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Abstract: Learning methods are challenged when there is not enough labeled data. It gets worse when the existing learning data
have different distributions in different domains. To deal with such situations, deep unsupervised domain adaptation techniques
have newly been widely used. This paper surveys such domain adaptation methods that have been used for classification tasks
in computer vision. The survey includes the very recent papers on this topic that have not been included in the previous surveys
and introduces a taxonomy by grouping methods published on unsupervised domain adaptation into five groups of: discrepancy-,
adversarial-, reconstruction-, representation-, and attention-based methods.

1 Introduction

By exploiting massive labeled data, deep NNs have shown improved
performance in many applications, like image classification, object
detection, semantic segmentation, text recognition, person re-
identification, to name a few. The performance of these systems
highly depends on the qualification of the labeled training data. The
major assumption here is that the training and testing data have inde-
pendent and identical distributions. This assumption can, however,
be easily challenged on differences of illumination, pose, quality,
background, etc, between the domains.

If the training (labeled) data is not sufficient, one could use
domain adaptation techniques to transfer the knowledge a model
has gained on a domain with enough labeled data to a domain
with limited labeled data, even when the source and target domains
are of different distributions. Labeling however is also a time and
resource consuming process. This survey therefore focuses on deep
unsupervised domain adaptation methods that have been utilized for
classification purposes in computer vision.

There are few survey papers already published on transfer learn-
ing and domain adaptation [1–6]. However, they are not as com-
prehensive as this survey paper. Here we review the focus areas
of these already published survey papers. Pan and Yang [1] intro-
duced the first survey on transfer learning. They compared traditional
machine learning with different kinds of transfer learning tech-
niques then they categorized transfer learning techniques into three
groups: inductive, transductive, and unsupervised. Shao et al. [2]
reviewed transfer learning for visual classification tasks and cate-
gorized these techniques into instance-based transfer learning and
parameter-based transfer learning. Patel et al. [3] focus was on
reviewing a representative subset of the computer vision. The sur-
vey presented by Csurka [4] was about domain adaptation methods
in visual applications covering both non-deep and deep domain
adaptation. She investigated the state-of-the-art non-deep domain
adaptation approaches, and then briefly expressed the deep domain
adaptation ones, and categorized them into three loss-models: clas-
sification, discrepancy, and adversarial. Tan et al. [5] focused more
on deep methods in transfer learning. Wang and Deng [6] extended
Csurka’s work. they added concepts of one-step and multi-step
domain adaptation methods and categorized them into hand-crafted
based, feature-based, and finally representation-based approaches.

In other words, surveys [1, 2] covered only techniques on non-
deep transfer learning and [5] extended this topic to deep ones. [3]
focused only on non-deep domain adaptation on visualization tasks
and [4][6] tried to extend their work on domain adaptation into deep
methods.

The main contributions of this survey in comparison to other
related surveys are as follows:

• There are many recent papers on deep visual unsupervised domain
adaptation approaches, that are not mentioned in any of the previous
surveys but are included in our paper.
• This survey paper represents a comprehensive coverage of deep
methods for domain adaptation, while previous surveys were mostly
focused on non-deep methods and have mentioned deep methods
only briefly.
• This survey paper presents a new taxonomy for deep visual UDA
for classification tasks. This taxonomy is useful because, it covers
almost all existing techniques to solve UDA problem, which are cat-
egorized into five main groups based on the technology of adopted
for domain adaptation. The first group is discrepancy-based which
consists of used techniques for decreasing the difference between
the domains and making more similarity between data distributions
by utilizing statistical techniques (i.e. maximum mean discrepancy,
correlation alignment, entropy minimization, batch normalization,
moment matching, and wasserstein discrepancy). The second group
is adversarial-based which consists of used techniques for min-
imizing the distribution difference across domains by using an
adversarial objective with a domain discriminator through assum-
ing that the source labels are equivalent to the target labels or not
(i.e. partial adversarial networks, and non-partial adversarial net-
works with three subsetting: discriminative adversarial networks,
generative adversarial networks, and feature matching adversar-
ial networks). The third group is reconstruction-based which con-
sists of used techniques for decreasing the difference between the
domains by mapping the source and target, or both domain samples
into a shared representation domain (i.e. encoder-decoder models,
dictionary and sparse coding models, and graph-based models).
The fourth group is representation-based which consists of used
techniques for decreasing the difference between the domains by
utilizing the trained network as input to use intermediate repre-
sentations to a new network (i.e. domain confusion representation,
domain invariant representation, and representation disentangling).
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Fig. 1: Our taxonomy of deep visual unsupervised domain adaptation for classification tasks.

The fifth group is attention-based which consists of used techniques
for decreasing the difference between the domains by focusing on
some transferable attention regions or images from source data and
relating them to the target data (i.e. adversarial attention alignment,
transferable local attention, transferable global attention).
• We investigate and analyze some important methods in each cat-
egory of our taxonomy, based on the results reported by different
methods on well-known public databases. To the best of our knowl-
edge, this is the first survey paper in deep visual unsupervised
domain adaptation for classification tasks that quantitatively com-
pares the performance of different deep UDA methods. It can help to
provide proper insight for designing accurate and robust deep UDA
methods.

The rest of this paper is organized as follows: In Section 2, our
new taxonomy of deep domain adaptation methods is introduced.
In the next five sections (Section 3-Section 7), different methods
of our taxonomy including discrepancy-based, adversarial-based,
reconstruction-based, representation-based, attention-based, are dis-
cussed, respectively. In Section 8, the most important benchmark
datasets for deep visual domain adaptation are presented. Then,
some unsupervised domain adaptation methods for other applica-
tions during the recent two years are mentioned in Section 9. Finally,
the discussion and summary of this paper are presented in Sections
10 and 11, respectively.

2 Taxonomy

In this section, we introduce our taxonomy of deep visual unsuper-
vised domain adaptation for classification tasks. As it is shown in the

Fig. 1, we categorize deep domain adaptation methods into five main
groups based on the technology of these methods adopted:

1. Discrepancy-based: These methods measure the distance
between the source and target domains on the corresponding acti-
vation layers of the two networks and apply statistical techniques to
diminish discrepancy between domains.
2. Adversarial-based: These methods are one of the novel research
topics in machine learning approaches. These techniques contain
deep NN architectures comprising of two competing networks.
3. Reconstruction-based: These methods map source/target/or both
domain samples into a shared representation domain(s), while pre-
serving individual characteristics of each domain.
4. Representation-based: These methods utilize the trained network
as input to use intermediate representations to a new network.
5. Attention-based: These methods focus on some transferable
attention regions or images from source data and relate them to the
target data. In other words, it is introduced as the mechanism of guid-
ing the network to focus on the particular parts of target images that
contain related information to the source images.

In the following, we elaborate on the difference between the
subgroups.

Regarding the taxonomy of discrepancy-based methods, we cate-
gorize this group into six subgroups: maximum mean discrepancy
(MMD), correlation alignment (CORAL), entropy minimization
(EM), batch normalization (BN), moment matching, and Wasser-
stein discrepancy. The MMD is a kernel method which measures the
difference of two-sample in the RKHS, while the CORAL matches
the second-order statistics (covariances) between the data distribu-
tions by a linear transformation. The entropy minimization (EM)
calculates the difference between two probability distributions where
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encourages both low entropy and consistency on the domain pre-
dictions for perturbations of the same input features in order to
perturbation to be both consistent. The batch normalization (BN)
in the form of the BN layer(s) tries to decrease the covariance shift.
first, each feature is standardized in a mini-batch, and then a common
bias and slope are learned for each mini-batch. The moment match-
ing employs one or more moments to compute of difference between
domains feature distribution. The Wasserstein metric is applied as a
discrepancy measure for measuring the distance among the different
domains samples.

Regarding the taxonomy of adversarial-based methods, we first
categorize this group into two subgroups: non-partial adversarial
network, and partial adversarial network. The non-partial adversar-
ial methods usually assume that the source labels are equivalent to
the target labels, so there is a restriction of identical labels between
domains, but the partial adversarial methods relax the same label
space assumption between source and target spaces. In other word,
the target labels are supposed to be a subset of the source labels.
Then, we categorize non-partial adversarial network into three sub-
groups: discriminative adversarial network, generative adversarial
network (GAN), and feature matching adversarial network. Discrim-
inative adversarial network refers to some methods which usually
utilize an adversarial scheme for obtaining domain confusion con-
cerning a domain discriminator. However, the GANs are not very
optimal on discriminative purposes and maybe tangled in smaller
domain shifts while discriminative adversarial methods with apply-
ing the shared weights can handle the larger domain shifts. Feature
matching adversarial networks are adversarial methods where the
source classifier is trained with the labeled data from the source
domain, and the target classifier is regularized by minimizing a dis-
tance metric between the source classifier and the target one by using
all the data. The main difference between feature matching adversar-
ial networks with the discriminative adversarial networks is utilizing
distance metrics to improve more efficiency for domain adaptation.

Regarding the taxonomy of reconstruction-based methods, we
categorize this group into three subgroups: encoder-decoder mod-
els, dictionary and sparse coding models, and graph-based models.
Encoder-decoder models map source/target/or both domain samples
into a shared representation by using the encoder, while dictionary-
based models do by updating or adapting the dictionary, and finally,
graph-based models do by building the connected graph.

