

Aalborg Universitet

The influence of prolonged temperature management on acute kidney injury after outof-hospital cardiac arrest

A post-hoc analysis of the TTH48 trial

Strand, Kristian; Søreide, Eldar; Kirkegaard, Hans; Taccone, Fabio Silvio; Grejs, Anders Morten; Duez, Christophe Henri Valdemar; Jeppesen, Anni Nørgaard; Storm, Christian; Rasmussen, Bodil Steen; Laitio, Timo; Hassager, Christian; Toome, Valdo; Hästbacka, Johanna: Skrifvars, Markus B

Published in: Resuscitation

DOI (link to publication from Publisher): 10.1016/j.resuscitation.2020.01.039

Creative Commons License CC BY-NC-ND 4.0

Publication date: 2020

Document Version

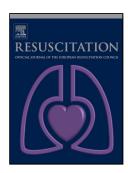
Version created as part of publication process; publisher's layout; not normally made publicly available

Link to publication from Aalborg University

Citation for published version (APA): Strand, K., Søreide, E., Kirkegaard, H., Taccone, F. S., Grejs, A. M., Duez, C. H. V., Jeppesen, A. N., Storm, C., Rasmussen, B. S., Laitio, T., Hassager, C., Toome, V., Hästbacka, J., & Skrifvars, M. B. (2020). The influence of prolonged temperature management on acute kidney injury after out-of-hospital cardiac arrest: A post-hoc analysis of the TTH48 trial. *Resuscitation*, 151, 10-17. https://doi.org/10.1016/j.resuscitation.2020.01.039

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.


- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 06, 2025

The influence of prolonged temperature management on acute kidney injury after out-of-hospital cardiac arrest: A post-hoc analysis of the TTH48 trial

Kristian Strand Eldar Søreide Hans Kirkegaard Fabio Silvio Taccone Anders Morten Grejs Christophe Henri Valdemar Duez Anni Nørgaard Jeppesen Christian Storm Bodil Steen Rasmussen Timo Laitio Christian Hassager Valdo Toome Johanna Hästbacka Markus B Skrifvars

PII: S0300-9572(20)30076-9

DOI: https://doi.org/doi:10.1016/j.resuscitation.2020.01.039

Reference: RESUS 8416

To appear in: Resuscitation

Received Date: 6 October 2019

Revised Date: 27 December 2019

Accepted Date: 22 January 2020

Please cite this article as: Strand K, Soreide E, Kirkegaard H, Taccone FS, Grejs AM, Duez CHV, Jeppesen AN, Storm C, Rasmussen BS, Laitio T, Hassager C, Toome V, Hästbacka J, Skrifvars MB, The influence of prolonged temperature management on acute kidney injury after out-of-hospital cardiac arrest: A post-hoc analysis of the TTH48 trial, *Resuscitation* (2020), doi: https://doi.org/10.1016/j.resuscitation.2020.01.039

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

1	The influence of prolonged temperature management on acute
2	kidney injury after out-of-hospital cardiac arrest: A post-hoc
3	analysis of the TTH48 trial
4	analysis of the 111140 that
5 6 7 8 9	Kristian Strand ¹ , Eldar Søreide ^{2,3} , Hans Kirkegaard ⁴ , Fabio Silvio Taccone ⁵ , Anders Morten Grejs ⁶ , Christophe Henri Valdemar Duez ⁴ , Anni Nørgaard Jeppesen ⁷ , Christian Storm ⁸ , Bodil Steen Rasmussen ⁹ , Timo Laitio ¹⁰ , Christian Hassager ¹¹ , Valdo Toome ¹² , Johanna Hästbacka ¹³ , Markus B Skrifvars ¹⁴
10 11	¹ Department of Intensive Care, Stavanger University Hospital, Norway ² Critical Care and Anaesthesiology Research Group, Stavanger University Hospital,
12 13 14 15 16	Stavanger, Norway ³ Department Clinical Medicine, University of Bergen, Bergen, Norway ⁴ Research Centre for Emergency Medicine and Emergency Department, Aarhus University and Aarhus University Hospital, Aarhus, Denmark ⁵ Department. of Intensive Care, Erasme Hospital, Belgium
17 18 19	⁶ Department of Intensive Care Medicine, Aarhus University Hospital, Aarhus, Denmark ⁷ Department of Anaesthesiology and Intensive Care Medicine, Aarhus University Hospital, Denmark
20 21	⁸ Department of Internal Medicine, Nephrology and Intensive Care, Charité-University, Berlin, Germany
22 23	⁹ Department of Anaesthesiology and Intensive Care Medicine, Aalborg University Hospital, and Clinical Institute, Aalborg University, Aalborg, Denmark
24	¹⁰ Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku
25 26	University Hospital and University of Turku, Finland 11 Department of Cardiology, Rigshospitalet and Dept of Clinical Medicine, University of
27	Copenhagen, Copenhagen, Denmark
28 29	 Department of Intensive Cardiac Care, North Estonia Medical Centre, Tallinn, Estonia Department of Anaesthesiology, Intensive Care and Paine Medicine, University of Helsinki
30 31	and Helsinki University Hospital 14 Department of Emergency Care and Services, Helsinki University Hospital, Finland
32	Department of Emergency Care and Services, freisman Chrystolity Hospital, I mand
33	
343536	Correspondence: kristian.strand@sus.no
37	
38	
3940	
41	
42	
43	
44	
45	Abstract

