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Trajectory-Aided Maximum-Likelihood Algorithm
for Channel Parameter Estimation in
Ultra-Wideband Large-Scale Arrays

Xuesong Cai, Wei Fan, Xuefeng Yin, and Gert Frølund Pedersen

Abstract—Millimeter-wave with ultra-wide bandwidth available
and ability to pack massive number of antennas in a small
area is considered the key enabler for the future generation
communication systems. Accurate understanding and modeling
of the ultra-wideband propagation channel with large-scale
array configuration is essential. In this contribution, a realistic
spherical-propagation signal model considering the spatial non-
stationarity of path gain across the array elements is proposed. A
novel Trajectory-Aided Maximum-likelihood (TAMax) algorithm
is proposed to extract propagation parameters from the measured
data, since the existing high-resolution propagation parameter es-
timation algorithms are not applicable due to either prohibitively
high computation loads or assumption violations. In the proposed
TAMax algorithm, the high-dimensional Maximum-Likelihood
(ML) estimation problem is firstly decomposed into a sub-
problem where delays and amplitudes of MultiPath Components
(MPCs) are estimated at individual array elements. A novel
transform is then proposed to identify multiple MPC trajectories
in the delay-element domain. With interference cancellation and
fast initialization obtained in the proposed transform, spherical
propagation parameters are finally acquired via joint ML esti-
mation with significantly decreased searching spaces. Moreover,
a measurement campaign conducted at the frequency band of
27-29 GHz using a virtual uniform circular array is introduced,
where the proposed TAMax algorithm is applied and validated.

Index terms— Millimeter-wave, spherical wave propagation,

spatial non-stationarity, large-scale array, and ultra-wideband.

I. INTRODUCTION

The next fifth-generation communication system (5G) is ex-

pected to significantly improve the network capacity, data

rates and latency with greatly increased network flexibility

and efficiency while at the similar cost and energy dissipation

as today [1]. The prospect is expected to be provided by

increased bandwidth, massive Multiple-Input-Multiple-Output
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(MIMO), multi-user MIMO, new modulation waveforms, net-

work densification, etc. [2]. Since the bandwidth increase

can give the most direct capacity increase, millimeter-wave

(mmWave) with vast amount of available spectrum [3], [4]

has been considered the key enabler for 5G. Moreover, the

small wavelength of mmWave makes it practically feasible to

realize a large-scale antenna array in a small area [5]. Further,

the interference among densified small cells can be decreased

by the high power loss [6] of mmWave. To design advanced

techniques and evaluate system performance for the future

communication systems, it is vital to establish realistic channel

models for ultra-wideband communications in mmWave bands

with large-scale array configuration.

A. Channel characteristics

Measurement campaigns are indispensable to establish re-

alistic models for the ultra-wideband mmWave propagation

channel. Propagation channel parameters can then be extracted

from the measurement data for further investigations on chan-

nel properties. Compared with that of the sub-6 GHz frequency

bands, the mmWave propagation channel measured using

sounding signals with ultra-wide bandwidth and large-scale

array configuration mainly has the following new aspects that

need to be carefully considered.1 First, the large bandwidth

of the sounding signals (up to several GHz) significantly

improves the delay resolution, hence the ability to resolve

the Multipath Components (MPCs) in the delay domain.

Consequently, the assumption that the sounding signal is

narrowband across the array [7] might be violated. That is, the

impulse responses of the same path observed at different array

elements may “sit” on different delay bins. Second, due to

the advances of massive MIMO [8] and network densification

[9], distance between a transmitter and a receiver can become

much smaller. As a result, propagation paths can have non-

negligible elevation angles. Moreover, it has been a consensus

that the so-called 3D-beamforming [8] will be the key technol-

ogy, e.g., to combat human and vehicular blockage loss [10].

Therefore, propagation channel characteristics in the elevation

domain have to be carefully considered when conducting

measurement campaigns and/or parameter estimations. Third,

with the small wavelength and large-scale array aperture, the

1Note that these new aspects are considered in both channel sounding and
communication viewpoints.
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spherical wavefront curvature [11], [12] can also be observed.2

The investigations in [12], [14] have demonstrated that approx-

imating the spherical wavefront by plane-wavefront can lead to

severe model mismatch and result in unrealistic understanding

of the propagation channels. Fourth, spatial non-stationarity of

path gain across the large array aperture can be evident [15].

That is, the power of the same path may vary across the array.

Blockage could be an important reason, since the ability of

mmWave to diffract around obstacles such as human body

and furniture is limited [16]–[18]. To accurately model the

mmWave massive MIMO propagation channels, considerable

measurement-based efforts are still required. Hence, sophis-

ticated and complexity-efficient High-Resolution propagation

Parameter Estimation (HRPE) is vital and in necessity to

extract channel parameters from the measurement data.

B. Existing algorithms

Similar to those applied to the sub-6 GHz propagation chan-

nels, the estimation algorithms for mmWave channels can

be classified into spectra-based ones, subspace-based ones,

sparsity-recovery based ones and Maximum-Likelihood (ML)

based ones. The widely used spectra-based approach is to

obtain the joint angle-delay spectrum from the measurement

data by using the so-called Directional Scan Scheme (DSS)

with horn antennas [19]–[22]. Although it is simple and

straightforward, the horn antenna radiation pattern is embed-

ded in the extracted propagation channel characteristics. A

frequency invariant beamformer has been proposed in [23]

to estimate joint delay-azimuth spectrum, which is, however,

only applicable for Uniform Circular Arrays (UCAs). As rep-

resentatives of subspace-based algorithms, MUSIC (MUltiple

SIgnal Classification), ESPRIT (unitary Estimation of Signal

Parameter via Rotational Invariance Techniques) and their

variants can also be found in [24]–[28]. The limitations include

the deficiency in resolving large number of paths or a high

computation load. Sparsity recovery algorithms [29], [30] are

developed based on the assumption that the mmWave channel

exhibits sparsity in parameter domains (more measurement

verifications are still needed [31]). By exploiting specific

optimization principles, e.g. the convex optimization, channel

characteristics can be recovered.

