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Abstract

Filamentous fungi such as species from the genus Fusarium are capable of producing a wide palette of 

interesting metabolites relevant to health, agriculture and biotechnology. Secondary metabolites are formed 

from large synthase/synthetase enzymes often encoded in gene clusters containing additional enzymes 

cooperating in the metabolite’s biosynthesis. The true potential of fungal metabolomes remain untapped as 

the majority of secondary metabolite gene clusters are silent under standard laboratory growth conditions. 

One way to achieve expression of biosynthetic pathways is to clone the responsible genes and express them in 

a well-suited heterologous host, which poses a challenge since Fusarium polyketide synthase and non-

ribosomal peptide synthetase gene clusters can be large (e.g. as large as 80 kb) and comprise several genes 

necessary for product formation. The major challenge associated with heterologous expression of fungal 

biosynthesis pathways is thus handling and cloning large DNA sequences. In this paper we present the 

successful workflow for cloning, reconstruction and heterologous production of two previously characterized 

Fusarium pseudograminearum natural product pathways in Fusarium graminearum. In vivo yeast 

recombination enabled rapid assembly of the W493 (NRPS32-PKS40) and the Fusarium Cytokinin gene clusters. 

F. graminearum transformants were obtained through protoplast-mediated and Agrobacterium tumefaciens-

mediated transformation. Whole genome sequencing revealed isolation of transformants carrying intact copies 

the gene clusters was possible. Known Fusarium cytokinin metabolites; fusatin, 8-oxo-fusatin, 8-oxo-

isopentenyladenine, fusatinic acid together with cis– and trans-zeatin were detected by liquid chromatography 

and mass spectrometry, which confirmed gene functionality in F. graminearum. In addition the non-ribosomal 

lipopeptide products W493 A and B was heterologously produced in similar amounts to that observed in the F. 

pseudograminearum 
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doner. The Fusarium pan-genome comprises more than 60 uncharacterized putative secondary metabolite 

gene clusters. We nominate the well-characterized F. graminearum as a heterologous expression platform for 

Fusarium secondary metabolite gene clusters, and present our experience cloning and introducing gene 

clusters into this species. We expect the presented methods will inspire future endevours in heterologous 

production of Fusarium metabolites and potentially aid the production and characterization of novel natural 

products. 

Keywords: Secondary metabolites, Fusarium, heterologous expression, non-ribosomal peptides, lipopeptides, 

cytokinin
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1 Introduction

Polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) are enzymes responsible for 

producing some of the most interesting secondary metabolites (SMs) in relation to health and agricultural 

potential (Marahiel, 2009; Staunton and Weissman, 2001). Often the polyketide or non-ribosomal peptide 

products are further modified by tailoring enzymes, such as cytochrome P450 monooxygenases and 

methyltransferases. Fungal SM gene clusters may encode transcription factors, specific precursor synthases, 

transporters and/or a self-protection mechanism, all important for the formation of the final product (Yu and 

Keller, 2005). The environmental conditions triggering secondary metabolism gene expression often are 

unpredictible and the majority of genes are not expressed in standard laboratory growth medium (Brakhage, 

2013; Janevska and Tudzynski, 2018). One explaination has been that a major portion of SM clusters reside 

within non-conserved chromosomal regions which overlap with tri-methylation of lysine 27 in histone 3 

(H3K27me3) enriched regions, defined as heterochromatin, associated with low gene expression levels 

(Connolly et al., 2013; Reyes-Dominguez et al., 2012; Zhao et al., 2014). This biological phenomenon has 

contributed to the classification of uncharacterized clusters that show little to no expression under laboratory 

conditions, as ‘silent’ or ‘cryptic’ gene clusters. This problem has spawned many endeavors in developing tools 

for gene cluster activation and SM-gene cluster linking, including overexpression of key synthases/synthetases 

or manipulation of local and global regulators (Katz and Baltz, 2016; Keller, 2019; Wiemann and Keller, 2014). 

In order to achieve expression of the majority of fungal SMs, SM gene clusters can also be moved to an 

alternative host for heterologous expression, which present many advantages including tools to enhance 

production through further genetic manipulation and pathway elucidation (Alberti et al., 2017; Boecker et al., 

2018). For instance, heterologous expression of fungal biosynthetic genes in Saccharomyces cerevisiae has 

proven a feasible avenue for novel metabolite discovery (Harvey et al., 2018; Tsunematsu et al., 2013). 
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The first case of heterologous reconstruction of a multi-enzyme gene cluster was the PKS-NRPS tenellin cluster 

in the well-characterized filamentous fungus Aspergillus oryzae (Heneghan et al., 2010). Since then, a handful 

of cases (Alberti et al., 2017) have been reported using similar workflows (Anyaogu and Mortensen, 2015) in 

which members of the target gene cluster are predicted from DNA, using bioinformatics tools such as 

AntiSMASH (Weber et al., 2015). Initially, the target genes are cloned into either a cosmid/fosmid library (Sakai 

et al., 2012; Smith et al., 1990) or amplified through PCR and assembled into vectors using USER fusion (Nielsen 

et al., 2013), Gibson assembly (Schuetze and Meyer, 2017) or yeast mediated recombinatorial assembly 

recombination (Yin et al., 2013). Recently, the development and application of Fungal Artificial Chromosomes 

has also been reported for this purpose (Clevenger et al., 2017). Secondly the genes are introduced into a 

suitable expression host such as Aspergillus oryzae or Aspergillus nidulans (Anyaogu and Mortensen, 2015). 