46				
47	Background			
48				
49 50 51 52	Acute kidney injury (AKI) is common after cardiac arrest and targeted temperature management (TTM). The impact of different lengths of cooling on the development of AKI has not been well studied. In this study of patients included in a randomised controlled trial of TTM at 33°C for 24 versus 48 hours after cardiac arrest (TTH48 trial), we examined the			
535455	influence of prolonged TTM on AKI and the incidence and factors associated with the development of AKI. We also examined the impact of AKI on survival.			
56	Methods			
57				
58	This study was a sub-study of the TTH48 trial, which included patients cooled to 33±1°C after			
59	out-of-hospital cardiac arrest for 24 versus 48 hours. AKI was classified according to the			
60	KDIGO AKI criteria based on serum creatinine and urine output collected until ICU discharge			
61	for a maximum of seven days. Survival was followed for up to six months. The association of			
62	admission factors on AKI was analysed with multivariate analysis and the association of AKI			
63	on mortality was analysed with Cox regression using the time to AKI as a time-dependent			
64	covariate.			
65				
66	Results			
67				
68	Of the 349 patients included in the study, 159 (45.5%) developed AKI. There was no			
69	significant difference in the incidence, severity or time to AKI between the 24- and 48-hour			
70	groups. Serum creatinine values had significantly different trajectories for the two groups with			
71	a sharp rise occurring during rewarming. Age, time to return of spontaneous circulation,			
72	serum creatinine at admission and body mass index were independent predictors of AKI.			
73	Patients with AKI had a higher mortality than patients without AKI (hospital mortality 36.5%			
74	vs 12.5%, p<0.001), but only AKI stages 2 and 3 were independently associated with			
75	mortality.			
76 77 78 79	Conclusions			

80	We did not find any association between prolonged TTM at 33°C and the risk of AKI during
81	the first seven days in the ICU. AKI is prevalent after cardiac arrest and TTM and occurs in
82	almost half of all ICU admitted patients and more commonly in the elderly, with an increasing
83	BMI and longer arrest duration. AKI after cardiac arrest is an independent predictor of time to
84	death.
85	
86	
87	Keywords
88 89	Cardiac arrest, Acute kidney injury, Targeted temperature management, Therapeutic
90	hypothermia
91	
92 93	
93 94	Trial registration
95	NCT01689077. Registered on www.ClinicalTrials.gov 20 September, 2012 (main trial).
	NC101089077. Registered on www.clinicarrriais.gov 20 September, 2012 (main triai).
96 97	
98	
99	
100	
101 102	
103	
104	
105 106	
107	
108	
109	Background
110	
111	Acute kidney injury (AKI) is a well-known complication in post-cardiac arrest patients [1].
112	Recent studies have found an incidence of AKI of more than 40% when modern staging of
113	AKI was used and targeted temperature management (TTM) implemented as standard post-
114	resuscitation care [1, 2]. The development of renal dysfunction in this setting is most likely
115	due to local and whole body ischemia and reperfusion injury as well as circulatory failure in
116	the post-resuscitation period [3]. This post-cardiac arrest syndrome is characterised by
117	immunological, inflammatory and coagulation disturbances leading to perfusion disturbances
118	and organ dysfunction. Although prognosis after successful resuscitation is mainly linked to
119	the presence of hypoxic-ischemic brain injury, extra-cerebral organ dysfunction in the
120	immediate post-resuscitation period has been shown to have prognostic implications [4].

121	Baseline renal insufficiency and post-resuscitative AKI have both been recognised as			
122	independent predictors of mortality and poor neurological outcome. The direct effect of AKI			
123	on the central nervous system has not been fully elucidated, but increased inflammation and			
124	oxidative stress in the brain have also been shown in experimental models of AKI [5].			
125	Hypothermia preceding ischemia has an established role in organ protection, but the			
126	impact of post-cardiac arrest TTM on renal outcomes is less clear. A meta-analysis of 19 trials			
127	of TTM after cardiac arrest, brain injury or major cardiac surgery did not show a reduction in			
128	AKI when TTM was performed [6]. Even if TTM has the potential for renal protection			
129	through mechanisms such as the reduction of metabolic demand, oxidative stress and			
130	apoptosis, some potentially disadvantageous effects of TTM are present. A frequent			
131	observation is 'cold diuresis', which most likely occurs due to a combination of increased			
132	venous return, hormonal changes and tubular dysfunction and may cause hypovolemia if			
133	volume replacement is insufficient.			
134	The potential modulating effect of various approaches to TTM on renal function has			
135	not been well studied. In particular, the impact of the length of cooling on renal function has			
136	not been addressed. In this study, we investigated the impact of 24 or 48 hours of TTM on the			
137	incidence of AKI in patients suffering from out-of-hospital cardiac arrest (OHCA).			
138	Secondarily, we studied factors associated with the development of AKI and the impact of			
139	AKI on survival using the KDIGO AKI classification as a time-dependent variable [7].			
140				
141				
142				
143	Methods			
144				
145	Study design			
146				
147	The study is a preplanned explorative analysis of AKI in patients included in a multinational			
148	randomised, controlled trial on the effect of 48 compared to 24 hours of TTM after OHCA of			
149	a presumed cardiac origin (TTH48) . The details of the TTH48 study including inclusion and			
150	exclusion criteria have previously been published elsewhere [8, 9]. In brief, TTM for 24			
151	versus 48 hours with a target of 33±1°C was performed from hospital arrival as per local			
152	protocol, utilising cold fluids, surface cooling and intravascular cooling devices.			
153	Randomisation was performed during the first 24 hours of cooling.			