Regarding the taxonomy of representation-based methods, we
categorize this group into three subgroups: domain confusion repre-
sentation, domain invariant representation, and representation disen-
tangling. The key difference between these groups is on the learning
process and loss function. The domain confusion representation
method utilizes the domain confusion loss to learn a domain invari-
ant representation. Domain confusion loss seeks to learn domain
invariance via finding a representation in which the best domain
classifier performs poorly. So this method uses the maximization
strategy on the loss function. While domain invariant representation
method applies the source and the target data to learn a common rep-
resentation and utilizes the embedding loss for enforcing prediction
and structural consistency on the target data. So, this method uses
the minimization strategy for loss function. Representation disentan-
gling is a learning method for concluding a hidden feature space that
decomposes the derived representation so that the visual attributes
can be recognized and described.

Regarding the taxonomy of attention-based methods, we catego-
rize this group into three subgroups: adversarial attention alignment,
transferable local attention, and transferable global attention. Adver-
sarial attention alignment method reviews transferable attention
methods which uses adversarially learning. Transferable local atten-
tion method specifies which regions of images are better to transfer
from the source domain to the target domain. While transferable
global attention specifies which images are better to transfer from the
source domain to the target domain that leads to better performance
in domain adaptation.

The various methods for above-mentioned groups are discussed
in the following subsections.

3 Discrepancy Based Methods

Discrepancy based methods are usually used to decrease the differ-
ence between the domains and to make more similarity between
data distributions. These methods measure the difference between
the source and the target domains on corresponding activation lay-
ers of the two networks. Discrepancy based methods can be further
divided into subgroups shown in Table 1. We review these methods
in the following subsections.

Table 1 Our Taxonomy of Discrepancy Based Methods
Maximum Mean Discrepancy DDC[7], DAN[8], RTN[9], JAN[10], WMMD[11],

[12], [13], MRAN[14], CAN[15], SCA[16]
Correlation Alignment Deep CORAL[17], DGCAN[18], MCA[19],

JDDA[20], CORAL&MMD[21]
Entropy Minimization FTN[22], [23], [24]
Batch Normalization [25], AdaBN[26]
Moment Matching [27], M3SDA[28], CV-CMD[29]
Wasserstein Discrepancy WDGRL[30], JDOT[31], [32], SWD[33]

3.1 Maximum Mean Discrepancy (MMD)

Maximum Mean Discrepancy (MMD) [34] is a kernel method which
measures the difference of two-sample in the RKHS. The MMD
assumes that if generating distributions are the same then all their
statistics are equal. MMD can be defined as the following difference
discrepancy measure in Equation (1):

D(P (Xs), P (Xt)) , sup
f2H

||EXs
[f(Xs)]� EXt

[f(Xt)]||2H (1)

where D mentions distance between source P (Xs) and target
P (Xt) distributions, and f represents the kernel function.

Based on the above, Tzeng et al. [7] proposed a CNN archi-
tecture, DDC, which contains a confusion loss function based on
MMD, and a new layer for adaptation. Long et al. [8] proposed a
Deep Adaptation Network (DAN) model, which generalizes deep
CNN in the domain adaptation approaches. Different from previous
work, DAN uses of two-sample test statistics, multi-kernel MMD
and Mean Embedding Test (ME), for matching the domain distri-
butions [35, 36]. Fig. 2(a) shows the DAN architecture. Long et al.
introduced both additional works based on DAN, Residual Transfer
Network (RTN) [9] and Joint Adaptation Networks (JAN) [10]. RTN
simultaneously learns classifiers and features, and relaxes the com-
mon classifier criteria used in DAN [8], and assumes a residual layer
for classifier adaptation (see Fig. 2(b)). JAN learns the network by
aligning the joint distributions by using the joint MMD (JMMD) cri-
teria. A weighted MMD (WMMD) is proposed by Yan et al. [11],
which constructs a reference source distribution relying on target
one to reduce the effect of class weight bias. Luo et al. [12] in their
work to reduce the discrepancy between domains and to ensure the
generalization ability of their model, constrained the MMD metric
between domains. Wu et al. [13]’s work pointed out that changing
deep representations in CNNs from generic to specific makes it more
difficult to transfer their knowledge, specifically in higher fc layers.
To deal with this, they introduced a domain confusion loss repre-
sented by MMD and placed it on fc layers (see Fig. 2(c)). Zhu et al.
[14] proposed Multi Representation Adaptation Network (MRAN)
to match the distributions of multiple representations by utilizing
a hybrid structure for visual classification tasks. They presented a
multi representation alignment and extended the marginal distribu-
tion discrepancy measure MMD to conditional MMD (CMMD).
Kang et al. [15] presented the Contrastive Adaptation Network
(CAN) for optimizing a discrepancy metric, Contrastive Domain
Discrepancy (CDD) metric based on MMD. They jointly optimized
the intra-class distance and inter-class distance for improving the
adaptation performance. They stated that CDD compared to MMD
is more robust to the noise especially when working on a large
amount of data. Deng et al. [16] introduced Similarity-Constrained
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Fig. 2: Different approaches with the MMD metric. (a) Architecture of deep adaptation network (DAN) [8], (b) Architecture of residual transfer
network (RTN) [9], and (c) Architecture of the joint learning of multiple latent domains and deep representation for domain adaptation [13]

Alignment (SCA) model which aligns data distributions at both
domain-level and class-level. For aligning domain-level, they uti-
lized the JMMD metric [10] which reduces the discrepancy in the
joint distributions in the activation layers. For aligning class-level,
they utilized Similarity Guided Constraint (SGC) [37, 38] on both
source and target domains to achieve intra-class compactness and
inter-class separability.

3.2 Correlation Alignment (CORAL)

In this section, we represent methods based on CORAL [39].
CORAL is an unsupervised domain adaptation approach via linear
transformation for matching the second-order statistics (covariances)
between the data distributions.

Sun and Saenko [17] extended CORAL for learning a nonlinear
projection that utilizes deep NNs (Deep CORAL) to align correla-
tions in the activation layer. In this model, the CORAL loss is applied
to the last layer of AlexNet to use as a distance metric between the
covariances of different domain data features. Coral loss is shown in
Equation (2).

LCORAL =
1

4d2
||Cs � Ct||2F (2)

where ||.||2F is the Frobenius norm. Cs and Ct are the covariance
matrices for the source and target data, respectively.

Peng and Saenko [18] proposed Deep Generative Correlation
Alignment Network (DGCAN), which utilizes shape-preserving loss
function for combining both fake and real images data, and utilizes

a CORAL loss function for minimizing the domain discrepancy in
deep features. Zhang et al. [19] introduced a model, Mapped Cor-
relation Alignment (MCA), which projects covariances of different
domains from Riemannian manifold to RKHS. In order to align the
distributions, a non-linear transformation is learned by augmenting
MCA loss to the classification loss. Chen et al. [20] introduced Joint
Discriminative Domain Alignment (JDDA), a domain discrepancy
loss which is measured by CORAL and applies a discriminative loss
on the bottleneck layer. They jointly learned both instance-based
and center-based discriminative learning scheme for deep domain
adaptation. Other work on this topic [21] presents an unsupervised
deep domain adaptation method based on CORAL and MMD. This
method by jointly utilizing MMD and CORAL loss layers in the
last two layers of source network and target network, aligns the
second-order statistics and higher-order statistics, respectively.

3.3 Entropy Minimization

Entropy minimization [40] is a popular training objective in unsu-
pervised domain adaptation. Also, it can be used as a distance metric
adaptation between different domains.

Sohn et al. [22] proposed Feature Transfer Network (FTN) to
divide the transformed source domain and target domain using a
entropy minimization loss function to enhance the discriminative
ability of FTNs in the target domain. Roy et al. [23] presented
Min-Entropy Consensus (MEC), where the objective function jointly
merges consistency loss and entropy loss to improve the domain
adaptation, as in (3):
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Lt(Bt
1, B

t
2) =

1
m

mX

i=1

lt(xt1i , xt2i ) (3)

lt(xt1i , xt2i ) = �1
2
max
y2Y

(log p(y|xt1i ) + log p(y|xt2i )) (4)

where xt1i 2 B1
t and xt2i 2 B2

t and also B1
t and B2

t are two differ-
ent target batches that contain images with duplicate pairs in various
image perturbations.

Based on previous work in the domain discovery [25], Mancini
et al. [24] produced multiple domain predictions on perturbations
of the features of given samples using MEC loss of [23]. This loss
performs both consistency and low entropy for the perturbed domain
predictions of the same input features.

3.4 Batch Normalization

Batch Normalization (BN) [41] in form of BN layer(s) was originally
introduced to decrease the covariance shift.

Mancini et al. [25] introduced an CNN architecture with a new
batch normalization layer (mDA-layer) for domain adaptation. The
Multi-domain DA layer (mDA-layer) re-normalizes the multi-modal
feature distributions. This layer exploit domain membership infor-
mation to match the distributions. The mDA-layer can be normalized
according to (5):

mDA(xi, wi, µ̂, �̂) =
X

d2D

wi,d
xi � µ̂dq
�̂2
d + ✏

(5)

where wi = [wi,d]d2D , µ̂ = [µ̂d]d2D , and �̂ = [�̂2
d]d2D .

