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Abstract 
Chronic non-healing wounds are detrimental for the quality of life of the affected individuals and 

represent a major burden for the health care systems. Adipose-derived stem cells (ASCs) are being 

investigated for the development of novel treatments of chronic wounds, as they have shown several 

positive effects on wound healing. While these effects appear to be mediated by the release of soluble 

factors, it is has also become apparent that the extracellular matrix (ECM) deposited by ASCs is 

essential in several phases of the wound healing process. In this work, we describe an approach to 

produce ECM scaffolds derived from ASCs in culture. Upon growth of ASCs into an overconfluent cell 

layer, a detergent-based cell extraction approach is applied to remove the cellular components. The 

extraction is followed by an enzymatic treatment to remove the residual DNA. The resultant cell-derived 

scaffolds are depleted of cellular components, display low DNA remnant, and retain the native fibrillar 

organization of the ECM. Analysis of the molecular composition of the ECM scaffolds revealed that 

they are composed of collagens type I and III, and fibronectin. The decellularized scaffolds represent a 

substrate that supports adhesion and proliferation of primary human fibroblasts and dermal 

microvascular endothelial cells, indicating their potential as platforms for wound healing studies. 



  

1. Introduction 
Normal wound healing progresses through a series of highly regulated partially overlapping phases 

involving a complex interplay between the different cells residing in or migrating into the wound bed 

[1]. A multitude of conditions, including diabetes, trauma or vascular insufficiency, may perturb the 

healing process in such a manner that the wound healing halts, and the wound becomes chronic [2]. 

Chronic wounds are defined as wounds that have failed to heal within 3 months and, as such, they 

impose a major strain on patients, whose quality of life becomes invariably deteriorated. Importantly, 

chronic wounds represent a major burden to the health care systems, since the associated costs represent 

a relatively big proportion of the health budget. In the EU, for example, it is estimated that the treatment 

of chronic wounds drains approximately 2 % of the financial resources [3,4].

The current treatment approaches, which are largely based on dressings to maintain the humidity of the 

wound and to protect against further trauma, are often inefficient [1]. In the quest to develop new and 

more efficient treatments, the use of adipose-derived stem cells (ASCs) seems to offer a new promise. 

ASCs have namely been shown to exert a number of properties that are critical for would healing, such 

as the capability to reduce inflammation, promote angiogenesis and fibroblast proliferation and 

migration [5,6]. Not surprisingly, the augmentation of healing has been demonstrated in vitro, and was 

initially attributed to the soluble factors secreted from ASCs [7,8]. However, as ASCs produce both 

structural elements as well as factors involved in extracellular matrix (ECM) maturation [9], and ECM 

integrity and composition play a role in wound healing, it is plausible that the wound healing effects of 

ASCs are, at least in part, mediated through effects on the ECM [10]. Although there is an increasing 

body of evidence from preclinical and early-stage clinical trials, which strongly indicate that application 

of ASCs to chronic wounds accelerate the wound closure [11], little is known about the specific 

contribution of the ECM in this process. Interestingly, cell-free ECM scaffolds obtained from cultured 

bone marrow-derived mesenchymal stem cells (BM-MSCs), which share similarities to ASCs in terms 

of wound healing properties [12], have been shown to promote cutaneous wound healing in an animal 

model [13]. While the improved healing appears to be mediated by enhanced re-epithelialization and 

angiogenesis, the detailed molecular picture of the processes remains elusive, and it would be of interest 

to obtain a deeper understanding of the role played by the ECM. To that end, the establishment of a 

wound healing model that would allow exploration of decellularized ASC ECM would be highly 

desirable. 

Decellularized matrices derived from cell cultures have gained increasing attention in biomedical 

research over the past years [14]. They have been mainly employed as in vitro models in studies 

aimed at investigating the role of ECM components in the control of cell fate [15–17]. In general, 

following a period of culture of the cells on an appropriate substrate, the cellular components are 



  

removed by physical, chemical and/or enzymatic treatments. The resulting matrix, often referred as a 

cell-derived ECM scaffold, consists of a complex assembly of fibrillar proteins, associated 

macromolecules and growth factors resembling the natural ECM microenvironment [18–20]. The 

major parameters that influence the properties and composition of the ECM scaffold are the cell type 

used, the culture conditions, and the decellularization approach [21]. Various protocols for the 

production of cell-derived ECM scaffolds, based on fibroblasts of BM-MSCs cultures, are available in 

the literature [20,22,23]. However, given the different origin and location of these cells, their ECM 

display compositional and structural differences to that produced by ASCs [24,25]. Furthermore, none 

of the previously reported protocols fits accurately the requirements of our intended application in 

terms of preservation of the ECM structural integrity, removal of cellular remnant, and suitability for 

downstream wound healing relevant assays.

