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Abstract—State estimation (SE) has a crucial role to play in
the monitoring and control of power grids. Although currently
the SE is typically done in a centralized or hierarchical manner,
distributed SE will become a significant alternative to centralized
and hierarchical approaches in the future smart grids. This
is because the power grids will be increasingly interconnected
in future smart grids and the complexity scale of an intercon-
nection will render centralized SE computationally formidable.
Performing distributed SE requires leveraging advanced com-
munication and computation technology. Nevertheless, relying
on communication networks raises its susceptibility to data
integrity attacks, such as false data injection (FDI) attacks. In
this paper, we demonstrate that the attacker who compromises
the communication infrastructure can launch an FDI attack on
distributed SE which could circumvent present robust estimators
and bad data detectors. Afterwards, to effectively defense against
the proposed FDI attack, , two detection methods are proposed
for two different modes of an interconnected power system. A
detector is developed that validates the error of estimates of the
state variables relative to their actual value as an index using a
threshold value for different areas when the network is being run
by an operator. A controlled information dissemination strategy
is utilized to securely notify all areas of each other’s proposed
index when the network is being run by multiple operators.
The proposed algorithms are validated on the IEEE 14-bus test
system.

I. INTRODUCTION

The geographical expansion of the power system along with
its restructuring make distributed methods the primary option
for executing power system functions. State estimation as one
of the most important of these functions was also not excluded.
By breaking the central energy management unit into several
units distributed over the power system, it was no longer
necessary to send measurements to a single center. This, in

addition to removing many communication constraints, also
significantly reduced the computational burden of executing
the state estimation function. In this case, two modes can be
used to operate the distributed system. One is the operation of
the whole system by one operator but in distributed manner
for some reasons such as reducing the computational burden.
Another is the operation of each area by a single operator
in the form of a restructured power system. Implementing
distributed functions require the use of modern communication
and information technologies (ICTs) [4]. However, the use of
ICTs also poses challenges, including cyber attacks. False data
injection attack (FDIA) is one of these attacks that has been
extensively investigated in power systems [6]. In this attack
the attacker by injecting a certain amount in measurements
causes an error in the estimates made by the operator. The
attack can even cause system-wide physical damage [7]. Hence
its identification and the appropriate response to it, are the
requirements for the safe operation of the distributed power
system. For example, visualization [8], machine learning [9],
sparse optimization [10], and moving target defense [11] can
be numerated as attack detection methods. In distributed man-
ner also can be mentioned to generalized cumulative sum [12]
and statistical decision theoretic framework [13] as instances
of detection methods. In this paper, first, the robust distributed
state estimation was proposed in [1] is briefly explained. So, a
distributed FDIA is introduced that in which the measurements
corresponding to boundary buses in neighboring areas are used
to falsify the distributed state estimation (DSE) in converging
to true estimation. Then it is proved that the proposed attack
can bypass the robust (RDSE) by showing no change of
bad data vector after the attack. After explaining how the



interconnected power system can be operated by one operator
or number of operators by number of areas, an attack detection
method is presented for both modes. In the first mode, the
operator calculates the error of areas and compares them with
a threshold value and then finds the attacked area. In the latter
mode, after receiving the approximate error of the different
areas in a stepwise process, the operators of each area compare
them and find out whether his area is under attack or not.

The rest of the paper is as follows. Section II describes the
RDSE in power system. In Section III it is explained that how
the proposed attack can get through the RDSE. Two detection
and localization methods is presented in Section IV, and the
numerical results is brought in Section V. Finally, Section VI
concludes the paper.