These Aspergilli are often modified strains deficient of non-homologous end joining (Nayak et al., 2006), 

because targeted genomic integration is preferred over random integration to ensure stability of foreign genes 

(Chiang et al., 2013; Hansen et al., 2011; Mikkelsen et al., 2012). Furthermore, random genomic insertions may 

disrupt endogenous genes and the genomic position can influence whether acquired genes attain functionality 

(Husnik and McCutcheon, 2017). The toolbox for heterologous expression in Aspergilli has expanded rapidly in 

the last decade with the development and implementation of novel methods such as polycistronic gene 

expression and cleavage peptide signals (Hoefgen et al., 2018; Schuetze and Meyer, 2017). 

In recent years, sequencing of fungal genomes has been booming and recently 67 different polyketide synthase 

genes and 52 non-ribosomal peptide syntethase genes have been observed across 31 Fusarium genomes 

(Brown and Proctor, 2016; Hansen et al., 2015). Some clusters are shared within the genus (e.g. PKS3 

responsible for formation of the pigments fusarubin and bostrycoidin) while others are unique to a single 

species (e.g. NRPS32-PKS40 responsible for the formation of the W493 lipopeptides, only found in F. 

pseudograminearum). The largest detected SM gene in Fusarium contains the 40 Kb NRPS34, which resides in 
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an 82 kb gene cluster. Some of the metabolites produced by Fusarium are of relevance to food and feed safety, 

e.g. fumonisin B1 (PKS24) which is a harmful mycotoxin (Voss and Riley, 2013), while other compounds such as 

sansalvamide (NRPS30) and apicidin (NRPS31) are potential drug candidates (Niehaus et al., 2014; Romans-

Fuertes et al., 2016). Roughly one-third of Fusarium PKS-containing clusters and one quarter of the NRPS-

containing clusters have been linked to a corresponding SM or biosynthetic pathway (Nielsen et al., 2019). The 

Fusarium pan-genome is thus a treasure chest of undiscovered metabolites (Hoogendoorn et al., 2018), and 

heterologous expression might present itself as the key to unlock a wealth of chemical diversity and bioactive 

compounds. We chose the well-characterized F. graminerarum for heterologous expression of Fusarium 

biosynthetic gene clusters, as good expression can generally be expected in a closely related species. Fusarium 

graminearum provides several benefits to this purpose such as a efficient gene targeting via homologous 

recombination (Frandsen et al., 2012; Twaruschek et al., 2018), several developed transformation and gene 

editing techniques (Connolly et al., 2018; Gardiner and Kazan, 2018), together with a well characterized 

intrinsic secondary metabolism (Bahadoor et al., 2018; Frandsen et al., 2016; J. L. Sørensen et al., 2014; 

Westphal et al., 2018a; Wollenberg et al., 2017). 

Previously, we reported the reconstruction and successful heterologous expression of a four gene 10 kb cluster 

from F. pseudograminearum (Sørensen et al., 2018). In this paper, we present our experience with cloning, 

introducing and heterologously expressing SM clusters of variable size in F. graminearum and discuss the 

limitations and benefits of heterologous production as a tool for SM discovery. In this paper we also present 

the first case of heterologous expression of an intact Fusarium NRPS gene cluster in a filamentous fungal host. 

The presented methods will serve as a much needed set of tools that could enable activation and pathway 

elucidation of natural products from Fusarium.
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2. Materials and methods

2.1 Strains and media

Fusarium Cytokinin (FCK) (FPSE_06371–20002) and W493 (NRPS32-PKS40) (FPSE_09183–09189) gene clusters 

were PCR amplified from F. pseudograminearum (Fp) CS3096 genomic DNA (Gardiner et al., 2012). The host for 

heterologous expression of SM clusters was performed in F. graminearum (Fg) (PH-1; NRRL 31084) (Trail and 

Common, 2000). The fungi were grown, maintained and selected on Czapek-Dox [35 g/L Cz broth (Sigma 

C1551), 1 mL /L trace metals solution (0.1 g/L ZnSO4∙7H2O and 0.05 g/L CuSO4∙5H2O)] medium or YPG [1% yeast 

extract, 2% peptone, 2% D-glucose] medium with 300 µg/mL G418 geneticin sulfate (Gibco 11811031), and 2% 

agar for solid medium. Fungi were grown at 24-26˚C in darkness unless otherwise specified. Production of F. 

graminearum macroconidia was done by inoculating 70 mL carboxymethyl cellulose medium (Cappellini and 

Peterson, 1965) with 4-8 × 5mm2 agar plugs cut from a 7 day old PDA (potato dextrose agar, Sigma 70139) 

plate and shaking at 19°C, 150 rpm, for 3-5 days. Macroconidia were filtered through a sterile glass wool-filled 

syringe, centrifuged at 3000 g, resuspended in sterile H2O and kept at 4˚C. To induce secondary metabolite 

production fungi were cultivated on yeast extract sucrose medium (YES, Scharlau yeast extract, Barcelona, 

Spain) (Sørensen and Sondergaard, 2014).

Escherichia coli DH5α was used for plasmid propagation and yeast-plasmid recovery. For E. coli growth and 

selection, we applied solid (2% agar) or liquid Luria-Bertani (LB, Lennox) amended with 25 µg/mL kanamycin 

when applicable. 