In this paper, we present an approach for the production and decellularization of ECM from ASCs, 

which constitute a platform to study the particular properties of the ECM in the absence of the 

confounding effects of ASCs and their continuous production of soluble factors. The focus has been 

to devise an approach that produces an ECM scaffold suitable for the development of in vitro wound 

healing models.



  

2. Materials and methods

2.1 Culture of ASCs
Human ASCs cultures were initiated from adipose tissue obtained from three healthy donors undergoing 

elective liposuction. The cell isolation protocol has been described in detail elsewhere [26]. The 

protocol was approved by the regional Committee on Biomedical Research Ethics of Northern Jutland, 

Denmark (project no. VN 2005/54). These ASC cultures have been thoroughly characterized by our 

group in terms of their stem cell properties, which include multilineage differentiation capacity, 

clonogenicity, and immunophenotype [27–33]. Cells were cultured using growth medium consisting of 

α-Minimum Essential Medium (MEM-alpha with GlutaMAX, no nucleosides, Gibco, ThermoFisher 

Scientific) supplemented with 10 % fetal calf serum (FCS), 100 IU/ml penicillin, and 0.1 mg/ml 

streptomycin (all from ThermoFisher Scientific). The cells were maintained in polystyrene flasks 

(Greiner Bio-one) in a standard humidified incubator at 37 °C, 20% O2 and 5 % CO2, with medium 

changes twice a week. Cells were passaged using TrypLE select (Gibco, ThermoFisher Scientific) when 

achieving 80% confluence. All experiments were conducted using cells between passage 3 and 5.

2.2 Induction of cells for ECM production
ASCs were seeded at a density of 6,000 cells/cm2 in 24-well tissue culture plates (Greiner Bio-one). 

After 24 h, to induce the production of ECM, the culture medium was replaced by growth medium 

supplemented with 0.2 mM ascorbic acid (AA), (L-ascorbic acid 2-phosphate sesquimagnesium salt 

hydrate, Sigma-Aldrich). Cells were induced for 10 days, with medium changes every other day. Cells 

in growth medium without AA were used as control. Prior to cell seeding, to avoid spontaneous 

detachment of the cell-ECM sheets during the induction period, the culture surfaces were pre-coated 

with poly-L-lysine (PLL). In brief, a PLL solution 0.01 % w/v (A-005-C, Millipore) was added to the 

culture wells and incubated for 5 min at room temperature. Wells were rinsed with sterile deionized 

water, left to dry for 2 h, and stored at 4 oC until cell seeding. 

2.3 Preparation of decellularized ECM scaffolds
An extraction buffer (EB) consisting of 1% Triton X-100 (TX-100) and 20 mM ammonium hydroxide 

(NH4OH) in phosphate buffered saline (PBS) was preheated to 37 °C. Cells were rinsed with PBS and 

decellularization was carried out by incubating the cells with the EB for 5 min at 37oC. PBS was added 

to the wells to dilute the EB (1:1) and the mixture was carefully aspirated. A subsequent wash with PBS 

was carried out on a shaking platform (The Belly Dancer, Stovall Life Science) at low speed (10 rpm) 

for 1 h at room temperature. Next, the wells were treated with a deoxyribonuclease (DNase) solution 

for 30 min at 37oC. DNase solution consisted of DNAse I from bovine pancreas (D4263, Sigma-

Aldrich) in PBS containing 5 mM MgCl2 and 130 μM CaCl2. Three different DNase concentrations 

were assessed (10, 20, and 100 IU/mL). After enzymatic treatment, the wells were rinsed twice with 



  

PBS and left overnight in PBS on the shaking platform at low speed (10 rpm) at 4 oC. The ECM scaffolds 

were subsequently stored at 4 oC until further experiments.

2.4 Assessment of decellularization
For a qualitative evaluation of the decellularization efficiency, ECM scaffolds were stained with a 

nuclear stain before and after decellularization. The samples were stained for 10 min at room 

temperature using Hoechst 33342 (Sigma-Aldrich) diluted to 10 μg/ml in PBS. After incubation, the 

samples were rinsed twice with PBS and visualized under a fluorescence microscope (AxioObserver, 

Carl Zeiss). Images were captured using digital camera (C11440 ORCA Hamamatsu) and ZEN 2012 

software (Carl Zeiss). For a quantitative analysis, the amount of dsDNA before and after DNAse 

treatment was measured using a Quant-iT™ PicoGreen dsDNA assay kit (Invitrogen, ThermoFisher 