Before embarking on the ML-based algorithms, the authors

would like to summarize that although the above algorithms

may have advantages of low complexity, they are deficient in

fully extracting the propagation parameters. For example, none

of the algorithms has considered the spherical propagation, and

2It is worth noting that in mmWave frequency bands, there nowadays
exist strong practical challenges in making very large antenna arrays work
in communication systems due to, e.g., hardware limitation and power
consumption. For moderate-size arrays, spherical-wavefront model is not that
practically important, and plane-wavefront can serve a good approximation.
Nevertheless, large antenna arrays have gained considerable academic in-
terests for 5G and beyond [8], [13] where spherical wavefront assumption
is necessary due to significantly increased Fraunhofer distance (see (1)).
Moreover, in propagation channel investigation viewpoint, the capabilities of a
sounding system usually surpasses the prior channel. In other words, channel
sounding campaigns usually exploit an array with a much larger aperture
than practical communication systems. To accurately estimate the channel
parameters, spherical wavefront has to be considered in this case.

some algorithms, e.g. the proposed frequency invariant beam-

former in [23], can only extract the delay and azimuth infor-

mation. Notwithstanding the probably higher complexity, ML-

based algorithms are able to fully estimate the parameters that

are properly defined in the signal model when compared to the

other algorithms. The most widely used ML-based algorithm

for sub-6 GHz propagation channel is the Space-Alternating

Generalized Expectation-maximization (SAGE) algorithm [32]

because of its low complexity. In [14], a HRPE algorithm

which is essentially based on the Expectation-Maximization

(EM) principle [33] was proposed for spherical mmWave

propagation channels, where only one iteration was applied to

reduce computation load to a certain degree. However, when

applied for the ultra-wideband propagation channels with

large-scale array configuration, these ML-based algorithms are

not suitable either in theory or practice. The reasons are as

follows. As elaborated in Sect. III, the SAGE algorithm is not

applicable due to the violation of 2D, narrowed and plane-

wave assumptions. As for the algorithms based on the EM

principle [14], [33], the computation load is too high due to

the high-dimensional joint parameter searching. In the authors’

previous work in [34], an ML-based algorithm which is only

applicable for UCA was also proposed to overcome the high

computation load of the joint ML estimation, wherein the UCA

phase-mode technique was exploited.

C. Motivation and contributions

As a critical signal processing tool in measurement-based

modeling for propagation channels in mmWave large-scale

arrays, sophisticated, accurate and complexity-efficient HRPE

algorithm is essential and in necessity. However, to the

authors’ best knowledge, a generalized complexity-efficient

HRPE algorithm which is applicable for a large-scale array in

arbitrary array configuration is still missing in the literature.

Under such circumstance, a novel trajectory-aided maximum-

likelihood (TAMax) algorithm with low computation load is

proposed in this paper. The main contributions and novelties

include:

• A generic signal model for the spherical propagation

channel with an arbitrary array geometry is proposed.

The realistic channel characteristics especially the spatial

non-stationarity in path gain across the array are included

in the proposed signal model. Classical estimation prin-

ciples, i.e. ML, EM and SAGE, are revisited with their

limitations discussed in detail.

• In the proposed TAMax algorithm for channel parameter

estimation, the high-dimensional ML problem is inten-

tionally decomposed into a sub-problem at individual

array elements, where only delays and complex ampli-

tudes of MPCs are required to be estimated with low

complexity. A novel low-complexity transform is then

proposed to identify and distinguish the multiple MPC

trajectories in the delay-element domain. Moreover, inter-

ference cancellations among MPCs and rough parameter

initializations for individual MPCs can also be obtained,

which results in a low-complexity final ML estimation

for all MPC parameters.

2



d
m
,ℓ

d ℓ

dmr

Spherical wave #ℓ

Spherical wave #ℓ′

φℓ

θℓ

z

y

x
O

L
as

t-
ho

p
sc

at
te

re
r

Last-hop
scatterer

Reference point

mth element

Blockage

Directive power lobe

Tx

Fig. 1: Spherical-wave propagations with spatial non-

stationarity.

• A measurement campaign at the frequency band of 27-

29 GHz has been conducted using a UCA with radius

of 0.25 m. The spatial non-stationarity in path gain was

intentionally produced by the blockage of a metal cylin-

der. The proposed signal model and the performance of

the proposed algorithm are validated by exploiting the

measurement data.

The rest of the paper is structured as follows. Sect. II elaborates

the signal model and formulates the problem. Important state-

of-the-art HRPE algorithms are revisited in Sect. III. Sect. IV

elaborates the proposed TAMax algorithm. In Sect. V, the

measurement campaign and the application of the proposed al-

gorithm are detailed. Finally, conclusions are given in Sect. VI.

Throughout the paper, we use an italic letter to denote a scalar,

a bold letter in lower case for a vector, and a capitalized bold

letter3 for a matrix.

II. PROBLEM FORMULATION

Let us consider the case as illustrated in Fig. 1 where the

antenna array has M elements. The far-field propagation is

generally assumed for the previous generation communication

systems operating at the sub-6 GHz frequency and with a small

element count M , i.e. a small array aperture. Under the as-

sumption of plane wavefront, the directions of arrivals (DOAs)

of the same propagation path at different array elements are the

same. However, in the 5G mmWave communications and the

corresponding propagation channel investigations, the element

count M could be hundreds and even more than a thousand

[2], [8], [15]. As a result, the Fraunhofer distance [35, Ch.

2.2.3]

dfr =
2D2

λ
(1)

increases significantly, with D denoting the array aperture

and λ the wavelength. This necessitates the consideration of

spherical wavefront for a large-scale array in mmWave com-

munications, since the plane wave assumption is considered

3We also use a capitalized bold letter to denote a channel parameter vector,
in which case the parameter vector can be considered as a matrix with a
dimension as one.

reasonable only when the distance from the source point to

the array is larger than the Fraunhofer distance.

In the underlying propagation channel model as illustrated in

Fig. 1, we assume that totally L spherical-wave propagation

paths impinge into the large-scale array. Referring to the

selected reference point, the ℓth propagation path can be

characterized by the propagation delay, azimuth, elevation,

spherical distance and complex attenuation. We denote the

parameter set as Γℓ = [τℓ, φℓ, θℓ, dℓ, αℓ]. It is worth noting that

dℓ represents the distance between the reference point and the

spherical wavefront center observed by the array. dℓ is only

directly related to τℓ by light speed c as dℓ = cτℓ for Line-

of-Sight (LoS) path and Non-LoS (NLoS) paths with only

specular reflections occurred along their propagation routes

[12]. Otherwise, dℓ is less than the total propagating distance

cτℓ. In addition, αℓ is complex-valued due to the fact that a

propagation path can experience phase shift and power decay

along its propagation route.