Adaptive Batch Normalization (AdaBN) [26], was introduced to
improve the generalization power of a DNN. The AdaBN modifies
the statistics of BN layers in the target domain by statistics of each
BN layer in the source domain to update the weights in CNN for
domain adaptation purposes.

3.5 Moment Matching

Moment matching is another approach to decrease the discrep-
ancy between different domains. this technique employs one or
more moments to compute of difference between domains feature
distribution.

Li et al. [27] introduced Generative Moment Matching Networks
(GMMNs). Training the GMMN for minimizing the distribution dis-
crepancy is done via aligning all distribution moments of the model.
The GMMN uses MMD as a loss function that is the main part of
training objective for this method. Zellinger et al. [29] introduces a
metric, Central Moment Discrepancy (CMD), which is the sum of
discrepancies of higher-order central moments of the domain dis-
tributions. Peng et al. [28] proposed a moment matching approach,
M3SDA, for multi-source domain adaptation models which not
only aligns the source domains with target domain but also source
domain with each other simultaneously.

3.6 Wasserstein Discrepancy

The Wasserstein metric is applied as a discrepancy measure between
the task-specific classifiers for measuring the distance among the
different domains samples [42]. Equation (6) expresses Wasserstein
Metric.

Wr(P (Xs), P (Xt)) = [ inf
µ2�(P (Xs),P (Xt))

Z
⇢(x, y)rdµ(x, y)]

1
r

(6)
where P (Xs), P (Xt) are probability distributions source and target
on X, respectively, and Wr is the Wasserstein distance of order r
between P (Xs) and P (Xt). Also ⇢(x, y) is a distance function for
two samples x and y in the set X.

Damodaran et al. [32] improved JDOT [31] by jointly match-
ing feature and label space distributions in a DNN layer. Lee et al.
[33] presented Sliced Wasserstein discrepancy (SWD), which uti-
lizes the geometrically 1-Wasserstein as the discrepancy measure for
obtaining the dissimilarity probability of source and target domains.

4 Adversarial Based Methods

Recently, adversarial based adaptation methods have become an
expanding important type of domain adaptation method to deal with
visual domain adaptation problems, which intends to minimize dis-
tribution difference across domains by using an adversarial objective
with a domain discriminator. Our taxonomy of adversarial based
models is summarized in Table 2, and the recent works on this topic
are reviewed in the following subsections.

Table 2 Our Taxonomy of ADVERSARIAL BASED METHODS
Non-partial Adversarial Based Methods

Generative Adversarial
Network (GAN)[43]

[44], S+U[45], AdvKin[46], AdvNet[47],
DupGAN[48], GAADGAN[49], GAGL[50],
DR-GAN[51], GADM[52]
CycleGAN[53] : DiscoGAN[54], ACAL[55],
CyCADA[56]
CGAN[57] : DualGAN[58], DR-GAN[59],
AC-GAN[60], FF-GAN[61], PixelDA[62],
DAGAN[63], [49], [64], CAPG-GAN[65],
SketchGAN [66]
CoGAN[67] : UNIT [68], TarGAN[69]

Discriminative Adversarial
Network

DANN[70], ADDA[71], MADA[72],
MDANN[73]

Feature Matching Adversarial
Network

RevGrad[74], DSN[75], [76], WDGRL[30],
CDANs[77], [78, 79], CDAN[77], CAN[80],
DCTN[81], [82], RAAN[83], SimNet[84], [85],
H+L[86], ARTN[87], M-ADDA [38], HAN [88]

Partial Adversarial Based Methods
Partial Adversarial Networks SAN[89], PADA[90], IWAN[91], ETN[92]

4.1 Non-partial Adversarial Based Methods

Non-partial adversarial methods usually assume that the source
labels are equivalent to the target labels, So there is a restriction
of identical labels between domains. In this section, we categorize
non-partial adversarial based methods as follows:

4.1.1 Generative Adversarial Network (GAN): Generative
Adversarial Networks (GANs) provide an approach to learn deep
representations without extensive training data. This approach is exe-
cuted by deriving backpropagation through a competition between
the networks. A GAN model contains two parts: a discriminator and
a generator. The generator learns to generate artificial samples that
are hard to distinguish from the real ones, while the discriminator
learns to perform this distinction. The GAN architecture is illustrated
in Fig. 3(a).

GAN was introduced by Goodfellow et al. [43], by defining a pair
of networks that are competing against each other. GAN contains
two parts: a generator g, which obtains the distribution of data, and
a discriminator f, which computes the probability of a sample is a
real training data or is a fake one generated by g. Both the genera-
tor and discriminator have fully connected NNs architecture. GANs
can be seen as a minimax two-player game by solving the following
optimization Equation (7):

min
g

max
f

V (f, g) = Ex⇠p(x)[� log f(x)] + Ez⇠pz(z)

[log(1� f(g(z)))]
(7)

where z is a random vector as input to the generative model.
Yoo et al. [44] used GANs to transfer information from the source

domain to the pixel-level target domain. They measured a pixel-level
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similarity via the color version of structural similarity. Shrivastava et
al. [45] developed a model for simulated + unsupervised (S + U)
learning which combines two losses: self-regularization and adver-
sarial. Also, they trained a refiner network for adding realism to
synthetic images. In contrast to GANs which use random vectors
as input, this model uses synthetic images for input data. Duan
et al. presented two adversarial contrastive methods, AdvKin [46]
and AdvNet [47], which use GAN for kinship verification issue.
Advkin utilizes MMD loss to decrease distributions discrepancy and
an adversarial loss based on GAN to further improve the discrimina-
tion and robustness in deep features. Similar to Advkin, AdvNet not
only utilizes MMD and GAN, but also applies a contrastive loss for
increasing the inter-class distance and minimizing the intra-class dis-
tance in the second fc layer. Tran et al. [51] proposed a Disentangled
Representation GAN (DR-GAN) by modeling the face rotation pro-
cess. DR-GAN is the first work that is able to frontalize an extreme
pose in the wild face and also constructs the generator in GAN
for feature learning with an encoder-decoder structure. Wei et al.
[50] proposed a Generative Adversarial Guided Learning (GAGL)
model, which is a classification model to learn the decision boundary
through the generator. Firstly, They learned a domain-invariant clas-
sification model via adversarial training, and then, they introduced an
additional generative model to further enlarge the decision bound-
ary of the classification model from the target data. Hu et al. [48]
proposed a GAN architecture with two adversarial discriminators,
DupGAN. It utilizes a generator, an encoder, and duplex adversarial
discriminators for domain-invariant feature extraction and domain
transformation. Zhang et al. [52] introduced Generative Adversar-
ial Distribution Matching (GADM), which consists of three stages:
source domain pre-training by using the labeled source image data,
adversarial distribution matching across domains via augmenting the
MMD to the objective function of the generator to reduce distribu-
tion discrepancy across domains, and target domain classification by
using target mapping and target classification model.

Cycle Generative Adversarial Network (CycleGAN): CycleGAN
[53] is a framework based on GANs, which utilizes cycle-
consistency constraint along with adversarial training manner for
mapping inputs data from source domain to target. The advan-
tage of CycleGAN is that it does not need the paired input-output
instances in the domains to match. It can learn the relations between
the domains [93]. The CycleGAN architecture is illustrated in Fig.
3(c). Hoffman et al. [56] proposed a Cycle-Consistent Adversar-
ial Domain Adaptation model, CyCADA, which is an extension
of CycleGAN that discriminatively trains cycle-consistency loss
and aligns representations at both the feature-level and pixel-level.
Hosseini-Asl et al. [55] proposed two models, Relaxed Cycle-
Consistent model (RCAL) and extended of RCAL, Augmented
Cycle-Consistent Model (ACAL). They obtained better accuracy
compared to CycleGAN, by relaxing the cycle-consistency con-
straint and integrating the discriminator in the training phase. Kim
et al. [54] proposed DiscoGAN based on cycleGAN, which pre-
serves major properties between the input image and the translated
image by applying the cycle consistency loss function. The core
of DiscoGAN is based on two different GANs. A key intuition of
DiscoGAN is to put all data in one of the domains to be representable
through data in another domain. DualGAN [58], CycleGAN [53],
and DiscoGAN[54] apply two generators to generate photo-sketch
conversion and viceversa.