Scientific). The decellularized matrices were scraped off the wells and transferred to ultracentrifuge 

tubes containing 0.1% TX-100 in 1× Tris/EDTA buffer (TE buffer, included in the kit). The samples 

were subsequently subjected to three freezing-thawing cycles (from -20oC to 37oC). Thawing was 

carried out in an ultrasonic bath (1510, Branson). The PicoGreen reagent was added to the samples (1:1) 

and the mixture was incubated for 10 min, at room temperature and in the dark. Aliquots of the mixture 

were transferred in duplicates to 96-well microtiter plates and the fluorescence was measured using a 

multimode plate reader (EnSpire, PerkinElmer) with excitation and emission at 485 nm and 535, 

respectively. 

2.5 Quantification of ECM production

2.5.1 Assessment of collagen by the Sirius Red/Fast Green assay
A Sirius Red/Fast Green staining (Chondrex Inc.) was conducted to evaluate the amount of collagen 

and non-collagenous proteins in the ECM scaffolds. Staining was performed according to 

manufacturer’s protocol, including a fixation step. Images were obtained using an inverted microscope 

(Olympus) using a digital camera (PixeLINK) and the PixeLINK capture OEM software. Destaining of 

samples was done according to manufacturer’s protocol and the optical densities (OD) were read at 

wavelengths 540 nm and 605 nm using the Enspire reader. Results were analyzed using EnSpire 

Manager software (PerkinElmer) and Microsoft Excel 2016. Following the manufacturer’s protocol, 

the amount of collagen was obtained by subtracting the contribution of the Fast Green at 540 nm (which 

is 29.1% of the OD 605 nm value) to the OD 540 value, and dividing the resulting number by 0.0378, 

which is the color equivalence (OD value/µg protein) for collagenous protein.  

2.5.2 Assessment of total ECM protein by the BCA assay
A radioimmunoprecipitation assay (RIPA) buffer comprising 20 mM Tris HCl (pH=7.4), 150 mM 

NaCl, 1 mM EDTA, 0.1% TX-100, 0.1 % SDS, and 0.5% sodium deoxycholate was prepared. 

Decellularized ECM scaffolds were scraped off from the wells and transferred to microcentrifuge tubes 

containing RIPA buffer. The tubes were sonicated at an output of 40 W for 5 min (UP200S, Hielscher 



  

GmbH). After sonication, the tubes were centrifuged at 10,000 rpm and the pellets were discarded. The 

total protein concentration in the supernatant was determined using Pierce BCA Protein Assay Kit 

(ThermoFisher). The working BCA reagent was prepared by mixing components A and B in a 50:1 

ratio. Standards were prepared with a working rage of 20 - 2000 μg/ml. In a 96-well microtiter plate, 

the samples and standards were mixed with the working reagent in 1:10 ratio and incubated for 30 min 

at 37oC. The absorbance was measured at 562 nm in the Enspire reader.

2.6 Immunostaining of ECM proteins
Composition of the ECM was assessed using indirect immunofluorescence staining and wide-field 

fluorescence microscopy. Decellularized ECM samples were fixed in 4 % formaldehyde and 

subsequently incubated with 1% bovine serum albumin (BSA) in PBS (PBS-BSA) for 30 min to prevent 

non-specific IgG adsorption. After blocking, the samples were incubated either with a mouse 

monoclonal antibody anti-type I collagen (C-2429, Sigma-Aldrich), or with a goat anti-type III collagen 

(1330-01, SouthernBiotech), or with an anti-fibronectin antibody produced in rabbit (F3648, Sigma-

Aldrich). All primary antibodies were diluted 1:200 in PBS-BSA. Incubation with both anti-collagen 

antibodies took place overnight at 4 oC, while incubation with anti-fibronectin antibody lasted for 1 h 

at 37 oC. After two PBS washings, the samples were incubated in a staining solution containing an anti-

mouse Alexa Fluor 488 antibody produced in donkey (A21202, Invitrogen, ThermoFisher Scientific), 

an anti-goat Alexa Fluor 488 antibody produced in rabbit (A11078, Invitrogen, ThermoFisher 

Scientific), or an anti-rabbit Alexa Fluor 555 antibody produced in goat (A-21428, Invitrogen, 

ThermoFisher Scientific), respectively. Incubation with the secondary antibodies was carried out using 

1:500 dilutions in PBS-BSA, for 1 h at room temperature. Fluorescence images were obtained using an 

inverted microscope (AxioObserver.Z1, Carl Zeiss) equipped with a digital camera (ORCA C11440 

Hammatsu) and the ZEN 2012 software package (Carl Zeiss).