154	The study was approved by the ethics committee in each participating centre or country. The
155	study was conducted according to the requirements of the Declaration of Helsinki; written
156	informed consent was obtained from the next of kin or a legal surrogate before randomisation
157	and from each patient who regained mental capacity, according to local ethical approval.
158	
159	Interventions
160	
161	Hypothermia at 33±1°C was maintained for either 24 or 48 hours according to randomisation
162	and rewarming performed at a maximum of 0.5°C/h. A urinary catheter with a thermistor
163	measured bladder temperature and provided feedback to the temperature management
164	systems. Sedation was maintained with propofol/midazolam and remifentanil/fentanyl
165	infusions. Shivering was treated with increased sedation or cisatracurium. Noradrenaline was
166	the vasopressor of choice during hypothermia.
167	
168	Data
169	
170	From February 2013 to June 2016, 355 patients were randomised and included in the trial.
171	Study population characteristics included sex, age, body mass index (BMI) and previous
172	medical history as well as prehospital data followed the Utstein template recommendation.
173	Pre-ICU in-hospital data included data from admission to the emergency department and from
174	cardiac catherisation laboratories. Data on serum creatinine (sCr), serum urea (sUr), urinary
175	output (UO) and the need for renal replacement therapy (RRT) were prospectively collected
176	for seven days or until ICU discharge, depending on which occurred first. Follow-up for
177	survival was a minimum of 180 days. Data were managed using REDCap electronic data
178	capture tools.
179	
180	
181	AKI classification
182	
183	Due to the lack of hourly UO, we used a modified KDIGO AKI classification based on sCr
184	and daily UO averaged over 24 hours[2]. We estimated the baseline sCr using the MDRD
185	equation assuming a glomerular filtration rate (eGFR) of 75 for all patients [10]. The different
186	stages of AKI were defined as follows: Stage 1: A 1.5- to 1.9-fold increase in sCr compared to
187	the estimated baseline sCr or an absolute increase of more than 26.5 umol/l within 48 hours.

188	Stage 2: A 2.0- to 2.9-fold increase in sCr compared to the estimated baseline sCr or a UO of		
189	less than 0.5 ml/kg/hour for the last 24 hours. Stage 3: A threefold increase in sCr compared		
190	to the estimated baseline sCr, an increase in sCr to more than 353.6 µmol/l, a UO of less than		
191	0.3 ml/kg/hour for the last 24 hours or the initiation of RRT.		
192			
193			
194	Statistical analysis		
195			
196	Categorical variables were expressed as counts (percentages) and continuous variables as		
197	means ± SD or medians (IQR). Admission factors were compared using Student's t-test, chi-		
198	square test and Fischer exact test as appropriate. Factors with a p-value < 0.1 in the univariate		
199	analysis were included in the multivariate analysis. The difference in the time to AKI between		
200	patients in the 24- and 48-hour cooling groups was assessed using the log-rank test. Cox		
201	regression analysis was performed to assess independent predictors of the time to AKI.		
202	Independent predictors of mortality at six months were performed using Cox regression		
203	analysis with the time to AKI as a time-dependent covariate. The impact of the cooling length		
204	on sCr levels was assessed using a mixed linear model. Statistical analysis was performed		
205	with SPSS for Windows v.24.0 (IBM Corp., Armonk, NY) and SAS v. 9.4. (SAS Institute		
206	Inc., Cary, NC).		
207			
208	Results		
209			
210	Included patients and the incidence of AKI		
211			
212	A total of 355 patients were randomised in the trial. Two patients withdrew consent, one		
213	patient was lost to follow-up and one was incorrectly randomised. Of the 351 patients who		
214			
215	analysis (Fig. 1); 159 patients (45.5%) were classified as having AKI during their ICU stay		
216	(KDIGO AKI 1-3), and 24 patients (6.9%) received RRT. Of the 159 patients who developed		
217	AKI, 79 (49.7%) did not have AKI at ICU discharge or day 7 in the ICU.		
218			
219	Difference between 48- and 24-hour cooling		
220			

221	The duration of hypotherima did not affect the incidence of severity of AKI. Seventy-eight
222	(44.3%) patients in the 24-hour cooling group developed AKI versus 81 (46.8%) in the 48-
223	hour cooling group, (p=0.639). In addition, there was no difference in the time to AKI in
224	patients treated with 48 compared to 24 hours of cooling in either univariate (HR 0.97, 95%
225	CI 0.71-1.32, p=0.85) or multivariate analysis (HR 1.02 95% CI 0.74-1.41, p=0.89).
226	
227	Among the patients with AKI, there was no significant difference in the severity of AKI (2.0
228	vs 2.2, p=0.13) or the time to development of AKI between the two groups. The time to AKI
229	was 1.5 (1.3-1.7) days in the 24-hour cooling group and 1.8 (1.5-2.1) days in the 48-hour
230	cooling group (p=0.66). The cumulative number of AKI is shown in Fig. 2. The length of
231	cooling had a significant impact on the development of sCr values during the observation
232	period (p<0.05) (Fig 3). Data on the sCr, sUr, daily UO and fluid balance for the first 72 hours
233	of the ICU stay are provided in Supplemental Table 1.
234	
235	Admission factors for AKI
236	There were several differences in patient characteristics, factors at resuscitation and admission
237	between the patients that developed AKI compared to those who did not develop AKI.
238	Notably, AKI patients were older, had a higher BMI, more commonly had diabetes and had a
239	higher sCr level at ICU admission (Table 1). Regarding factors at resuscitation, patients who
240	developed AKI had a longer time to return of spontaneous circulation (ROSC) and more
241	commonly received both adrenaline and amiodarone (Table 1). In a multivariate analysis of
242	risk factors at ICU admission for the development of AKI, we found age, BMI, sCr at ICU
243	admission and time to ROSC to be independent predictors of AKI (Table 2).
244	
245	Association between AKI and outcome
246	
247	Patients who developed AKI had a higher ICU- (25.2% vs 7.9%, p<0.001), hospital- (36.5%
248	vs 12.5%, p<0.001) and six-month mortality (45.9% vs 16.8%, p<0.001), than those who did
249	not develop AKI. Survival curves are provided in Supplemental Figure 1. In a Cox regression
250	model including KDIGO AKI as a time-dependent covariate, AKI was a significant predictor
251	of mortality. However, patients with KDIGO AKI 1 did not have significantly greater risk
252	than patients without kidney injury (Table 3). Other significant predictors of mortality were
253	age, time to ROSC and non-shockable rhythm.