The frequency response of the ℓth path Hℓ at the reference

point is formatted as

Hℓ(f) = αℓe
−j2πfτℓ (2)

where f represents the frequency range4. In the case where

the frequency range is discretely sampled with K frequency

points, we define f = [f1, · · · , fK ]. Therefore, Hℓ(f) is

a complex-valued matrix with dimension of 1 × K, i.e.

Hℓ(f) ∈ C
1×K . The spherical wavefront has two effects. One

is that the phases of the mth element’s responses change with

respect to the reference point. The other is that the path power

also changes due to the distance difference. Therefore, the

frequency response of the ℓth path at the mth array element

Hm,ℓ(f) ∈ C
1×K then reads

Hm,ℓ(f) = rm(dm,ℓ)
‖ dℓ ‖
‖ dm,ℓ ‖

e−j2πf
‖dm,ℓ‖−‖dℓ‖

c ⊙ Hℓ(f)

(3)

In (3), dℓ represents the vector from the the last source point

to the reference point. Specifically,

dℓ = −[dℓ sin θℓ cosφℓ, dℓ sin θℓ sinφℓ, dℓ cos θℓ]
T (4)

where | · |T represents the transpose operation. dm,ℓ is the

vector from the the source point to the mth array element,

which is formatted as

dm,ℓ = dℓ + dmr (5)

where dmr is the vector from the reference point to the mth

array element that can be determined according to the array

geometry. ‖ · ‖ denotes the Euclidean norm of the argument,

⊙ represents the entry-wise product, and c denotes the light

speed. Moreover, rm(dm,ℓ) indicates the extra response in-

duced by the radiation pattern rm of the mth array element in

4The mmWave propagation channel is usually measured by sweeping a
frequency band using a vector network analyser (VNA) in most channel
measurement campaigns. Thus, frequency response is exploited herein. In
the case where channel impulse responses are measured in time domain, the
frequency responses can be obtained by Fourier transform.
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the direction of dm,ℓ. The contribution of the ℓth path across

the array can be expressed as

H(f;Γℓ) = [H1,ℓ, · · · ,HM,ℓ]
T (6)

where H(f;Γℓ) is a complex-valued matrix with dimension of

M × K, i.e. H(f;Γℓ) ∈ C
M×K . The signal model in (6)

assumes that the power is evenly distributed on the sphere

wavefront. However, it can be violated due to the large array

aperture. Among the other realistic propagation mechanisms,

the scattering can lead to directive power lobe [36], and the

array elements can be partially blocked. These effects can be

much more obvious when the large-scale array is near to a

scatterer causing directive lobe or a blocking object that cannot

block all the elements. Although the spatial non-stationarity of

the path gain at different array elements has been observed

[15] in the literature, it has not been considered in the

model assumption for the propagation parameter estimation

as far as we are concerned. To more realistically describe the

propagation channel, we propose a novel signal model based

on (6) as

H(f;Θℓ) = [β1,ℓH1,ℓ, · · · , βM,ℓHM,ℓ]
T (7)

where H(f;Θℓ) ∈ C
M×K , Θℓ = [Γℓ,Bℓ], and Bℓ =

[β1,ℓ, · · · , βM,ℓ] contains nonnegative real values. As an exam-

ple, βm,ℓ = 0 means that the ℓth path is completely nonvisible

to the mth element.

The array output reads

Y(f) =

L
∑

ℓ=1

H(f;Θℓ) +

√

σ2

2
N(f) (8)

where N(f) denotes the complex symmetric white Gaussian

noise with both its real and imaginary parts as independent

Gaussian variables of zero means and unit variances. For

notation convenience, we further denote

H(f;Θ) =
L
∑

ℓ=1

H(f;Θℓ) (9)

where Θ = [Θ1, · · · ,ΘL] contains all the channel propaga-

tion parameters, which is of interest to be estimated.

III. MAXIMUM LIKELIHOOD BASED ESTIMATORS

Estimators based on the ML principle can be derived to solve

the problem defined in (8) given the empirically measured Y.

In the sequel, important ML-based estimators applied in the

defined problem will be briefly discussed in terms of the basic

principles and the limitations.

A. ML algorithm

The log-likelihood function of Θ given the observation Y is

formatted as [7], [32]

Λ(Θ;Y(f)) , − 1

σ2
‖ vec{Y(f)} − vec{H(f;Θ)} ‖2 (10)

where vec{·} denotes the vectorization of the argument matrix.

The ML estimation (MLE) results of Θ can be obtained by

maximizing the log-likelihood function. That is,

Θ̂ = argmax
Θ

Λ(Θ;Y) (11)

However, the global maximum of Λ cannot be expressed in

closed-form. The computation complexity is hence fatally high

due to the high dimension ([6 +M ]L) of Θ, which prohibits

its application in practice.5

B. EM algorithm

The expectation-maximization (EM) estimation [33], [37] is

based on the operation that the incomplete data (i.e. the observ-

able data Y) can be decomposed into multiple (unobservable)

complete data C(f;Θℓ) as

Y(f;Θ) =
L
∑

ℓ=1

C(f;Θℓ) (12)

with

C(f;Θℓ) = H(f;Θℓ) +

√

ωℓσ2

2
Nℓ(f) (13)

where Nℓ’s are independent complex symmetric white Gaus-

sian noises have the same properties with N in (8), and the

nonnegative ωℓ’s meet
∑L

ℓ=1
ωℓ = 1 for the decomposition

of N. The EM algorithm includes E-step and M-step. In the

E-step, the conditional expectation of the log-likelihood of

Θℓ for C(f;Θℓ) is calculated, and the obtained log-likelihood

is then maximized in the M-step. By iteratively updating

parameters via E-steps and M-steps, the final EM estimation

results Θ̂ can be obtained. Specifically, in the E-step, the

conditional expectation of the log-likelihood of Θℓ given Y

and assuming Θ = Θ
′ is formatted as6

Λ(Θℓ; Ĉ(f;Θ′
ℓ)) , − 1

ωℓσ2
‖ vec{Ĉ(f;Θ′

ℓ)} − vec{H(f;Θℓ)} ‖2

(14)

where Ĉ(f;Θ′
ℓ) denotes the conditional expectation of the

complete data C(f;Θℓ) given Y and Θ
′ that reads

Ĉ(f;Θ′
ℓ) =

√
ωℓ

[

Y − H(f;Θ′)
]

+ H(f;Θ′
ℓ) (15)

In the M-step, the log-likelihood is maximized as

Θ
′′
ℓ = argmax

Θℓ

Λ(Θℓ; Ĉ(f;Θ′
ℓ)) (16)

to update Θ
′
ℓ. Then Θ

′′
ℓ is exploited as Θ

′
ℓ for the next

iteration. Note that the proper initialization of Θ
′ in the

first iteration and the proper selection of ωℓ’s can optimize

the convergence [37]. By applying the EM principle, the

[6 +M ]L dimension problem can be decomposed into L
separate [6 +M ] problems plus iterations. Nevertheless, the

computation complexity is still very high.

