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Learning Parameters of Stochastic Radio Channel
Models from Summaries
Ayush Bharti, Ramoni Adeogun, and Troels Pedersen

Abstract—Estimating parameters of stochastic radio channel
models based on new measurement data is an arduous task
usually involving multiple steps such as multipath extraction and
clustering. We propose two different machine learning methods,
one based on approximate Bayesian computation (ABC) and the
other on deep learning, for fitting data to stochastic channel
models directly. The proposed methods make use of easy-to-
compute summary statistics of measured data instead of relying
on extracted multipath components. Moreover, the need for post-
processing of the extracted multipath components is omitted.
Taking the polarimetric propagation graph model as an example
stochastic model, we present relevant summaries and evaluate the
performance of the proposed methods on simulated and measured
data. We find that the methods are able to learn the parameters
of the model accurately in simulations. Applying the methods
on 60 GHz indoor measurement data yields parameter estimates
that generate averaged power delay profile from the model that
fits the data.

Index Terms—machine learning, Monte Carlo methods, deep
learning, Bayesian inference, radio channel modeling, approx-
imate Bayesian computation, summary statistics, propagation
graph, parameter estimation, likelihood.

I. INTRODUCTION

Stochastic models of the radio channel are indispensable
tools in the design and analysis of communication and local-
ization systems. Stochastic radio channel models are used for
characterizing and simulating realizations of the channel in
different environments. However, for the model to generate
data similar to what is observed in the measurements, its
parameters need to be learned from the data. The process of
learning or estimating the parameters of a model from new
measurements is termed as calibration. Calibration could be
obtained by deriving the parameters theoretically, e.g. in room
electromagnetics or in ray tracing. In fact, some parameters
such as speed of light or room geometry are set not using
the data. Standard calibration technique using data would be
to either maximize the likelihood function of the data with
respect to the parameters, or to characterize the posterior
distribution of the parameters in a Bayesian sense. However,
most stochastic channel models suffer from intractability of
the likelihood function, and therefore, calibrating them given
a new set of measurement data is challenging [1].

Typically, stochastic multipath radio channel models are
calibrated in steps, as described in Fig. 1(a). This calibration
methodology has been followed since the early works of
Turin [2] and Saleh-Valenzuela [3] till more recent stochastic
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channel models [4]–[8]. First, the data is reduced to a set of
multipath components, each having their own gain, delay, etc.,
by applying high-resolution algorithms such as SAGE (Space
Alternating Generalized Expectation-maximization) [9], MU-
SIC (MUltiple SIgnal Classification), ESPRIT (Estimation
of Signal Parameters via Rotational Invariance Techniques),
and RiMAX [10], among others. The extracted multipath
components are then used to estimate the model parameters. In
case of cluster-based channel models, an additional clustering
step can be applied. Alternatively, the presence of clusters, or
other multipath effects, can be included in the derivation of the
high-resolution estimator, as in [11]–[13], to obtain the cluster
parameters directly. In a final step, the model parameters
are estimated from the extracted multipath components and
clusters.

Even though such multi-step calibration approaches are
widely used, they suffer from a range of issues. It can be
cumbersome and labor-intensive to derive, implement, and test
sophisticated multipath extraction and clustering algorithms
that require a number of heuristic choices to be made. More-
over, the estimation of the multipath components is prone to
errors due to censoring [14]. Therefore, the overall estimation
accuracy of the model parameters is difficult to determine due
to this step-by-step calibration approach.

There may exist statistics other than the multipath compo-
nents that are easier to obtain, and still hold enough informa-
tion to be able to learn the model parameters. Potentially, the
parameters of the channel models can be estimated without the
multipath extraction step by relying on these easy-to-compute
summary statistics. Such an estimator for the Saleh-Valenzuela
model [3] was proposed in [15] where the estimation problem
was framed as an optimization problem that fitted summary
statistics of the data with approximate analytical expressions.
More recently, multipath extraction-free calibration methods
based on sampling [16] and method of moments [17] have
been developed and applied to the Turin model. These methods
summarize the data into certain statistics, and rely on explicit
derivation of equations linking their means and covariances
to the model parameters. Drawback of these methods is that
such equations need to be derived for every stochastic channel
model, which is either non-trivial or oftentimes not possible.

In the present contribution, we further advance the idea
of using other summaries than the multipath parameters for
model calibration. This leads to the calibration methodology
outlined in Fig. 1(b) where the data is first summarized
into a set of statistics from which the model parameters are
obtained. We extend our previous work on learning parameters
of stochastic channel models using approximate Bayesian
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computation (ABC) [18] and deep learning (DL) [19], where
we had applied the methods on the cluster-based model of
Saleh-Valenzuela [3].

ABC is a framework for performing likelihood-free infer-
ence on generative models with intractable likelihoods [20],
[21], as is the case for stochastic channel models. It relies
on sampling parameter values from a prior distribution, sim-
ulating data from the model, and comparing the simulated
summaries to those obtained from the measurements. Param-
eter values that yield summaries similar to the observed ones
are used to approximate the posterior distribution. Initially
developed in the field of population genetics [22], ABC has
since been applied in various other fields of research such
as ecology [23], astrophysics [24], and structural dynamics
[25], to name a few. To the best of our knowledge, ABC has
not been applied in wireless communications except for our
previous conference paper [18].

The DL method utilizes a neural network (NN) to establish
a functional relationship between the summaries and the
parameters, and uses the trained NN to estimate the parameters
given the observed summaries. Neural networks have been
proven to exhibit capability for universal approximation of
any continuous real-valued function [26]. These networks have
been successfully applied in fields such as computer vision
and image processing over the last several years. Recently,
the wireless communications community has also explored
avenues for application of DL. While efforts have been di-
rected towards DL-enabled physical layer design, only a few
applications to radio channel modeling and calibration have
been proposed. In [27], the authors utilized Deep Neural
Network for uplink-downlink channel calibration in massive
MIMO. Similar network is utilized for predicting path-loss
exponent from millimeter wave channel measurements in [28].
The DL method proposed here is a generalization of the
framework introduced in [19] where a single layer neural
network is applied to estimate parameters of propagation
models. Similar DL-based likelihood-free inference framework
has been applied in population genetics [29].