Conditional Generative Adversarial Network (CGAN): Conditional
Generative Adversarial Net (CGAN) [57] is based on GANs which
extends to a conditional model. In CGAN, the generative model
and discriminative model are conditioned on data and class labels.
The CGAN architecture is illustrated in Fig. 3(b). DualGAN[58]
adopts deep domain adaptation with using of two GANs to develop
dual learning by adversarial reconstruction. The mean of abso-
lute difference between the reconstructed and original data within
each domain data is a reconstruction error in the DualGAN model.
DR-GAN [59] gains domain-invariant feature extraction and image

translation based on CGAN with one encoder in their architec-
tures for all domains. Bousmalis et al. [62] presented pixel-level
domain adaptation (PixelDA), for adopting source data to the tar-
get data. Previous works usually perform both image classification
and domain adaptation in a single proceeding network, but PixelDA
separates the proceeding of classification from the proceeding of
domain adaptation. Odena et al. [60] proposed Auxiliary Classifier
GAN (AC-GAN) with class label conditioning to learn a suitable
adaptation. AC-GAN introduces a metric function of spatial resolu-
tion for image classification. Sankaranarayanan et al. [49] improved
AC-GAN [60] where there are two parallel streams in training phase:
classification stream, and adversarial stream which is an AC-GAN
framework in the adversarial branch. Antoniou et al. [63] proposed a
model based on CGANs, Data Augmentation Generative Adversar-
ial Network (DAGAN), which augments standard vanilla classifiers
and improves a kind of few-shot learning approaches. Yin et al. [61]
introduced Face Frontalization GAN, FF-GAN, for generating 3D
shapes face images. FF-GAN framework differs from CGAN based
on modeling. Incorporating FF-GAN into the GAN structure gains
appearance and shape priors for less training data and fast conver-
gence. The FF-GAN utilizes not only the generator and discriminator
loss similar GANs but also applies a masked symmetry loss for
retaining the visual quality and an identity loss for recovering high-
frequency information. Volpi et al. [64] utilized domain-invariance
in a single feature extractor which is trained by GANs, and aug-
mented the features by preparing a feature generator trained with a
CGAN. Hu et al. [65] presented a Couple Agent Pose Guided Gener-
ative Adversarial Network (CAPG-GAN), which utilizes an identity
preserving loss to keep identity knowledge and also applies a total
variation regularization for refining local textures, besides of gen-
erator and conditional adversarial loss. SketchGAN [66] is another
model based on CGANs with a cascade encode-decoder architecture.
The SketchGAN has an incomplete sketch as input and a completed
sketch with its classification label as output.

Coupled Generative Adversarial Network (CoGAN): Coupled Gen-
erative Adversarial Networks (CoGAN) [67] has two GANs. In
CoGAN architecture, each source and target have a unique genera-
tive adversarial objective, and also source and target representations
are jointly learned via weight sharing in specific layers. The main
advantage of CoGAN is the effective learning of joint distribution
from the two domains by separately drawing the samples from the
marginal distributions [93]. Liu et al. [68] introduced a model based
on CoGANs, UNsupervised Image-to-image Translation (UNIT),
which combines variational autoencoders with CoGAN. Lv et al.
[69] proposed an unsupervised domain adaptation model, TarGAN,
which generates target data along with class labels are obtained by
GANs, to improve the classification accuracy. The TarGAN baseline
is CoGAN [67] and DDC [7].

4.1.2 Discriminative Adversarial Network: This section implies
to some methods which usually utilize an adversarial manner for
obtaining domain confusion concerning a domain discriminator.
GANs are not very optimal on discriminative purposes and maybe
tangled in smaller domain shifts while discriminative methods with
applying the shared weights can handle the larger ones. Ganin et
al. [70] proposed Domain Adversarial NN (DANN), which shares
weights across the source and target domains and transfers both
domains data to a common feature space. DANN by adding a new
layer, gradient reversal, to the standard feed-forward NN with a
backpropagation training manner solves the domain adaptation prob-
lems. Adversarial Discriminative Domain Adaptation (ADDA) [71]
combines discriminative modeling with a GAN loss for domain
adaptation purposes. First, ADDA utilizes the source domain labels
to learn a discriminative representation and then learns a discrimina-
tive mapping of encoded target domain images to the source domain
feature space by a domain adversarial loss. ADDA has the following
unconstrained optimization (8):
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Fig. 3: (a) Architecture of GAN [43], (b) Architecture of CGAN [57] and (c) Architecture of CycleGAN [53].

min
Ms,C

Lcls(Xs, Ys) = �E(xs,ys)⇠(Xs,Ys)

KX

k=1

1[k=ys]

logC(Ms(xs))

min
D

LadvD(Xs, Xs,Ms,Mt) = �E(xs)⇠(Xs)[logD(Ms(xs))]

�E(xt)⇠(Xt)[log(1�D(Mt(xt)))]

min
Mt

LadvM (Xs, Xt, D) = �E(xt)⇠(Xt)[logD(Mt(xt))]

(8)

where Ms and Mt are source mapping and target mapping respec-
tively. Lcls is classification loss function for source data, LadvD is
adversarial loss function for domain discriminator, and LadvM is
adversarial loss function for source and target mappings.

Pei et al. [72] presented a Multi Adversarial Domain Adaptation
(MADA) approach, which addresses domain adaptation problems
by applying multiple domain discriminators. A key advance about
previous approaches (i.e. DAAN and ADDA) is the ability to simul-
taneously enhance positive transfer on relevant data and reduce

negative transfer on irrelevant data. Another work was introduced
by Qi et al. [73], which considers a problem of Multi-modal Domain
Adaptation NN (MDANN) for domain adaptation by attending and
fusing in an adversarial manner. Hybrid domain constraints are
presented to jointly learn discriminative and domain-adaptive multi-
modal features. Zhang et. al. [94] presented Domain Symmetric
Networks (SymNets), which is based on a symmetric plan of target
and source task classifiers. To train the SymNet, a new adversarial
learning objective is introduced that the key plan is based on a two-
level domain confusion manner, where the class-level confusion loss
boosts over the domain-level via driving the learning of intermediate
network features to be invariant at the corresponding classes of the
two domains.

4.1.3 Feature Matching Adversarial Network: In this section,
some adversarial methods are reviewed where the source classifier
is trained with the labeled data from source domain, and the target
classifier is regularized by minimizing a distance metric between the
source classifier and the target one by using all the data.

RevGrad [74] proposed a shared encoder and two discriminator
streams for predicting domain and class where a classification loss is
used for class prediction while multiplying the gradient by a negative
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value during the backpropagation training is used for domain predic-
tion. Bousmalis et al. [75] introduced Domain Separation Networks
(DSN), which encodes representations by using domain adversar-
ial similarity loss and maximizes confusion by utilizing Gradient
Reversal Layer. Shen et al. [76] used Wasserstein distance as a dis-
crepancy loss in adversarial network. Shen et al. [30] introduced
WDGRL, which applied an adversarial scheme to obtain domain-
invariant representations by iteratively learning features with lower
Wasserstein distance. [78, 79], use the same idea as RevGrad [74],
but the optimization approach for discriminator and generator losses
is different from multiplying the gradient with a negative constant
as in RevGrad. Conditional domain adversarial networks (CDANs)
[77] was introduced to consider multi-linear condition and entropy
condition framework, where the first condition enhances the discrim-
inative ability by obtaining the covariance between representations
and classifier predictions, and the second condition engages the
transferring ability by controlling the uncertainty of classifier pre-
dictions. Zhang et al. [80] introduced Collaborative and Adversarial
Network (CAN), which learns discriminative representations, unlike
GANs don’t generate new images, but similar to DANN learns the
network by back-propagating the gradients from domain loss. Xu et
al. [81] proposed a deep cocktail network (DCTN), which utilizes
multi-source multi-process adversarial learning to reduce the differ-
ence between the target domain and each of the source domains.
DCTN relaxes the assumption of having the shared class among any
source domains. Saito et al. [82] proposed an adversarial learning
method for domain adaptation by applying the decision boundaries
that are specific for each task to increase the distance between the
classifiers. In other words, this method utilizes the task-specific clas-
sifiers as a discriminator for the relationship between boundaries
of classes and samples of target domain. Chen et al. [83] intro-
duced the Re-weighted Adversarial Adaptation Network (RAAN),
which applies EM distance to matching the feature distributions in
an adversarial scheme for domain adaptation. RAAN is the first
approach to learn domain invariant representations in UDA which
utilizes the optimal transport [95] based on EM distance. Pinheiro
[84] presented similarity adversarial learning method base on DANN
[70] with a different approach to do classification where each image
from source or target domains is evaluated by some of prototypes
with a similarity-based classifier. Cicek and Soatto [85] proposed a
conditional domain adaptation method where a cross-entropy loss
is utilized for training a class predictor with the labeled source
samples, and an adversarial regularization is applied to progress
the performance of the classifier on the target domain. The work
of [77] is similar to [85], which conditions the domain alignment
loss to labels. Wen et al. [86] utilized an additional conditional
domain adversarial loss to learn domain-invariant local feature, and
to jointly align global and local feature statistics. Cai et al. [87] pro-
posed Adversarial Residual Transform Network (ARTN), which is a
feature-shared model directly transforming the source features into
the target feature space. ARTN utilizes residual connections between
the feature extractor and transform network to relax the learning of
distribution mapping by sharing features. Laradji et.al. [38] intro-
duced Metric-based Adversarial Domain Adaptation (M-ADDA),
which utilizes similar architecture with ADDA [71], but M-ADDA
applies a metric learning method to train the source classifier on the
source data via optimizing a triplet loss function. Then, it applies the
adversarial scheme to extract featured from both source and target
data indistinguishable. They optimized a new loss function, which
encourages the target data’s embeddings to form clusters with large
margins between them. Zhang et. al. [88] proposed Hybrid Adver-
sarial Network (HAN). HAN minimizes the source data classifier
loss, conditional adversarial loss similar to [77], and the correlation
alignment loss. They introduced a new adaptation layer for further
promoting the performance in the HAN model.