2.7 Assessment of transcriptional activity of ECM related genes

2.7.1 Cell lysis, RNA isolation and cDNA synthesis
To investigate the transcriptional activity of type I and III collagens, matrix metalloproteinase-1 (MMP-

1), and fibronectin, the ASCs were seeded as described in 2.2. After 24, 48, and 72 h, the cells were 

lysed and total RNA was extracted using the Aurum Total RNA purification kit (Bio-Rad), following 

the manufacturer instructions. The total RNA concentration and purity were measured in a NanoDrop 

spectrophotometer (ND-1000 spectrophotometer, Fisher Scientific). The total RNA concentration 

ranged from 5-10 ng/L. The cDNA was synthesized from the isolated RNA using the iScript cDNA 

synthesis kit (Bio-Rad), following the manufacturer instructions. Synthesis was performed in a thermal 

cycler (GeneAmp 2400, Perkin Elmer), incubating the samples for 5 min at 25 ˚C, 30 min at 42 ˚C, and 

5 min at 85 ˚C.  



  

2.7.2 qPCR
All primers (Table I) were designed using the open-source software Primer3 and produced by the LGC 

Biosearch Technologies (Risskov, Denmark). RT-qPCR was performed in a final volume of 25 L 

containing the cDNA templates, iTaq Universal SYBR Green Supermix (Bio-Rad), and the 

corresponding reverse and forward primers (10 pmol). The amplification reactions were performed in 

a CFX Connect real-time PCR machine (Bio-Rad). The thermal cycling consisted of an initial 

denaturation step at 95 °C for 5 min. The amplification was performed for 40 cycles of denaturation at 

95 °C for 10 sec followed by primer annealing for 30 sec. Product specificity was verified by melting 

curve analysis. The relative expression level for each gene was calculated based on a standard curve, 

which was derived from a cDNA pool obtained from all samples. In each assay, a negative control 

without cDNA was included. The normalization was based on the expression of the reference gene 

PPIA [34]. Gene expression analysis was performed using the Gene Study function in the CFX Manager 

software (v 3.1, Bio-Rad). Results were expressed as relative normalized expression levels with respect 

to the reference gene. Gene regulation analysis was performed using the gene expression levels at 24 h 

as a reference.  

2.8 Culture of cells on ECM scaffolds
The ability of the decellularized matrices to support adhesion and growth of cells was assessed by phase 

contrast microscopy and a cell proliferation assay. The ECM scaffolds were sterilized in a UV 

crosslinking device (Stratalinker 1800, Stratagene), exposing the samples to a 254-nm light source for 

5 min. Human dermal microvascular endothelial cells (HDMEC, PromoCell, Heidelberg, Germany) 

were seeded at a density of 10,000 cells/cm2 using endothelial cell growth medium (MV2; PromoCell). 

Primary human fibroblasts (ATCC no. CRL 2429) were seeded at a density of 7,500 cells/cm2 using 

culture medium consisting of high-glucose Dulbecco’s Modified Eagle’s medium (DMEM, Invitrogen, 

ThermoFisher Scientific) supplemented with 10% fetal calf serum, 100 IU/ml penicillin, and 0.1 mg/ml 

streptomycin. Cytotoxicity/viability was assessed by using the combination of calcein-AM (C1430, 

Invitrogen, ThermoFisher Scientific) and propidium iodide (PI) (4170, SigmaAldrich), which stain 

viable and dead cells, respectively. After 24 h in culture, cells were incubated with a staining solution 

containing 0.5 µg/mL calcein-AM and 10 µg/mL PI, at 37oC for 1 h. Following a wash with PBS, 

fluorescence images were obtained using the same equipment used for the acquisition of images of 

immunolabelled ECM (section 2.6). Cell proliferation was quantitatively measured using the 

alamarBlue assay (Invitrogen, ThermoFisher Scientific). After 24, 48, or 72 h in culture, the alamarBlue 

reagent was added to the culture medium in a volume equal to 10% of the total culture volume. Cultures 

were then incubated for 2 h at 37 °C before aliquots of 100 µl were transferred to a 96-well microtiter 

plate. Fluorescence intensity was recorded at 590 nm with excitation at 544 nm in the Enspire reader. 

Growth rates were expressed as doubling times, which were estimated by fitting the data with an 



  

exponential growth curve, as previously reported [35]. For the proliferation assay, bovine collagen I-

based cell carriers (CCC for 24-well plates, Viscofan BioEngineering) were used as controls. 

