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ABSTRACT 8 

Background and Aim: Real-time myoelectric experimental protocol is considered as means to quantify usability 9 

of myoelectric control schemes. While usability should be considered over time to assure clinical robustness, all 10 

real-time studies reported thus far are limited to a single session or day and thus the influence of time on real-time 11 

performance is still unexplored.  In this study, the aim was to develop a novel experimental protocol in order to 12 

quantify the effect of time on real-time performance measures over multiple days using a Fitts’ law approach.  13 

Methods: Four metrics: throughput, completion rate, path efficiency and overshoot, were assessed using three 14 

train-test strategies: (i) An artificial neural network (ANN) classifier was trained on data collected from the 15 

previous day and tested on present day (BDT) (ii) Trained and tested on the same day (WDT) and (iii) trained on 16 

all previous days including present day and tested on present day (CDT) in a week-long experimental protocol. 17 

Results: It was found that on average, Completion rate (98.37 ± 1.47 %) of CDT was significantly better (P<0.01) 18 

than BDT (86.25 ± 3.46 %) and WDT (94.22 ± 2.74 %). Throughput (0.40 ± 0.03 bits/s) of CDT was significantly 19 

better (P=0.001) than BDT (0.38±0.03 bits/s). Offline analysis showed a different trend due to the difference in 20 

the training strategies.  21 

Conclusion: Results suggest that increasing the size of training set over time can be beneficial to assure robust 22 

performance of the system over time.  23 

Keywords: Pattern recognition; Real-time control; Myoelectric control; Multiday Fitts’ law 24 
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I. INTRODUCTION 1 

The natural human arm/hand can perform diverse controlled movements with ease. The appropriate and 2 

modulated activity of each muscle in the upper limb contributes to improving the dexterity of motions. But any 3 

type of amputation in the upper limb (transradial or transhumeral) can severely limit the abilities to perform 4 

activities of daily life. Commercially available upper limb prostheses reproduce a lot of these motions, but they 5 

are still behind in intuitively and finesse in their ability to mimic the natural hands [1]. 6 

Most electrically powered prostheses use the amplitude of the Electromyogram (EMG) signal as input to control 7 

motions of a terminal device [2]. Two approaches (i) pattern recognition-based techniques, which focus in 8 

extracting more useful information in EMG signal and classifying multiple motions [3-5], (ii) regression 9 

techniques based on force/position estimation which focus on providing proportional control [6-8], have been the 10 

interest of researchers in recent times.  11 

Pattern recognition (PR) techniques have been widely reported in the literature and have great potential in 12 

improving the functionalities of myoelectric prostheses [3-5]. With these methods, EMG patterns from multiple 13 

electrodes are used to decode multiple classes of motions under the assumption that each pattern from the set of 14 

selected muscles generates repeatable EMG signals. Many different PR implementations have been investigated 15 

with different classifiers, feature sets, signal conditioning, or post-processing techniques [9-10]. In this regard, 16 

researchers have evaluated the offline effects of limb positions, inter-electrode distance, force variation, muscle 17 

fatigue and electrode shift, on PR, just to mention some of the challenges that are faced by these systems [11-13]. 18 

Although offline evaluation of PR control strategies is a useful performance metric, studies have shown that it is 19 

not a good representative of usability [14-16].   20 

Researchers have demonstrated multiple approaches to real-time myoelectric control in the literature. First of its 21 

type was used by Englehart et al. (2003), who used a continuous classification algorithm to find real-time accuracy 22 

and response time [17]. It was suggested that the response time of a control system should not introduce a delay 23 

that is perceivable by the user. This threshold is generally regarded to be roughly 300 ms. Lock et al. (2005) 24 

developed CEVEN (Classifier Evaluation in a Virtual ENvironment) implemented in MATLAB. Subjects were 25 

asked to perform virtual clothes pin task and found a weak correlation between classification accuracy and 26 

usability in real-time [18]. Hargrove et al. (2007) performed a similar test by including transient state data in the 27 

training of classifier and found that offline classification accuracy may reduce but this will result in a reduction 28 

of completion time in real-time performance [19]. Kuiken et al. (2009) introduced the target achievement control 29 