In this paper, we present two machine learning methods
based on ABC and DL to calibrate stochastic radio channel
models without multipath extraction. We show the applicabil-
ity of the methods by calibrating the polarimetric propagation
graph (PG) model [30] as an example, since multipath extrac-
tion cannot be directly applied to calibrate it. We also present
a number of summary statistics for representing channel
measurements that are used as input for the learning methods.
The chosen statistics are qualified via simulation study of the
PG model. Simulation results illustrate the capability of the
proposed learning methods to accurately estimate the model
parameters. The methods are also applied to calibrate the PG
model using real indoor channel measurements. Reasonable
fits of the averaged power delay profile were seen between
the measurements and the model, thus validating the proposed
learning methods.

The remainder of the article is organized as follows. We
describe the ABC and DL calibration methods in section II.
The description of the polarimetric PG model is given in
section III, along with the choice of summary statistics. In
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Fig. 1. State-of-the-art calibration methodology (a), versus the proposed
method (b).

section IV, we apply the ABC and DL methods on the PG
model and show the results. The discussion regarding the
proposed methods is presented in section V, and section VI
provides our concluding remarks.

II. SUMMARY-BASED CALIBRATION METHODS

Consider a stochastic generative model, M(θ), which is
easy to simulate from given any value of the parameter, θ.
Each time the model is called for a given parameter vector, it
generates independent realizations of simulated data, Y. Here,
Y could be a vector or a matrix. Let Yobs be a set of measure-
ment data obtained experimentally. The calibration problem
then involves estimating θ such that the model, M(θ), fits to
the measured data, Yobs. However, the likelihood function of
Y given θ is intractable, and so standard estimation techniques
are not applicable. Typically, Y is a high-dimensional data
matrix, as is the case with radio channel transfer function
or impulse response measurements for multiple independent
realizations of the channel. Therefore, we use a function, S(·),
that summarizes Y into a set of q statistics, s ∈ Rq , such
that s = S(Y). We then use these statistics as data in
our calibration methods to estimate θ given the observations
sobs = S (Yobs). Ideal choice for s would be sufficient
statistics of Y, but those are unavailable in most practical
cases.

A. Approximate Bayesian Computation

ABC is a likelihood-free inference method that samples
from the approximate posterior distribution of the parameters
by finding values that lead to simulated datasets from the
model that are similar to the observed data. The method in-
volves sampling from the prior distribution of the parameters,
p(θ), and then generating datasets from the model. These
simulated datasets are then compared to the observed set of
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Fig. 2. Block diagram depicting data flow in the proposed PMC-ABC algorithm with regression adjustment.

measurements in some distance metric, ρ(·, ·), and the values
of θ that yield a distance smaller than a pre-defined tolerance
threshold, ε, form samples from the approximate posterior
distribution. These samples can then be used to approximate
standard point estimates of θ such as the minimum mean
square error (MMSE) or the maximum a posteriori estimate.
The basic rejection-ABC algorithm can be summarized as
follows:

1) Sample from prior, θ∗ ∼ p(θ)
2) Simulate Y∗ ∼M(θ∗)
3) Compute summary statistics s∗ = S(Y∗)
4) Accept θ∗ if ρ(s∗, sobs) < ε

The approximation here arises on account of summarizing the
data into a set of statistics, and accepting samples within a
tolerance threshold. Choosing sufficient statistics to be used
in ABC mitigates the former approximation, however, finding
sufficient statistics is typically not feasible. Choosing a small
ε improves the posterior approximation but increases the
rejection rate significantly, whereas a large ε leads to sampling
from almost the prior. Therefore, the distance metric, the tol-
erance threshold, and the summary statistics are the necessary
ingredients required to implement an ABC algorithm.

The choice of appropriate summary statistics is crucial to
the quality of approximation [31], and it depends upon the
application and the model at hand. Given a pool of summary
statistics, there exist statistical methods to e.g. select best
subset among them, or construct a much smaller set of highly
informative statistics through projection techniques, among
others [32]. However, domain knowledge is vital for construct-
ing appropriate summaries that are not only informative about
the model parameters, but also relevant from an application
perspective. Thus, domain experts can choose meaningful
summaries that they wish to fit to the model. The specific
statistics used in this paper will be addressed in Sec. III-D
with regards to a specific example radio channel model.

Typically, the Euclidean distance between the observed
and the simulated statistics is used as the distance metric in
summary-based ABC methods, i.e. ρ(·, ·) = ‖ · ‖. Other
distance metrics can also be used, however, the Euclidean
distance seems appropriate in the context of summary-based
ABC methods for the application at hand. In cases where a
set of statistics are used that differ in their units and order of
magnitude, it is important to normalize them before computing

the distance [33]. The normalization aims to bring all the
individual distances to the same scale, such that the total
distance will be their sum. In this paper, we take ρ(·, ·) to
be the Euclidean distance between the normalized statistics,
but still denote it as ‖s− sobs‖, with the normalization of the
statistics assumed to be implicit.

Specifying an appropriate value of ε in terms of the distance
may prove to be difficult. Setting ε too low leads to unknown
run time of the algorithm to get a certain number of accepted
samples. Therefore, it is usual to employ a k-nearest neighbor
approach and specify ε as a percentile of the total simulated
samples. That is, out of M samples of θ from the prior, we
accept the first Mε = εM samples leading to the smallest
‖s− sobs‖.

The basic ABC method is simple but can be rather slow.
Instead, we propose to use a sequential sampling method,
specifically the Population Monte Carlo ABC (PMC-ABC)
[34], and supplement it by employing the local-linear re-
gression adjustment method proposed in [31]. The resulting
algorithm, named PMC-ABC with regression adjustment, is
detailed in Alg. 2. A block diagram summarizing the proposed
method is shown in Fig. 2. In the following, we describe the
two ABC techniques.