2.9 Statistics
Statistical analysis was performed using GraphPad Prism 7 (GraphPad Software, La Jolla, CA). The 

PicoGreen data were analyzed using a one-way ANOVA with a Tukey's multiple comparisons test, 

assuming homogeneity of variances. The amount of collagen obtained from the Sirius Red/Fast Green 

staining was compared using an unpaired t-test, assuming equal standard deviations. Normality of the 

datasets was confirmed using the Kolmogorov-Smirnov test. The regression analysis of cell 

proliferation data was performed using an unconstrained least-squares fit, in which a sum-of-squares F 

test was used to compare the estimated doubling times. Unless otherwise specified, statistical 

significance was assigned to differences with P < 0.05



  

3. Results and discussion

3.1 Assessment of culture conditions to prevent cell detachment 
In contrast to ASCs in the control wells (Figure 1, control) or in the PLL-coated wells (Figure 1, PLL), 

supplementation of the culture medium with AA over the 10-day period supported the growth of an 

overconfluent cell layer (Figure 1, AA, PLL). The significant effect of AA on promoting cell growth 

and ECM synthesis has been described in the literature for ASCs and various other types of adherent 

cells, including BM-MSCs and fibroblasts [36–38]. AA has a well-documented role as coenzyme in the 

process of collagen synthesis, supporting the maintenance of connective tissue and playing a key role 

in wound healing processes [39]. The deposited matrices, however, had a considerable tendency to 

detach from culture surface in the uncoated wells after 5 to 6 days (Figure 1, AA). This behavior has 

been also observed in overconfluent BM-MSCs cultures supplemented with AA, which form a 

multilayer structure that detaches from the dish and ultimately collapses into a floating aggregate [40]. 

A similar behavior has been reported in cultures of AA-stimulated fibroblasts, as a consequence of  the 

cells’ pulling force on the deposited matrix [23]. Studies have shown that coating the culture surfaces 

with 0.1% gelatin hinders the detachment of the cells and its ECM [16,23]. However, since biological 

coatings have an impact on the expression of ECM molecules [41], we explored the feasibility of using 

a non-specific coating (PLL) to promote cell adherence to the dish. We found that the PLL provided a 

stable anchoring support to the cell layers, preventing the detachment of the cells and its deposited ECM 

not only during the 10-day culture period but also during the subsequent decellularization procedures.

3.2 Decellularization and confirmation of cell removal
Among the various methods for preparation of ECM scaffolds derived from cell cultures, surfactant-

based methods are preferred over physical procedures, such as high-hydrostatic pressure or freeze-thaw, 

since they provide a more efficient removal of the different cellular components [19,20]. Here, an EB 

based on the nonionic detergent TX-100 combined with ammonium hydroxide was employed as the 

first step to decellularize the ASC cultures. As compared to other decellularization agents, this EB 

provides a milder decellularization, which solubilizes the cell membranes by breaking up lipid-protein 

and lipid-lipid associations [42]. Furthermore, it is important to minimize the presence of residual DNA 

in the decellularized scaffold [43], as DNA fragments have shown to inhibit the growth of cells [44], 

and also represent a risk for triggering immune responses in vivo [45]. Paradoxically, this step is often 

considered optional and thus not included in the decellularization of ECM-producing cells [16,22,23]. 

Here, we included a DNase treatment as the second step in the decellularization process. To determine 

which is the proper concentration required for an optimal removal of residual DNA, we assessed the 

efficiency of DNase at three different concentrations, keeping constant the incubation time and the 

temperature. While positive Hoechst staining was observed in the wells without DNase treatment, there 

was a considerably reduced fluorescence intensity captured from the wells treated with the enzyme 



  

solution (Figure 2a). The results of the PicoGreen assay showed that upon DNAse treatment there was 

a significant reduction of residual DNA in the decellularized scaffolds (Figure 2c). The ECM scaffolds 

exposed to the highest DNAse concentration displayed the lowest dsDNA amount (4.8 ± 0.3 ng 

dsDNA/well), which implies the removal of more than 99% of the DNA originally present in the cell 

culture. To normalize the amount of residual DNA, previous studies have utilized the total amount of 

protein, which represents a fraction of the total mass of a biological scaffold [46]. Taking in 

consideration that the total amount of protein in the decellularized scaffolds was 105.3 ± 7.0 µg/well (n 

= 10), as determined by the BCA assay, the concentration of dsDNA in the wells treated with 100 U/mg 

DNAse was approximately 46 ng per mg of protein. It is therefore reasonable to assume that the 

concentration of residual dsDNA in this group is below the threshold of 50 ng of dsDNA per mg of 

scaffold, which is considered to reflect an efficiently decellularized biological material [43]. Phase 

contrast microscopy revealed that the wells were efficiently decellularized after incubation with the EB 

and DNase, leaving only the fibrillar extracellular components in the scaffold (Figure 2b).