5The number “6” corresponds to τℓ, φℓ, θℓ, dℓ and the real part and
imaginary part of αℓ. The number M corresponds to the βm,ℓ’s.

6Θ
′ is initialized as Θ0 in the first iteration and then updated iteratively

as the result obtained in the M-step of the previous iteration.
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C. SAGE algorithm

Compared to the EM principle, the SAGE principle [32]

mainly has two improvements. One is that it attempts to

decompose the maximization problem (14) into multiple one-

dimension maximization problems, e.g. in delay, angular and

Doppler frequency domains, respectively. The decomposition

is based on the assumption that the complete data C(f;Θℓ)
contains multiple components (spaces) that follow orthogonal

stochastic measures (OSM). The other improvement is that

in each iteration, the SAGE principle exploits the already

estimated MPC parameters immediately for calculating the

expectation of the next path’s complete data, while they are

not updated until the next iteration in the EM principle.

Readers are referred to Fig. 3 and Fig. 5 in [32] for an explicite

comparison between EM and SAGE algorithms. The SAGE

algorithm has been widely used in the propagation research

in the past decades for its low computation complexity and

faster convergence rate. However, in the ultra-wideband large-

scale array systems, the narrowband assumption or the so-

called small-scale assumption [7] is violated. Moreover, the

large-scale aperture necessitates the consideration for the 3D

spherical propagation (i.e. θℓ and dℓ) and the spatial non-

stationarity in path gain (i.e. βm,ℓ’s). The failure to design

orthogonal spaces for parameters contained in Θ opposes the

application of SAGE. Nevertheless, investigations such as [15],

[38] have been done by dividing the large-scale array into

multiple small arrays or selecting a small fraction of the ultra-

wide bandwidth to apply the SAGE algorithm, sacrificing the

resolution and the large-scale array’s ability in sensing the

spherical propagation. Further, one propagation path could

be presented in the form of a cluster when associating the

channel characteristics observed at these small arrays, resulting

in increased complexity yet decreased accuracy of channel

models.

IV. THE PROPOSED TAMAX ALGORITHM

In this section, we propose a complexity-efficient estimator

which is applicable for the problem formulated in Sect. II.

The details of the proposed TAMax algorithm are presented

in the sequel, where its low-complexity is also demonstrated

and discussed.

A. Channel estimation at individual array elements

Let us revisit the frequency response at the mth array element

contributed by the ℓth path. Considering the spatial non-

stationarity in path gain, it can be re-written based on (3)

as

Hm,ℓ(f) = αm,ℓe
−j2πfτm,ℓ (17)

where

αm,ℓ = αℓβm,ℓ

‖ dℓ ‖
‖ dm,ℓ ‖

rm(dm,ℓ) (18)

and

τm,ℓ =
‖ dm,ℓ ‖ − ‖ dℓ ‖

c
+ τℓ (19)

For notation clarity, we denote Hm,ℓ(f) as Hm(f;Ωm,ℓ) with

Ωm,ℓ = [αm,ℓ, τm,ℓ]. The received signal Ym(f) ∈ C
1×K

contributed by all the L paths at the mth array element then

reads

Ym(f) = Hm(f;Ωm) +

√

σ2

2
Nm(f) (20)

where

Hm(f;Ωm) =

L
∑

ℓ=1

Hm(f;Ωm,ℓ) (21)

with Ωm = [Ωm,1, · · · ,Ωm,L], and Nm(f) denotes the

complex symmetric white Gaussian noise with both its real

and imaginary parts as independent Gaussian variables of zero

means and unit variances. (21) demonstrates that at a specific

array element, the propagation channel with L propagation

paths can be represented by parameters αm,ℓ’s and τm,ℓ’s.

That is, the high dimension Θ is compressed into the low

dimension Ωm at this specific array element.

Given the empirically measured Ym, Ωm can be estimated

according to the EM principle or SAGE principle. SAGE

principle is exploited herein for its faster convergence rate.

Specifically, in the E-step, Ĉm(f;Ω′
m,ℓ) is calculated using

(15) with Y, C, H and Θ replaced with Ym, Cm, Hm and Ωm,

respectively. Similarly, the M-step is formulated in (14) and

(16) with Y, C, H and Θ replaced with Ym, Cm, Hm and Ωm,

respectively. Furthermore, considering the quasi-orthogonality

among Hm(f;Ωm,ℓ)’s, the M-step in (14) can be approximated

as

τ ′m,ℓ = argmax
τ

vec{Hm(f; [1, τ ])}∗vec{Ĉm(f;Ω′
m,ℓ)} (22)

where (·)∗ represents Hermitian transpose of the argument.

Then α′
m,ℓ is obtained as

α′
m,ℓ =

1

K
vec{Hm(f; [1, τ ′m,ℓ])}∗vec{Ĉm(f;Ω′

m,ℓ)} (23)

Note that the superscripts of τ ′m,ℓ and α′
m,ℓ only have one “′”

because they are updated immediately after the M-step in the

SAGE principle.

It is intuitive that the complexity in estimating Ωm is low due

to the low dimension order. Moreover, the accuracy is guaran-

teed by the SAGE principle. That is, the delay resolution can

be as 1/5B with B denoting the bandwidth, which has been

practically demonstrated in [32]. The estimation results for all

the M array elements are denoted as Ω̂ = [Ω̂1, · · · , Ω̂M ]. The

delays τ̂m,ℓ’s and complex attenuation coefficients α̂m,ℓ’s of

the L paths estimated for individual array elements are written

as rows in Ω̂
τ ∈ R

M×L and Ω̂
α ∈ C

M×L, respectively for

further processing.