Agrobacterium tumefaciens LBA4404 was used during Agrobacterium tumefaciens-mediated transformation of 

Fusarium. A. tumefaciens was grown in either LB or YM [0.4 g/L yeast extract, 10 g/L mannitol, 0.1 g/L NaCl, 0.1 

g MgSO4, 0.5 g/L K2HPO4 3∙H2O, pH 7], added antibiotics 10 µg/mL rifampicin, 100 µg/mL streptomycin, and 

when appropriate 25 µg/mL kanamycin.
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Saccharomyces cerevisiae BY4743 (Euroscarf Y20000) was used for plasmid assembly and cloning of fungal 

DNA. Growth and selection of yeast was carried out using yeast synthetic dropout medium without uracil (SC-

U; Sigma Y1501) prepared according to manufacturers instructions with yeast nitrogen base (Sigma, Y0626).

2.2 Cluster orthology analyses

To analyse the introduced gene clusters in the expression host the nucleotide sequences were compared using 

BLAST and blastx (blast.ncbi.nlm.nih.gov) and generated linear comparison maps of loci with EasyFig v. 2.1 

(Sullivan et al., 2011). Genbank flat files from Fg (Chr3; CM000576.1 (Cuomo et al., 2007)) and Fp (Chr1; 

CM003198.1, Chr3; CM003200.1 (Gardiner et al., 2012)) were loaded into EasyFig and comparison maps were 

generated using 70 bp minimum alignment length and 0.35 minimum identity score. 

2.3 PCR amplification of fungal biosynthetic gene clusters.

Genomic DNA was extracted from fresh mycelium using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). 

Primers (Supplementary Table 1-2) for PCR amplification of gene clusters were designed using the Primer3Plus 

software (Untergasser et al., 2007) based on available Fp genomic sequence (Gardiner et al., 2012). The 

parameters were set to identify primers producing 3-4 kb products with at least 50 bp of homology to 

neighboring PCR product or the shuttle vector. Genes included in constructs were based on previous gene 

cluster characterization; FCK (Sørensen et al., 2018), W493 (J. L. Sørensen et al., 2014). Full gene clusters were 

PCR-amplified in 3168-3941 bp segments with at least 59 bp neighboring overlap using the Phusion HS II DNA 

polymerase (Thermo Fisher scientific) following manufacturer’s instructions. For amplification of the FCK 

cluster, the two outermost primers had a 36 bp tail homologous to shuttle vector’s multiple cloning site. 

Before reconstruction of gene clusters in yeast PCR fragments were quantified using a Nanodrop 2000C 

(Thermo Fisher Scientific) and pooled to equalize the molar concentration of different fragments. The pooled 
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FCK PCR products (CK1-3) were purified using the QIAquick PCR Purification Kit (Qiagen) and the pool contained 

40-80 fmol of the three fragments. Pooled W493 PCR products (C1-16) were concentrated and purified by 

using the QIAquick PCR Purification Kit (QIAquick PCR Purification Kit, QIAGEN). The W493 concentrated PCR 

product pool contained approximately 200-230 fmol of each fragment. 

2.4 Construction and validation of gene cluster containing vectors

Two shuttle vectors pSHUT1 and pSHUT3 were prepared by modifying the in-house A. tumefaciens shuttle 

vector U-GOTL (Josefsen et al., 2012) (Supplementary Table 3). These shuttle vectors contain the following 

elements: An Agrobacterium T-DNA cassette comprising a multiple cloning site and nptII selection marker in 

between two segments with homology to the F. graminearum β-Tubulin locus; FgTUB-Left and FgTUB-Right 

(Josefsen et al., 2012). The vector backbones also contained bacterial replication elements trfA, IncP, antibiotic 

resistance (KanR), auxotrophic selection marker URA3, and either 2µ or CEN6/ARSH4 yeast origins of 

replication. For pSHUT1 the replication origin was the 2µ element from pYES2 (Invitrogen) (Supplementary 

Figure S1A). For pSHUT3 the 2µ origin was replaced with the low copy number CEN6/ARSH4 yeast origin of 

replication from pRS315 (ATCC®77144) (Supplementary Figure S1B). The pSHUT3 plasmid was further modified 

for reconstructing the Fp W493 cluster by inserting two 1 kb segments homologous to cluster flanking regions 

separated by a SmaI restriction site inside the multiple cloning site. 

Competent S. cerevisiae cells were transformed (Gietz and Schiestl, 2007) with concentrated pools of SM gene 

clusters containing PCR fragments together with linearized shuttle vector DNA purified with QIAquick Gel 

Purification Kit (Table 1). Gene clusters were assembled in vectors through transformation-associated 

homologous recombination between PCR fragments and linearized vector in yeast (Figure 1A). Transformed 

yeast cells were selected on SC-U and grown for 2 days at 30°C before colonies were streaked on fresh SC-U 

plates and incubated over night at 30°C. Routinely, we performed yeast colony PCR to verify the cloning as 
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previously described (Kouprina and Larionov, 2008). Vector assemblies were recovered by isolating yeast 

vector DNA following procedure applied in (Noskov et al., 2011). Precipitated plasmid DNA was resuspended in 

300 µL H2O and pipetted vigorously to resuspend. 1 µL yeast vector DNA was mixed with 40 µL 

electrocompetent E. coli cells and transformed using the MicroPulserTM Electroporation apparatus (Bio-Rad, 

Hercules, CA, USA) in a 1 mm wide electrocuvette using the Ec1 setting. Transformed E. coli were selected on 

LB kanamycin plates and incubated at 37°C overnight. Single colony isolates were streaked on fresh LBA 

kanamycin. 