II. THE RDSE IN POWER SYSTEM

Suppose an interconnected power system consists of K
areas, which each one has Mk measurements ordered in vector
zk and Nk states ordered in vector xk. The measurements
are the bus voltages and line currents measured by PMUs in
rectangular form and the states are the voltage of all buses
in the same form. An unknown vector ok corresponding to
measurements vector is defined to represent the bad data. Its
entries are non-zero when bad data exist. There is a linear
relation between measurements and states in each area k ∈ K
as the following:

zk = Hkxk + ok +wk, (1)

in which Hk is the Jacobian matrix of area k and wk is
measurement error vector of this area. If fk(xk,ok; zk,Hk)
be the estimation function of area k, the states and bad data
of each area can be estimated and identified by solving the
optimization problem

min
xk,ok

fk(xk,ok; zk,Hk) (2a)

s.t. ‖ok‖0 ≤ τ0, (2b)

that the constraint points that τ0 bad data can be expected.
Since the l0-norm of (2b), which counts up the number of
non-zero elements in the vector, makes the problem NP-hard,
it is replaced with its l1-norm in the subsequent equations. (2)
can be extended as the following to estimate the all states of
power system and identify all bad data in it in a centralized
manner.

min
x,o

K∑
k=1

fk(x,o) (3a)

s.t. ‖o‖1 ≤ τ1 (3b)

The state of boundary buses in the state vector x of (3) is
included as many neighboring areas as those buses have. For
reaching to a decentralized state estimation, neighboring areas’
dependence upon the boundary buses must be obviated. For
this purpose, neighboring areas should share state variable
of their boundary buses. So by introducing a constraint for
boundary buses of each one of the two neighboring areas

and making the state variables of both neighboring areas
equivalent, we have

min
xk,ok

K∑
k=1

fk(xk) + λ‖ok‖1 (4a)

s.t. xk,k′ = xk′,k, ∀k′ ∈ Nk,∀k, (4b)

where λ is a positive parameter to represent the (3) in the
Lagrangian form and xk,k′ (and its equivalent, xk′,k) is the
vector of shared state variables between area k and k′ and Nk

is the set of neighboring areas of area k. Also vector xk,b is
defined as the vector of shared state variables between area k
and its all neighboring areas. Moreover, since ok belongs to a
single area, it does not need to be shared. With the purpose of
having a fully DSE, optimization problem (4) must be prepared
for using methods for distributing optimization problems such
as alternating direction method of multipliers (ADMM) [2].
To this end, Lagrange multipliers vk,k′ are introduced for each
constraint of (3) [1]. The resulting iterative solution scheme
is

x
(t+1)
k = (HT

kHk + cDk)
−1(HT

k (zk − o
(t)
k ) + cDkp

(t)
k )

(5a)

s
(t+1)
k = Uxk

.
∑
∀k′∈Nk

Yk,k′ .x
(t+1)
k′,k (5b)

p
(t+1)
k = p

(t)
k + s

(t+1)
k − 1

2
(Yk,b.Y

T
k,b.x

(t)
k − s

(t)
k ) (5c)

o
(t+1)
k =

 x+ λ x < −λ
0 | x |≤ λ

x− λ x > λ
, (5d)

where c > 0 is a predefined constant, Dk is a diagonal matrix
whose element di,i equals the number of areas sharing the ith
state variable of the vector xk, Uxk

is a diagonal matrix whose
diagonal element ui,i equals to the inverse of the number
of areas (if greater than 0) sharing the ith state variable of
the vector xk, and non-diagonal elements equal zero, and
Yk,k′ is a matrix that determines the connection between
vector xk and vector xk,k′ , and its elements yi,j equal one
if the ith element (state variable) in xk corresponds to the jth
element (state variable) in xk,k′ , and zero otherwise. Similar
to the latter, matrix Yk,b (Yb,k) determines the connection
between vector xk and vector xk,b (xb,k), and its elements is
determined as it was done for Yk,k′ . Also x in (5d) is equal to
zk−Hkx

(t+1)
k . When difference between the estimated value

of one of ADMM’s iterations and its previous iteration be less
than a predefined value, it is said the DSE has been converged.
If t∗ + 1 be the mentioned iteration and ε be the convergence
threshold, then ∀k ∈ K, ‖x(t∗+1)

k − x
(t∗)
k ‖∞ ≤ ε. From the

identification view, during the iterations, the procedure adjusts
the measurements whose error exceeds the threshold λ by
approaching their error to zero in order to provide a robust
estimation.