(TAC) test in which users move a virtual arm into a target posture using PR. The need for feedback in myoelectric 30 
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control was highlighted in the study as it can provide more information about user experience in real-time 1 

myoelectric control [20]. 2 

Fitts’ law test has been used in myoelectric control to quantify and illustrate human motor performance in detail 3 

using principles derived from Shannon’s work in communication theory [21-22]. Fitts’ law test has also been 4 

extensively applied in Human-computer interfaces including various human motion testing and devices such as 5 

mouse, touchpads [23-24]. A Fitts’ law approach using EMG based PR has proven to significantly improve the 6 

control (sequential, proportional and simultaneous) over the conventional myoelectric control strategy (direct 7 

control) [25-28]; suggesting that a PR algorithm can be used in real-time as a control strategy to predict the user’s 8 

intended movements with high performance. As robustness over time is an essential parameter for clinical 9 

translation of PR schemes, a number of studies have been conducted for longer periods of time in off-line 10 

evaluation [29-32]. These studies have shown that offline performance decreases with increasing time difference 11 

between training and testing days of PR based myoelectric control and daily calibration can improve the overall 12 

performance. However, most studies have assessed EMG based PR in acute settings only [33-35]. Smith et al. 13 

(2016) studied the ability of linear regression model to decode patterns of muscles co-activation using 14 

intramuscular EMG [33]. Kamavuako et al. (2014) studied the usability of intramuscular EMG in short-term 15 

scenarios for two-degree freedom using Fitts’ law approach [34]. Scheme et al. (2013) validated a novel PR 16 

technique in a 3-D environment using Fitts’ law [35]. Therefore, it remains unknown whether real-time 17 

performance can be maintained when the tests are performed on multiple days and with different training-testing 18 

strategies.  19 

In this study, we aimed to develop an experimental protocol in order to quantify the robustness of the real-time 20 

investigations over time with multiple train-test strategies. Most of the studies performed online recently 21 

underwent training and testing of the classifier on the same day, providing an ideal condition for reporting 22 

performance. This may not be representative of clinical usability which requires users to perform activities over 23 

time including the effect of donning and doffing the electrodes. To understand the effect of different training 24 

strategies of the classifier over time in real time, a week-long experiment was performed on ten able-bodied 25 

subjects. Fitts’ law was implemented with three train-test strategies (i) training of classifier and testing within a 26 

day (ii) training of classifier and testing with one-day difference (iii) training of classifier on combined data from 27 

all days and testing on the current day. Offline classification performance was evaluated using three train-test 28 

strategies (i) Within-day classification error (WCE) (ii) Between-day classification error (BCE) (iii) Combined-29 

day classification error (CCE). 30 
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 1 

II. METHODS 2 

 3 

a) Subjects 4 

Ten able-bodied subjects participated in the experiment (8 men/2 women age range: 22-36, mean 26.4). 5 

Participation of all subjects was voluntary, and each subject provided informed written consent. All subjects had 6 

no history of a known upper extremity or musculoskeletal disorders. The procedures were in accordance with the 7 

Declaration of Helsinki and approved by the local ethical committee of the region of Northern Jutland (approval 8 

no: N-20160021). 9 

b) Data Collection  10 

EMG signals for different motions were recorded using the Myo armband (MYO) which is commercially available 11 

and developed by Thalamic Labs (Figure 1a). It has eight circularly arranged surface electrodes worn around the 12 

forearm muscles. The sampling frequency is fixed at 200 Hz with 8-bit precision. The signal from the hardware 13 

is transmitted wirelessly to a computer using the Bluetooth Low Energy (BLE) protocol.  This system provides a 14 

good research platform and has now been used in different studies [36-38]. 15 

 16 
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Figure 1. Experiment setup with (a) number of motions for which data was recorded (b) GUI for off-line training 1 

and (c) for real-time testing. 2 

c) Experimental Procedure 3 

A week-long experimental protocol was designed, and data were recorded during the first four days and on the 4 

seventh day. No recording was performed on day four and five to measure the effect of a break on performance. 5 