1) Regression ABC: We supplement the rejection-ABC
algorithm by employing the local-linear regression adjustment
method proposed in [31]. The regression adjustment improves
the posterior approximation by 1) weighting the accepted
parameter samples according to their corresponding distance
value and 2) adjusting them using a linear regression model
applied locally in the vicinity of sobs. For θj being the jth

accepted parameter sample and sj the corresponding simulated
statistics vector, the linear model reads

θj = α+ (sj − sobs)
Tβ + εj , j = 1, . . . ,Mε, (1)

where α ∈ Rp and β ∈ Rq×p are the intercept and regression
coefficients, respectively, and ε1, . . . , εMε

are uncorrelated
noise variables with zero mean. The least-squares estimate of
α and β are obtained by solving the optimization problem

argmin
α,β

Mε∑
j=1

[
θj −α− (sj − sobs)

T
β
]2
Kε (||sj − sobs||) .

(2)
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Algorithm 1 Regression ABC algorithm
Input: Parameter values (θ1, . . . ,θM ) and corresponding simulated
statistics (s1, . . . , sM ), observed statistics sobs, number of accepted
samples Mε,

Accept (θ∗
1, . . . ,θ

∗
Mε) ∼ {θi}

M
i=1 with the smallest ‖si − sobs‖

Solve optimisation problem (2) with
{
θ∗j
}Mε
j=1

and corresponding{
s∗j
}Mε
j=1

to get β̂

Adjust accepted samples
{
θ∗
j

}Mε
j=1

using (3) to get
{
θ̃j
}Mε
j=1

Output: Samples (θ̃1, . . . , θ̃Mε) from approximate posterior

The Epanechnikov kernel, Kε(·), depends on the maximum
accepted distance based on the chosen ε, and ensures that
the regression model is applied locally. The samples are then
adjusted as

θ̃j = θj − (sj − sobs)
T
β̂, j = 1, . . . ,Mε, (3)

thus improving the approximation to the posterior distribution.
Note that the adjustment is applied on each entry of the pa-
rameter vector independently. This regression-ABC algorithm
is described in Alg. 1.

The adjustment in (3) is done disregarding the prior range of
the parameters. Therefore, the regression method may adjust
the samples to fall outside the support of the prior. This
issue can be addressed by transforming the parameters before
adjustment [31]. A log transformation can be used for positive
parameters, and a logit transformation for parameters with
bounded priors [35].

2) Population Monte Carlo ABC: In cases where the pa-
rameter vector is high-dimensional, rejection-ABC method
needs a large number of simulations of the model to reasonably
explore the parameter space. Therefore, more advanced ABC
methods have been introduced that rely on Markov chain
Monte Carlo and Sequential Monte Carlo techniques that
sample the parameter space efficiently. One such sequential
technique is the Population Monte Carlo (PMC)-ABC method
[34] that iteratively converges towards the approximate poste-
rior distribution.

In the initialization of PMC-ABC, Mε closest parameter
samples out of (θ1, . . . ,θM ) are retained, similar to rejection-
ABC. These accepted samples, {θj}Mε

j=1, form an approxi-
mation to the posterior distribution. A new population of M
parameter samples is then drawn from the density kernel

ϕt(θ) =

Mε∑
j=1

w
(t−1)
j Kt

(
θ(t)|θ(t−1)

j ;σ2
(t−1)

)
, (4)

where t is the iteration index, w
(t−1)
j is the importance

sampling weight associated with the accepted sample θ(t−1)
j ,

and σ2
(t−1) is a variance vector with each entry associated with

a kernel Kt. Note that wj and σ2 are vectors of the same
dimension as θ, and the new population for each parameter is
drawn independently from the kernel with the corresponding
variance. Typical choice for Kt is a Gaussian kernel, although
other distributions may also be useful. A good choice for the
variance of Kt is shown to be twice the empirical variance
of the accepted samples [34]. Data and statistics are again

Algorithm 2 PMC-ABC with regression adjustment
Input: Prior p(θ), model M(θ), observed statistics sobs, Mε, M , T

Initialization: t = 1,

for i = 1 to M do
Sample θ

(1)
i ∼ p(θ)

Simulate Y
(1)
i ∼M(θ

(1)
i ) and compute s

(1)
i = S(Y

(1)
i )

end for
Perform regression adjustment by applying Algorithm 1 on{(

s
(1)
i ,θ

(1)
i

)}M
i=1

to obtain
{
θ̃
(1)

j

}Mε
j=1

Set weights

w
(1)
j = 1/Mε, j = 1, . . . ,Mε, and variance

σ2
(1) = 2V̂ar

({
θ̃
(1)

j

}Mε
j=1

)
for t = 2 to T do

for i = 1, . . . ,M do
Sample θ∗

i ∼
{
θ̃
(t−1)

j

}Mε
j=1

with probabilities w
(t−1)
j

Generate θ
(t)
i ∼ Kt

(
θ|θ∗

i ;σ
2
(t−1)

)
Simulate Y

(t)
i ∼M

(
θ
(t)
i

)
and compute s

(t)
i = S

(
Y

(t)
i

)
end for
Perform regression adjustment by applying Algorithm 1 on{(
s
(t)
i ,θ

(t)
i

)}M
i=1

to obtain
{
θ̃
(t)

j

}Mε
j=1

Set weights

w
(t)
j ∝

p
(
θ
(t)
j

)
∑Mε
j=1 w

(t−1)
j Kt

(
θ
(t)
j |θ̃

(t−1)

i ;σ2
(t−1)

) , 1 ≤ j ≤Mε

and variance σ2
(t) = 2V̂ar

({
θ̃
(t)

j

}Mε
j=1

)
end for

Output: Samples
(
θ̃
(T )

1 , . . . , θ̃
(T )

Mε

)
from the approximate posterior

simulated from the newly generated population, and the Mε

closest parameter samples are accepted and assigned weights
w(t) ∝ p(θ)/ϕt(θ), where the division is taken entry-wise.
This sequence of steps is repeated for T iterations, till the
approximate posterior distributions converge.