Gene cluster carrying vectors were purified from LB kanamycin cultures using the QIAprep Spin Miniprep Kit or 

QIAGEN Plasmid Midi Kit (QIAGEN). Diagnostic PCR was performed on individual yeast clones across 

homologous recombination events between different PCR fragments and between PCR fragments and shuttle 

vector (Primers are listed in Supplementary table T4-5). Restriction enzyme digest was performed to further 

validate yeast recombination constructs, following the manufacturer’s instructions (NEB, Thermo Scientific). 

2.5 Agrobacterium tumefaciens-mediated transformation

Vector constructs holding fungal gene cluster DNA was introduced into A. tumefaciens strain LBA4404 by 

electroporation (Lin, 1995) using the Agr setting of the MicropulserTM Electroporation apparatus (Biorad, 

Hercules CA, USA). F. graminearum macroconidia were transformed by ATMT as described previously (Malz et 

al., 2005), without pre-germinating fungal spores as suggested by (Frandsen et al., 2012). At strains were grown 

in liquid culture to an OD600 ≈ 0.7. F. graminearum was co-cultivated with At strains LBA4404::pSHUT1:CK, 

LBA4404::pSHUT3:32-06, LBA4404::pSHUT3:32-08, and LBA4404::pSHUT3-32 on induction medium [40 mM 

MES, 0.2 mM acetosyringone, 0.2% glucose, 0.5% glycerol, 11 mM KH2PO4, 12 mM K2HPO4, 2.6 mM NaCl, 2 mM 

MgSO4∙7H2O, 0.44 mM CaCl2∙2H2O, 0.01 mM FeSO4∙7H2O, 3.8 mM (NH4)2SO4] for 50 hours at 25°C in darkness. 
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Transformed fungi were selected as described by (Frandsen et al., 2012) using 300 µg/mL cefoxitin sodium salt 

(Sigma) and 150 µg/mL G418. 

2.6 Protoplast transformation

Plasmids pSHUT3, pSHUT3:32-06, and pSHUT3:32-08 were propagated in E. coli and isolated in high 

concentration following the procedures described in (Pronobis et al., 2016) using reagents from QIAprep Spin 

Miniprep Kit (QIAGEN). Prior to fungal transformation plasmid DNA was linearized with restriction enzymes 

cutting inside the plasmid backbone and not the fungal DNA, unless otherwise specified. 100 mL yeast extract 

peptone dextrose (YEPD) medium [0.3% yeast extract, 1% peptone , 2% D-glucose] was inoculated with 4×106 

fresh conidia and incubated with shaking 150 rpm at 29°C for 14-16 hours. Protoplasts were prepared as 

described elsewhere  (Gaffoor et al., 2005) and washed, transformed, regenerated and overlayed as described 

previously (Twaruschek et al., 2018; Varga et al., 2015). Putative mutants appeared after 4-6 days. 

Transformants were streaked onto solid Czapek-Dox media containing 300 µg/mL G418. 

2.7 Fungal mutant screening

Colony PCR was routinely used to test isolated fungal transformants. Antibiotic resistant transfromants were 

incubated on PDA plates for 3-4 days. With a sterile pipette tip, a minute amount of fresh hyphial mycelium 

was resuspended in 300 µL fungal lysis buffer [0.2 M NaCl, 0.1 % Triton-X100, 0.2 % SDS, 10 mM Tris-HCl, 50 

mM EDTA, pH 7.5]. The sample was vortexed vigorously for one minute and centrifuged for one minute at 

10.000 g. 1 µL of the supernatant was used in PCR [0.005 U/µL Phusion II HS Polymerase, 1 x HF buffer, 200 µM 

dNTP, 0.5 µM primer1, 0.5 µM primer2, 2 mg/mL BSA]. Primers used in fungal colony PCR are listed in 

supplementary table T8.

2.8 Sequencing of fungal transformants
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From a week-old YPG plate mycelium was scraped with a sterile toothpick and submerged into fresh YPG pH 

6.5 culture medium. The mycelium was incubated at 28°C, 100 rpm for 72 hours before harvesting by filtering 

through a layer of sterile miracloth and washed in sterile water. The mycelium was sqeezed to remove excess 

liquid and lyophilized over night.

Fungal tissue samples were sent to DNAsense APS (Aalborg, Denmark) for DNA purification and Nanopore 

sequencing services utilizing the miniON flow cell system (Oxford Nanopore Technologies, UK). Following 

import of the trimmed and quality-filtered reads into CLC Genomics Workbench v. 12 (CLC Bio, Qiagen, 

Denmark), reads were mapped to the F. graminearum PH-1 reference genome (chromosome 1,2,3 and 4) and 

to the (theoretical) in silico generated chromosome of each transformant (chromosome 4, β-Tubulin locus).