In each experimental session, subjects were first guided about the experimental protocol and they were asked to 6 

produce a medium level contraction from rest to motion, prompted by the image of the selected motion using a 7 

custom-made Graphical User Interface (Figure 1b).  Training data were collected as followed: Four active motions 8 

(Hand open, Hand close, Wrist flexion, wrist extension) and one rest (no motion) were collected each with six 9 

seconds duration. The order of the motions was randomized, and a six seconds break was allowed between 10 

motions. Furthermore, a rest time of twelve seconds was given after completion of each set. After this round of 11 

data recording, the signals were processed as described in section II followed by the online experiment (Fitts’ 12 

law).  13 

Table 1: Scheme of online testing in the experiment. 14 

 Day 1 Day 2 Day 3 Day 4 Day7 

 TrainDay1 TrainDay2 TrainDay3 TrainDay4 TrainDay7 

BDT  TrainDay1TestDay2 TrainDay2TestDay3 TrainDay3TestDay4 TrainDay4TestDay7 

WDT TrainDay1TestDay1 TrainDay2TestDay2 TrainDay3TestDay3 TrainDay4TestDay4 TrainDay7TesDayt7 

CDT  TrainDay1-

2TestDay2 

TrainDay1-2-

3TestDay3 

TrainDay1-2-3-

4TestDay4 

TrainDay1-2-3-4-

7TestDay7 

 15 

During Fitt’s law implementation, subjects were required to move the cursor from the origin of the axis (no 16 

motion) to a target location (randomly selected among the 8 possible locations) having distance D from origin and 17 

Width W. The cursor moved upwards for hand open, downwards for hand close, left for wrist flexion and right 18 

for wrist extension.  The index of difficulty (ID) was calculated for each target location based on its distance D 19 

from its origin and width W of the target. Table 2 shows a different combination of target distances and widths. 20 

The ID was computed as provided in Eq. (1).  21 

𝐼𝐷 = log2 (
𝐷

𝑊
+ 1)   1 22 

Table 2: ID is the index of difficulty (in bits). D and W are the distance and width of the target.  23 
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Distance(D) Width(W) Index of 

Difficulty 

(ID) 

50 5 3.46 

50 10 2.59 

50 20 1.81 

100 5 4.39 

100 10 3.46 

100 20 2.59 

 1 

During the online tests, the subject was asked to hold the position within the target for one second (dwell time) 2 

for the trial to be considered successful [39-40]. If the subject was unable to reach the target within a 15 second 3 

time limit, the online trial was considered unsuccessful and the subject moved on to the next target with the cursor 4 

back at the origin. Three sessions per train-test combination were performed per day. In each session, each motion 5 

was tested six times (thus 18 times in total for all three sessions) so in total 24 targets to be reached per session. 6 

In order to quantify the performance of the real-time system, four performance metrics were assessed: Throughput, 7 

Path Efficiency, Overshoot, and Completion Rate. Throughput describes usability through the tradeoff of speed 8 

and accuracy and, when averaged over the entire test, it is a convenient summary of performance [21]. Throughput 9 

is mathematically defined as the ratio between the index of difficulty and movement time, which is the time (in 10 

seconds) taken to acquire the target. It is a measure of the amount of information the subject can convey through 11 

a command source as it relates to the task [34]. Path Efficiency describes the systems quality of control. It is 12 

computed by dividing the straight-line distance by the actual distance traveled [40] Overshoot describes the ability 13 

to stop on a target. It is the number of occurrences of the cursor being on target and then leaving the target before 14 

the end of the 1-s dwell time (across all targets), divided by the total number of targets. Completion Rate describes 15 

the overall success; the percentage of tests completed within the allowed time [41]. Three types of test were 16 

performed online (Figure 1c) on each day, besides for day one, where only one test was performed: (i) A classifier 17 

was trained on data collected from the previous day and tested on present day (BDT) (ii) Trained and tested on 18 

data from the present day (WDT) and (iii) trained on all previous days including present day and tested on present 19 

day (CDT). This is the main focus of this study in order to assess whether inclusion of previous data would surpass 20 

the WDT performance. On day 1 only WDT was performed. Each motion was tested 18 times per training strategy. 21 

For BDT and CDT, training data from different days were concatenated and used to train the classifier prior to 22 

the online tests.  23 
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d) Signal Processing 1 

