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Abstract—fast and accurate harmonic extraction plays a
vital role in power quality assessment, grid synchronization,
harmonic compensation, etc. This paper proposes a multiple
second-order generalized integrators (SOGIs) based comb filter
(SOGIs-CF) for fast selective harmonic extraction. Compared
with the conventional multiple SOGI-quadrature signal
generators (SOGI-QSGs) scheme, the tedious harmonic
decoupling network (HDN) is removed off without sacrificing
steady-state detection accuracy, and thus the computation
burden can be reduced. In addition, the parameters design
criteria and the digital implementation issues have been
discussed in detail. Finally, the experimental results confirm the
fast response and high detection accuracy of the proposed
scheme. The characteristic of fast harmonic magnitude signal
detection makes the proposed method quite suitable for the
realization of flexible output capacity-limit control of multi-
function inverters.

Keywords—harmonic detection, second-order generalized
integrator, quadrature signal generator, comb filter.

L INTRODUCTION

Harmonic-extraction has found wide applications in many
occasions[1]-[5], such as power quality assessment devices,
active power filters, grid synchronizations, etc. Various
harmonic detection methods have been researched in the
literature, which can be generally categorized into frequency-
domain and time-domain methods [6].

Frequency-domain methods typically refer to the Fourier
transform based techniques [7]-[11]. Discrete Fourier
transform (DFT) methods transform time-domain signals to
the frequency domain with prominent features like simplicity,
selectivity, and high steady-state accuracy. The fast Fourier
transform (FFT) implements the DFT in a modified form to
reduce the computation burden and is widely used for
harmonic monitoring and metering [6]. For real-time
applications, the recursive DFT (RDFT) has gained wide
interests in grid synchronization [7]-[9] and harmonic current
compensation control [10]. The RDFT calculates a DFT on a
sample-by-sample basis with the window shifting every
sampling instant for a fixed number of samples, usually just
one for simplicity. The major drawback of the above Fourier-
based harmonic detection methods is the slow dynamic
response and frequency sensitivity [6], [12]. Recently, an
improved generalized DFT is proposed in to improve the
dynamics and reduce the sensitivity to frequency variation
[11]. However, the method depends on variable sampling
frequency, which is not very suitable the system control, since
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it may change the dynamics of the system dynamics and
particularly the plant model.

On the other hand, typical time-domain methods include,
the instantaneous power theory (pg power theory) methods
[13], second-order generalized integrator based quadrature
signal generator (SOGI-QSG) based method [14],
fundamental /harmonic-dg-frame methods [6], multiple-
reference-frame (MRF) methods [15], adaptive notch filter
(ANF) approaches [16], the cascaded-delayed-signal-
cancellation (CDSC) techniques [12], the advanced Kalman-
filter methods [17], etc. These time-domain methods can
effectively extract the harmonic components, however, there
exist some limitations. The pg-theory and fundamental-dg-
frame-based techniques only estimate the fundamental signal
and detect the rest harmonics as a whole, and are therefore
incapable of selective harmonic extraction. The SOGI-QSG
and the dg-frame-based methods need to make a tradeoff
between steady-state accuracy and dynamics. The MRF-based,
the ANF based, and the Kalman-filter-based approaches are
essentially based on the concept of harmonic decoupling.
Good accuracy and relatively fast dynamics can be achieved.
However, all the harmonic components with non-negligible
magnitudes must be estimated and extracted at the same time
even though some of them are not desired. The CDSC-based
methods can achieve relatively shorter transients with good
accuracy. They are based on constructing a series of DSC
operators, which consists of high-order delay buffers to
separate the desired component and filter out the rest;
therefore, for extracting each harmonic, different sets of DSC
operators are required, which can increase the system
complexity, computational effort, and storage memory
overhead especially when many harmonic components are to
be extracted in applications like the APF with selective
harmonic compensation.