2.9 Heterologous expression and metabolite analysis

Function of introduced gene clusters was tested by inoculating plates of YES agar and incubating them for 14 

days. Secondary metabolites were extracted from solid agar plugs submerged in organic extraction mix 

ethylacetate:dichlormethane:methanol (3:2:1) with 1% formic acid in an ultrasonic bath for 1 hour 

(Smedsgaard, 1997). The solvent was transferred to a clean glass vial and was evaporated under a flow of 

nitrogen gas at 40°C. Dried samples were resuspended in 600 µL of methanol and centrifuged for 2 minutes to 

remove particulate impurities. The supernatants were then transferred to HPLC vials and analyzed by high 

performance liquid chromatography (Hitachi Elite LaChrom HPLC, Hitachi, Tokyo, Japan) coupled to a high-

resolution mass spectrometer (HRMS; Bruker compact MS ESI-Q-TOF, Bruker Daltonics, Bremen, Germany) 

operating in positive ionization mode. 10 µL of each extract was injected and separated on a C6-phenyl column 

(150 × 4.6 mm Ascentis Xpress 2.7 µm, Sigma-Aldrich, St. Louis, MO, USA) as previously described (Westphal et 

al., 2018b). Cytokinins and W493 A and B were detected using the extraction ion chromatograms based on 
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previous studies (J. L. Sørensen et al., 2014; Sørensen et al., 2018). The expected and observed protonated ions 

are listed in Supplementary Table 6.
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3 Results

3.1 Target biosynthetic gene clusters

To explore the potential of F. graminearum as a host for heterologous production of secondary metabolites we 

chose two characterized biosynthetic gene clusters of different size. The locus chosen for targeted integration 

resides in a euchromatic region near the β-Tubulin gene, in theory enabling expression of foreign genes. As an 

example of a small gene cluster, we chose the FCK cluster from F. pseudograminearum. The gene cluster has a 

size of 9.9 kb and contains four genes, FCK1 (fusatin synthase), FCK2 (cytochrome P450), FCK3 (putative 

glycosyl transferase), and FCK4 (alcohol acetyltransferase) (Sørensen et al., 2018). In culture, F. 

pseudograminearum produces four fungal cytokinins: Fusatin, 8-oxo-fusatin, fusatinic acid, and 8-oxo-

isopentenyladenine (Figure 2A). Comparison of F. graminearum and F. pseudograminearum showed that the 

FCK gene cluster is present only in F. pseudograminearum, while neighboring genes in F. pseudograminearum 

(FPSE_6370 and FPSE_06373) had high identity to FGSG_13984 and FGSG_11345 (Figure 2C). 

As an example of a large biosynthetic gene cluster, we chose the 54 kb W493 gene cluster from F. 

pseudograminearum (J. L. Sørensen et al., 2014). In addition to the PKS40 and NRPS32, this cluster contains five 

genes and is responsible for production of the two lipopeptides W493-A and B (Figure 2B). This gene cluster is 

absent in F. graminearum although the borders have minimal homology to a locus on F. graminearum 

chromosome 1 (Figure 2D). 

3.2 Amplification and cloning of target gene clusters

The targeted gene clusters were amplified in 3-4 kb PCR fragments with at least 50 bp of overlap between 

adjacent products. Following this strategy, the FCK cluster was amplified in three PCR fragments and the W493 

cluster in 16 fragments (Figure 1A). 
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The purified PCR fragments were pooled and assembled by yeast homologous recombination with a linearized 

shuttle vector. The three fragments covering the FCK gene cluster were cloned into the vector pSHUT1, which 

contains the high copy 2µ origin of replication. The resulting plasmid was amplified in E. coli and correct 

assembly of the 19.238 bp plasmid was verified by PCR across recombination junctions and by PstI restriction 

enzyme digest (Supplementary Figure S2). 

The 16 PCR fragments covering the W493 gene cluster were assembled into the modified version of pSHUT3; 

pSHUT3-32, which contain two 1-kb segments homologous to border sites of the gene cluster to, theoretically, 

increase cloning success. 64 isolated yeast transformants were analyzed by colony PCR with primer sets 

D002/D003 and D022/D023 (Supplementary Table T7); 58 out of 64 (91 %) yeast colonies produced a band 

confirming the presence of the nptII marker, and 53 (83 %) produced the E8 band confirming presence of gene 

cluster DNA (data not shown). Accurate recombination of the 63.101 bp plasmid for two randomly selected and 

isolated plasmids (pSHUT3:32-06, pSHUT3:32-08) (Figure 1C) was confirmed with 17 diagnostic PCRs and 

restriction enzyme digest analysis (Supplementary Figure S3), and sequencing from backbone into gene cluster 

DNA (not shown). 

3.3 Heterologous production of cytokinins in F. graminearum

The FCK gene cluster was introduced in a non-coding region of F. graminearum downstream the β-Tubulin 

locus (FGSG_09530) through ATMT. We obtained G418-resistant transformants at a frequency of 2.3 colonies 

per 106 spores, which were subcultured and subject to colony PCR to confirm presence of the nptII marker 

gene (Supplementary Figure S4). One transformant, FgCK-1, was chosen for further analyses. Genomic DNA 

was isolated from FgCK-1 and full genome sequencing confirmed presence of intact and correctly integrated 

FCK gene cluster (Figure 3A and B). 
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The strain was grown on YES medium together with the wild type for 14 days in the dark at 25°C, before the 

production of secondary metabolite was analyzed by HPLC-HRMS (Supplementary Figure S5A). The analyses 

showed that cytokinins could only be detected in FgCK-1 and not in the parental strain (Figure 3C). The FgCK-1 

transformant was able to produce the four F. pseudograminearum cytokinins fusatin, 8-oxo-fusatin, 8-oxo-

isopentenyladenine, fusatinic acid together with the more commonly observed cis- and trans-zeatin (Sørensen 

et al., 2018).

3.4 Heterologous production of W493 A and B in F. graminearum

The ATMT protocol was also initially attempted for transferring the W493 gene cluster into F. graminearum. 