From the six seconds of contraction time, Steady state part, the middle four seconds of the six seconds data 2 

segment, was segmented using an overlapping window of 200ms with 50ms increment. Six features were 3 

investigated for this study: Waveform Length (WL), Mean Absolute Value (MAV), Willison Amplitude 4 

(WAMP), Cardinality (CARD), Slope Sign Changes (SSC) and Zero Crossings (ZC). An Artificial Neural 5 

Network (ANN) was used as a training and testing classifier. The ANN consisting of 15 neurons in the hidden 6 

layer was trained using the training data and stored in a file. The trained ANN was loaded to the Fitts’ law test to 7 

classify the hand gestures, mapped for cursor control. For the sake of completeness, offline classification analysis 8 

was conducted on data recorded for training using the same training-testing strategies applied to online 9 

experiments except for CDT, where the present data was not included in the training. This was done to avoid 10 

lengthy data recording during training.  Classification error, computed as the ratio between the number of 11 

misclassification and the total number of classification, was used as the offline performance measure. Between-12 

day classification error (BCE) was defined as training and testing data from two different days, Error ij was 13 

obtained by training data on day i and testing on day j. Within-day classification error was defined as training and 14 

testing data from the same day. Error ij was obtained by applying two-fold validation. Combined-day 15 

classification error (CCE) was defined as training data from all previous days or day and test data from the current 16 

day. 17 

e) Statistics 18 

To evaluate the overall offline performance based on classification error, two-way repeated measures analysis of 19 

variance (ANOVA) with factor types (WCE, BCE, and CCE) and the day (without Day 1) was used. P-values less 20 

than 0.05 were considered significant. To investigate the suitability of Fitts’ law test for the online experiment the 21 

relationship between completion time and ID was examined. The R2 coefficient of the linear model was examined 22 

to determine how the obtained data fit the computed linear model. For the overall performance based on each 23 

performance metric, two-way repeated measures analysis of variance (ANOVA) was used to quantify the 24 

difference between days (without Day 1) and sessions. P-values less than 0.05 were considered significant. Results 25 

are presented as mean ± standard deviation. 26 

III. RESULTS 27 

 28 

a) Offline Results 29 
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Two-way repeated ANOVA showed that classification accuracies were significantly affected by training schemes 1 

(P ≤ 0.01) and days (P ≤ 0.01). Multiple comparison showed no significance (P = 0.55) between average WCE 2 

(0.98 ± 0.57 %) and BCE (1.55 ± 1.25%). Averaged WCE and BCE were significantly (P ≤ 0.01) lower than CCE 3 

(4.99 ± 1.63%). Multiple comparisons revealed a significant difference between (Days = 2, 3, 4) and Day 7 (11.52 4 

± 2.58%) in CCE.  No significant difference was found between days 2,3 and 4 (P (2,3) =0.86, P (2,4) =0.75, P 5 

(3,4) = 0.99).  In BCE, classification performance improved over time (BCE of day 7 is less than day 4, day 4 is 6 

less than day 3 and so on) but found no significance between days. Figure 2 represents the offline classification 7 

performance comparison between BCE and CCE over time. 8 

9 
Figure 2: Offline Classification performance comparison between WCE, BCE, and CCE over a week. Star (*) 10 
indicate the case where there is a significant difference. 11 

Table 3 represents the confusion matrix for all classes of CCE on Day7. Higher level of misclassifications for 12 

close hand and open hand were observed. It may be attributed to the co-activation of several muscles during 13 

recording of these motions. 14 

Table 3: Confusion matrix for all hand motions on Day 7 for CCE. 15 

CONFUSION MATRIX CCE (DAY 7) 

PREDICTED CLASS 

Tr
u

e 

C
la

ss
  Close 

Hand 
Open 
Hand 

Extend 
Hand 

Flex    
Hand 

Rest 

Close 
Hand 

80.25% 19.18% 0.27% 0.08% 0.22% 
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Open 
Hand 