To improve the posterior approximation and speed up the
convergence, we combine the aforementioned two methods by
applying the regression adjustment step on the accepted pa-
rameters after each iteration of PMC-ABC. The sample mean
of the accepted samples after T th iteration,

(
θ̃

(T )

1 , . . . , θ̃
(T )

Mε

)
,

gives the approximate MMSE estimate.

B. Deep Learning
Given a set of summary statistics and corresponding model

parameters, {(si,θi)}i∈{1,··· ,M}, the calibration problem de-
scribed above can be expressed as a mapping from s to θ.
Denoting f as the mapping function, the model parameters
can be expressed as

θi = f(si) + εi i = 1, · · · ,M, (5)

where εi denotes the approximation error. Given the expres-
sion in (5), the calibration problem is equivalent to finding
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Fig. 3. Block diagram for the proposed DL method. The left and right dashed boxes represent the training and the test phase, respectively.

a representation of f such that εi is minimized for all si.
The function f can, e.g., be defined as a linear or polynomial
function of s which can be obtained via a least square fit to
the simulated data, {si}Mi=1. It may however be difficult to
find such functions for the multi-dimensional and potentially
complex relationship between the statistics and the model
parameters. We, therefore, propose using a deep neural net-
work architecture which has been shown to exhibit universal
approximation property [26].

The DL based calibration method is illustrated in Fig. 3.
We approximate f using a deep NN architecture illustrated in
Fig. 4. The deep NN model can be defined using a hypothesis,
f̂(·; Φ), with parameter Φ. For a network with R hidden
layers, Er neurons in the the rth hidden layer, and p neurons
in the output layer (since θ ∈ Rp), the DL hypothesis for the
ith statistic can be expressed as [26]

hr(si) = ah(Wrhr−1(si) + br), r = 1, · · · , R
f̂(si; Φ) = aout(WouthR(si) + bout) (6)

where hr(·) is the output of the rth layer, Wr ∈ REr×Er−1

and Wout ∈ Rp×ER denote the weights matrix for connections
terminating at the rth hidden layer and output layer, respec-
tively, with br ∈ REr and bout ∈ Rp being the corresponding
bias terms. The activation function at the nodes of each inter-
mediate layer is ah, and that at the output layer is aout. Note
that h0(si) = si, with the number of neurons in the input layer
being the dimensionality of s. The DL hypothesis in (6) is pa-
rameterized by the set Φ = {{(Wr,br)}Rr=1, (Wout,bout)}.
The network parameters are estimated by training the network
using the simulated data-set, {(si,θi)}i∈{1,··· ,M}, from the
model. Typically, the training is done by minimizing a loss
function, L(Φ), defined as

L(Φ) =
1

2M

M∑
i=1

||f(Φ, si)− θi||2. (7)

Minimization of the loss function is typically performed via
stochastic gradient descent with back propagation of the error
gradients viz:

Φn = Φn−1 − ζ∇L(Φn−1), (8)

where ζ denotes the step-size (also referred to as the learning
rate) and∇ is the gradient operator. Due to its fast convergence
and good generalization for small data-sets, we utilize the

b1
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s4

Input

b2

l11

l12

l13

l14

Hidden 1

bout

l11

l12

l13

Hidden 2

θ1

θ2

θ3

Output

Fig. 4. Description of a general deep neural network architecture with two
hidden layers.

Levenberg – Marquardt algorithm [36], [37] for network
training in this paper. The network parameters are thus updated
as

Φn = Φn−1 −
[
JTJ + λI

]−1
JTL(Φn−1), (9)

where J is the Jacobian matrix with Jm` = δ(f(Φ, sm) −
θm)/δΦ`, I is an identity matrix and λ is the adaptive damping
factor. The damping factor controls the learning rate and is
increased by λinc or decreased by λdec with increasing or
decreasing error, respectively. This procedure is repeated until
a termination criterion is achieved. Implementation of such a
NN architecture can be achieved through standard toolboxes
available in MATLAB, R, or Python.

Denoting the trained network parameters as Φ̂, the calibra-
tion is done by applying the trained network on sobs as

θ̂ = f̂(sobs; Φ̂). (10)

The accuracy of the estimated model parameter, θ̂, is affected
by how well the trained hypothesis approximates the relation-
ship between the summary statistics and the model parameters.
This is dependent upon a number of factors such as the
selected network structure, activation functions, and training
method. Therefore, adequate care has to be taken in selecting
the NN model in order to obtain reasonable estimates.

III. CALIBRATION OF POLARIMETRIC PROPAGATION
GRAPH MODEL

The proposed ABC and DL methods are applied for estimat-
ing parameters of a polarimetric propagation graph (PG) model
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[30], [38], [39]. First proposed in [40], the PG offers a simple
and efficient approach for modeling propagation channels that
account for both specular and dense multipath components.
The model also has the ability to capture reverberation effects.
Several studies have applied or modified the PG model in
indoor [41], outdoor-to-indoor [42], high-speed railway [43],
[44], indoor-to-indoor [45], [46] and millimetre-wave systems
[47], [48]. Despite the growing interest in the PG model, study
on its calibration based on measurements is severely limited.
A vast majority of works utilizing the PG model are either
based on the stochastic generation procedure in [49] or in
combination with a map of the environment. The polarimetric
PG model in [30] was calibrated with measurements using
method of moments. However, the method requires manually
fixing one parameter due to identifiability issues. Moreover,
the measurement noise variance is not estimated, necessitating
manual truncation of the power delay profile (PDP) prior to
fitting.

A. Model Description

Consider a time-invariant radio channel in a multi-input,
multi-output (MIMO) set-up with Nt and Nr output ports
at the transmit and receive antennas, respectively. In the PG
framework , the radio channel is modeled as a directed graph
G = (V, E) [49]. The vertex set V = Vt ∪ Vr ∪ Vs is a
union of a set Vt of Nt transmitters, a set Vr of Nr receivers,
and a set Vs of Ns scatterers in the environment. The edges
E = Ed ∪ Et ∪ Es ∪ Er model the wave propagation between
the vertices, where Ed is a set of direct edges, Et is a set of
transmitter to scatterer edges, Es is a set of scatterer to scatterer
edges and Er is a set of scatterer to receiver edges.