4.2 Partial Adversarial Based Methods

Partial adversarial based is a new scheme, which relaxes the same
label space assumption between source and target spaces. So, the
target labels are supposed to be subset of the source labels. In other

words, the number of class labels in the target domain is less than the
number of class labels in the source domain. Fig. 4 shows this con-
cept. As mentioned before in subsection 4.1, non-partial approaches
typically align all of the source space with the target space, which
might result in the negative transfer for domain adaptation problems.

Cao et al. [89] proposed Selective Adversarial Network (SAN),
which improves positive transfer by considering a weighting mecha-
nism via multiple adversarial networks, and tries to prevent negative
transfer by ignoring the outlier source classes. A key progress over
related models is the ability to simultaneously boost positive trans-
fer on relevant data and reduce negative transfer on irrelevant data.
Cao et al. [90] presented Partial Adversarial Domain Adaptation
(PADA), which improves SAN [89] by utilizing only one adversarial
network and giving more importance to class-level in source clas-
sifier. Zhang et al. [91] introduced an unsupervised partial domain
adaptation model, Importance Weighted partial Adversarial Network
(IWAN), with two domain classifiers where the first classifier obtains
the source instance importance weights, and the second classifier by
utilizing the weighted source instances and the target instances exe-
cutes the minimax game. They showed that the minimax method
between the second domain classifier and the feature extractor is
equivalent to minimizing the Jensen-Shannon distance between the
weighted source density and the target density. Cao et al. [92]
proposed another approach to partial domain adaptation, Example
Transfer Network (ETN), which computes the transferring power of
source examples by combining the discriminative information and
down-weighting the outlier source examples. The key contribution
of ETN is that the weights are put in the source classifier loss, which
significantly enhances the ability to decrease the irrelevant source
examples that damage the final model. Based on the evaluation, the
ETN model is strongly performed for partial domain adaptation in
comparison with previous models.

5 Reconstruction Based Methods

Reconstruction based methods reconstruct all domains samples to
make the same representation of the domains along with preserving
the special properties of each domain. Our taxonomy of reconstruc-
tion based methods is summarized in Table 3, and the recent works
on this topic are reviewed in the following subsections.

Table 3 Our Taxonomy of RECONSTRUCTION BASED METHODS
Encoder-Decoder Models [96], mSDA[97], MTAE[98], [99],

DRCN[100], DTL[101], [102], [103]
Dictionary and Sparse Coding Models [104], [105], [106], CDMDA[107]
Graph-Based Models PUnDA[108], OBTL[109], ABLR[110],

GM+PL[111], GAKT[112], GCAN
[113], AdaGraph[114], GCAN[113]

5.1 Encoder-Decoder Models

Encoder-decoder models are the approaches that first encode an
input to some hidden representation by the encoder, then decode this
representation back for a reconstructed version by the decoder. The
domain-invariant features are learned by a common encoder while
domain-special features are preserved by reconstruction loss[115].

Glorot et al. [96] extracted a high-level feature space by using
Stacked Denoising Autoencoders (SDA) [116]. SDAs have high
computational costs along with a lack of scalability in high-
dimensional feature spaces. So, the marginalized SDA (mSDA)
method [97] was introduced to solve these problems, which utilizes
linear denoisers to marginalize noise where parameters are computed
in a closed-form solution without using a stochastic gradient descent
approach. Ghifary et al. [98] introduced an autoencoder model,
Multi-Task Autoencoder (MTAE), which learns self-domain and
between-domain reconstruction. The most important contribution of
MTAE is the training approach. It constructs the generalized denois-
ing autoencoder, which learns invariances for naturally happening
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Fig. 4: The partial scenario. The target label space (‘chair’, ‘cup’) is contained subsetting of the source label space (‘TV’, ‘chair’, ‘cup’) [90].

transformations. Mittal et al. [99] utilized the deep belief network
with stacked autoencoder, which jointly learns the representation
for matching composite sketches. Ghifary et al. [100] proposed
Deep Reconstruction Classification Network (DRCN), which jointly
learns a common encoder for encoding source features in visual clas-
sification and a decoder for reconstructing the unlabeled target data.
Wen et al. [101] proposed a deep transfer learning (DTL) method,
which applies a sparse autoencoder with three layers for feature
extraction, and utilizes the MMD metric to minimize the feature dis-
crepancy. Murez et al. [102] proposed a UDA method, which utilizes
an encoder network to apply constraint in the features extraction
scheme. Then, decoding the features back to the source and target
domains is done similar to [100]. Finally, the cycle consistency is
used for both domains to certify that the mappings are learned cor-
rectly. Jiang et al. [103] presented a Cross Domain Minimization
with Deep autoencoder (CDMDA) for unsupervised domain adap-
tation, which simultaneously learns the classifier by predicting of
labels in the source domain and input reconstruction in the target
domain using shared features aligned with CORAL as a regularizer
in a unified scheme. The process of encoding and decoding of the
basic autoencoder can be summarized as Equation (9):

z = genc(x; ✓)

x̂ = gdec(z; ✓
0)

(9)

where encoder genc and a decoder gdec are both multilayer neural
networks. The encoder first maps input x to latent feature codings
z, then the decoder reconstructs the input from z. Corresponding
parameters ✓ and ✓0 can be optimized by minimizing mean square
reconstruction error Equation (10):

min
✓,✓0

||x� x̂||2 = min
✓,✓0

||x� gdec(genc(x))||2 (10)

Bousmalis et al. [117] presented an encoder-decoder model with
a common encoder for shared representations and a private encoder
for domain-specific representation in each domain. Peng et al. [118]
extended previous works based on SDA [96, 97, 101, 116], Stacked
Local Constraint Auto-Encoder (SLC-AE), by proposing a variant of
SDA for domain adaptation, which learns domain-invariant features
by utilizing SDA and the low-dimensional manifold.

5.2 Dictionary and Sparse Coding Models

The idea of learning a dictionary was first introduced by Olshausen
and Field [119]. These methods perform the process of updating

or adapting the dictionary to better match the data between differ-
ent domains. Dictionary-based models can make robust discriminant
representations by adapting to particular data samples.

DLRC [104] is a dictionary-based CNN in which convolutional
layers are general and shared by two domains while fully connected
layers are task-specific and adapted with multilayer low-rank cod-
ing. DLRC applies the transformed source domain as a dictionary
and uses it to reconstruct the transformed all data from the both
domains. Ding et al. [107] enhanced the feature adaptation per-
formance of DLRC [104] over general deep representations and
investigated multilayer low-rank coding at the top task-specific lay-
ers. They extended the previous low-rank coding with one shared
dictionary to the multilayer dictionaries. Yang et al. [105, 106] intro-
duced a dictionary learning model with shared domains and sparse
groups, DsGsDL. They introduced domain-shared group-sparsity
criteria which is an equivalent condition on conditional distribu-
tion matching. A domain-shared group-sparse dictionary learning
approach is developed through the joint alignment on marginal and
conditional distributions.

5.3 Graph Based Models

In this section, we review the topic of UDA on graphs. These meth-
ods try to build the connected graph from the training samples
for label deployment in graph modeling. It is usually considered a
source graph and a target graph with samples drawn from data man-
ifolds. These models solve the problem of estimating the unknown
class labels of the target graph utilizing the label information of the
source graph and the similarity among the two graphs though the
weights of graph edges.

Gholami et al. [108] proposed graphical Probabilistic Unsuper-
vised Domain Adaptation (PUnDA) model, which learns the clas-
sifier in a common space by using the MMD metric with utilizing
a graphical framework. Karbalayghareh et al. [109] presented Opti-
mal Bayesian Transfer Learning (OBTL) model, which combines
graph model concept with a Bayesian method for domain adaptation.
Perrone et al. [110] introduced Adaptive Bayesian Linear Regres-
sion (ABLR) model for multi-task applications, which is a graph
based method for Bayesian optimization. In the ABLR, each task is
modeled by a Bayesian linear regression layer on top of common
feature space. Mancini et al. [114] introduced a deep architecture,
AdaGraph, to get information from the auxiliary domains by utiliz-
ing a graph. AdaGraph is similar to graph based domain adaptation
methods GM-PL[111] and GAKT[112]. Different from these works,
in the AdaGraph model, a node represents a whole domain not a
sample, and edges link domains with related metadata, while in GM-
PL and GAKT, links are drawn between related samples. GCAN
[113] utilizes a dense connected graph to solve unsupervised domain
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adaptation problem where the data structure is jointly integrated with
domain and class labels in a deep NN. GCAN is designed via three
alignment schemes: structure-aware alignment, domain alignment,
and class centroid alignment.

6 Representation Based Methods

Representation based methods apply the trained network to use inter-
mediate representation as input to the new NN. Our taxonomy of
representation based methods is summarized in Table 4 and the
recent works on this topic are reviewed in the following subsections.