17.03% 67.16% 5.17% 7.90% 2.73% 

Extend 
Hand 

0.84% 0.79% 97.56% 0.02% 0.80% 

Flex 
Hand 

0.93% 1.21% 0.02% 97.60% 0.24% 

Rest 0.11% 0.03% 0.03% 0.00% 99.83% 

b) Fitt’s Law Test 1 

A strong linear relationship was found between completion time and index of difficulty for all strategies (within 2 

day testing WDT, between day testing BDT and combined days testing CDT) and days (coefficient of 3 

determination R2 ≥0.91) as depicted in Figures 3 and 4.  This supports the suitability of using Fitt’s Law test. It 4 

was found that average completion time for all IDs in CDT was significantly better than (P≤0.01) BDT and 5 

(P=0.04) WDT (Table 4).  6 

 7 
Figure 3: Relationship between completion time (CT) and index of difficulty for Within day testing(WDT). 8 



10 
 

 1 

Figure 4: Relationship between completion time (CT) and index of difficulty for between day testing (BDT). 2 

Table 4: Average completion time and index of difficulty for BDT, WDT, and CDT. 3 
ID BDT WDT CDT 

1.81 5.49±1.33 5.09±0.70 4.96±0.20 

2.58 8.33±2.69 8.19±2.72 7.86±1.72 

3.46 8.64±2.77 8.48±2.55 8.36±1.55 

4.39 11.48±1.23 11.27±1.48 10.97±1.33 

There was no significant difference between days for all the performance metrics in WDT, BDT and CDT (Figure 4 

5). A summary of all performance metrics per session across all days is provided in Table 5.  5 
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 1 

Figure 5: The overall results for all the performance metrics over days (A. Completion rate (%), B. Overshoot 2 
(%), C. Path Efficiency (%), D. Throughput (bits/s)) in within day testing (WDT), Between day testing (BDT) 3 
and Combine day testing (CDT).   4 
Table 5: WDT, BDT and CDT session wise comparison of, performance metrics. A significant difference in 5 
each session of performance metric was presented in star (*) in Table 4. 6 

Within-Day Testing (WDT) 

 Session 1 Session 2 Session 3 

Completion rate 94.42±4.09 93.17±3.64 95.08±3.35 

Overshoot 14.86±4.14 (*) 11.84±6.01 11.35±5.25 

Path efficiency 86.86±1.75 87.50±2.70 86.69±2.51 

Throughput 0.41±0.02(*) 0.39±0.02 0.38±0.02 

Between Day Testing (BDT) 

 Session1 Session 2 Session 3 

Completion rate 89.06±5.45(*) 86.56±5.53 83.13±6.50 

Overshoot 14.26±4.27(*) 11.06±4.73 10.39±4.60 

Path efficiency 85.55±2.37 86.78±4.61 86.18±4.89 

Throughput 0.39±0.01(*) 0.39±0.01 0.36±0.02 

Combined Day Testing (CDT) 

 Session 1 Session 2 Session 3 

Completion rate 99.79±0.29(*) 98.85±1.22 96.45±3.69 

Overshoot 14.75±4.31(*) 10.61±4.45 10.38±4.79 

Path efficiency 87.03±1.31 86.93±1.01 88.55±5.03 

Throughput 0.41±0.01(*) 0.40±0.01 0.38±0.02 

When pulling the days in training-testing strategies, the overall comparison of performance metrics between 7 

WDT, BDT, and CDT is shown in Figure 6. Completion rate (98.37 ± 1.47 %) of CDT was significantly better 8 

(P<0.01) than BDT (86.25 ± 3.46 %) and WDT (94.22 ± 2.74 %). Throughput (0.40 ± 0.03 bits/s) of CDT was 9 

significantly better (P=0.001) than BDT (38.07±0.03 bits/s). Path efficiency and Overshoot were not different 10 

between the strategies (P>0.3).  11 
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1 
Figure 6: Performance metrics (A. Completion Rate (%), B. Overshoot (%), C. Path Efficiency (%), D. 2 
Throughput (bits/s)) averaged across all days in CDT, WDT and BDT. Stars (*) indicate the case where there is a 3 
significant difference. 4 