III. ATTACK ON THE RDSE

The distributed FDIA and how it can get through the
RDSE is described and proved in this section. The proposed
distributed FDIA is theoretically explained in this subsection
with a view to the purpose and manner of attack. The aim
of attack is to disrupt the DSE from converging to its true
estimations. This aim is achieved by means of boundary buses
of neighboring areas. The proposed FDIA is conducted in such
a way that it passes decentralized bad data detectors (BDDs)
in addition to the centralized ones. Suppose the attacker has a
complete information about the interconnected power system,
i.e. measurements vector zk and the Jacobian matrix Hk for
all of the k ∈ K areas. Also she or he has access to all
system’s measurements for manipulation purpose. Consider a
set of target boundary buses denoted by Ba which are common
to a set of neighboring areas denoted by Ka. If attacker wants
to inject a value to the state of the target buses, she or he must
launch FDIA in each one of the Ka = |Ka| areas separately
but simultaneously. In more details, give ci as injected vector
to the state vector of attacked boundary buses xa through area
i ∈ Ka, and ai as attack vector of area i which is added to
that area’s measurements vector. So, the proposed distributed
FDIA can be conducted as the form of adapted from FDIA’s
base paper [6] as the following

ai = Hici, ∀i ∈ Ka (6)
zai

= zi + ai, ∀i ∈ Ka. (7)

It should be noted that although the vectors ai are indepen-
dently injected to the measurements vector zi of each area i,
but this injection is occurred in the same time and on a unified
samples of measurements. By following the instructions of
[6], it is provable that the proposed attack can get through
the BDDs. Give the RDSE as a prominent instance of BDDs.
Since the role of measurement residual in DSE is performed
by ok vectors in RDSE, hence instead of using the method of
[6], remaining the ok vectors without change before and after
the attack is used to prove bypassing the RDSE. Suppose (1) is
solved using the least square error estimator as the following

xk = (HT
kHk)

−1HT
k (zk − ok). (8)

To keep the value of vector oi for the area i ∈ Ka unchanged
after attack we must have:

|zi −Hixi| = |zai −Hixai | . (9)

So, by substituting (6) and (7) in (9) and simplification, we can
simply get |oi| = |oai

|, which oai
denotes oi under attack.

This indicates that the vector ok does not change after the
attack and the proposed attack bypasses the RDSE.

Illustrative Example. Suppose the original measurements z1
and z2 of area 1 and 2, respectively, can pass the decentralized
bad data detection (robust DSE) of [1]. The malicious mea-
surements za1 = z1 + a1 and za2 = z2 + a2 of areas 1 and 2,
respectively, can pass the decentralized bad data detection if
a1 and a2 are a linear combination of the column vectors of

H1 and H2, respectively, that is, a1 = H1c1 and a2 = H2c2.
This definition is extendable to a boundary bus with more than
two neighboring areas.

For bus 5 of the IEEE 14-bus test system (Fig. 1) and
with an attack size of 0.05, c1 and c1 are 6 × 1 and 12 × 1
vectors that those non-zero arrays related to bus 5 are equal
to 0.05. Vector a1 is a 10 × 1 vector which its elements
corresponding to the voltage magnitude of bus 5, line current
(1,5), and (2,5) are non-zero and a2 is a 14× 1 vector which
its element corresponding to the line current (4,5) is non-
zero (all of parameters and variables have been expressed
in rectangular coordinates). By considering 0.01 and 0.02 as
standard deviation per real component of voltages and currents
measurements, respectively, we run robust DSE [1] for 100
times and get the average of the obtained estimated states.
It should be noted that the estimated value of magnitude and
phase angle of bus voltage 5 in the normal condition are about
1.0118 and -0.1595 , respectively, that Represent the size of
attack. Also, the o vector of robust DSE algorithm [1] indicates
that the bad data is remained unchanged after the attack.

IV. DETECTION METHODS

This section presents two detection methods for the attack
described in the previous section on the DSE. One of these
methods is when the power system is operated by an operator
but in a distributed state. Another is for a situation where the
power system is operated in a distributed manner by several
independent operators working together. Before explaining
these two methods, it is necessary to establish a criterion for
measuring the accuracy of the estimates. Here, the estimated
error of the state variables in the DSE relative to their actual
value as (10) is used.

e(t)ok
=
‖xk − x

(t)
k ‖2

Nk
(10)

In this equation, e(t)ok is the per area error to the true state and
xk is vector of area k’s true states.