Table 4 Our Taxonomy of REPRESENTATION BASED METHODS
Domain Confusion Representation [120], BSW [121], [122]
Domain Invariant Representation [123], [124], [125]
Representation Disentangling [70], [75], [62], DR-GAN[59], CDRD[126],

[127], UFDN[128], MTDA-ITA[129]

6.1 Domain Confusion Representation

This section introduces methods that use the confusion loss to learn
the features that provide domain invariance.

Tzeng et al. [120] presented a CNN architecture with an addi-
tional fc layer for aligning domains via domain confusion loss, and
transfers classification information between domains via a cross-
entropy soft label loss function. Rozantsev et al. [121] introduced a
two-stream adaptation model where in comparison with other meth-
ods, the corresponding layers weights are related but they are not
shared. So the loss functions are presented to learn corresponding
weights. This method learns source and target streams parameters
through the overall loss functions, and maximizes the confusion
between the domains by using exactly the same classification layer
for both source and target data. Rozantsev et al. [122] improved their
previous model [121] through the residual transfer network.

6.2 Domain Invariant Representation

This section contains methods that use the source and the target data
to learn a common representation, which can enhance the domain
adaptation.

Chen et al. [123] proposed Transfer Neural Trees (TNT) on
heterogeneous domain adaptation. TNT contains two-stream net-
works for learning invariant features where the TNT prediction layer
utilizes Transfer-NDF [58] for adapting the neurons in TNT by
stochastic pruning. TNT utilizes the embedding loss for performing
prediction and preserving structural consistency among the target-
domain data. In [124, 125], pseudo-labels are utilized for invariant
representation that are proven effective for improving domain adap-
tation models. While in [124], first, some of the labeled source and
unlabelled target samples are taken as input, and these input samples
are mapped into a deep representation. Then, the two-stage optimiza-
tion on the input loss is computed by the model. This method learns a
metric to minimize the loss function where the triplet loss is defined
among the labeled source data with their nearest positive/negative
neighbors between the unsupervised target data. The advantage of
this method is that it can jointly learn the optimal feature represen-
tation and the optimal cross-domain transformation parameter, and
target label inference for UDA. Saito et al. [125] applied four net-
works in their domain adaptation model where one network works
as a shared feature extractor, and two networks learn from labeled
source instances and pseudo-labeled target instances, and one of the
other networks is trained by the pseudo-labeled target instances to
attain target discriminative features.

6.3 Representation Disentangling

Representation disentangling is a learning method for concluding a
hidden feature space that decomposes the derived representation so
that the visual attributes can be recognized and described [130, 131].

Tran et al. [59] proposed Disentangled Representation learning-
GAN (DR-GAN), which utilizes an encoder-decoder to learn the
discriminative and generative representation. This representation
relies on the learned coefficients, which is disentangled from face
variations and face estimations. Liu et al. [126] proposed Cross
Domain Representation Disentangler (CDRD), which aligns labeled
source data with unlabeled target data where representation disen-
tanglement and adaptation are jointly performed for visual domain
adaptation. In [62, 70, 75, 126], are proposed disentanglement rep-
resentation methods based on class labels to gain invariant feature
representation. Gonzalez et al. [127] proposed an image-to-image
translation for representation disentangling based on GANs and
autoencoders. In this model, the internal representation has three
parts where a shared part has information for different domains,
and two exclusive parts have only factors of particular domain
variations. Liu et al. [128] presented a Unified Feature Disentan-
glement Network (UFDN), which learns deep disentangled features
for image translation and manipulates image outputs in the multi-
domain scheme. Gholami et al. [129] proposed a Multi Target
Domain Adaptation Information Theoretic Approach (MTDA-ITA),
which makes a solid relationship between the hidden feature spaces
and the source data, they utilized a unified approach for disentan-
gling the shared and private knowledge.

7 Attention Based Methods

Attention based methods focus more on some transferable attention
regions or images of source data and connect them to the target data.
In other words, it is introduced as the mechanism of guiding the
network to focus on the spatial parts of target images that contain
related information to the source images.

Our taxonomy of attention based methods is summarized in Table
5 and the recent works on this topic are reviewed in the following
subsections.

Table 5 Our Taxonomy of ATTENTION BASED METHODS
Adversarial Attention Alignment TADA[132], DAAA [133]
Transferable Local Attention DUCDA[134], [135], [132]
Transferable Global Attention CHTL[136]

7.1 Adversarial Attention Alignment

This section reviews transferable attention methods which uses
adversarially learning.

Wang et al. [132] proposed a domain adaptation model for
transferable regions, Transferable Attention for Domain Adapta-
tion (TADA) where there are two types of transferable adversarial
attention network: local attention network obtains the features of
the higher transferability regions generated by discriminators in
multi-region level, and global attention network obtains more sim-
ilar images by discriminator in the single-image level. The TADA
architecture is shown in Fig. 5.

Kang et al. [133] proposed an attention alignment model based on
CycleGAN, which transfers information in all convolutional layers
by attention alignment. Also, they maximized the likelihood of target
data, which enables the target network to apply more training data
for better domain adaptation.

7.2 Transferable Local Attention

This section reviews transferable local attention methods that spec-
ify which regions of images are better to transfer from the source
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Fig. 5: Architecture of TADA [132].

domain to the target domain that leads to better performance in
domain adaptation.

Zhuo et al. [134] presented Deep Unsupervised Convolutional
Domain Adaptation (DUCDA) model with two loss functions con-
sisting of source classification loss and correlation alignment loss.
In this model, correlation alignment loss is utilized on both convolu-
tional layers and fully connected layers. Wang et al. [135] introduced
a residual approach for local attention, which is robust to negative
local attention. Negative local attention is disadvantageous in the
domain adaptation task. Wang et al. [132] added a residual connec-
tion in extending the previous idea to reduce the negative effects
[135].

7.3 Transferable Global Attention

This section reviews transferable global attention methods that spec-
ify which images are better to transfer from the source domain to the
target domain that leads to better performance in domain adaptation.

Moon et al. [136] proposed Completely Heterogeneous Transfer
Learning (CHTL), where a transferred loss determines the source
related images for transferring to the target domain. In the introduced
model’s Wang et al. [132], in addition of local attention, transfer-
able global attention is implied, which utilizes a single image-level
domain discriminator to specify the best related images to transfer.

8 Benchmark Datasets for Deep Visual Domain

Adaptation

In this section, some important benchmark datasets for deep visual
domain adaptation are reviewed. The most common ones are sum-
marized in Table 6.

1. Office-31 Dataset :
(https://people.eecs.berkeley.edu/ jhoffman/domainadapt)
This dataset includes 3 domains, Amazon, Webcam, and DSLR.
Each domain contains images from amazon.com or office facility
images, which consists of different lighting and poses. This dataset
has 2817, 498, and 795 images in each domain, respectively, and
31 categories. For deep learning applications, the dataset has been
extracted from pre-trained AlexNet with 4096 dimensional feature
vectors.

2. Office+Caltech Dataset :
(https://people.eecs.berkeley.edu/ jhoffman/domainadapt)
This dataset contains 10 categories for every 4 domains, which are
Amazon, Caltech, DSLR, and Webcam. There are 958, 1123, 157,
and 295 images in each domain, respectively. Amazon domain has
SURF features with vector quantized to 800 dimensions, Caltech
domain has DeCAF features with 4096 dimensions, and 4096 dimen-
sional feature vectors are extracted from pre-trained VGG-Net for

DSLR and Webcam domains.

3. Office+Home Dataset :
(http://hemanthdv.org/OfficeHome-Dataset)
This dataset consists of 4 different domains, Art, Clipart, Product,
and Real-World, where each domain contains 65 categories with
Office and Home settings images. For deep learning applications,
the dataset has been extracted from pre-trained ResNet50 with 2048
dimensional feature vectors.

4. PIE Dataset :
(https://www.ri.cmu.edu/project/pie-database)
This database contains 41368 images of 68 people, where each per-
son is represented under 13, 43, and 4, different poses, illuminations,
and expressions, respectively. It has 5 subsets containing left pose,
up pose, down pose, front pose, right pose.

5. MNIST+USPS Dataset :
(http://yann.lecun.com/exdb/mnist)
The MNIST dataset and the US Postal (USPS) dataset are two
famous handwritten digit datasets. Each dataset has 10 categories.
The MNIST dataset is derived from the NIST dataset. The MNIST
dataset has 60000 training and 10000 test samples. The USPS dataset
obtains recognizing handwritten digits, too. The training set and the
test set have 7291 and 2007 samples, respectively.

6. COIL20 Dataset :
(http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php)
Columbia Object Image Library (COIL20) is a dataset of 1440 nor-
malized images with 20 object categories. The images are at pose
intervals of 5 degrees. Also, There is COIL100 database with 100
object categories,
(http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php).

7. CIFAR10 Dataset :
(http://www.cs.utoronto.ca/ kriz/cifar.html)
The CIFAR10 dataset includes 60000 color images with 10 differ-
ent classes. There are 6000 images per each class, which are 50000
images for training and 10000 images for testing. CIFAR100 is
another dataset, which is similar to the CIFAR10, but it has 100
classes. These classes are categorized into 20 superclasses, contain-
ing 600 images in each of them. There are 500 and 100 training and
testing images in each class, respectively.