3.3Assessment of ECM composition
Imaging the decellularized scaffolds after Sirius Red/Fast Green staining allowed visualization of the 

collagen fibers (Figure 3a). The fibers were evidenced as a uniform network of red-stained fibrils, which 

increased in size and density over time (Figure 3a). Quantitative analysis performed after extraction of 

the dyes showed a statistically significant increase in the amount of collagenous matrix at day 10 as 

compared with day 5 (Figure 3b). At day 10, the amount of collagenous protein per well (1.9 cm2) was 

5.6 ± 0.1 g (n = 12). The quantity and quality of the ASC-deposited collagenous matrix in our study 

appears to be significantly enhanced in comparison to that reported by Guneta et al., in which ASCs 

were cultured for 28 days before decelullarization with a combined chemical and physical approach 

[17]. The collagenous matrix content reported in that study was approximately 3 g per well (from a 

96-well plate) and the structural integrity of the scaffold appeared compromised, probably due to the 

inclusion of three freezing-thawing cycles after the chemical decellularization step. 

Immunofluorescence staining allowed revealing the specific molecular identity of the fibrils in the 

decellularized matrices. While proteomic analysis has shown that ASCs appear to produce a wide range 

of ECM components [9], we have chosen to investigate the expression of collagens type I and type III, 

and fibronectin. Collagens type I and III are the major fibrillar constituents of the ECM of the skin, and 

are thus central to its mechanical properties and are crucial in the remodeling step of the wound healing 

process. Fibronectin is an ECM glycoprotein, which is also involved in various processes important to 

wound healing, including cell proliferation, migration and neovascularization [47], and provides the 

binding sites for several growth factors [48]. Figure 4a are immunofluorescence images that reveal the 

presence of collagens type I and III, as well as of fibronectin, in the decellularized ECM scaffolds. 

While type I collagen formed a densely packed array of fibrils, it appeared that type III collagen fibrils 



  

were more loosely arranged. Fibronectin formed a highly branched meshwork of thin fibrils. The 

fibronectin meshwork appeared to be laid down by the cells on top of the collagen network. This 

corresponds well with previous studies, which have also shown that matrices produced by ASCs in AA 

supplemented cultures are rich in collagen I and fibronectin [17]. Overall, it appears that the 

decellularization method presented here preserves well the microstructural integrity of the deposited 

ECM. This is in contrast to previous studies using other cellular extraction methods, such as SDS, which 

significantly compromise the collagen and fibronectin fibrillar networks [20].  

As shown in figure 4b, the transcriptional activity of the selected genes during the first three days of 

induction strongly correlated with the immunofluorescence results described in the previous paragraph. 

Analysis of the qPCR results showed a time-dependent upregulation on the transcriptional activity of 

COL1A1 and COL3A1, while expression of MMP1, also known as collagenase-1, was downregulated 

(Figure 4b). The MMP-1 specifically hydrolyzes type I-III collagens and its over activity has been 

associated with non-healing wounds [49]. Overall, the gene expression results indicate that there was 

an enhanced synthesis of collagenous ECM and reduced matrix breakdown. The expression of 

fibronectin (FN) showed a significant upregulation as well, although only after 72 h. 

3.4 Proliferation and morphology of cells cultured on ECM scaffolds
Primary human fibroblasts and endothelial cells (HDMECs) were seeded on different decellularized 

matrices prepared from cultured ASCs. The rationale for selection of these two cell models was because 

both cell types play a key role during the cutaneous wound healing process. Fibroblasts not only mediate 

the effective closure of the wounds but also support the other cells associated with effective healing 

[50]. Endothelial cell adhesion and proliferation is also crucial in the formation of new blood vessels, 

which support neovascularization of the granulation tissue that is needed for progression into the healing 

phase of the wounds [51]. For both cell types, the cytotoxicity/viability assay revealed the presence of 

a large proportion of viable cells and a negligible number of dead cells, which suggests that the cytotoxic 

compounds used during decellularization had been washed out (Figure 5a). Phase contrast microscopy 

after 24 h showed that in both cases the cells were well attached to the ECM substrate (Figure 5b). 

Moreover, some cells appeared to align over the topographical cues presented by the fibrillar scaffold. 