B. Path trajectory identification

Thanks to the ultrawide bandwidth in the mmWave frequency

bands, multiple propagation paths can be well separated in

delay domain. Further, due to the large array aperture, the

delay trajectory of one path, i.e. the variation of τm,ℓ, across

the array element can also be observed. It is feasible to

distinguish the multiple propagation paths by examining the

trajectories in Ω
τ . To effectively identify the trajectories of

individual propagation paths, we propose a novel transform
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(a) Delay trajectory of one propagation path with geometry parameter
set of (50 ns, 180◦, 90◦, 3m) across a UCA. The UCA has 360 ele-
ments located on its perimeter of diameter of 0.5 m. The path delays at
the 50, 150 and 300th elements are also indicated in this figure.
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(b) The (τ , φ, θ, d) curves representing the countless delay trajectories
that pass through the three points as indicated in Fig. 2(a), respectively.
Parameters τ and φ of the path trajectory are solved by checking the
intersection point. For illustration purpose, θ and d are fixed as 90◦

and 3 m respectively.

(c) The proposed transform (27)-(29) applied for the delay trajectory as
illustrated in Fig. 2(a). τth is chosen as 0.075 ns to tolerate the dropping
of dℓ, i.e. d = +∞. This corresponds to 0.15

B
with bandwidth B as

2 GHz, which is smaller than the delay resolution 1

5B
. For illustration

purpose, φ is ranged from 0 to 360 degrees, and θ is ranged in (0, 30,
60, 90) degrees.

Fig. 2: An example illustration of the proposed transform.

for Ω
τ . It is known from (19) that the delay trajectory of

one propagation path across the elements is jointly determined

by the geometrical parameters of the reference point, i.e.,

τℓ, φℓ, θℓ and dℓ. In other words, given a path delay τm,ℓ

observed at the mth array element, there are countless delay

trajectories that can pass through τm,ℓ, i.e., with their delays

at the mth element equal τm,ℓ. These trajectories can be

defined by different parameter sets (τ, φ, θ, d)’s observed at

the reference center that meet

τ = τm,ℓ −
‖ dm,ℓ ‖ − ‖ d ‖

c
(24)

As an example, Fig. 2(a) illustrates a delay trajectory across

the array elements of a UCA. Totally 360 array elements

locate on the perimeter of diameter of 0.5 m, and the reference

point is selected as the UCA center with geometry parameters

(τℓ, φℓ, θℓ, dℓ) as (50 ns, 180◦, 90◦, 3m). Three delay points at

the 50, 150 and 300th elements are also indicated in Fig. 2(a).

For each of the three points, there are countless of possible tra-

jectories that pass through it. Fig. 2(b) illustrates three curves

in the (τ, φ, θ, d) domain that represent these countless delay

trajectories passing through the three points, respectively. It

can be observed from Fig. 2(b) that the three curves intersect

at the point whose (τ, φ, θ, d) indicates the delay trajectory

passing through the three points simultaneously. In fact, all the

360 curves in the (τ, φ, θ, d) domain that correspond to the 360

points in the (τm,l,m) domain intersect at this point. To count

how many curves intersect at a specific point in (τ, φ, θ, d)
domain, we propose to transform Ωτ from (τm,l,m) domain

to (τ, φ, θ, d) domain as

T (τ, φ, θ, d; Ωτ ) =
∑

m,ℓ

δm,ℓ(τ, φ, θ, d) (25)

where

δm,ℓ(τ, φ, θ, d) =

{

1 if (24) holds

0 otherwise
(26)

This way, by checking the maximum/maxima in T (τ, φ, θ, d),
delay trajectory/trajectories can be identified. Specifically, in

the example as illustrated in Fig. 2(c), the maximum of T
can be found at (50 ns, 180◦, 90◦, 3m) as 360. In addition,

the maximum can be less than 360 if the path trajectory is

totally blocked at some array elements.

However, the following facts for the empirically estimated

Ω̂τ need to be further considered. i) The estimated τ̂m,ℓ’s in

Ω̂τ are discrete; ii) The root-mean-square-errors between the

estimated τ̂m,ℓ’s and the real delays are statistically bounded

by the so-called Cramer-Rao lower bounds. Therefore, a delay

threshold τth is involved to modify the proposed transform as

T (τ, φ, θ; Ω̂
τ
) =

∑

m,ℓ

δm,ℓ(τ, φ, θ) (27)

where

δm,ℓ(τ, φ, θ) =

{

1 if (29) holds with d = +∞
0 otherwise

(28)

with

|τ̂m,ℓ −
‖ dm,ℓ ‖ − ‖ d ‖

c
− τ | ≤ τth (29)

where | · | represents the absolute value of the argument. The

delay trajectory that passes through the most number of τ̂m,ℓ’s

can be identified as

(τ ′ℓ, φ
′
ℓ, θ

′
ℓ) = argmax

τ,φ,θ
T (τ, φ, θ; Ω̂

τ
) (30)

The identified path trajectory is denoted as Ω̂ℓ (ℓ = 1 denoting

the first identified trajectory). The delay entries Ω̂
τ

ℓ in Ω̂
τ

and the corresponding attenuation entries Ω̂
α

ℓ in Ω̂
α

can be

retrieved straightforward according to (30) and (29). To find

the multiple delay trajectories of the multiple propagation

paths, Ω̂τ and Ω̂α are updated respectively by removing Ω̂τ
ℓ ’s

and Ω̂α
ℓ ’s that have been already identified, and the above
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process repeats till no reasonable trajectory can be identified.

The stop criterion is that the maximum of current T is

below the pre-defined threshold Mth. Note that in (28)-(29)

plane wave assumption (d = +∞) is approximated to reduce

computation complexity. The feasibility of the approximation

is as follows: i) The “path trajectory identification” step is

an intermediate estimation step. The objective is to identify

trajectories of multiple propagation paths and obtain rough

(rather than high-resolution) estimation results of their delays

and angles. ii) Compared to the other geometry parameters,

dℓ has an insignificant impact on the delay trajectory. In other

words, the trajectory variation caused only by dℓ variation

is insignificant, which is demonstrated by the simulation as

illustrated in Fig. 2. It can be observed from Fig. 2(c) that it is

fine to identify the trajectory with d omitted after introducing

the tolerance τth, although the real d is rather small as 3 m.

iii) It dose not mean that the spherical information has been

omitted, though plane wave approximation is assumed in the

trajectory identification. All the spherical information can be

retrieved by exploiting the delays and complex amplitudes of

path trajectories for high-resolution estimation as elaborated

in Sect. IV-C.