However, repeated attempts failed to produce resistant transformants and we therefore switched to 

protoplast transformation. Two isolated yeast constructs pSHUT3:32-06 and pSHUT3:32-08 carrying intact 

copies of the W493 gene cluster were linearized and used to transform F. graminearum protoplasts. We 

obtained one pSHUT3:32-06 transformant and one pSHUT3:32-08 transformant, named Fg32-6 and Fg32-8, 

respectively. Whole-genome sequencing of transformants Fg32-6 and Fg32-8 confirmed the presence of the 

W493 gene cluster cassette in both transformants (Supplementary Figure S6). However, in both transformants, 

the cassettes had not integrated in the intended β-Tubulin locus and manual read coverage analysis further 

suggested multiple insertion events in the transformants recovered from protoplast-mediated transformation 

(Figure 4A and B). In order to find potential ectopic interation positions, filtered sequencing reads containing 

coverage to the W493 gene cluster were mapped to F. graminearum genome (Supplementary Figure S7). Both 

transformants contained reads mapping to positions 6.461.186‒6.465.555 on chromosome 1, surrounding 

FGSG_12038. This is the exact position that the W493 gene cluster appears to reside in the F. 

pseudograminearum genome relative to F. graminearum (Figure 2D). We identified two segments sharing high 

similarity between the borders of the W493 insertional cassette and the F. graminearum FGSG_12038 locus: 
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Left end of amplified cluster (1.727 bp) 85% identity, and right end of amplified cluster (1.858 bp) 94% identity 

which may have guided homologous integration of the W493 cassette in the FGSG_12038 locus, outcompeting 

the likelihood of integration in the β-Tubulin locus (Figure 1D). Fg32-6 sequencing reads mapped to one 

additional position near FGSG_08443‒08448 on chromosome 2, and Fg32-8 mapped to two positions near 

FGSG_10045 and FGSG_09529‒09530 on chromosomes 1 and 4. The latter position being the β-Tubulin locus, 

however, diagnostic PCR with primers E024/E025 (Figure 1E) yielded a band identical to the reaction 

performed on F. graminearum wild type DNA (not shown), ruling out a potential insertion event in the β-

Tubulin locus in Fg32-8. Furthermore, filtered sequencing reads that mapped to the W493 gene cluster also 

included pSHUT3 backbone elements, suggesting both transformants had experienced integration of the vector 

backbone (Supplementary Figure S8). Open reading frames, terminator and promoter sequences of seven 

introduced genes in Fg32-6 were identical to F. pseudograminearum genomic reference (CM003200.1). A single 

discrepancy was observed in the ABC Transporter (FPSE_09185) of Fg32-8 displaying a putative substitution 

event resulting in the G1096D mutation.

Secondary metabolite analyses (Supplementary Figure S5B) of the two transformants showed that they were 

both able to produce W493 A and B, which was not observed in the wild type F. graminearum (Figure 4C). The 

levels of both compounds was to that observed in the F. pseudograminearum donor strain (Figure 4D). This 

observation comfirms all W493 pathway genes were integrated in the F. graminearum genome and were fully 

functional in both transformants. Since the two transformants Fg32-6 and Fg32-8 were constructed using two 

separate yeast recombination constructs (pSHUT3:32-06, pSHUT3:32-08), we assume PCR amplification and 

yeast recombination is a robust cloning tool for assembly of large intact gene clusters.
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4. Discussion 

We set out to develop a system for moving full size gene clusters into the well characterized F. graminearum. 

Cloning of biosynthetic gene clusters were based on yeast-mediated assembly of PCR-amplified segments into 

a linearized backbone including an auxotrophic selection marker. For constructs larger than 20 kb we found 

exchanging the origin of replication to CEN/ARS aided in yeast-mediated cloning success, which solves size 

limitation bottleneck when constructing large vectors for genomic integration in filamentous fungi. Others have 

overcome this problem by splitting the target clusters in two and transforming host organisms using multiple 

iterations and recyclable markers (Chiang et al., 2013; Nielsen et al., 2013; Yin et al., 2013). We conclude the 

application of yeast-mediated recombinatorial cloning is suitable reconstructing small and large fungal 

biosynthetic gene clusters, as it allows for construction of plasmids including all pathway genes that can be 

introduced into the fungal host in a single transformation.

Our initial intent was to introduce gene cluster DNA into Fg via ATMT (Frandsen et al., 2012). Consequently, the 

pSHUT backbone comprises elements from pBI121, including the low copy number origin of replication IncP 

providing stable replication of large plasmids in both E. coli and Agrobacterium (Komari et al., 2006). ATMT is a 

robust transformation tool that has served as the standard in several Fusarium studies (Romans-Fuertes et al., 

2016; L. Q. Sørensen et al., 2014). In our study, ATMT was successfully applied for introducing the smaller FCK 

gene cluster, on the contrary the transformation of the larger W493 cluster was only possible through PMT. 

However, similar observations has suggested a decreasing transformation efficiency with larger T-DNA inserts, 

and although one study reported introduction of up to 75 kb T-DNA inserts in F. oxysporum f. sp. lycopersici via 

ATMT, their efforts yielded few antibiotic resistant transformants which did not harbour intact T-DNA inserts 

(Takken et al., 2004). 
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Some strains of Agrobacterium have been reported be unsuitable to stably carry large plasmids (Song et al., 

2003). To investigate this problem Agrobacterium strains were maintained on selective LB medium containing 

kanamycin. Plasmid DNA isolated from LBA4404::pSHUT3:32-06 and LBA4404::pSHUT3:32-08 were analyzed 

with PCR using the same primers as used for confirming correct recombination assembly of plasmids in yeast 

(data not shown). PCR analysis verified plasmid integrity in Agrobacterium strains. However, as we did not 

obtain any transformants with pSHUT3:32 (T-DNA; 57.776 bp) we propose the existence of an undefined upper 

microphysical size limitation for T-DNA integration in F. graminearum.