In this paper, a multiple resonators based comb filter is
proposed for fast selective harmonic extraction. It is an
improved scheme based on conventional SOGI-QSG schemes,
which has advantages of the high steady-state accuracy, fast
dynamic response, selectivity, frequency adaptation, and the
reduced computation burden. Besides, it can also fast provides
the harmonic magnitude information, which is quite suitable
for harmonic compensation devices to realized flexible output
capacity-limit control.

II. SYNTHESIS OF MULTIPLE SOGIS BASED COMB FILTER

A. the modified SOGI-QSG in s-domain

Fig. 1 shows the block diagram of the proposed modified
SOGI-QSG rotated at A™ order harmonic. The transfer
functions of the SOGI and the ones from the input signal v(s)
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Fig. 1. Block diagram of the proposed modified SOGI-QSG rotated at 4"
order harmonic.

to the output signal v'(s) and the corresponding orthogonal
signal gV'(s) can be respectively expressed as
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where w; is the fundamental angular frequency, 4 is the
harmonic order, and Ky, is the integral gain of the SOGI
rotated as the frequency of hw,.

The bode plots of Dy(s) and Qy(s) with & =1 and K;;=w1/2
are given in Fig. 2. It can be seen from the figure that both of
them exhibit the characteristic of BPF, and they both have the
unit gains at the resonant frequency, meanwhile, there exist 0
and 90-degree delays at the at the resonant frequency for the
Di(s) and Qy(s) respectively.

B. the proposed multiple SOGIs based comb filter

To accurately detect the sequence components of the grid
voltage even under extreme distortion conditions, a cross-
feedback network consisting of multiple SOGI-QSGs, as
shown in Fig. 3, tuned at different harmonic frequencies, and
working in a collaborative way is presented in [14]. It can be
seen from the figure that a harmonic decoupling network
(HDN) is used to isolate the effect of the different harmonics
of the input signal.

To simplify the algorithm, a multiple SOGIs based comb
filter (SOGIs-CF) scheme is proposed in this paper. The block
diagram of the proposed SOGIs-CF is shown in Fig. 4.
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Fig. 2. Bode plots of D;(s) and Qy(s) with & =1 and K;=w,/2.

HDN
z

3 vi'(s) -
2 2 o w[3 SOGI-QSG-1 qv'(s)
vi'(s) v2(s —>

LOH v2'(s) -
'_Z _2 _2 20 SOGI-QSG-2 qv,'(s) "
— —>

vi'(s) vi'(s

vi'(s)

n1'(8) [v2'(s) vi'Gs

qvi'(5)

Fig.3. Block diagram of the conventional multiple SOGI-QSGs

scheme[14].
KII
w 12 -
K[Z

(Pwp)—

(hoo ) —

Fig. 4. Block diagram of the proposed multiple SOGIs based comb filter.

Compared with the conventional SOGI-QSGs [14], the
tedious HDN can be removed off. If N sequence components
of the input signal are extracted, NXN numbers of the
subtraction operations can be reduced in the proposed SOGIs-
CF scheme. The transfer functions from the input signal v(s)
to the total output signal v'(s) and the individual signal v;'(s)
can be respectively expressed as

D K}, -SOGI,,(s)
V() keN,

F(s)= 4

® v(s) 1+ Y Ky, -SOGI,(s) @
heN,

Fh(s)=v;'(s)= K -SOGI,(s) (5)

vs) 1+ Y Ky, -SOGI, (s)
heN,,
where M, is the set of selected harmonic orders.

To achieve the high detection precision, all the harmonic
components with non-negligible magnitudes must be taken
into consideration and extracted at the same time even though
some of them are not desired. Fig. 5 gives the bode plots of
F(s), Fi(s) and F3(s) with N,= {1, 2, 3, 4, 5} for an example.
It can be seen from the figure that every selected harmonic
order component can be extracted out with zero steady-state
error (unit gain and 0-degree phase lag at selected frequencies).
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Fig. 5. Bode plot of F(s), Fi(s) and F3(s) with N, ={1, 2, 3, 4, 5}.