To each vertex v we associate a position rv ∈ R3. From
these positions, the length of an edge (v, w) is ||rv − rw||.
This results in a propagation delay from v to w of τe =
‖(rw − rv)‖/c, where c is the speed of light in vacuum and
‖ · ‖ denotes the Euclidean norm. Accordingly, the direction
of propagation is specified by a unit vector Ωe associated with
edge e, pointing in the direction of propagation.

The transfer function matrix at a particular frequency, H(f),
of the polarimetric PG is given as

H(f) = D(f) + R(f)[I−B(f)]−1T(f), (11)

where D(f) ∈ CNr×Nt is the transmitter to receiver, T(f) ∈
C2Ns×Nt is the transmitter to scatterer, R(f) ∈ CNr×2Ns is the
scatterer to receiver, and B(f) ∈ C2Ns×2Ns is the scatterer to
scatterer edge transfer function sub-matrix. Then, the transfer
function sub-matrices are given as:

D(f) = X Tt (Ωe)Xr(Ωe)Ge(f), e ∈ Ed
T(f) = X Tt (Ωe)MΓ(Ωe)Ge(f), e ∈ Et
B(f) = MΓ(Ωe)Ge(f), e ∈ Es
R(f) = Xr(Ωe)Ge(f), e ∈ Er

Here, Xt(Ωe) and Xr(Ωe) are the 2 × 1 transmit and receive
polarimetric antenna array response vectors, respectively, and
Γ(Ωe) is the 2×2 rotation matrix. The 2×2 scattering matrix,

M, represents the coupling between the two polarization
states. Assuming it is equal for all the scatterers, M reads

M =
1

1 + γ

[
1 γ
γ 1

]
, (12)

where γ ∈ (0, 1) is the polarization power coupling ra-
tio. Finally, Ge(f) is the scalar that captures polarization-
independent propagation characteristics, and is expressed as

Ge(f) = ge(f) exp[j(ψe − 2πτef)], (13)

where ψe is the phase. The edge gain, ge(f) is calculated as:

ge(f) =



1
(4πfτe)

; e ∈ Ed
1√

4πτ2
e fµ(Et)S(Et)

; e ∈ Et
g

odi(e) ; e ∈ Es
1√

4πτ2
e fµ(Er)S(Er)

; e ∈ Er

(14)

Here, g ∈ (0, 1) is the reflection gain, odi(e) denotes the
number of outgoing edges from the nth scatterer, and

µ(Ea) =
1

|Ea|
∑
e⊂Ea

τe, S(Ea) =
∑
e⊂Ea

τ−2
e , Ea ⊂ E ,

with | · | denoting set cardinality.
To draw a random graph and simulate transfer function from

the model, the positions of the transmit and receive antennas
need to be specified. An edge between Vt and Vr is drawn with
probability Pdir. Note that for line-of-sight case, Pdir = 1,
while for non-line-of-sight (NLOS) case Pdir = 0. Edges
between Vt and Vs, Vs and Vs, or Vs and Vr are drawn with
probability Pvis. The phase ψe is drawn uniformly between 0
and 2π.

B. Calibration problem formulation

To calibrate the PG model based on measured data, Yobs,
we need to estimate the parameters of the model such that the
model fits the data. We consider measurements conducted in
NLOS conditions, resulting in Pdir = 0. Apart from the model
parameters, we would also like to estimate the noise variance.
The parameter vector to be estimated from Yobs thus becomes
θ = [g,Ns, Pvis, γ, σ

2
N ]T .

C. Measurement data description

Let the MIMO channel transfer function be measured at
K equidistant points in the bandwidth B, giving a frequency
separation of ∆f = B/(K−1). The resulting measured signal
matrix at each frequency point, Yk ∈ CNr×Nt , reads

Yk = H(fk) + Nk, k = 0, 1, · · · ,K − 1 (15)

where H(fk) is the sampled transfer matrix, and Nk is the
measurement noise. Assuming independent and identically
distributed (iid) noise at each measurement point and for
each transmitter-receiver link, we model it as iid zero-mean
complex Gaussian variables with variance σ2

N . The entire
polarized observed data-set, denoted as Yobs, thus becomes
an Nr × Nt × K matrix. Let Y ij

k be the measurement for
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the kth frequency sample between the ith receiver and the
jth transmitter. The received signal in time-domain, yij(t), is
computed as

yij(t) =
1

K

K−1∑
k=0

Y ij
k exp(j2πk∆ft). (16)

D. Summary statistics

Implementation of the ABC and the DL learning method
necessitates a choice of appropriate summary statistics of
observed data that are informative about the model parameters.
The first three temporal moments, computed as

mij
l =

∫ 1/∆f

0

tl|yij(t)|2, l = 0, 1, 2, (17)

have been used previously for calibration of stochastic radio
channel models and found to be informative about model
parameters [16]–[19]. Here, we compute the sample mean of
the lth temporal moment as

m̄l =
1

NrNt

Nr∑
i=1

Nt∑
j=1

mij
l , (18)

and the sample covariance between lth and l′
th temporal

moment as

ĉov
(
mij
l ,m

ij
l′

)
=

1

NrNt − 1

Nr∑
i=1

Nt∑
j=1

(
mij
l − m̄l

)(
mij
l′ − m̄l′

)
. (19)

Additionally, we separate the temporal moments according to
their polarization, i.e. vertical-vertical (vv), vertical-horizontal
(vh), horizontal-vertical (hv), and horizontal-horizontal (hh),
to compute the cross-polarization ratio, XPR, as

XPR =
1

2

[
m̄vv

0

m̄vh
0

+
m̄hh

0

m̄hv
0

]
. (20)

The summary statistics vector, s, therefore has ten entries:
the XPR, the three means m̄l, and, and six covariances
ĉov

(
mij
l ,m

ij
l′

)
for l, l′ = 0, 1, 2.