In an attempt to optimize the ATMT protocol, we changed the acetosyringone concentration during the 

Agrobacterium virulence factor-induction and Agrobacterium-fungal co-cultivation steps. We found increasing 

acetosyringone concentration to 500 µM in these two steps resulted in a significant increase in number of 

resistant mutants appearing per plate (Supplementary Table T8). 10 randomly selected Fg::pSHUT3-32 (empty 

vector) isolates were analyzed by fungal colony PCR. 9 out of 10 colonies displayed recombination between 

vector and the target locus (data not shown). However, this modification did not aid the transformation with 

the large gene cluster. In conclusion, ATMT serves as a robust tool resulting in single integration events (Idnurm 

et al., 2017) suitable for smaller modifications in Fusarium, such as promoter swapping (Wollenberg et al., 

2017) or introduction and heterologous expression of smaller biosynthetic genes. 

Transformation with the larger W493 gene cluster was only possible through protoplast transformation. 

Protoplasting is used in Fusarium studies (Connolly et al., 2018), although ATMT has been proposed to be a 

better method (Idnurm et al., 2017). The need for high amounts of plasmid DNA creates a bottleneck, which 

poses a problem since larger constructs need to carry a low copy origin of replication in order to facilitate 

propagation in E. coli. However, sufficient plasmid can be obtained with generic plasmid isolation kits from 

large culture volumes or by pooling several preps. Furthermore we recommend linearizing plasmid DNA with 
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restriction endonucleases cutting inside the plasmid backbone to promote increase in yield of recovered PMT 

transformants (Supplementary Table T9). Another disadvantage in the protoplast transformation is the risk of 

ectopic or multiple integration events, as observed in the Fg32-6 and Fg32-8 transformants.This could be 

caused by the flanking FgTUB-Left and FgTUB-Right regions (700 bp) being too short to promote targeted 

recombination. In other studies reasearchers have used homology segments up to 1000-1500 bp in size 

(Bahadoor et al., 2018; Frandsen et al., 2012), whilst other have used as little as 500 bp (Gaffoor et al., 2005). In 

addition, genome sequencing hinted the W493 cluster had, in both transformants, recombined with the 

FGSG_12038 locus to which the gene cluster ends exert high sequence similarity. To our surprise, the gene 

cluster could have integrated in the FGSG_12038 locus through homologous recombination. 

Heterologous expression is potentially the most universal strategy to unlock the biochemical potential of silent 

gene clusters (Clevenger et al., 2017; Kakule et al., 2015). According to genomic analyses, >35 NRPS clusters are 

uncharacterized within the Fusarium pan-genome (Hansen et al., 2015), underlining the potential of 

heterologous expression strategies, such as this work, as an avenue for tapping into novel chemical diversity. 

Single gene PKS (Fujii et al., 1996; Hansen et al., 2011), NRPS (Boecker et al., 2018; Brandenburger et al., 2017; 

Geib et al., 2019) and hybrid synthases/synthetases (Munawar et al., 2013) have previsouly been 

heterologously expressed successfully in filamentous fungi and yeasts, predominantly in the species A. oryzae, 

A nidulans and S. cerevisiae. Yeast expression provides a high-throughput platform for activation of silent 

biosynthetic genes (Harvey et al., 2018), however, correct intron splicing of fungal genes, the requirement of 

specialized compartmentalization, and the absence of rare substrates creates challenges that can halt the 

metabolite formation (Kupfer et al., 2004; Roze et al., 2011; Strieker et al., 2010). Previous studies focusing on 

heterologous expression of biosynthetic pathways have, without exception, all utilized promoter reconstitution 

for activation of cluster specific transcription factors (Nielsen et al., 2013; Sakai et al., 2008; Yin et al., 2013) or 

all cluster genes (Fujii et al., 2016; Heneghan et al., 2010; Itoh et al., 2010) or for overexpression of a global 
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regulator like LaeA (Sakai et al., 2012). Alternatively, biosynthetic gene expression can be controlled using 

polycistronic expression cassettes separating genes with cleveage peptide signals (Hoefgen et al., 2018; 

Schuetze and Meyer, 2017), however such emerging methods are yet to be implemented for species of 

Fusarium. Fusing biosynthetic genes to alternative strong or inducible promoters serves multifold purpose; 

ensures expression and promotes, in theory, higher metabolite yield (Boecker et al., 2018; Kakule et al., 2015) 

which eases detection and metabolite isolation for functional or chemical analyses. In our experimental design 

we did not enhance the gene expression through genetic manipulation, as the F. pseudograminearum genes 

fused to their original promoters/terminators were functional in synthesizing the expected products in F. 

graminearum. 

