSI. This comparison clearly demonstrates 

that the introduction of the wind speed can describe the thermal 

dissipation process better. However, the unique output of these 

models considers the module as a whole, ignoring the obvious 

temperature difference between the internal and surface. In 

addition, the direct relationship between the model output and 

irradiance in two benchmark models and two empirical 

correlations makes the estimation results more sensitive to 

irradiance fluctuations, leading to huge errors. In contrast, the 

result of the MSM-O is in a good agreement with the 

experimental results, responding better to transient changes in 

irradiance. 

Based on the estimated temperature, a comparison of the 

output simulation and actual measurements for the same day is 

given in Fig. 8(b). A good agreement between the simulation 

and measurement is achieved based on the MSM-O, indicating 

the importance of an accurate module temperature estimation to 

the reliable output power simulation. Due to the negative 
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correlation between the output power and cell temperature, the 

NOCT model will underestimate the output, which may cause a 

false alarm. In contrast, faults will not be detected by the rest of 

the models, since they overestimate the power. 

 
Fig. 8.  Comparison of the results based on different models under a clear day: 
(a) temperature estimation and (b) output power simulation. 

To further evaluate the model performance on cell 

temperature estimation and output power simulation, Figs. 9 

and 10 present the corresponding indices under different 

weather conditions. The proposed MSM-O performs with a 

comparable accuracy in the estimation and simulation. Markers 

in different colors gather together for the majority of the 

performance indices, indicating that the proposed model is 

robust and applicable for various circumstances. In contrast, 

other models may just be effective under certain conditions. In 

particular, the resulting error index RMSE is reduced by more 

than 50% for the cell temperature estimation and about 30% for 

the power simulation with respect to the steady-state model 

based on the NOCT. Although the model does not perform well 

on overcast days to some extent, compared to the Sandia model, 

it still outperforms over others. The low irradiance through the 

day makes the daily output extremely low, meaning that the 

power simulation error is negligible. 

When comparing Figs. 9 and 10, it can be found that the 

superiority of the MSM-O over other models on the output 

power simulation is not as remarkable as on the cell 

temperature estimation. First, the magnitude of the output 

power is much larger than that of the cell temperature, resulting 

in a smaller relative error, which makes the gap between 

models narrow. On the other hand, (13) uses 1000 W/m2 as the 

reference irradiance because relevant quantities are easily 

available from the datasheet given by manufacturers, causing 

model estimation errors, especially at low irradiation levels. 

Furthermore, the output power is dependent not only on the 

irradiance level and cell temperature [31], but also on the 

degradation degree of the module. All these factors make the 

simulation based on this empirical equation imprecise. 

However, the primary objective of this paper is to estimate the 

cell temperature accurately, rather than to simulate the output 

power. Simulating the output power based on the estimated 

temperature is just used to illustrate the significant importance 

of the operating temperature to the module output. The part of 

the reliable assessment of the output power will be further 

developed in the subsequent work. 

 
Fig. 9.  Model performance comparison for the cell temperature estimation 

under different weather conditions: (a) nRMSE, (b) nMAE, (c) nMBE, (d) 

MAPE, (e) CC, and (f) R-squared. 

 
Fig. 10.  Model performance comparison for the output power simulation under 

different weather conditions: (a) nRMSE, (b) nMAE, (c) nMBE, (d) MAPE, (e) 
CC, and (f) R-squared. 

VI. CONCLUSION 

This paper proposed a comprehensive multi-state dynamic 

thermal model for the PV cell temperature estimation. This 
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dynamic model considers essential mechanisms of heat transfer 

between the PV module and its environment, as well as heat 

conduction between different layers. In addition, different 

temperatures through the module are modeled as internal states, 

which are corrected according to the observations. The 

effectiveness of the proposed model has been demonstrated by 

experimental validation with outdoor module temperature and 

performance measurements under different weather conditions. 

The results have demonstrated the ability of the model to 

adequately characterize the internal behavior of the modules 

under normal conditions, when compared with the prior-art 

steady-state models. The superiority of the proposed model 

over the one-state thermal model illustrates the necessary of 

modeling with multiple states to separately estimate the layer 

temperatures. Furthermore, feedback of actual measurements to 

compare with the estimated outputs can ensure the timely state 

correction under certain unforeseen circumstances. In fact, the 

estimated cell temperature in this paper is a predicted value for 

the next sampling time, since the estimation is based on the 

previous estimated results and present measurements. This 

makes the proposed model further beneficial to predict the 

output power. 
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