Patients with AKI also had a longer ICU but not hospital stay compared to patients without AKI. Patients with AKI were also treated longer with mechanical ventilation (Table 4).

256

254

255

257

258

259260

Discussion

261262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

In this study of 349 patients from the TTH-48 randomised controlled trial with data collection of creatinine levels and UO over the first seven days, we found that AKI was common after cardiac arrest and associated with a higher age, a higher BMI and a longer time to ROSC.

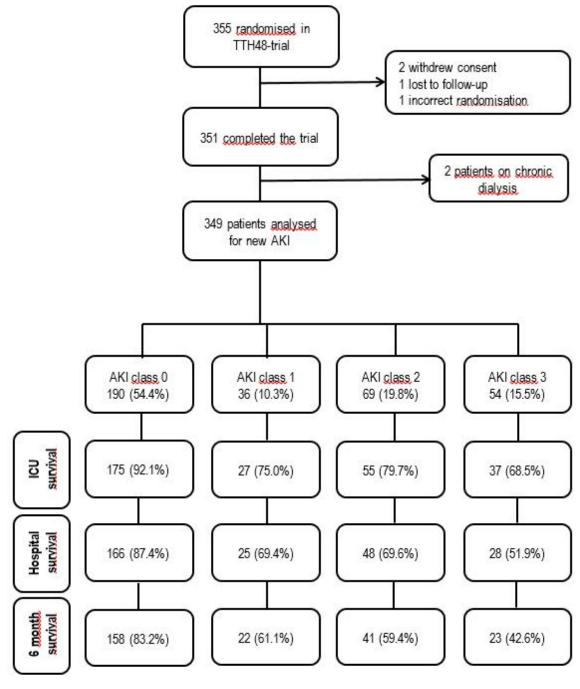
We did not find a significant effect of the length of cooling after cardiac arrest on AKI evaluated by the KDIGO AKI criteria. The lack of effect is supported by existing evidence from human clinical trials on the effect of hypothermia on kidney function [2], even though the nephroprotective effects of pre-ischemic, locally applied hypothermia are well established [11, 12]. Compared to isolated renal hypothermia, the physiological and biochemical effects of systemic hypothermia on renal function are more complex, and increased systemic vasoconstriction and volume depletion may reduce renal blood flow in a way that offsets the positive effects of hypothermia on metabolic demand and oxygen consumption. Even if there is equipoise on the effects of TTM on renal function after cardiac arrest, there is some evidence that it may be influenced by how TTM is performed. A recent observational trial found that prolonging the rewarming phase from 33 to 36 C to over 600 minutes resulted in less AKI and a lower release of the pro-inflammatory cytokine uIL-18, which is an early biomarker of AKI [13]. We found a significant difference in sCr trajectories for the two groups. After 24 hours of TTM (Day 1), there was sharp increase in sCr in the 24-hour cooling group during the rewarming phase. A similar increase in sCr was observed between days 2 and 3 during the rewarming phase of the 48-hour cooling group, suggesting that the reduced sCr observed during TTM is temporary and is reversed as patients become normothermic. The cause of the reduced sCr frequently observed during TTM is not clear, although a temporary reduction in creatinine production has been proposed [14]. Fluid administration may also dilute sCr, but the sharp increases in sCr during the rewarming phase were found despite daily positive fluid balances in both groups.

In our study, 45.5% of the patients developed AKI. Incidences of AKI 1–3 in recent studies of OHCA patients admitted to the ICU ranges from 39 to 53% [1]. Although the KDIGO AKI definitions are now almost universally accepted, there are still variations in how AKI is defined since data on hourly UO are lacking in many studies including ours, leading to a potential underreporting of actual AKI when UO is omitted [15]. In the present study, we modified the UO criteria to be able to include daily UO and thereby increase the sensitivity of our AKI staging. In contrast to several earlier studies, we did not exclude patients who died within the first 48 hours, but in this period only five patients died, of which three developed AKI. RRT was uncommon in our study, as it was only used in 6.9% of the patients. This is low compared to the numbers reported in a 2016 systematic review where RRT utilisation ranged from 18 to 60% in seven studies on general cardiac arrest patients [1]. However, in two recent studies from Nordic countries, where most of the patients in our trial were recruited, the use of RRT was between 6 and 9% [16, 17]. Several factors, such as decisions to withhold RRT due to futility, local treatment preferences and the lack of consensus on RRT initiation criteria, are likely to have an impact on the prevalence of RRT utilisation [18]. It is worth noting that future studies might be influenced by the recent shift in evidence towards a more conservative approach in RRT initiation [19].