A. A Visualization Method

The proposed method in this section assumes that an
individual has measurements, parameters, and system status
information and estimates for all areas of the distributed
system. In this case, the operator can only detect the attack by
computing the error of estimation of the areas and comparing
their difference with a threshold value. For this propose, they
calculate the per area error (10) of K areas and so compare the
difference of the obtained values with each other. In this case,
the biggest difference relates to the area that was attacked.
In an equivalent and simpler way, the operator can draw and
compare the per area error diagram of all areas on a single
page. In this way, the area with the most error is the area
under attack. In the method of this operation mode, when
the difference between the error of areas is not exceeded the
threshold, or when drawing all the areas overlapped (or very
close to each other), it can be seen that no attack on the
system has occurred. Detecting an attack by either measuring



the error of the areas or drawing an error diagram simply
results in identifying its location. Detecting the location of
the attack is partial, and given the commonality of boundary
buses between neighboring areas, the proposed method helps
identify the buses under attack by determining the neighboring
areas.

B. A Distributed Method

The general model of operation of the restructured power
system at present is its operation by several independent
operators. In this case, since the estimation errors are not
available to one person, it is not possible to use the previous
subsection attack detection method. Hence, a new distributed
attack detection method is presented in this section. The
proposed method is based on the propagation of the error rates
data of the areas with their neighboring areas in a way that
does not compromise their privacy. The operator should not
be trapped in the economic repercussions of exposing their
estimation data while fleeing the attack. For this purpose, each
area sends a message to the neighboring area by adding a bit
of error to the error rate of its estimations, via a commu-
nication link intended to share the boundary bus estimates.
The neighboring area does the same for the mentioned area.
In the next step, each area reports its neighbor’s error rate
(obtained in the previous step) to its other neighboring areas.
By repeating this method over and over again, all areas will
find out the error rate of the other areas. At this point, all areas
notice an area that has been attacked. The proposed detection
procedure is explained in the following algorithm: Given that

Algorithm 1 Distributed Detection Method
1: procedure
2: for all k ∈ K do
3: add a value to its error
4: send its error to neighboring areas and receive their

error
5: end for
6: if each area has the error of all areas then
7: compare the errors and localize the attacked area
8: else
9: for all k ∈ K do

10: send its neighboring areas’ error to other neigh-
boring areas and receive the error of neighbors of neigh-
boring areas

11: end for
12: if each area has the error of all areas then
13: compare the errors and localize the attacked

area
14: else
15: And so on . . .
16: end if
17: end if
18: end procedure

the time required to send error rates to neighbors is equal to
the time required to send boundary bus state estimates, it is

1
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10

14

6

11

12

13Area 3

Area 1

Area 2

Area 4

Fig. 1. The IEEE 14-bus system partitioned into four areas [1]. Dashed
lassos show the buses belonging to area state vectors xk . PMU bus voltage
(line current) measurements depicted by circles (squares). Boundary buses are
distinguished by red circles.

not expected that the time required to detect an attack exceeds
the time needed to execute the DSE. However, this depends
on the arrangement and how the areas are connected in the
distributed system.

V. NUMERICAL RESULTS

The numerical results of DSE, attack, and detection and
localization methods are bought and discussed. The imple-
mentation environment is MATLAB 2015 and hardware is
Intel Duo Core @ 2.6 GHz (2GB RAM). At first the DSE
is run on the IEEE 14-bus system which is partitioned into
four area as shown in Fig. 1. The numerical results of DSE
and RDSE can be found in [1] in details, however the per area
error curve for all of areas in normal condition is shown as
in Fig. 2. As it can be seen from the Fig. 2, the error curve
of all the areas is close and overlaps in the last iterations
of the ADMM algorithm. Numerically speaking, the mean of
per area error of area 1 to 4 for 100 run are 0.000280195,
0.00021197, 0.000116829, and 0.000175132, respectively, that
their difference is less than 10−4.