To verify that the chosen summary statistics are informa-
tive about the model parameters, we conduct a simulation
experiment. One parameter at a time is sampled 100 times
from its uniform prior distribution (given in Tab. I), while
the other parameters are held fixed. Data is simulated from
the polarimetric PG model for such a parameter vector and
the statistics are computed. Each of the ten statistics are then
plotted versus the five parameters in Fig. 5.

We observe that XPR and the means of the temporal
moments are informative about almost all the parameters. The
covariances become informative for higher values of g and Pvis

and lower values of γ. We see a clear functional relationship
devoid of any jitter between XPR and γ, and m̄2 and σ2

N . This
indicates from the outset that γ and σ2

N should be estimated
very accurately. In contrast, the summaries seem the least
informative about g, suggesting that the estimate of g would
be the most uncertain. In principle, a subset of these statistics
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Fig. 5. Summary statistics versus model parameters. Each plot is generated
by varying one parameter while the others are held fixed to the values in
Tab. I.

could also be used in the calibration methods. However, we
observed a degradation in performance on leaving out the
covariances, and therefore include all ten statistics.

IV. PERFORMANCE EVALUATION

We apply the ABC and DL methods to calibrate the po-
larimetric PG model using the summary statistics described
in the previous section. First, we evaluate the performance of
the two calibration methods via simulations, and later validate
it using millimetre-wave NLOS measurements from [50]. The
measurements were taken in a room of dimensions 3 × 4 × 3
m3 in the bandwidth range of 58 GHz to 62 GHz, sampled
at K = 801 equidistant points. The frequency separation
of ∆f =5 MHz results in a signal observation interval of
200 ns in the time domain. A 5 × 5 virtual planar array
of dual polarized antennas with 5 mm inter-element spacing,
was used at both the receiver and the transmitter. This gives
Nt = Nr = 50.

For the simulation experiment, we set the parameters of
the model to some “true” value, say θtrue, and generate
data from the model that we consider as observed data.
We then apply the proposed methods on this simulated data
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to estimate the parameters. We use the same settings for
simulations as in the measurements [50]. The antennas in the
PG model implementation are assumed to be omni-directional
with perfect cross-polar isolation at both the receiver and the
transmitter. The scatterers are distributed uniformly across the
floor of the room.

For the simulation experiment, the observed statistics, sobs,
that corresponds to θtrue needs to be set. For a fixed θtrue,
the stochastic model generates samples

(
s(1), . . . , s(Z)

)
from

p (s|θtrue). Running the estimator Z times with each real-
ization of the statistics vector as sobs results in Z parameter
estimates, giving the error distribution around θtrue. However,
as shown in Appendix A, this is equivalent to taking sobs as
the sample mean of

(
s(1), . . . , s(Z)

)
and running the estimator

once. Here, we adopt the latter computationally convenient
approach and compute sobs from θtrue using Z = 200. It
should be noted that a similar approach is only possible in
general for measured data if Z independent measurements can
be obtained.

A. Approximate Bayesian Computation

The ABC method is applied with M = 2000 samples
simulated for each iteration. For the first iteration, the samples
are taken from a uniform prior distribution of the parameters
with ranges given in Tab. I. Note that the prior for Ns is
uniform integers in the specified range. A Gaussian kernel
truncated to the prior range is used to generate populations
of subsequent iterations. We set the tolerance threshold to
ε = 5%, giving Mε = 100 accepted samples, and the total
number of iterations to T = 10. The summary statistics are
normalized by the estimate of their median absolute deviation
before applying ABC. A logit transformation is applied to the
parameters before regression adjustment to keep the adjusted
samples within the prior boundary. The estimated marginal
posterior distributions are shown in Fig. 6 and Fig. 7 for
simulated and measured data, respectively. The obtained point
estimates and the sample standard deviation of the accepted
samples after T = 10 iterations are reported in Tab. I.

We observe in Fig. 6 that the samples obtained from
approximate posteriors lie around the true value for all the
parameters, and that the MMSE estimates are fairly accurate
even after the first iteration. As the iterations go on, the
posteriors shrink and converge for each parameter, albeit some
faster than others. For example, the posteriors for Ns, Pvis,
γ and σ2

N barely change after the second iteration, while
that of g seem to converge after around five iterations with
the MMSE estimate getting better with further iterations.
Similarly, the posterior for g is the widest, while that of the
other parameters are quite narrow. This uncertainty in the
estimates of different parameters reflects their relationship with
the summary statistics shown in Fig. 5. Parameters that have
a distinct functional relationship with, at least, a few statistics
are easier to estimate than others.

Similar behavior is observed in Fig. 7 for measurements as
was seen for the simulation experiment. The approximate pos-
teriors for Pvis, γ, and σ2

N are very narrow, and seem to have
converged since the first iteration. However, the posteriors for

g and Ns takes approximately four iterations to converge. The
width of posterior for g and Pvis is narrower in comparison
to those in simulation. This is attributed to the fact that for
a high value of Pvis, as is the case in measurements, almost
all the statistics become informative, see Fig. 5. The averaged
power delay profile (APDP) generated from the model using
the point estimates obtained for the measurements is shown
in Fig. 11. The calibrated model fits both the co- and cross-
polarized APDP of the measurements well.

B. Deep Learning
We determine the structure of the NN for the calibration

problem via a guided search procedure. First, we limit the
number of hidden layers to R = 2 and assume that there
are equal number of neurons in each layer, i.e. Er = E. A
single hidden layer architecture is excluded due to its poor
performance during our preliminary experiments. The number
of neurons in each layer is varied from 2 to 28. We then
divide the data set into two equal subsets for training and
cross-validation. The mean and standard deviation of squared
error on the training and validation subsets are shown in Fig. 8.
We observe that the error stabilizes after around 12 neurons,
and so we set E = 20 as this is sufficient. This results in a 10-
20-20-5 network architecture which is used for evaluating the
DL calibration method. We use the hyperbolic tangent sigmoid
and linear activation functions [26] for the hidden and output
layers, respectively.