IV. DISCUSSION 5 

Historically researchers have quantified EMG PR performance by comparing classification accuracies of different 6 

algorithms in offline settings. However recent studies have focused more on real-time evaluation in acute settings, 7 

meaning in a single session. In this study, multiple train-test schemes were assessed over seven days in the context 8 

of real-time usability test using a Fitt’s Law approach. Evaluation of the Fitts’ Law showed high R2 ≥ 0.92 values 9 

from regression plots for all days in all train-test strategies supporting the suitability of a Fitts’ Law approach.  10 

For the overall performance based on throughput and completion rate, two-way ANOVA revealed a significant 11 

difference between combined day testing (CDT), within day testing (WDT) and between day testing (BDT) 12 

(Figure 6. On average for all days, completion rate (98.37 ± 1.47 %) and throughput (0.40 ± 0.027 bits/s) of CDT 13 

was significantly better (P≤0.01) than BDT and WDT. This indicates the acute behavior of the system after initial 14 

training. The lack of difference between BDT and CDT is quite interesting and indicating a possible adaptation 15 

of the system. Although not captured fully in this study, combining data from several days might, in fact, provide 16 

a stable system performance. Nevertheless, the increased amount of data may also require deeper network in order 17 

to generalize well. This observation has an important implication on real-world myoelectric based on PR, which 18 

provides the possibility of reducing the level of system recalibration for prostheses training based on data from 19 

longer periods of time.  20 

The slopes of the regression lines indicate differences between train-test strategies in terms of completion time 21 

(Table 3). Performance descriptors and task requirements, which involve the acquisition of target location through 22 
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control of cursor are a close analog to previously reported real-time studies. Path efficiency describes the system 1 

quality of control was recorded (87.02 ± 4.38 %), higher than reported in previous studies 73.1% ± 2.8%, 77.09 2 

± 0.89 %, 71.5 ± 3.8% [33-35].  Similarly, lower value of overshoot (0.12 ± 0.06 %) compared to (0.45 ± 0.07%) 3 

in [33] and (0.56 ± 0.04%) in [35] indicate that users were more effective on stopping at the target. Subjects were 4 

able to maintain a similar degree of path efficiency and overshoot across days over time. Within-day sessions, 5 

however, showed significant differences between them. This indicates the changes in EMG characteristics that 6 

may occur within short time periods, supporting the above arguments about the need for capturing an increased 7 

amount of data.  8 

Offline analysis showed a different trend most probably due to the difference in the training strategies. For 9 

example WCE was computed using two-fold validation providing half sample size compared to BCE and CCE. 10 

Furthermore, offline CCE did not include data from the present day. Nevertheless, the effect is more prominent 11 

between day four and seven. This suggests that, although training strategies for short-time scenarios produce low 12 

errors, it is not a useful metric to capture the variabilities in human hand movements. A way to solve this is by 13 

encouraging concatenation of training data of hundreds of days to capture the natural variabilities in movement 14 

execution.  However, with such large training size standard machine learning and features may not cope and thus 15 

we encourage the use of deep learning networks for future PR control schemes. 16 

Limitations: 17 

The ratio between distance and target width determines the ID for each target and the combination used in this 18 

study yielded only four unique ID instead of six, resulting in the larger spread of ID values. In the future, we will 19 

consider targets positions that will produce unique IDs for improved resolution in the level of challenge of the 20 

task. The proposed framework evaluated training schemes based on their ability to predict hand motions 21 

(classification, in PR based approaches) using constant speed. Thus, the outcome of such a study may be different 22 

with the introduction of proportional control where users may be able to update different in terms of speed.  The 23 

number of classes chosen for this study is only a limitation from the offline analysis point of view where a higher 24 

number of classes have been used in the past [30,32]. However, for the online evaluation, 2 –DOF is typically 25 

used in the literature. While the results of this study have shown a significant difference in training-testing 26 

strategies, it is just a step towards quantification of robustness. Clinical experiments are ongoing with amputees 27 

using real prostheses.  28 

V. CONCLUSION 29 
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In this study, real-time myoelectric control of different training-testing schemes for four functional motions of 1 

hand was evaluated using Fitts’ law. Our results have shown that time has an effect on the robustness of real-time 2 