1) First Operation Mode: In this case, the whole system
is operated in a distributed manner by one person, the attack
on each of the areas as well as the simultaneous attack on
the two boundary buses is investigated. Suppose the attacker
inject 0.1 attack to the state of each one of the boundary buses
using the manipulation of corresponding measurements of
each buses.After run 100 times of RDSE and get the average,
the Table I is obtained. The non-superscript error symbols in



Iteration
0 5 10 15 20 25 30 35 40 45 50

Pe
r a

re
a e

rro
r c

ur
ve

s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Area 1
Area 2
Area 3
Area 4

Fig. 2. Per area error curves.

TABLE I
THE AVERAGE OF 100 RUN RESULTS FOR ATTACK TO BOUNDARY BUSES

Attacked Area(s): 1 2 3 4 1&3

eo1 0.015487395 0.001834562 0.001692615 0.003982198 0.000860611
eo2

0.007845573 0.009115612 0.001288792 0.002881257 0.000913118
eo3

0.001812915 0.001105559 0.010533375 0.009987055 0.001744574
eo4

0.00248189 0.013622524 0.013143816 0.01229558 0.001721832
Min Diff Error 0.007641822 0.004506912 0.002610441 0.002308525 0.000022742

the first column of the table correspond to the last iteration
of the ADMM algorithm. The last row of the table shows the
least error difference of the area with the maximum error with
the nearest error. As is clear, this value is much larger for
attack to an area than the threshold value 10−4 specified in
the previous section. In the case of the fifth column, because
the two areas are attacked, those two areas should compare
their error with the areas that were not attacked.

The system operator can also easily detect an attack by
drawing per area error curves. As shown in Fig. 3 and 4, the
area under attack has substantially more error value, which is
quite distinct when compared to Fig. 2. Regarding the Fig.
3(c) and Fig. 3(d), it should also be noted that the detection
of the attack bus by the proposed method is approximate, yet
the attack areas are accurately detectable.

2) Second Operation Mode: In this mode of operation, the
results are exactly the same as those obtained in the previous
section. However, because all four areas are operated by four
different operators, not all of this information is available to
a person who can detect and locate the attack. Therefore, the
method described in Sec. IV-B is used. By applying Alg. 1 to
the test system, a table like the following is created to share
the error rate between the areas. It should be noted that this
table is fixed for any type of attack and is only related to the
system arrangement and how the areas are connected. As it is

TABLE II
THE PROCEDURE OF SHARING THE ERROR RATES BETWEEN AREAS

Areas
Steps 1 2 3 4
1 1→ 2 2→ 1&2→ 4 3→ 4 4→ 2&4→ 3
2 No Action 4→ 1&1→ 4 No Action 3→ 2&2→ 3
3 No Action 3→ 1 No Action 1→ 3
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Fig. 3. Per area error of four areas estimation for attack to buses: (a) 5, (b)
9, (c) 14, and (d) 11.
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Fig. 4. Per area error of four areas estimation for attack to buses 5 and 11.

clear, after doing three repetitions, all the areas are aware of
the error rates of the other areas. Consider the values in Table
I by adding a random value of 0.1 of their values to preserve
the privacy of the areas’information. In the meanwhile, if each
area compares the error difference of the areas for each types
of attacks, it will find the attacked area by comparing the
values obtained with the threshold value 10−4.

The time required to execute this algorithm is less than the
time needed to execute the DSE program, since the execution
time of each step of this algorithm is equal to the time of
transferring the boundary buses’ estimates between areas.

VI. CONCLUSION

A FDIA on DSE is proposed and it is proved that this
attack can get through the distributed bad data detection
methods with emphasis on RDSE. Two operation modes of
an interconnected power system are described and for both of
them an attack detection and localization method is provided.
Per area error of estimation of distributed estimator to the
true underlying state is defined as a measure to be used in



both detection methods. Comparison of the measure with a
threshold value is used for operating the whole system by one
person, and for operating each area by one person, the stepwise
error dissemination is privately used. The simulations were
done on IEEE 14-bus test system and the results indicate the
applicability of the detection methods.
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