The NN is trained using the same M = 2000 samples
of si and corresponding θi as used in the initialization of
the ABC method. In principle, the training data could be as
extensive as possible, thus leading to a better approximation
of the summary-parameter function. In order to eliminate the
sensitivity of network to the range of values in the summary
statistics, the entire data-set is normalized using the standard
Z-score scaling prior to network training. The data-set is
randomly partitioned into training, test, and validation subsets
in the ratio 0.70, 0.15 and 0.15, respectively. We utilized the
LM algorithm with damping parameters: λ = 0.1, λinc = 10
and λdec = 0.1 for training the NN. The training procedure
is terminated when the number of epochs reaches 1000 or the
gradient is below 10−7.

Once the termination criterion is achieved, we apply the
trained network on sobs from simulated and measured data
to get point estimate of the parameter vector. This process is
repeated 200 times to estimate the distribution of the parameter
estimates, which is shown in Fig. 9 and Fig. 10 for simulated
and measured data, respectively. The sample mean of the
estimates and their standard deviations are reported in Tab. I.
We observe in Fig. 9 that the DL method is able to estimate the
model parameters accurately and with reasonable precision.
The uncertainty in the estimates is fairly small. As was the
case with the ABC method, the estimate of g has the largest
standard deviation out of all the parameters, corroborating our
conjecture based on Fig. 5. The method performs similarly on
measured data, as seen in Fig. 10, although with slightly larger
standard deviations. The APDP generated from the parameter
estimates fits the measurements, see Fig. 11, thus validating
the methodology.
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Fig. 6. Kernel density estimates of the marginal approximate posteriors of the parameters obtained by applying ABC on simulated data, plotted in the prior
range for each parameter. The posteriors are shown after each iteration of the algorithm, with the parameter estimate marked in red. The true value of the
parameter is shown in green.
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Fig. 7. Kernel density estimates of the marginal approximate posteriors of the parameters obtained by applying ABC on measured data. The posteriors are
shown after each iteration of the algorithm. The density is plotted in the prior range for each parameter. The sample mean is marked in red.
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TABLE I
SUMMARY OF THE PARAMETER ESTIMATES OBTAINED FROM ABC AND DL FOR SIMULATED AND MEASURED DATA. NOTE THAT THE SAMPLE

STANDARD DEVIATION REPORTED IN PARENTHESIS IS OF THE APPROXIMATE POSTERIOR FOR ABC AND OF THE ESTIMATE DISTRIBUTION FOR DL.

Estimate (standard deviation)
Parameter

θ
Prior range

p(θ)
Simulated Data Measured Data

True value ABC DL ABC DL MoM [30]

Reflection gain, g [0, 1] 0.6 0.59 (0.11) 0.58 (0.04) 0.54 (0.03) 0.56 (0.05) 0.64
Number of scatterers, Ns [5, 50] 15 15 (1.56) 15 (0.92) 14 (1.25) 16 (6.5) 11

Probability of visibility, Pvis [0, 1] 0.6 0.58 (0.04) 0.60 (0.014) 0.99 (0.006) 0.96 (0.03) 0.9a

Polarization ratio, γ [0, 1] 0.5 0.51 (0.02) 0.50 (0.01) 0.09 (0.005) 0.09 (0.05) 0.06

Noise variance, σ2
N [2× 10−10, 2× 10−9] 10−9 9.98× 10−10

(2.86× 10−12)
9.96× 10−10

(8.8× 10−12)
4.3× 10−10

(2.11× 10−11)
4.3× 10−10

(2.8× 10−11) -

a Note that this value is not estimated but set in [30].
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Fig. 8. Learning curve for selecting NN size. The mean and standard deviation
of the squared error at each number of neurons per layer is computed from
200 repeated network training.
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Fig. 9. Parameter estimates obtained by applying the DL method on simulated
data. Kernel density estimates of the distribution obtained after 200 estimator
runs.
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Fig. 10. Parameter estimates obtained by applying the DL method on
measured data. Kernel density estimates of the distribution obtained after 200
estimator runs.

V. DISCUSSION

In our example, we see that the calibration approach based
on summaries is effective. However, as experienced during
the development of the algorithms, the choice of summaries
is important for obtaining a good calibration. Ideally, sufficient
statistics should be considered, but such are rarely available
or practical to extract in the context of radio channel models.
Although the simulation method of checking summaries has
proved useful for the example problem considered here, it only
gives an indication of how informative the summaries are,
and does not guarantee that the algorithms will work. The
summary statistics used in this paper appear to be informative
about the different aspects of the channel, and could be useful
in calibrating other stochastic channel models as well. In the
case of calibrating a directional model, the summaries possibly
have to be chosen differently. The method for checking the
summaries described here would be useful for this selection.

Although based on the summary statistics of the data, the
two proposed methods are complementary to each other as
they approach the same problem in distinct ways. To highlight
this fact, we have intentionally avoided comparing the two
methods with each other. ABC infers on the parameters in a
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Fig. 11. Averaged power delay profile from the measurements versus those
obtained from the polarimetric PG model after calibration using ABC, DL
and the method of moments approach from [30]. The parameter estimates for
all three methods are reported in Tab. I.

Bayesian sense by learning the distribution of the parameters
given the data. On the other hand, the DL method fits a func-
tion between the summaries and the parameters and provides
point estimates of the parameters given the data in a frequentist
manner without considering any prior information. Despite
their differences, both methods are able to learn the parameters
of the model such that, qualitatively, it is not apparent in
Fig. 11 which APDP fits the measurements better.

The choice of prior naturally affects the posterior distribu-
tion of the ABC method. In this paper, we used uninformative
(flat) priors in order to rely solely on the data to estimate the
parameters. The ranges of these priors are chosen conserva-
tively, i.e., to be very wide. Choosing more informative priors
instead would lead to faster convergence of the approximate
posterior in the ABC method, thus reducing run-time. In
general, if the data is large enough, the effect of the prior
distribution on the posterior becomes irrelevant.