C. Design of Parameters for SOGIs-CF

The proposed SOGIs-CF is apparently a closed-loop
system, thus the system stability should be satisfied. The
system stability can be checked via root locus of Eq. (4). Fig.
6 gives the root locus of F(s) with N, = {1, 2, 3, 4, 5} for an
example. It can be seen that the trajectory of the roots is
always on the left half of the s-plane. Thus the SOGIs-CF
closed-loop system is always stable no matter how much the
proportional gain is.
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Fig. 6. Root locus of F(s) with N, ={1, 2, 3, 4, 5}.

To further choose the loop gain of the SOGIs-CF closed-
loop system, the Laplace expression of the error signal e(s),
considering a single SOGI-QSG rotated at the fundamental
angular frequency as the filter and a sine signal with the same
angular frequency as the input signal, is derived as

G Lfin(w,2+ )}
o(s) = . sz+w]2 2'(w21005(/2) 52~sin(p2)
ST+ K st s°+w, s°+w,
:a)lcos¢+s~sin(p (6)

52 + K -s+w12
Applying the inverse Laplace transformation to e(s), the
time-domain expression of the error signal e(¢) can be derived
as follow.

e(t)= L {e(s)}

a;e” " cosw 1+ b e sinw,t Ky <20,
= ayte ™" +b,e™" K, =2w, (7)
a3e_l‘t +b3e_'12t K >2w,

where a;1=sing, b1=[cosp-w;-sing-K11/2]/wq, ws= ,wlz-K112/4
ar=(cosp-sing) w1, br=sing, az=(wi-cosp-Li-sing)/( Ai-12),
by=(Jo*sing-w1-cosp)( J1-42), M=Ky + VK% — 4 w,%)/2.

According to the Eq. (7), the error signal convergence
speed depends on not only the loop gain Kj; but also the input
signal initial phase angle. Fig. 7 plots error signal convergence
processes under different input signal initial phase angle ¢ and
with loop gain equal to w; or 4w, respectively. The red
contours indicate the locations where the magnitude of the
error is attenuated to 10% of the initial value (It is the same
meaning as in Fig. 8).

As can be seen from Fig. 7, when the initial phase angle ¢
=0, the results are accurate enough to interpret the error signal
convergence time in the case of K11 < w; or K11 > w;. Thus, the
effect of the SOGIs-CF closed-loop gain Kj; on the error signal
convergence speed is evaluated under the condition of the
initial phase angle ¢ = 0. Fig. 8 draws error signal convergence
processes under different loop gains when the input signal
initials phase angle ¢ = 0. It can be seen from Fig. 8 that
relationship between the loop gain and the error signal
convergence speed can be divided into three parts: 1) the loop
gain is less than w, or 2) larger than 4w, the error signal
convergence speed is proportional to the loop gain; 3) the loop
gain is between w; and 4w, the error signal convergence
speed is inverse proportional to the loop gain.
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Although the SOGIs-CF closed-loop system is always
stable in the s-domain, too big loop gain is impractical and will
destabilize the system since the digital implementation will
introduce delay to the closed-loop system and deteriorate the
system stable margin. To achieve fast dynamic response
speed as well as enough stability margin, it’s recommended
that the loop gain should be set between w; and 2.

D. Implementation of SOGI with two digital integrators

In order to obtain a pair of orthogonal signals, two s-
domain integrators, as shown in Fig. 1, are discretized into z-
domain with the forward Euler and backward Euler method
[18], respectively. Fig. 9 shows the block diagram of the
proposed modified SOGI-QSG rotated at 4™ order harmonic
with two digital integrators. According to Fig. 9, the z-domain
transfer functions of the SOGI and the ones from the input
signal v(z) to the output signal v'(z) and the corresponding
orthogonal signal gv'(z) can be respectively expressed as

v, (2) _ K Tylcos( ho T, )z —1] ®)

SOGI =
02 e(z) z2 —2cos( hew,T, )z +1
_v(@)
D,(2)= D)

K Tolcos(ho T )z —1] 9)
22— (2=KpTy)cos(ho, T )z +1-K T

V, z
Qh(z) — q h( )
v(2)
_ K pTi[cos(hw T )z —1] (10)
22— (2K Ty)cos( ho T)z+1— K T,
where Ty is the sampling period.