PR based myoelectric control. Specifically, increasing the training size by pulling data from several days tend to 3 

improve real-time performance. A feature that is not captured using offline classification error. This is relevant 4 

for intuitive control of prostheses and future usability tests, where we recommend multiple sessions/days as the 5 

acute results may not be the true picture of the performance of the system.  6 
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classification error; BCE: Between-day classification error; CCE: Combined-day classification error; MYO: Myo 10 

armband; WL: Waveform length; MAV: Mean absolute value; WAMP: Willison amplitude; CARD: Cardinality; 11 

SSC: Slope sign change; ZC: Zero crossings; ID: Index of difficulty; ANOVA: Analysis of variance. 12 

DECLARATIONS 13 

ETHICS APPROVAL AND CONSENT TO PARTICIPATE 14 

The study was approved by the local ethical committee of the region of Northern Jutland (approval no: N-15 

20160021), Denmark. The subjects participated in the study provided their written informed consent prior to 16 

enrolment. 17 

CONSENT OF PUBLICATION 18 

Not applicable. 19 

AVAILABILITY OF DATA AND MATERIALS 20 

The datasets generated during and/or analyzed during the current study are available from the corresponding 21 

author on reasonable request. 22 

COMPETING INTERESTS 23 

The authors declare that they have no competing interests. The authors declare that the research was conducted in 24 

the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. 25 

FUNDING 26 



15 
 

The project was supported by Higher Education Commission of Pakistan, under the Faculty Development 1 

Program (FDP-REF1DEC2014) administered through National University of Sciences and Technology under 2 

contract 0972/F008/HRD/FDP-14/S/Asim. 3 

AUTHORS CONTRIBUTIONS 4 

AW and ENK designed the study concept, experimental protocol and performed data acquisition. They analyzed 5 

the data, drafted and completed the manuscript. IM developed the GUI for real-time testing and assisted in data 6 

collection. KE, WJ contributed to data analysis and provided critical revision of the manuscript. All authors read 7 

and approved the final manuscript. 8 

ACKNOWLEDGEMENTS 9 

We would like to thank all the subjects participated in our study. 10 

AUTHORS’ INFORMATION 11 

1SMI, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark. 2SMME, National 12 

University of Sciences and Technology, Islamabad, Pakistan. 3Institute of Biomedical Engineering, University of 13 

New Brunswick, Fredericton, Canada. 4Center for Robotics Research, Department of Informatics, King’s College 14 

London, London, United Kingdom. 15 

REFERENCES 16 

[1] Dillingham TR, Pezzin LE, Mackenzie EJ. Limb Amputation and Limb Deficiency: epidemiology and Recent 17 

Trends in the United States. Southern Medical Journal 2002; 95:875-83 18 

[2] Battye CK, Nightingale A, Whillis J. The use of myo-electric currents in the operation of prostheses, J. Bone 19 

Joint Surg. Br. 37 1955; 37-B(3):506–10. 20 

[3] Scheme E, Englehart K. Electromyogram pattern recognition for the control of powered upper limb prostheses: 21 

state-of-the-art and challenges for clinical use. J Rehabil Res Dev 2011; 48: 643-659; 22 

10.1682/JRRD.2010.09.0177. 23 

[4] Toledo C,Simon A, Munoz R, Vera A, Leija L, Hargrove L: A comparison of direct and pattern recognition 24 

control for a two degree-of-freedom above elbow virtual prosthesis. EMBC Annual International Conference of 25 

the IEEE. 2012: 4332–35. 26 



16 
 

[5] Kamavuako EN, Scheme EJ, Englehart KB. Wrist torque estimation during simultaneous and continuously 1 

changing movements: surface versus untargeted intramuscular EMG.  J Neurophysiol 2013; 11: 2658–65. 2 

10.1152/jn.00086.2013. 3 

[6] Nielsen J, Holmgaard S, Jiang N, Englehart K, Farina D, Parker PP. Simultaneous and proportional force 4 

estimation for multifunction myoelectric prostheses using mirrored bilateral training. IEEE Trans Biomed Eng. 5 

2011; 58: 681–8. 10.1109/TBME.2010.2068298. 6 

[7] Jiang N, Englehart KB, Parker P. Extracting simultaneous and proportional neural control information for 7 

multiple degree of freedom prostheses from the surface electromyographic signal. IEEE Trans Biomed Eng. 2009; 8 