Fibroblasts displayed the typical spindle-shaped morphology while HDMECs appeared polygonal, with 

some thin tube-like protrusions. Interestingly, a study from 2004 by Dye et al. [52] has shown that ECM 

composition controls the morphological behavior of microvascular endothelial cells, switching their 

phenotype between migratory and vasculogenic. It remains unknown how signals provided by ASC-

derived ECM may influence the morphological behavior and phenotype in these cells, which warrants 

further studies in this subject. The analysis of cell numbers provided evidence that the scaffolds 

supported the proliferation of both cell types (Figure 5b). The doubling times calculated from the growth 

curves were 22.2 ± 5.2 h for the fibroblasts and 27.4 ± 10.6 h for the HDMECs. A thin planar scaffold 



  

(~20 µm) comprising bovine fibrillary collagen I was used as a reference. This collagen cell carrier 

(CCC) constitutes a suitable substrate for cell culture and allows the transfer of cell sheets obtained 

from various adherent cell types [53]. Both cell types appeared to grow faster on the ECM than on CCC 

scaffolds, where fibroblasts and HDMECs displayed a doubling time of 41.7 ± 27.2 h and 59.8 ± 10.5 

h, respectively. However, there was no statistically significant difference between the doubling times 

obtained on ECM vs CCC. The findings from the cell culture assay are in agreement with previous 

studies, which have shown that scaffolds containing fibronectin and collagen type I provide an optimal 

support for fibroblasts [54,55] and endothelial cell growth [16,56]. Overall, the decellularized matrices 

presented here represent a substrate that supports adhesion and proliferation of primary fibroblasts and 

HDMECs.

While the focus of the present work was on describing a reliable decellularization method as platform 

for future in vitro wound healing studies, it is worth to mention that decellularized cell-derived matrices 

have also a great potential for application in preclinical research. In this context, a recent in vivo study 

has demonstrated the regenerative potential of ECM scaffolds fabricated by decellularization of BM-

MSCs [13]. 



  

4. General considerations and hints for troubleshooting
For the induction of cells for ECM production, we recommend the preparation of a sterile stock solution 

of AA (20 mM, for instance), which must be stored at 4oC and protected from light. AA should be 

added to the medium immediately before media changes. It is possible to increase the induction period 

for more than 10 days to increase the matrix thickness. However, longer incubation times appear to 

increase the risk of dislodgment of the matrices. 

A critical point in the fabrication process remains the proper attachment of the cell-derived ECM to the 

culture surface. In our experience, although the PLL coating significantly increases the binding of the 

ECM, the matrices might still detach from the wells if not handled cautiously. It is therefore important 

to perform all the washes and media changes in a gentle manner during the induction period. Extra 

caution is also recommended when applying the EB, the DNase solution, and the subsequent washing 

solutions in order to prevent release of the ECM. 

It is also important to perform a uniform cell seeding and monitor the morphology of the ASCs during 

the induction period. When cells are not uniformly distributed in the wells, they tend to overgrow in 

certain areas resulting in an inhomogeneous ECM scaffold. We do not recommend using cells that have 

been cultured for more than five passages, as their proliferation rate and ability to deposit ECM might 

be severely compromised.

While it appears that 100 UI/mL is the optimal DNase concentration, we recommend determining the 

optimal enzyme concentration for each new batch of DNase, as the activity of the enzyme might display 

a significant lot-to-lot variability. It is also important to ensure that the enzyme is dissolved in a buffer 

containing the divalent Ca++ and Mg++. DNAse working solutions should be frozen in aliquots to avoid 

freeze-thaw cycles. In our experience, an overnight wash after the DNase treatment (>12 h) helps to 

further dissolve the residual DNA fragments and other cell debris. Shorter washing times might hinder 

the ability of the scaffolds to support the cell growth. 

Using larger culture surfaces to increase the area of the fabricated cell-derived ECM is also possible, 

as long as the cell seeding density recommended in the methods section is maintained. Transferring of 

the ECM from the culture plates might be desirable, for example, for implantation studies or to create 

thicker scaffolds by stacking. In this case, it is possible to perform the culture of ASCs on 

thermoresponsive culture dishes (Nunc Dishes with UpCell, from ThermoFisher Scientific). After 

decellularization, the ECM scaffolds are detached from the culture surface by reducing the 

temperature below 32oC. Scaffolds can be carefully lifted using the transfer membranes that are 

supplied with the dishes. 