In the above discussed trajectory identification step, the main

computation load lies in (27)-(29), where filters as
‖d‖−‖dm‖

c

should be calculated for different parameter pairs, and then

added (or subtracted) to each elements included in Ω̂
τ

. Nev-

ertheless, the filters can be calculated only once and stored

to save computation source. Moreover, only in the first MPC

trajectory identification, all the elements in Ω̂
τ

are involved to

calculate T . For the following MPC trajectory identifications,

one can calculate T (τ, φ, θ; Ω̂τ
ℓ−1

) of the previous identified

trajectory and subtract it from the current T to update T .

Since the element number in Ω̂τ
ℓ−1

is not large, the complexity

is low. This is a strong advantage compared to the other

classical techniques such as beamforming. In the beamforming

techniques, power spectrum has to be recalculated for every

iteration wherein a matrix with dimension M ×K is always

involved in multiplications and additions. Further, the interfer-

ence among paths cannot be easily removed.

C. Estimation for the spherical propagation parameter Θℓ

For an identified Ω̂ℓ, its estimated complete data Ĉ(f; Ω̂ℓ) can

be obtained using (17) with Ω̂
τ

ℓ and Ω̂
α

ℓ . The propagation

parameters τℓ, φℓ, θℓ and dℓ can be estimated by solving the

following 4D ML problem

{τ̂ℓ, φ̂ℓ, θ̂ℓ, d̂ℓ} = arg max
τ,φ,θ,d

vec{H(f;Γa)}∗vec{Ĉ(f; Ω̂ℓ)}
(31)

where H(f;Γa) is calculated using (6) with Γa = [τ, φ, θ, d, 1].
The complexity of the 4D searching is high. However, since

only one propagation path is considered, we can decompose

the 4D problem into a 3D problem and a 1D problem as

follows. Firstly, φℓ, θℓ and dℓ can be estimated by solving

the following 3D problem

{φ̂ℓ, θ̂ℓ, d̂ℓ} = argmax
φ,θ,d

vec{H(fk;Γb)}∗vec{Ĉ(fk; Ω̂ℓ)}
(32)

where H(fk;Γb) is calculated using (6) with Γb =
[0, φ, θ, d, 1], and fk is a fixed frequency point. The low-

complexity of this step lies in the facts that the searching

space is significantly narrowed down referring to φ′
ℓ, θ

′
ℓ and d′ℓ

(d ≤ cτ ′ℓ) obtained in (30), and that only one frequency point

is exploited. Based on the estimation results {φ̂ℓ, θ̂ℓ, d̂ℓ}, τℓ is

estimated by solving

τ̂ℓ = argmax
τ

vec{H(f;Γc)}∗vec{Ĉ(f; Ω̂ℓ)} (33)

where Γc = [τ, φ̂ℓ, θ̂ℓ, d̂ℓ, 1]. The searching space of τ is

also decreased significantly due to its initialization τ ′ in

(30). With estimated geometry parameter set {τ̂ℓ, φ̂ℓ, θ̂ℓ, d̂ℓ},

antenna radiation pattern and path loss effects can be easily

removed from Ω̂
α

ℓ . The complex attenuation coefficient α̂ℓ is

then chosen as the entry with the highest power in Ω̂
α

ℓ . The

parameter set B̂ℓ can be determined as the element-wise ratio

of |Ω̂α

ℓ | to |α̂ℓ|.

D. Algorithm implementation procedure

The following pseudo-codes concisely summarize the imple-

mentation procedure of the proposed algorithm.7

Algorithm 1: Implementation procedure of the proposed

algorithm:

Input: Empirically measured Y(f) ∈ C
M×K

Output: Channel propagation parameter Θ

1 Obtain Ω̂ (Ω̂
τ

and Ω̂
α

) at individual array elements

olaaccording to Sect. IV-A;

2 Calculate T (τ, φ, θ) with Ω̂
τ

according to (27)-(29);

3 Let ℓ = 1;

4 while True

5 if ℓ > 1
6 T = T − T (τ, φ, θ; Ω̂τ

ℓ−1
);

7 end if

8 if Tmax (the maximum of T ) ≥ Mth

9 Retrieve Ω̂ℓ according to Sect. IV-B;

10 Estimate Θ̂ℓ from Ω̂ℓ according to Sect. IV-C;

11 else

12 break;

13 end if

14 ℓ = ℓ+ 1;
15 end while

V. ALGORITHM APPLICATION IN REAL CHANNELS

In this section, a measurement campaign at the frequency

band from 27 GHz to 29 GHz by using a UCA with radius

of 0.25 m is introduced. Note that the proposed algorithm

is generalized for an antenna array with arbitrary geometry.

With available measurement facility in our case, a UCA is

exploited. The application of the proposed TAMax algorithm

and its performance in the real channels are presented and

discussed.

7Readers can refer to [12], [32] for the Cramer-Rao-Lower-Bounds (sta-
tistical precision or performance which can be asymptotically achieved by
a ML estimator) derived for plane-wavefront and spherical-wavefront cases,
respectively.
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A. Measurement scenarios and specifications

The measurement campaign [39] was conducted in a meeting

room of size 7.3 m×5.5 m as illustrated in Fig. 3 where the

objects existing in the room are also indicated. Fig. 4 illus-

trates a photo taken during the measurement preparation. The

transmitter (Tx) and receiver (Rx) were fixed at the locations as

indicated in Fig. 3. The measurement system outlined in [40]

based on a Vector Network Analyzer (VNA) was used to excite

the propagation channel. The system swept the frequency

range from 27 GHz to 29 GHz with 750 (K = 750) frequency

points. That is, the frequency step was around 2.67 MHz which

corresponds to a maximum observable delay of 375 ns and a

maximum propagation distance of 112.5 m. In the Tx side,

an omnidirectional antenna [41] was equipped on a rotator.