Studies on risk factors of AKI after cardiac arrest have identified age, rhythm, time to ROSC and higher doses of epinephrine as independent prognostic factors in the development of AKI [1, 20, 21]. In our study, we also found BMI to have significant effect, which is in accordance with several other studies that have identified obesity as an independent factor for AKI in critically ill and post-operative patients [22, 23]. The pathophysiology behind obesity related AKI still being explored. However, as obesity can be regarded as a state of low-grade inflammation, pro-inflammatory cytokines and adipokines as well as endothelial dysfunction may be involved. In addition, the direct physiological effects of overweight may include intraabdominal hypertension and cardiac dysfunction that might alter renal perfusion [24].

As in previous studies, we found AKI to have a negative impact on survival, although this did not reach statistical significance in the group with AKI class 1 in the Cox regression analysis. It is still unclear whether the presence of AKI either has an independent effect on prognosis after cardiac arrest or this is due to unmeasured confounders [25]. Prolonged hypoperfusion and subsequent reperfusion injury does cause organ injury, but even after adjusting for classical markers of peri-arrest hypoperfusion, such as non-shockable rhythm, prolonged resuscitation and lack of bystander CPR, AKI was still a strong predictor of short-

321	and long-term mortality. Post-resuscitation shock has been shown to be a strong predictor of			
322	the development of AKI and mortality [21, 26, 27], but the present study does not include data			
323	on the hemodynamic stability of the patients during the ICU stay, as we only considered			
324	factors present on admission in our analysis.			
325				
326	Strengths and limitations			
327	The multicentre design and data collection of creatinine and UO for up to seven days			
328	within the context of a randomised controlled trial is a major strength of our study and			
329	increases the validity of our findings. Nonetheless, several limitations are worth mentioning.			
330	Since we did not have access to hourly UO data, using the original KDIGO AKI urine output			
331	criteria was not possible. It may be that our ability to include UO criteria only in AKI classes			
332	2 and 3 may have led to an underestimation of the number of patients in the AKI class 1			
333	group, as this group was relatively small compared to another study where hourly urine data			
334	were available [17].			
335	We did not have preadmission creatinine available and estimated our baseline creatinine using			
336	the MDRD equation as proposed by the KDIGO AKI guideline[7]. Since we did not have data			
337	on chronic kidney disease (CKD) except chronic dialysis in our study, this may have led to an			
338	overestimation of AKI. In a recent study of OHCA patients, 4% of the patients had previously			
339	known CKD [17]. The question of whether to use admission creatinine or estimated creatinine			
340	as a baseline has not been resolved, and studies have shown that up to 50% are misclassified			
341	with both approaches [28]. However, in their study of cardiac arrest patients, Geri et al.			
342	performed a sensitivity analysis of admission creatinine versus estimated creatinine and found			
343	similar results [20]. In our study, admission creatinine was missing in a large number of			
344	patients and in patients who did have an admission creatinine available, we saw a significant			
345	increase to the first creatinine available in the ICU, leading us to conclude that the latter was			
346	not a reasonable substitute for pre-morbid or admission creatinine. The validity of our			
347	findings was strengthened by an analysis of the 144 patients who did have sCr available			
348	before ICU admission. In this analysis, provided in Supplemental Table 2, there were only			
349	small differences in AKI classifications based on admission sCr compared to the classification			
350	based on estimated sCr. The patients cooled for 24 hours had a shorter length of stay than			
351	those cooled for 48 hours. Since we did not collect creatinine or urinary data after ICU			
352	discharge, it is possible that this could have influenced our results. However, it is likely that			
353	only the most stable ICU patients were discharged early from the ICU.			


355	Conclusions			
356				
357	We did not find any association between prolonged TTM at 33°C and the risk of AKI during			
358	the first seven days in the ICU. AKI is prevalent after cardiac arrest and TTM and occurs in			
359	almost half of all ICU admitted patients and more commonly in the elderly, with an increasing			
360	BMI and longer arrest duration. AKI after cardiac arrest is an independent predictor of time to			
361	death.			
362				
363	List of abbreviations			
364	AKI: acute kidney injury, BMI: body mass index, CKD: chronic kidney disease, GFR:			
365	glomerular filtration ratio, KDIGO: kidney disease improving global outcome, OHCA: out-			
366	of-hospital cardiac arrest, ROSC: return of spontaneous circulation, RRT: renal replacement			
367	therapy, sCr: serum creatinine, sUr: serum uread, TTM: targeted temperature management,			
368	UO: urine output			
369				
370	Declarations			
371				
372	Ethics approval and consent to participate:			
373	The study was approved by the ethics committee in each participating centre or country. The			
374	study was conducted according to the requirements of the Declaration of Helsinki; written			
375	informed consent was obtained from the next of kin or a legal surrogate before randomisation			
376	and from each patient who regained mental capacity, according to local ethical approval.			
377				
378	Consent for publication			
379	Not applicable			
380				
381	Availability of data and materials			
382	The dataset used during the current study is available from the corresponding author upon			
383	reasonable request.			
384				
385	Competing interests			
386	MBS reports having received a research grant from GE Healthcare, travel reimbursements and			
387	lecture fees from BARD Medical. CS reports having received travel reimbursements and			