The crown rot causing F. pseudograminearum was originally regarded as a member of the F. graminearum 

speciation, but was later recoqnized as an individual species (Aoki and O’Donnell, 1999). The two species 

display separate morphological features and their genomes reveal a handful of noticeable differences: While 

they share 13 PKSs and 15 NRPSs, F. graminearum comprises PKS1, PKS6, PKS52, NRPS7, NRPS8, NRPS17, 

NRPS18, while F. pseudograminearum holds the PKS40, NRPS32 and FCK genes (Brown and Proctor, 2016; 

Hansen et al., 2015; J. L. Sørensen et al., 2014). Lastly, F. graminearum causes head blight in cereals and form 

homothallic perithecia, while F. pseudograminearum is a heterothallic species (Aoki and O’Donnell, 1999). For 

activation of silent clusters in F. graminearum, controlling expression will be worth considering, especially for 

genes from less closely related species, because we do not know how phylogenetic distance effects the 

functionality of foreign genes (Rokas et al., 2018). It would be possible to develop a mixed method approach 

where promoter swapping is included in the vector assembly step. Alternatively, we can further modify and 

analyse gene clusters post introduction in the genome of F. graminearum, for instance applying recyclable 

markers allowing for several additional modifications (Connolly et al., 2018; Twaruschek et al., 2018). Finally, 
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expression of toxic metabolites can be controlled by inducible systems such as the tet-on promoters developed 

for F. fujikuroi (Janevska et al., 2017).

The pSHUT backbone is equipped with homology segments targeting integration towards the β-Tubulin locus. 

We chose this locus, as we have good experience expressing genes from this locus (Westphal et al., 2018b) and 

it resides in a euchromatic region of chromosome 4 (Connolly et al., 2013; Zhao et al., 2014). Meanwhile, we 

observed Fg32-6 and Fg32-8 transformants having potentially experienced several partial and ectopic cassette 

and backbone integration events. Unguided integration events may result in unintentional disruption of 

intrinsic genes, and result in unintended phenotypical changes compromising downstream experiments. 

However, in the context of using this system as a robust tool for production of biosynthetic compounds in F. 

graminearum, unintended sites and/or multi-copy insertion may be desirable and aid pathway characterization 

studies by providing higher production levels of intermediates or final cluster metabolites. Indeed the industrial 

strains of Penicillium chrysogenum used for penicillin production the producing cluster is present in multiple 

copies (Barredo et al., 1989; Smith et al., 1989).
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Tables

Table 1: yeast transformation reactions for SM cluster reconstruction in shuttle vectors
Gene cluster Fungal DNA inserted (kb) Shuttle vector n PCR fragments

Fp Cytokinin (FCK) 9.944 pSHUT1 (2µ) 3

Fp NRPS32-PKS40 (W493) 54.471 pSHUT3-32 (CEN4/ARSH4) 16
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Figure 1 Experimental work flow for cloning gene clusters and introducing gene clusters to the genomic DNA of F. 

graminearum. A. Structure of F. pseudograminearum W493 gene cluster and primer positions for PCR amplification of 16 

overlapping fragments (F1-F16) together comprising the full gene cluster (Supplementary Table T2). PCR fragments 

recombine with each other and the insertion site of linearized plasmid pSHUT3-32 through in vivo homologous 

recombination in S. cerevisiae. B. Structure of F. pseudograminearum FCK gene cluster and primer positions for PCR 

amplification (Supplementary Table T1). C. Resulting construct carrying an intact copy of the W493 gene cluster. D. PCR 

validation of an isolated plasmid construct carrying the intact gene cluster; reactions validate recombination in correct order 

by utilizing primers producing bands spanning areas of homologous recombination (Supplementary Table T5). E. Intended 

targeted homologous recombination between linearized plasmid and integration locus of F. graminearum. 

Figure 2 Biosynthetic pathway products in this study. A. Chemical structures of FCK pathway specific metabolites and 

intermediates. B. W493 biosynthetic pathway products. C. FCK biosynthetic gene cluster. D. W493 biosynthetic gene 

cluster. Shown in grey is homology to orthologous loci in F. graminearum PH-1 genome.

Figure 3 A. Mapping of FCK-cassette-associated reads to F. graminearum chromosomes 1, 2 and 3 and hypothetical 

chromosome 4 containing an inserted copy of the FCK gene cluster. B. Accumulated sequencing coverage of FCK gene 

cluster in β-Tubulin locus of mutant FgCK-1 (forward reads; orange, reverse reads; blue).  C. Chemical HPLC-HRMS 

analysis for FCK pathway metabolites in FgCK-1 mutant and parental wild type strain F. graminearum PH-1. Extracted ion 

chromatograms are displayed as colored graphs for every mass.

Figure 4 Mapping W493-cassette-associated reads to F. graminearum chromosomes 1, 2 and 3 and hypothetical 

chromosome 4 containing an inserted copy of the W493 gene cluster. A. Predicted cassette integration positions in 

transformant Fg32-6. B. Predicted cassette integration positions in transformant Fg32-8. C. Chemical HPLC-HRMS 
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analysis of F. pseudograminearum, F. graminearum parental and transformants Fg32-6 and Fg32-8. Extraction ion 

chromatograms for [M+H]+ masses: W493A (green) = 874.5284 ± 0.01 amu, W493B (orange) = 888.5440 ± 0.01 amu. D. 

Relative W493 A and B mass abundance in four fungi represented as an average from five technical replicates (only three 

replicates from Fg32-8). Error bars display standard deviation.
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Highlights

Heterologous production of the lipopeptide W493 and fungal cytokinins in F. graminearum

Yeast recombination enables reconstruction of large fungal gene clusters

Intact 10 and 54 kb foreign gene clusters were transformed via ATMT or PMT



  

FGB_2019_38_R2

Graphical abstract