The rotator was programmed to counterclockwise rotate the

Tx antenna to different positions on the perimeter with radius

of 0.25 m. The start position located at 0 degree as indicated

in Fig. 3, and totally 360 (M = 360) rotation steps were

performed to cover a circle. The distance between neighboring

Tx positions of the formed virtual UCA was 4.4 mm. This is

smaller than the half wavelength at 29 GHz so that the spatial

(a)

(b)

Fig. 5: CPDPs observed in the (a) LoS scenario and (b) OLoS

scenario.

characteristics can be recorded without aliasing. The height of

the Tx antenna to the floor was 1.3 m, and the transmitting

power was set to 12 dBm. Another omnidirectional antenna

(A-INFO-SZ-2003000/P) with the same height was exploited

as the Rx antenna. The measurement was firstly carried out in

the empty meeting room. Then the measurement was repeated

with a hollow metallic cylinder placed at the green point

as indicated in Fig. 3 with height of 1.55 m, diameter of

0.317 m and thickness of 1 mm. In the former case, the Rx

was perfectly in the Line-of-Sight (LoS) of all the 360 virtual

Tx positions. We denote this scenario as LoS scenario. In the

latter case, due to the presence of the metallic cylinder, the

LoS directions between the Rx and the Tx positions were

partially blocked. The spatial non-stationarity of the LoS path

gain across the array elements can be clearly observed. We

denote this scenario as Obstructed-LoS (OLoS) scenario.

B. Empirically measured channels

To gain preliminary insights into the propagation characteris-

tics, the channel impulse responses y(m, τ)’s were obtained by

applying the Inverse Discrete Fourier Transform (IDFT) to the

empirically measured Y(f)’s in the two scenarios with respect

to f . Fig. 5(a) and Fig 5(b) illustrate the Concatenated Power

Delay Profiles (CPDPs), i.e. |y(m, τ)|2’s for the LoS scenario

and OLoS scenario, respectively. The horizontal axis repre-

sents the propagation delay, the vertical axis denotes the array

element index m, and the color indicates the received power in

dB scale. It can be observed from both Fig. 5(a) and Fig 5(b)

that multiple trajectories exist. It is obvious that the LoS path at
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some array elements attenuate significantly due to the blockage

of the metallic cylinder in the OLoS scenario. In the LoS

scenario as illustrated in Fig. 5(a), spatial non-stationarity of

path gain can also be observed obviously at some trajectories,

e.g. the one indicated with white arrows. The patterns of these

trajectories actually can reflect some information about the

propagation characteristics. For example, the element index

with the shortest delay in one trajectory can roughly indicate

the azimuth, and the width of this trajectory spreading in delay

domain can roughly indicate the elevation. Nevertheless, these

trajectory are blurred in the delay domain, which is mainly

due to the limited resolution and the sidelobes caused by the

IDFT. To obtain the high-resolution estimation results of MPC

parameters, the proposed algorithm, i.e. TAMax, is applied in

the sequel.

(a)

(b)

Fig. 6: Ω̂ estimated according to Sect. IV-A for the (a) LoS

scenario and (b) OLoS scenario.

C. Algorithm application

Fig. 6(a) and Fig. 6(b) illustrate the estimated delays and

complex amplitudes congregated at individual array elements

(i.e. Ω̂) according to Sect. IV-A for the LoS scenario and OLoS

scenarios, respectively. To fully extract the received power, the

path number L should be sufficiently large. Generally, 30 dB

of dynamic range is considered adequate to investigate the

channel characteristics [42], [43]. Here, L is set as 60. It can be

observed from Fig. 6(a) and Fig. 6(b) that the dynamic ranges

are more than 30 dB. Benefiting from the high resolution,

paths that are non-resolvable in the CPDP figures as illustrated

in Fig. 5 are separated well in the delay domain in Fig. 6.

Moreover, the spatial non-stationarity in path gain caused by

the blockage is evident in the OLoS scenario, e.g. at the first-

of-arrival path.

As detailed in Sect. IV-D, the path trajectory Ω̂ℓ is then

identified by exploiting the proposed transform in Sect. IV-B,

and finally the spherical propagation parameters Θ̂ℓ is esti-

mated according to Sect. IV-C. As an example, Fig. 7 illustrates

the procedure for estimating the propagation parameters of

the first two paths in the OLoS scenario. In Fig. 7(a), the

spectrum of the proposed transform for Ω̂τ obtained in the

OLoS scenario is presented, where the delay threshold τth is

empirically chosen as 0.35
B

. This approximately corresponds

to a propagation distance difference as 5 cm. Actually, two

paths with propagation distance difference smaller than 5 cm

can also be well distinguished in practice, because the angular

parameters of the two paths are usually not the same. The

global maximum of the spectrum is exploited to identify only

one path, although multiple local maxima can be observed.

This is because when a path trajectory in Ω̂τ is transformed

into the spectrum domain, sidelobes may exist as demonstrated

in Fig. 2, which means that it is necessary to identify the

multiple trajectories iteratively. By examining the spectrum

maximum in Fig. 7(a), the first path Ω̂τ
1

is identified and

indicated in blue in Fig. 7(b). As already discussed in Sect.

IV-B, the complexity-efficient way is to subtract the spectrum

of Ω̂τ
1

from the current spectrum of Ω̂τ to obtain the residual

spectrum, compared to recalculating it using (Ω̂τ − Ω̂τ
1
). The

updated transform spectrum and the second path identified are

presented in Fig. 7(c) and Fig. 7(d), respectively. The iterative

procedure stops till the maximum of T is smaller than the

pre-defined threshold Mth which is practically chosen as 150

for both LoS and OLoS scenarios in our case. Fig. 8(a) and

Fig. 8(b) illustrate all the identified path trajectories indicated

in different colors for the LoS scenario and OLoS scenario,

respectively. We have the following observations. On one

hand, the blockage of the metallic cylinder causes severe

spatial non-stationarity in path gain, as more breaks can be

observed in the OLoS trajectories. On the other hand, the

spatial non-stationarity of path gain has no effect on the the

proposed transform to identify these path trajectories, which

gives advantage for further parameter extraction.

Based on these identified path trajectories, propagation pa-

rameters can be efficiently estimated according to Sect. IV-C.

Fig. 9(a) and Fig. 9(b) illustrate the estimated delay-azimuth-

power spectra for the LoS scenario and OLoS scenario,

respectively. It can be clearly observed from Fig. 9 that the

path constellations are basically similar in the two scenarios.

Some paths, e.g. near to the LoS path, are disturbed by the

metallic cylinder in the OLoS scenario. New paths, e.g. at the

range around 30 ns delay and 150◦ azimuth, are also created

in the OLoS scenario.