388	speaker fees from BD BARD and Zoll GmbH, as well as honorarium for consultancy from
389	BD BARD, Benechill and Sedana Medical. AMG and ANJ report having received lecture fees
390	from Novartis. All other authors report that they have no conflicts of interest.
391	
392	Funding
393	The study was funded by independent research grants from The Danish Heart Foundation,
394	The Laerdal Foundation, The Scandinavian Society of Anaesthesiology and Intensive Care
395	Medicine, The Danish Society of Anaesthesiology and Intensive Care Medicine and The
396	Augustinus Foundation and, Finska Lakaresallskapet, Medicinska Understodsforeningen Liv
397	och Halsa and Stiftelsen Dorothea Olivia, Karl Walter och Jarl Walter Perklens minne.
398	
399	Authors' contributions
400	KS, HK and MBS planned the post-hoc study. KS and MBS provided the statistical analysis
401	and interpreted the data of the study. All authors contributed in writing the manuscript. All
402	authors read and approved the final manuscript.
403	
404	Acknowledgements:
405	Not applicable
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	
416	
417	References
418	
419	

- 420
- 421 1. Sandroni, C., et al., *Acute kidney injury after cardiac arrest: a systematic review and*422 *meta-analysis of clinical studies.* Minerva Anestesiol, 2016. **82**(9): p. 989-99.
- Rundgren, M., et al., Renal function after out-of-hospital cardiac arrest; the influence of temperature management and coronary angiography, a post hoc study of the target temperature management trial. Crit Care, 2019. **23**(1): p. 163.
- 426 3. Chua, H.R., N. Glassford, and R. Bellomo, *Acute kidney injury after cardiac arrest*. 427 Resuscitation, 2012. **83**(6): p. 721-7.
- 428 4. Nobile, L., et al., *The impact of extracerebral organ failure on outcome of patients*429 *after cardiac arrest: an observational study from the ICON database.* Crit Care, 2016.
 430 **20**(1): p. 368.
- 431 5. Lu, R., et al., *Kidney-brain crosstalk in the acute and chronic setting*. Nat Rev Nephrol, 2015. **11**(12): p. 707-19.
- Susantitaphong, P., et al., *Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials.* Resuscitation, 2012. **83**(2): p. 159-67.
- 436 7. Khwaja, A., *KDIGO clinical practice guidelines for acute kidney injury*. Nephron Clin Pract, 2012. **120**(4): p. c179-84.
- 438 8. Kirkegaard, H., et al., Targeted Temperature Management for 48 vs 24 Hours and
 439 Neurologic Outcome After Out-of-Hospital Cardiac Arrest: A Randomized Clinical
 440 Trial. JAMA, 2017. 318(4): p. 341-350.
- Kirkegaard, H., et al., A statistical analysis protocol for the time-differentiated target
 temperature management after out-of-hospital cardiac arrest (TTH48) clinical trial.
 Scand J Trauma Resusc Emerg Med, 2016. 24(1): p. 138.
- Levey, A.S., et al., A more accurate method to estimate glomerular filtration rate from
 serum creatinine: a new prediction equation. Modification of Diet in Renal Disease
 Study Group. Ann Intern Med, 1999. 130(6): p. 461-70.
- Waked, K. and M. Schepens, *State-of the-art review on the renal and visceral*protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg, 2018.
 4: p. 31.
- Niemann, C.U. and D. Malinoski, *Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function*. N Engl J Med, 2015. 373(27): p. 2687.
- De Rosa, S., et al., *The effect of whole-body cooling on renal function in post-cardiac arrest patients.* BMC Nephrol, 2017. **18**(1): p. 376.
- Lusczek, E.R., et al., Prolonged induced hypothermia in hemorrhagic shock is associated with decreased muscle metabolism: a nuclear magnetic resonance-based metabolomics study. Shock, 2014. **41**(1): p. 79-84.
- 457 15. Koeze, J., et al., Incidence, timing and outcome of AKI in critically ill patients varies with the definition used and the addition of urine output criteria. BMC Nephrol, 2017. **18**(1): p. 70.
- Winther-Jensen, M., et al., *Use of renal replacement therapy after out-of-hospital* cardiac arrest in Denmark 2005-2013. Scand Cardiovasc J, 2018. **52**(5): p. 238-243.
- 462 17. Beitland, S., et al., Impact of acute kidney injury on patient outcome in out-of-hospital cardiac arrest: a prospective observational study. Acta Anaesthesiol Scand, 2016.
 464 **60**(8): p. 1170-81.
- Beitland, S. and K. Sunde, Guidelines for post-resuscitation care should include
 management of acute kidney injury and use of renal replacement therapy.
 Resuscitation, 2018. 126: p. e14.
- 468 19. Gaudry, S., et al., *Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit.* N Engl J Med, 2016. **375**(2): p. 122-33.