Since the ABC method relies on simulations from the
model, the computational complexity primarily depends on the
complexity of the model. The computationally expensive step
in the DL method is the training of the NN, which depends on
the size of the training data and the chosen NN architecture.
While the two layer architecture was found to be sufficient for
the example model in the paper, more complex models may
require deeper networks. However, the network needs to be

trained just once, and parameter estimates can be obtained for
different measurement data instantly. In contrast, the sequential
nature of the ABC algorithm requires running the iterations
again for new observed statistics.

The computation time for the proposed methods depends on
the particular implementation and the available hardware. The
methods are lightweight enough to be run on standard laptops
with reasonable run-time. As an indication of the required
run-time of the proposed methods, our implementation of the
proposed ABC method was able to complete ten iterations
within a day on a Lenovo ThinkPad with Intel Core i7
processor having 24 GB RAM. Training the NN took less
than 2 hours on a Lenovo ThinkPad with Intel Core i7
processor and 16 GB RAM. Due to the different choices of
high-resolution and clustering algorithms that are available,
their comparison with the proposed methods in terms of
computational complexity is not feasible. We remark that in all
the cases, the specific run-time depends not only on the choice
of algorithms and hardware, but is significantly impacted by
the particular implementation and choice of settings in the
respective algorithms.

We experience that the ABC method is not very sensitive
to the particular settings of the algorithm due to its iterative
nature. Increasing the number of simulated samples per it-
eration, M , increases simulation time from the model, but
leads to lower ε if Mε is kept constant. Thus, the algorithm
would converge in fewer iterations. Similarly, increasing ε
would mean accepting samples that are further away from sobs,
and therefore, would require more iterations to converge to a
stable approximate posterior. Overall, changes in one setting is
compensated by another, and the method performs similarly.
This means that the performance primarily relies on the choice
of statistics. In contrast, for the DL method the particular NN
architecture should be chosen carefully since generalization
accuracy is sensitive to the network size, particularly with
small number of training samples.

In principle, the entire channel impulse response measure-
ments could be used as input data instead of a set of summary
statistics. However, the ABC method is then hit by the curse of
dimensionality [35]. That is, the distances become very large
due to the high-dimensional data, thus increasing the rejection
rate significantly. For the DL method, this would increase the
number of input layers, thereby increasing the computational
complexity, along with complicating the training procedure.

An appealing feature of the summary-based approach is that
it is specified exactly which criteria are used to fit the model
to the data. In this sense, we obtain the best fitting model
in the eyes of the summary statistics. This is very different
from what is obtained by the multi-step methods relying on
ad hocery and possibly conflicting assumptions in the individ-
ual steps, e.g. assuming “well-separated” paths in multipath
extraction, followed by application of clustering algorithms.
Statistical techniques to construct a more informative subset of
summaries [32] to be used in ABC can be explored. However,
by doing so we lose the transparency as to which summaries
are being fitted. Both the proposed machine learning methods
are also simpler to implement than the classical state-of-the-
art approach of multipath extraction, with fewer settings of
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the algorithm. Moreover, since the proposed methods are inte-
grated, their performance is easy to investigate by simulation
studies. This is again a great advantage compared to multi-step
approaches where the performance of each step is evaluated
separately, thus making it difficult to judge the accuracy of the
overall parameter estimates.

Additionally, the ABC and DL methods are able to estimate
all model parameters, including the noise variance. Thus it is
not necessary to provide side information to the algorithm (as
is often done by separately estimating e.g. noise variance) or
to post-process the data by setting the noise threshold. This
advantage is clearly seen when comparing with the method
of moments (MoM) approach of calibrating polarimetric PG
models [30] where noise is not estimated (see Fig. 11).

VI. CONCLUSIONS

The proposed machine learning methods based on ABC and
deep learning are able to accurately calibrate stochastic radio
channel models. The model fit is obtained in light of the ex-
plicitly chosen summaries. The proposed methods demonstrate
that stochastic channel models, in particular the PG model,
can be calibrated without access to likelihoods. The methods
also by-pass any intermediate step of extracting the multipath
components. We observed that the choice of summaries is
crucial in learning the parameters, and the uncertainty in
parameter estimates decreases with informative summaries.
The summaries used in this paper are general purpose, and
we conjecture that they can work for other models as well.
The methodology to qualify the summaries through simulation
study is useful in the design of the algorithm, although it
does not provide any guarantees. Availability of pseudocodes
and libraries make the proposed methods easy to implement,
compared to the state-of-the-art approach. The performance of
the proposed methods is easy to evaluate, as opposed to the
multi-step approach. Moreover, no additional information or
post-processing is required to calibrate the model.

APPENDIX A

We want to show that setting sobs as one realization out
of p (s|θtrue) and running the estimator Z times gives the
same estimate of θtrue in mean as taking sobs as the sample
mean of Z such realizations out of p (s|θtrue) and running the
estimator once.

Let sobs be the zth sample, s(z), from the distribution
p (s|θtrue), and the corresponding MMSE estimate be θ̂

(z)
.

Then, the sample mean for Z such estimates is

θ̂avg =
1

Z

Z∑
z=1

θ̂
(z)
≈ E[θ|s = E [s|θtrue]] . (21)

The mean of θ̂
(z)

then reads

E
[
θ̂

(z)
]

=

∫
θ̂

(z)
p (s|θtrue) ds = θtrue. (22)

Assuming
(
s(1), . . . , s(Z)

)
are independent samples, the ex-

pected value of θ̂avg can be computed as:

E
[
θ̂avg

]
=

∫
· · ·
∫

1

Z

Z∑
z=1

θ̂
(z)

ΠZ
z′=1p

(
s(z′)|θtrue

)
ds(1) . . . ds(Z)

=
1

Z

Z∑
z=1

∫
θ̂

(z)
p
(
s(z)|θtrue

)
ds(z)

=
1

Z

Z∑
z=1

θtrue = θtrue

Therefore, both θ̂
(z)

and θ̂avg converge to θtrue in mean and
thus, are unbiased estimates. The variance of θ̂avg is, however,
reduced by a factor of 1/Z.
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