  

5. Conclusions
The present work is describing a reliable method to obtain extracellular matrices produced by cultured 

ASCs. The decellularization treatment efficiently removed the cellular components while maintaining 

a considerable amount of well-preserved extracellular matrix components. The ECM displayed a dense 

network of fibrillar components (type I and III collagens), as well as a mesh of fibronectin fibrils. Cell 

growth experiments showed that the decellularized matrices supported growth of fibroblasts and 

endothelial cells. Overall, ECM scaffolds obtained from ASCs represent a unique biomaterial that has 

a significant potential for in vitro as well as in vivo wound healing studies.
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Figure legends

Figure 1. Assessment of culture conditions to produce homogeneous and stable cell sheets. The 

diagrams indicate the different conditions. AA: induction with ascorbic acid. PLL: poly-L-Lysine 

coating prior to cell seeding. Control are untreated wells without AA supplementation. Phase contrast 

images display cells after 10 days in culture. The black arrow indicates the edge of a cell sheet that is 

detaching from the well surface in the right to left direction. Scale bars depict 200 µm.

Figure 2. Confirmation of decellularization and assessment of the optimal DNAse concentration. (a) 

Fluorescence microscopy images displaying the residual DNA fragments after treatment of the ASCs 

sheets with the EB (control) and upon incubation with different DNase concentrations. DNA fragments 

were stained with Hoechst 33342 nuclear stain (blue) (b) Phase contrast microscopy images displaying 

the morphology of the ECM scaffolds before and after treatment with 100 U/mL of DNase. (c) 

Quantification of the amount of dsDNA by the PicoGreen assay, showing a reduction of DNA content 

upon treatment with the DNase solutions. Asterisks indicate statistically significant difference as 

compared to the control or between the treatment groups (n = 9, ** p<0.001, * p<0.01). Scale bars 

depict 200 µm.

 

Figure 3. Analysis of ECM production by cells over time. (a) Brightfield microscopy images after 

Sirius Red/Fast Green staining, showing the quality of collagenous matrix deposited by the ASCs after 

5 and 10 days of induction. (b) Quantification of the amount of collagen deposited by the ASCs. Asterisk 

indicates statistically significant difference (n=12, p<0.001). Scale bar depict 200 µm.

Figure 4. Assessment of composition of the cell-deposited ECM. (a) Fluorescence microscopy images 

displaying the structure and specific molecular composition of the ECM after immunostaining with 

antibodies against collagen type I, type III, or fibronectin. (b) Results of the semi-quantitative PCR 

assay, reflecting the levels of transcriptional activity of COL1A1 (Col I), COL3A1 (Col III), MMP1, 

and FN genes in ASCs during the three first days of the induction period. The expression levels were 

normalized to the control gene PPIA. Asterisks indicate statistically significant difference as compared 

to the expression level at 24 h (n=3, p<0.05). Scale bars depict 200 µm.

Figure 5. Growth of cells on the ASCs derived matrices. Panels (a) and (b) show the cells after 24 h of 

culture on the ECM scaffolds. (a) Fluorescence images of the cells after the live/dead staining, 

displaying the live cells in green and the dead cells in red. Scale bars depict 300 µm. (b) Phase contrast 



  

microscopy images displaying the adhesion patterns and the morphology of cells. Scale bars depict 200 

µm. Panels (c) and (d) are the growth curves obtained after regression analysis, showing a sustained 

proliferation of both cell types on the ECM scaffolds and on the collagen cell carriers (CCC). The 

growth curves corresponding to fibroblasts and HDMECs are shown in (c) and (d), respectively. 



  



  

Table I: List of genes, primer sequences, and annealing temperatures (AT) used in this study.

Gene 
symbol

Gene 
description

Primer base sequence (5’-3’ ) AT 
(oC)

Forward Reverse
COL1A1 Collagen type I 

alpha 1 

CCT GGA TGC CAT CAA 

AGT CT

AAT CCA TCG GTC ATG 

CTC TC

62

COL3A1 Collagen type III 

alpha 1

TAC GGC AAT CCT GAA 

CTT CC

GTG TGT TTC GTG CAA 

CCA TC

61



  

MMP-1 Matrix 

metalloproteinase 

1 

TGT GGT GTC TCA CAG 

CTT CC

CAC TGG GCC ACT ATT 

TCT  CC

62

Fn Fibronectin ACC TAC GGA TGA CTC 

GTG CTT TGA

CAA AGC CTA AGC ACT 

GGC ACA ACA

62

PPIA Peptidylprolyl 

isomerase A

TCC TGG CAT CTT GTC 

CAT G

CCA TCC AAC CAC TCA 

GTC TTG

60

- Extracellular matrix (ECM) scaffolds are fabricated from cultured adipose-derived stem cells 
(ASCs)

- Methods to assess the molecular composition and biological properties of the ECM are 
presented

- The microstructure and native constituents are preserved in the scaffolds

- The decellularized scaffolds provide a useful platform to study the role of ECM deposited by 
ASCs in wound healing 



  