8. SVHN Dataset :
(http://ufldl.stanford.edu/housenumbers)
The Street View House Numbers (SVHN) Dataset is a dataset with
real-world images from Google Street View images, which have
been obtained of house numbers with a minimum need on data pre-
processing. It has over 600000 digit images with 10 classes, where
digit ’0’ indicates label 10, ’1’ indicates label 1, ’9’ indicates label 9,
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Table 6 Benchmark Datasets for Deep Visual Domain Adaptation
Dataset Subsets Abbreviation #Images Feature(size) #Classes

Office-31
Amazon A 2,817

AlexNet� FC7(4,096) 31DSLR D 498
Webcam W 795

Office+Caltech

Amazon A 958 SURF (800)

10Caltech C 1,123 DeCAF6(4,096)
DSLR D 157 V GG� FC6(4,096)
Webcam W 295 V GG� FC7(4,096)

Office+Home

Art Ar 2,421

65Clipart Cl 4,379 ResNet50� P5(2,048)
Product Pr 4,428 ResNet50� P5(2,048)
Real-World Rw 4,357

PIE

C05 (left pose) P1 3,332

Pixel(1,024) 68
C07 (up pose) P2 1,629
C09 (down pose) P3 1,632
C27 (front pose) P4 3,329
C29 (right pose) P5 1,632

and so on. It has 73257, 26032, 531131, digits for training, testing,
and additional (somewhat less difficult samples), respectively.

9. NORB Dataset :
(https://cs.nyu.edu/ ylclab/data/norb-v1.0)
This database is suitable for 3D object recognition. It consists of 50
different toys images from 5 general groups: four-legged animals,
human figures, airplanes, trucks, and cars. The images were taken
by two cameras under 6 lighting conditions, 9 heights from 30 to
70 degrees for every 5 degrees, and 18 directions from 0 to 340 for
every 20 degrees.

10. ImageCLEF Dataset :
(https://www.imageclef.org/2014/adaptation)
It consists of three domains which are Caltech-256, ImageNet
ILSVRC2012, and PASCAL VOC2012 with a total of 600 images
for each domain and 50 images for each class. This dataset contains
12 classes which are common to all domains: aereoplane, bike, bird,
boat, bottle, bus, car, dog, horse, monitor, motorbike, and people.

11. ImageNet Dataset :
(http://www.image-net.org)
This huge image database is created to the WordNet hierarchy where
the whole number of non-empty subcategories is 21841, the whole
number of images is 14197122, the number of bounding box anno-
tations images is 1034908, the number of subcategories with SIFT
features is 1000, and the number of SIFT features images is 1.2
million.

9 Unsupervised Domain Adaptation for Other

Applications

This survey paper focuses on the domain adaptation methods used
in image classification tasks, but domain adaptation techniques are
applied to many other applications. These are semantic segmen-
tation, object detection, text recognition, person re-identification,
which are reviewed briefly in this section.

Semantic segmentation applications recognize the relation
between each image pixel and a suitable class label. Zhao et al.
[137] proposed the semantic segmentation algorithm under classi-
fication and regression methods for domain adaptation, whereas,
Tsai et al. [138] learned discriminative feature representations under
space clustering. In [139–141], domain adaption for semantic seg-
mentation are structured by learning the autoencoder. In [142, 143],
domain adaptation frameworks are introduced that solve semantic
segmentation problems by re-creating pseudo labels in the target
domain and re-training the network with these labels. The learning
semantic representation method which was proposed by Huang et
al. [144] aligns the distributions of intermediate layers activations,

whereas, Xie et al.’s method [145] aligns labeled source centroid and
pseudo-labeled target centroid. In [146–150], GAN based methods
are applied for semantic segmentation problems. Hong et al. [151]
proposed a modular model consisting of two modules: a perception
and a control policy, where semantic image segmentation is utilized
for relating these modules. In [152, 153], adversarial domain adapta-
tion methods are utilized for semantic segmentation. Vu et al. [154]
addressed this problem with entropy loss for pixel-wise predictions.
Chen et al. [155] proposed a cross-domain semantic segmenta-
tion model by utilizing auxiliary geometric information, whereas,
Mousavian et al. [156] learned their model by using semantic texture
and capturing spatial layout.

Object detection is another application in computer vision tasks
to detect instances of objects in the target domain with the source
certain class. In [157, 158], proposed domain adaptation models
solve object detection problems by utilizing autoencoder. Abdullah-
Jamal et al. [159] proposed a domain adaptation method, which can
be used in the supervised and unsupervised scheme for face detec-
tion. Chen et al. [160] built their approach relied on Faster R-CNN
model [161], which designs two domain adaptation modules based
on H-divergence theory with the adversarial learning approach. Hsu
et al. [162] to solve easier adaptation tasks utilized an intermediate
domain for object detection problems. Yu et al. [163] trained a CNN
by using the refined pseudo labels and a weighted loss function. Zhu
et al. [164] proposed a domain adaption model for object detection
to answer, “where to look” and “how to align”. They answered them
with mining the discriminative regions.

Chen et al. [165] proposed a Multinomial Adversarial Network
(MAN) to address the text recognition problem by using adversarial
approach. In [166, 167], the encoder-decoder models are introduced
for text recognition problem. Zhan et al. [168] presented Geometry-
Aware Domain Adaptation Network (GA-DAN), which models the
shift between domains in both geometry and appearance spaces, and
converts images with different characteristics across domains.

Li et al. [169] introduced Adaptation and Re-identification NN
(ARN), which utilizes domain-invariant feature representations for
person re-identification (Re-ID). In [170, 171], domain adaptation
methods are proposed that apply GAN based scheme for Re-ID.
Bak et al. [172] presented a domain adaptation model, which per-
forms fine-tuning in an unsupervised way with using synthetic data.
One of the challenging problems in person re-identification mod-
els is model generalization. Deng et al. [173] presented a “learning
via translation” framework to translate the source labeled images to
the target domain for addressing this problem. Wang et al. [174]
proposed Transferable Joint Attribute-Identity Deep Learning (TJ-
AIDL), which simultaneously learns feature representations with
semantic and identity determinative for Re-ID problems. Li et al.
[175] presented an unsupervised Re-ID deep learning model, which
discovers and exploits the information from person tracklet data,
which is generated from an end-to-end model.
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Table 7 Comparison of Various Methods in Deep Visual UDA for Classification Tasks on the Office31 Dataset (Classification Accuracy %). The ResNet50 is as Base
Network.

Category Model A ! W A ! D W ! A W ! D D ! A D ! W Avg.

Discrepancy-based DDC [7] 75.6 76.5 61.5 98.2 62.2 96.0 78.3
DAN [8] 80.5 78.6 62.8 99.6 63.6 97.1 80.4
RTN [9] 84.5 77.5 64.8 99.4 66.2 96.8 81.6
JAN [10] 85.4 84.7 70.0 99.8 68.6 97.4 84.4
SCA [16] 93.6 89.5 72.4 100 72.6 98.0 87.6
CAN [15] 94.5 95.0 77.0 99.8 78.0 99.1 90.6

Adversarial based RevGrad [74] 82.0 79.7 67.4 99.1 68.2 96.9 82.2
DANN [70] 82.0 79.7 67.4 99.1 68.2 96.9 82.2
ADDA [71] 86.2 77.8 68.9 98.4 69.5 96.2 82.9
MADA [72] 90.0 87.8 66.4 99.6 70.3 97.4 85.2
SimNet [84] 88.6 85.3 71.8 99.7 73.4 98.2 86.2
iCAN [80] 92.5 90.1 69.9 100 72.1 98.8 87.2
CDAN [77] 93.1 93.4 70.3 100 71.0 98.6 87.7
SCA-Rev [16] 93.6 89.5 72.7 100 72.5 98.5 87.8
SymNets [94] 90.8 93.9 72.5 100 74.6 98.8 88.4
HAN [88] 95.3 94.4 71.7 100 72.1 98.8 88.7

Representation-based TCA [176] 72.7 74.1 60.9 99.6 61.7 96.7 77.6
GFK [177] 72.8 74.5 61.0 98.2 63.4 95.0 77.5

Reconstruction-based DLRC[104] 61.3 60.3 48.8 94.9 52.9 93.7 68.7
DTLC[107] 70.4 68.2 53.9 99.3 54.9 96.9 73.9

Attention-based DAAA [133] 86.8 88.8 73.9 100 74.3 99.3 87.2
TADA [132] 94.3 91.6 73.0 99.8 72.9 98.7 88.4

Table 8 Comparison of Various Methods in Deep Visual UDA for Classification Tasks on the ImageCLEF Datasets (Classification Accuracy %). The ResNet50 is as
Base Network.

Category Model I ! P P ! I I ! C C ! I C ! P P ! C Avg.