- 470 20. Geri, G., et al., *Acute kidney injury after out-of-hospital cardiac arrest: risk factors*471 *and prognosis in a large cohort.* Intensive Care Med, 2015. **41**(7): p. 1273-80.
- 472 21. Tujjar, O., et al., Acute kidney injury after cardiac arrest. Crit Care, 2015. 19: p. 169.
- Danziger, J., et al., *Obesity, Acute Kidney Injury, and Mortality in Critical Illness*. Crit Care Med, 2016. **44**(2): p. 328-34.
- Gameiro, J., et al., *Obesity, acute kidney injury and mortality in patients with sepsis: a cohort analysis.* Ren Fail, 2018. **40**(1): p. 120-126.
- 477 24. Nie, S., et al., *Are There Modifiable Risk Factors to Improve AKI*? Biomed Res Int, 478 2017. **2017**: p. 5605634.
- 479 25. Storm, C., et al., Impact of acute kidney injury on neurological outcome and long-term 480 survival after cardiac arrest - A 10year observational follow up. J Crit Care, 2018. **47**: 481 p. 254-259.
- 482 26. Kim, Y.W., et al., *Shock duration after resuscitation is associated with occurrence of post-cardiac arrest acute kidney injury.* J Korean Med Sci, 2015. **30**(6): p. 802-7.
- 484 27. Park, Y.S., et al., Recovery from acute kidney injury as a potent predictor of survival 485 and good neurological outcome at discharge after out-of-hospital cardiac arrest. Crit 486 Care, 2019. **23**(1): p. 256.
- De Rosa, S., S. Samoni, and C. Ronco, *Creatinine-based definitions: from baseline creatinine to serum creatinine adjustment in intensive care.* Crit Care, 2016. **20**: p. 69.

Fig 1. Patients analysed for AKI and outcomes in the TTH48 trial.

AKI: AKI according to modified KDIGO criteria.

513 514

515

Table 1 Patient characteristics split into no AKI or AKI.

	No. (%) of Patio	ents	
	No AKI	AKI	
ographic characteristics			
	58.0 (12.4)	63.0 (10.5)	< 0.001
	157 (82.6)	133 (83.6)	0.801
7	26.3 (3.7)	28.3 (5.3)	< 0.001
(22), -88			
ical history			
	23 (12.2)	39 (24.5)	0.003
	27 (14.3)	27 (17.2)	0.457
	8 (4.2)	9 (5.7)	0.620
	1 (0.5)	2(1.3)	0.592
st witnessed			0.894
ander	161 (84.7)	137 (86.2)	
gency medical services	12 (6.3)	10 (6.3)	
tnessed	17 (8.9)	12 (7.5)	
	(0,5)	(,,,,,	
scitation factors			
	162 (85.3)	130 (81.8)	0.378
	172 (90.9)	138 (87.1)	0.270
3	1 (2)	1 (1)	0.663
to advanced life assument median	9 (6)	9 (6)	0.333
), min	8 (6)	8 (6)	0.333
to return of spontaneous circulation, an (IQR), min	19 (10)	22 (15)	< 0.001
ephrine	106 (55.8)	112 (70.4)	0.005
	66 (34.7)	77 (48.4)	0.003
darone	00 (34.7)	77 (40.4)	0.010
ediate interventional cardiology			
nary angiography	160 (84.2)	128 (80.5)	0.364
	81 (42.6)	63 (40.1)	0.637
actineous intervention	01 (42.0)	03 (40.1)	0.037
cal status on ICU admission			
perature, mean (SD) °C	34.8 (0.9)	34.8 (1.1)	0.416
ite, median (IQR), mmol/l	1.7 (1.9)	3.1 (5.4)	0.006
inine, mean (SD), µmol/l	92.0 (23.6)	117.0 (35.6)	0.003
	7.28 (0.1)	7.24 (0.1)	0.005
n arterial pressure, mean (SD), mmHg	77.9 (14.5)	75.4 (17.5)	0.739
i arteriai pressure, mean (5D), mining	11.7 (17.3)	13.7 (11.3)	0.137
our cooling	92 (53.2)	81 (45.6)	0.639
our cooling	92 (53.2)	81 (45.6)	0.6

Fig 2. Cumulative number of patients developing AKI according to the KDIGO criteria in patients treated with either 24 or 48 hours of TTM.

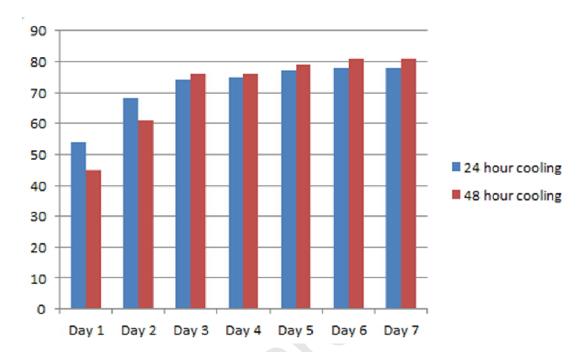


Table 2 Results of the logistic regression analysis of admission factors predicting the development of AKI in post-cardiac arrest patients treated with TTM.

	OR (95% CI)	p-value
Age	1.03 (1.01-1.06)	0.008
BMI	1.10 (1.04-1.17)	0.001
Diabetes mellitus	0.77 (0.40-1.50)	0.435
Time to ROSC	1.03 (1.01-1.06)	0.011
Adrenaline given	1.10 (0.63-1.97)	0.721
Amiodarone given	1.28 (0.74-2.21)	0.375
Lactate at admission	1.00 (0.91-1.11)	0.958
pH at admission	0.15 (0.06-3.75)	0.250
Creatinine at admission	1.02 (1.01-1.03)	0.000
48-hour cooling	1.14 (0.69-1.87)	0.615

Table 3 Predictors of mortality including time to development and severity of AKI.