Fig. 10(a) and Fig. 10(b) illustrate the scatterer locations

(spherical-wave centers) estimated in the LoS scenario and

OLoS scenario, respectively. The shadow area indicates the

office, the blue squares indicate the Rx and the UCA center,

and the colored dots represent the scatterers whose locations

are calculated by extending from the UCA center a length

9



Maximum

(a) The spectrum of the proposed transform for Ω̂τ

(b) Identified path trajectory Ω̂τ
1

(in blue) referring to the maximum of the spectrum in Fig. 7(a)

Maximum

(c) The spectrum of the proposed transform for Ω̂τ with the first path Ω̂τ
1

removed

(d) Identified path trajectory Ω̂τ
2

(in blue) referring to the maximum of the spectrum in Fig. 7(c). The first path is also removed (not
plotted) herein.

Fig. 7: Illustration of the estimation procedure for the first two paths in the OLoS scenario. Since the maxima that correspond

to the first two path are found in the spectrum with θ = 90◦, the spectrum part with other elevations are not illustrated in

Fig. 7(a) and Fig. 7(a) for clarity.

of estimated spherical distance along the estimated angular

direction. A location in Fig. 10 indicates the real scatterer lo-

cation, e.g. the antenna point or a point on a rough surface, that

not only serves as the last-hop point but also with scattering

happens there; whereas if a specular reflection happens at the

last-hop point of the propagation path, the location indicates

the mirror location of the real scattering point, in which case

the illustrated location will be located outside the office. It

can be observed from Fig. 10(a) that scatterers are located

near to the Rx point in the LoS scenario. This is reasonable

since that the antenna emits LoS spherical waves that can

be perfectly received without blockage, and that the signals

interacting with the top-right corner of the room were not

blocked, either. It also makes sense that some scatterers near

to the walls and furniture inside the room. Moreover, some

scatterers are also estimated outside the room due to the fact

that specular reflections can happen in the room. In the OLoS

scenario as illustrated in Fig. 10(b), scatterer located exactly

in the Rx point disappears, because part of the array elements

are blocked or disturbed by the metallic cylinder so that the

estimation accuracy for the LoS path is decreased. The scat-

terer number near to the left-bottom corner of the room also
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(a) LoS scenario with 46 paths identified

(b) OLoS scenario with 44 paths identified

Fig. 8: Identified Ω̂τ
ℓ ’s indicated in different color for (a) LoS

scenario and (b) OLoS scenario.

decreases due to the blockage. Furthermore, it is interesting to

observe that scatterers near to the metallic cylinder are newly

born in the OLoS scenario. This is consistent with the fact

that signal interacting with the round wall of the cylinder can

create new paths.

D. Results Comparison with EM principle

Fig. 11(a) and Fig. 11(b) illustrate the estimated delay-

azimuth-power spectra for both LoS and OLoS cases by using

the EM principle8 as elaborated in Sect. III-B. Note that the

spatial non-stationarity in path gain cannot be considered in

the EM principle, i.e., Bℓ = 1 is set for all paths in the EM

estimation. By comparing Fig. 9 and Fig. 11, it can be observed

that the spectrum patterns are similar. Meanwhile, advantages

of the proposed TAMax algorithm in decreasing complexity

and obtaining more practical results can also be observed

as follows. i) Many more paths are estimated by using the

EM principle for the same 30 dB dynamic range. This is

because when assuming stationary path gain, several paths are

estimated to constitute one practical path with non-stationary

path gain. An evident example is indicated in Fig 11(b) where

4 paths were estimated for the partially blocked LoS path in

the OLoS scenario. ii) Some paths that can be sensed in the

TAMax estimation are omitted in the EM estimation. This

8It is noteworthy that in the MATLAB environment and with the same
quantization interval for the final estimation results, the runtime of the EM
algorithm was several hours, while the runtime of the proposed TAMax
algorithm was less than 3 minutes. This quantitatively demonstrates the low-
complexity of the proposed algorithm by exploiting the strategies avoiding
high dimensional joint-estimation and finding good initialization points.
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Fig. 9: Delay-azimuth-power spectra estimated using TAMax

algorithm. (a) LoS scenario with 35 paths in 30 dB dynamic

range. (b) OLoS scenario with 36 paths in 30 dB dynamic

range.

(a)

(b)

Fig. 10: Scatterers estimated using TAMax algorithm. (a) LoS

scenario. (b) OLoS scenario.
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Fig. 11: Delay-azimuth-power spectra estimated using EM

algorithm. (a) LoS scenario with 63 paths in 30 dB dynamic

range. (b) OLoS scenario with 87 paths in 30 dB dynamic

range.

is because the EM principle cannot account the spatial non-

stationarity in path gain. For those paths with relatively small

power and also with severe non-stationarity in path gain, e.g.

with half of the array elements totally blocked. The power of

its likelihood function (14) in EM will be further decreased

by assuming that all the array element can received signals

perfectly.

VI. CONCLUSIONS

In this contribution, a realistic spherical-propagation signal

model was proposed for ultra-wideband large-scale array sys-

tems, where the spatial non-stationarity of path gain across

the array was also considered. The state-of-the-art High-

Resolution propagation Parameter Estimation (HRPE) algo-

rithms were revisited, where prohibitive computation load or

unrealistic assumptions hinder their applications. To over-

come the issues, a novel HRPE algorithm, i.e. Trajectory-

Aided Maximum-likelihood (TAMax), was proposed and then

applied in a measurement campaign which was conducted

in an office room with line-of-sight and obstructed-line-of-

sight propagation scenarios designed. The accuracy and low-

complexity of TAMax algorithm was demonstrated in theoreti-

cal and practical aspects. Whereas the increased bandwidth and

increased aperture in the mmWave massive Multiple-Input-

Multiple-Output (MIMO) systems bring pains to the existing

estimation algorithms, TAMax algorithm can take them as

advantages. By exploiting the ultra-wide bandwidth and the

large-scale array aperture, high-resolution trajectories can be

used to acquire interference cancellation and fast initialization.

The results demonstrated that the proposed TAMax algorithm

is able to obtain high-resolution estimation results of the

spherical propagation channel in a complexity-efficient way.

Further, by considering the spatial non-stationarity in path

gain, the TAMax is more powerful to obtain realistic results

and to detect weak paths. Future work will exploit TAMax for

comprehensive and accurate mmWave massive MIMO channel

modeling in various propagation environments.
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