V(Z) . i -1 v ’(Z)
o KT (X ) —— (T >
e(z) 2
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2—2cos(ha,T,) - o -t
—Z
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The bode plots of Dy(z) and Ou(z) with & =1, Kjj= w1/2
and sampling frequency f;= 200 Hz are given in Fig. 10. It can
be seen from the figure that both of them exhibit the
characteristic of BPF with unit gains and 0 and 90-degree
delays at the at the resonant frequency respectively.

E. Magnitude information extraction with the SOGI-CF

In the conventional multiple SOGI-QSGs scheme, each
SOGI-QSGs are in the parallel structure, thus each pair of
orthogonal signals can be extracted by the corresponding
SOGI-QSG individually. In the proposed SOGI-CF scheme,
each SOGIs rotated at the different order harmonic
frequencies construct their different QSGs via a same closed
loop. Each pair of orthogonal signals concerning 4™ order
harmonic component still can be generated from the SOGIs
rotated at the corresponding order harmonic frequency, thus
the real-time magnitude of the extracted 4™ order harmonic
component, i.e., Vj», can be calculated as follow.

Vi (k) =V}, (k) +qv}, (k)* (11)

where £k represents the discrete time signal index.

III. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed approach, the
experimental testbed is built in the laboratory. The
experimental testbed consists of one Danfoss converter
connected to a three-phase diode rectifier through LC filters.
The inverter serves as the grid emulator, and the rectifier
emulates the nonlinear load. The hardware picture of the
experimental setup is shown in Fig. 11.

In the proposed harmonic detection scheme, all the
harmonic components with non-negligible magnitudes ( N,
={1,5,7, 11,13, 17, 19} are extracted individually. The loop
gain is set to V2w and the sampling frequency is 10 kHz. The
control algorithms are programmed in Matlab/Simulink and
executed in a dSPACE controller board (DS1005). The
experimental data are all saved by dSPACE ControlDesk.

Fig. 12 gives experimental results of the steady-state
waveforms. Fig. 12(a) depicts that all extracted harmonic
components via the proposed SOGIs-CF almost overlap with
the input signal. This verifies the high steady-state
measurement precision of the proposed method. Fig. 12(b)
gives the waveforms of the fundamental and 5" harmonic
components and the corresponding magnitude signals.

double integrators

sin(hw;Ty)
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Fig. 9. Digital implementation of the proposed modified SOGI-QSG
rotated at ™ order harmonic.
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Fig. 13 shows experimental results of all components
extraction during wide range step change of grid frequency.
Fig. 13(a) gives the waveforms of all components when the
grid frequency steps up from 50Hz to 55Hz, while Fig. 13 (b)
depicts the waveforms when the grid frequency steps down
from 50Hz to 45Hz. It can be seen that the detection errors
remains at a very low level in steady-state even the grid
frequency fluctuates in a large range.

The transient experimental waveforms of all and
individual harmonic components extraction are illustrated in
Fig. 14 to evaluate the dynamic performance of the proposed
method. It can be seen from Fig. 14 that it takes about the half
cycle to reach the steady-state, which complies well with the
theoretical analysis in Section II.C.
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IV. CONCLUSIONS

In this paper, a multiple second-order generalized
integrators based comb filter (SOGIs-CF) for fast selective
harmonic extraction is proposed. Compared with the
conventional multiple SOGI based bandpass filters (SOGI-
QSGs), the tedious decoupling loop can be removed off
without sacrificing steady-state detection accuracy, and thus
the computation burden can be reduced. Besides, the
characteristic of fast harmonic magnitude signal detection
makes the proposed method quite suitable for the realization



of flexible output capacity-limit control of multi-function
inverters. And the closed-loop system parameters design
method is also discussed in the paper. Experimental results are
provided to validate the theoretical expectations.
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