Discrepancy-based DAN [8] 74.5 82.2 92.8 86.3 69.2 89.8 82.5
RTN [9] 75.6 86.8 95.3 86.9 72.7 92.2 84.9
JAN [10] 76.8 88.0 94.7 89.5 74.2 91.7 85.8
SCA [16] 78.1 89.2 96.8 91.3 78.2 94.0 87.9

Adversarial based DANN [70] 75.6 84.0 93.0 86.0 71.7 87.5 83.0
RevGrad [74] 75.0 86.0 96.2 87.0 74.3 91.5 85.0
MADA [72] 75.0 87.9 96.0 88.8 75.2 92.2 85.8
iCAN [80] 79.5 89.7 94.7 89.9 78.5 92.0 87.4
CDAN [77] 77.2 88.3 98.3 90.7 76.7 94.0 87.5
HAN [88] 77.9 91.7 97.0 91.9 76.7 95.3 88.4
SymNets [94] 80.2 93.6 97.0 93.4 78.7 96.4 89.9

10 Discussion

In this section, we investigate, analyze, and discuss a list of different
experiments reported in reviewed deep visual unsupervised domain
adaptation papers that are included in our taxonomy.

In Table 7 we compare various state-of-the-art methods in deep
visual UDA for classification tasks on the Office31 dataset. As
shown in Table 7, CAN [15] achieves 90.6% in average classification
accuracy, which is the best performance between discrepancy-based
methods, including DDC [7], DAN [8], RTN [9], JAN [10], and
SCA [16] on the Office-31 dataset and gets +12.3, +10.2, +9, +6.2,
and +3 higher classification accuracy on average, respectively. Also,
the CAN accuracy is higher than some adversarial-based methods
like RevGrad [74], DANN [70], ADDA [71], MADA [72], Sim-
Net [84], iCAN [80], CDAN [77], SCA-rev [16], SymNets [94],

and HAN [88] (90.6% v.s. 82.2%, 82.2%, 82.9%, 85.2%, 86.2%,
87.2%, 87.7%, 87.8%, 88.4% and 88.7, respectively). As we see in
Table 7, CAN achieves the best result between listed discrepancy-
based methods and obtains very competitive results compare to
different methods in other groups. The reasons can be as follows:
first, CAN applies two kinds of domain discrepancy metrics, i.e.
the inter-class and the intra-class, while many of existing methods
only consider intra-class domain difference in their models which
causes different classes data may be matched incorrectly, i.e. some
methods based on MMD or JMMD can be minimized even when
the target-domain data are mismatch with the source-domain data
of a different class, while CAN proposes an effective discrepancy
metric, Contrastive Domain Discrepancy (CDD), to perform class-
level alignment for UDA. Second, CAN performs training with both

IET Research Journals, pp. 1–18
c� The Institution of Engineering and Technology 2015 13

Auto-generated PDF by ReView IET Image Processing

IET-Yeganeh Madadi-revision.pdf MainDocument IET Review Copy Only 14



Table 9 Comparison of Various Methods in Deep Visual UDA for Classification Tasks on the Digit Datasets (Classification Accuracy %). The ResNet50 is as Base
Network.

Category Model SVHN ! MNIST MNIST ! USPS USPS ! MNIST

Discrepancy-based DDC [7] 68.1 - 66.5
DAN [8] 71.1 - -
SCA [16] 92.0 96.1 95.5
SWD [33] 98.9 98.1 97.1

Adversarial-based DANN [70] 73.9 85.1 73.0
RevGrad [74] 73.9 77.1 73.0
ADDA [71] 76.0 89.4 90.1
DSN [75] 82.7 - -
ADGAN [49] - 92.50 90.80
M-ADDA [38] - 95.2 94.0
UNIT [68] 90.5 96.0 93.6
Cycada [56] 90.4 95.6 96.5
PixelDA [62] - 95.9 -
CoGAN [67] - 91.2 89.1
GAGL [50] 96.7 74.6 -
GADM [52] 78.0 93.8 95.1
RAAN [83] 89.2 89.0 92.1
TarGAN [69] 98.1 93.8 94.1

Representation-based BSW [121] 82.8 60.7 67.3
CDRD [126] - 95.05 94.35

Reconstruction-based DRCN [100] - 91.80 73.67

source labels and pseudo target labels which are achieved by cluster-
ing, So the learned decision boundary can generalize more strongly
on the target domain.

In Table 7, among adversarial-based methods (i.e. RevGrad [74],
DANN [70], ADDA [71], MADA [72], SimNet [84], iCAN [80],
CDAN [77], SCA-Rev [16], SymNets [94], HAN [88]), HAN
achieves higher accuracy result. HAN is jointly adopted by both
correlation alignment and conditional adversarial learning. HAN
considers both the class-level distribution matching and the corre-
lation between domains. HAN incorporates a classification loss for
learning a good classifier. A domain adversarial network is utilized
to invariant feature representations of learning to domain differences,
and a correlation alignment is utilized to reduce the discrepancy in
the correlation between domains. Additionally, an adaptation layer
is introduced to further boost the performance of the HAN model.

According to results in Table 7, we see that CAN and HAN
achieved better results between all categories. These two methods
utilize some similar techniques, which are Led to their success. First,
both of them consider class-level alignment and domain-level align-
ment, which lead to better matching between domains. Second, both
of them use discrepancy measurement in their models, which sug-
gests that utilizing metric-learning for domain adaptation can lead to
large developments in classification accuracy for domain adaptation.

In Table 8, we compare various state-of-the-art methods in deep
visual UDA for classification tasks on the ImageCLEF dataset.
Results show that SymNets achieves competitive average classifi-
cation accuracy on the ImageCLEF dataset. The accuracy of Sym-
Nets is 1.5% higher than the second-best method HAN. SymNets
applies an adversarial learning method to overcome the limitation in
matching the joint distributions of feature and class across domains
via two-level domain confusion losses. Class-level confusion loss
boosts over domain-level one via driving the learning of interme-
diate network representations to be invariant in the corresponding
classes of two domains. So, the result obtained from Table 8 also
confirms the first result in Table 7 about consideration on class-level
and domain-level alignments.

In Table 9, we compare various state-of-the-art methods in deep
visual UDA for classification tasks on the SVHN-MNIST-USPS

Fig. 6: The t-SNE [178] visualization of features obtained from
SVHN to MNIST adaptation by (a) source domain only, and (b)
SWD adaptation. Blue and red points denote the source and target
samples, respectively. [33].

Fig. 7: The t-SNE [178] embeddings of 1000 test samples from
SVHN (source, red) and MNIST (target, blue). (a) MMD metric,
and (b) TarGAN method. [69].

dataset. Results on these three digits datasets show that SWD
achieves the best accuracy between listed methods in 9 with 98.9%

IET Research Journals, pp. 1–18
14 c� The Institution of Engineering and Technology 2015

Auto-generated PDF by ReView IET Image Processing

IET-Yeganeh Madadi-revision.pdf MainDocument IET Review Copy Only 15



on SVHN ! MNIST, 98.1% on MNIST ! USPS, 97.1 on USPS
! MNIST. This represents the importance of using the task-specific
decision boundaries (discrepancy) to guide the domain adaptation
instead of simply matching the distributions among the source and
target domains in pixel, feature, or output space in most of the other
domain adaptation methods. We can see a visualization of features
obtained from SVHN to MNIST adaptation by (a) source domain
only, and (b) SWD adaptation in Fig 6. From Table 9, it is clear that
TarGAN method achieves competitive results in comparison with the
other methods in adversarial-based category. As we can see in Fig.
7, the intermediate feature obtained by TarGAN is more discrim-
inative over the target domain compared with the baseline trained
with MMD. This is consistent with the truth that domain invari-
ance doesn’t necessarily imply discriminative representations on the
target data.

11 summary

In this paper, we provided a survey of different methods for
deep visual unsupervised domain adaptation for classification tasks.
We categorized the image classification methods into five main
groups based on the technology of adopted for domain adap-
tation: discrepancy-, adversarial-, reconstruction-, representation-,
and attention-based methods. Then, each of these groups were
further categorized into several subgroups. Also, some bench-
mark datasets for deep visual domain adaptation were investigated.
Then, we reviewed some recent papers for different applications
in deep visual domain adaptation, for example, image classifica-
tion, semantic segmentation, object detection, text recognition, per-
son re-identification. Finally, some domain adaptation experiments
reported in the reviewed papers included in our taxonomy were
summarized and discussed. Experiments results indicate that using
metric-learning in domain adaptation can lead to large advancements
in classification accuracy for the domain adaptation task. Also, the
results are highly affirming the effectiveness of utilizing class-level
and domain-level in aligning the joint distributions of feature and
category across domains.

Although deep visual UDA has achieved success recently, many
issues still remain to be addressed. Some of future research chal-
lenges and directions can be as follows:

The traditional UDA algorithms assume that the training and test
data have the same feature spaces, while this assumption doesn’t
necessarily hold in real applications. So it will be good to extend
UDA models from traditional assumption to the new one.

Recently, some new methods to reduce negative transfer are
proposed such areas as partial domain adaptation, attention-based
domain adaptation, which focus on some transferable attention
regions or images from source data and relating them to the target
data. We believe these issues are worthy of more attention.

Finally, according to obtained experimental results, discrepancy-
based and adversarial-based methods could obtain better perfor-
mance. So, we suggest introducing new models with a combination
of these methods.
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