Variable	Univariate HR	p-value	Multivariate HR	p-
	(95% CI)		(95% CI)	value
Age	1.05 (1.03-1.07)	< 0.001	1.04 (1.02-1.07)	< 0.001
Male	1.55 (0.98-2.47)	0.06	1.56 (0.96-2.53)	0.07
Bystander CPR	1.88 (1.21-2.93)	0.01	1.50 (0.92-2.45)	< 0.001
Time to ROSC	1.01 (1.01-1.02)	< 0.001	1.01 (1.00-1.01)	0.02
Shockable rhythm	2.88 (1.81-4.58)	< 0.001	2.52 (1.50-4.23)	< 0.001
KDIGO AKI 1	1.47 (0.75-2.88)	< 0.001	1.33 (0.66-2.66)	0.43
KDIGO AKI 2	3.07 (1.83-5.13)	< 0.001	3.00 (1.73-5.19)	< 0.001
KDIGO AKI 3	4.37 (2.61-7.33)	< 0.001	2.34 (1.27-4.32)	0.01
24-hour cooling	1.52 (0.89-2.58)	0.13	1.09 (0.73-1.62)	0.68

Table 4 Outcome and resource use in patients with various degrees of AKI during their ICU stay.

Outcome	No AKI	KDIGO 1	KDIGO 2	KDIGO 3	p-
	(n=190)	(n=36)	(n=69)	(n=54)	value
Resource use					
Time on mechanical	86 (62-130)	75 (60-122)	114 (48-144)	130(80-189)	0.02
ventilation (hours)					
ICU length of stay	119 (78-178)	80 (64-128)	134 (72-229)	188(133-269)	0.013
(hours)					
Hospital length of stay	14 (10-21)	13 (8-21)	16 (8-21)	21(11-31)	0.195
(days)					

Suppl. Table 1. Development of markers of renal function during the first 72 hours.

	All patients	24-hour cooling	48-hour cooling	p-value
First available creatinine*	101.8 (32.9)	104.2 (37.1)	99.5 (27.6)	0.193
Est. Baseline creatinine**	92.3 (8.9)	91.0 (9.5)	91.5 (8.3)	0.558
Creatinine				
24-hours	95.9 (54.1)	96.7 (50.6)	95.0 (57.5)	0.78
48-hours	107.4 (70.6)	115.3 (77.8)	100.3 (62.6)	0.059
72-hours	121.6 (87.5)	126.6 (96.1)	117.2 (79.2)	0.367
Urea				
24-hours	7.9 (5.2)	8.0 (4.5)	7.7 (5.9)	0.851
48-hours	7.7 (6.5)	7.8 (5.3)	7.5 (7.6)	0.761
72-hours	8.2 (7.2)	9.2 (8.0)	7.4 (6.4)	0.039
Urine output				
24-hours	2294 (1232)	2368 (1329)	2220 (1123)	0.262
48-hours	2154 (1070)	2182 (1769)	2128 (10699	0.459
72-hours	2554 (1292)	2424 (1248)	2655 (1319)	0.145
Daily fluid balance				
24-hours	2294 (1232)	1585 (2106)	1667 (2033)	0.713
48-hours	1087 (1674)	888 (1769)	1276 (1562)	0.033
72-hours	333 (1768)	307 (1713)	354 (1814)	0.828

 **Estimated baseline creatinine base on the MDRD equation assuming a GFR of 75

^{*}First available serum creatine from hospital to ICU admission

Suppl. Fig 1 Survival of patients alive at day 4 after cardiac arrest with or without AKI according to the KDIGO criteria prior to day 4.

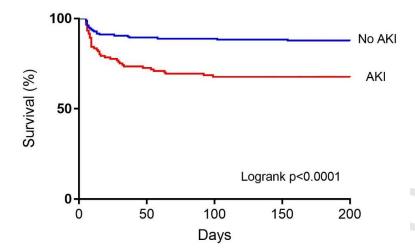
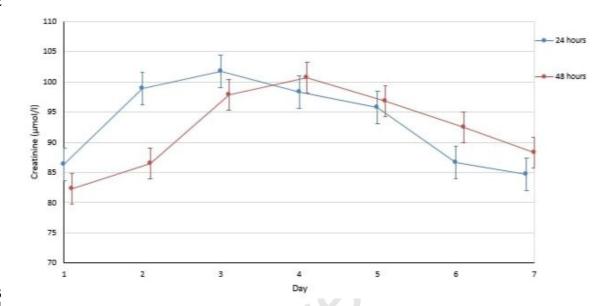



Fig 3. Serum creatinine over the first seven days in patients treated with either 24 or 48 hours of TTM.

Suppl. Table 2. KDIGO AKI classification based on first available serum creatinine before ICU admission or estimated baseline serum creatinine at hospital admission.

KDIGI AKI	First sCr No.(%)	Est. sCr* No.(%)
0	78 (54.2)	77 (53.5)
1	15 (10.4)	9 (6.3)
2	19 (13.2)	25 (17.4)
3	32 (22.2)	33 (22.9)
Total	144 (100)	144 (100)

*Estimated baseline creatinine based on the MDRD equation assuming an eGFR of 75

Conflict of interest

MBS reports having received a research grant from GE Healthcare, travel reimbursements and lecture fees from BARD Medical. CS reports having received travel reimbursements and speaker fees from BD BARD and Zoll GmbH, as well as honorarium for consultancy from BD BARD, Benechill and Sedana Medical. AMG and ANJ report having received lecture fees from Novartis. All other authors report that they have no conflicts of interest.