56:1070–80. 10.1109/TBME.2008.2007967. 9 

[8] Kamavuako EN, Englehart KB, Jensen W, Farina D. Simultaneous and proportional force estimation in 10 

multiple degrees of freedom from intramuscular EMG. IEEE Trans Biomed Eng. 2012; 59:1804–07. 11 

10.1109/TBME.2012.2197210. 12 

[9] Phinyomark A, Quaine F, Charbonnier S, Serviere C, Bernard FT, Laurillau Y. EMG feature evaluation for 13 

improving myoelectric pattern recognition robustness. Expert Syst Appl. 2013;40(12):4832-40. 14 

10.1016/j.eswa.2013.02.023. 15 

[10] Phinyomark A, Phukpattaranont P, Limsakul C. Feature reduction and selection for EMG signal 16 

classification. Expert Syst Appl 2012; 39(8); 7420–31. 10.1016/j.eswa.2012.01.102. 17 

[11] Hargrove L, Englehart K, Hudgins B. A training strategy to reduce classification degradation due to electrode 18 

displacements in pattern recognition based myoelectric control. Biomed Signal Process Contr. 2008;3(2):175-180. 19 

10.1016/j.bspc.2007.11.005. 20 

[12] Fougner A, Scheme E, Chan AD, Englehart K, Stavdahl O. Resolving the limb position effect in myoelectric 21 

pattern recognition. IEEE Trans Neural Syst. Rehabil. Eng. 2011; 19(6): 644–651. 22 

10.1109/TNSRE.2011.2163529. 23 

[13] Scheme E, Fougner A, Stavdahl O, Chan AD, Englehart K. Examining the adverse effects of limb position 24 

on pattern recognition based myoelectric control. In 32nd Annual International Conference of the IEEE Eng Med 25 

Biol Soc.  2010:6337-40. 10.1109/IEMBS.2010.5627638. 26 



17 
 

[14] Bellingegni A D, Gruppioni E, Colazzo1 G, Davalli A, Sacchetti R, Guglielmelli E and Zollo L. NLR, MLP, 1 

SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation. J Neuroeng 2 

Rehabil. 2017 14;14(1):82 pp. 2-16. 3 

[15] Waris A, Niazi IK, Jamil M, Englehart K, Jensen W, Kamavuako EN.  Multiday Evaluation of Techniques 4 

for EMG Based Classification of Hand Motions. IEEE J.  Biomed. Health Inform. 5 

[16] Ortiz-Catalan M, Brånemark R, Håkansson B. BioPatRec: a modular research platform for the control of 6 

artificial limbs based on pattern recognition algorithms. Source Code Biol. Med 2013. 8:11. 10.1186/1751-0473-7 

8-11  8 

[17] Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. Biomed 9 

Eng, IEEE Trans on Biomed Eng. 2003; 50(7):848–854. 10.1109/TBME.2003.813539. 10 

[18] Lock B, Englehart K, Hudgins. Real-Time myoelectric control in a virtual environment to relate usability vs. 11 

Accuracy. In Myoelectric Controls Symp. Fredericton NB Canada 2005. 12 

[19] Hargrove L, Losier Y, Lock b, Englehart K, Hudgins B. A real-time pattern recognition based myoelectric 13 

control usability study imlemented in a virtual environment. in Proc. IEEE Int Eng Med Biol Soc Conf Aug. 2007: 14 

4842–45. 10.1109/IEMBS.2007.4353424. 15 

[20] Kuiken T, Guanglin L, Lock B, Lipschutz R, Miller L, Stubblefield K, Englehart K. Targeted muscle 16 

reinnervation for realtime myoelectric control of multifunction artificial arms. J Am Med Assoc. 2009; 17 

301(6):619–28. 10.1001/jama.2009.116. 18 

[21] Fitts P. The information capacity of the human motor system in controlling the amplitude of movement. J 19 

Exp Psychol. 1954; 47(6):381–91. 10.1037/h0055392. 20 

[22] Shannon C. Mathematical theory of communication. Bell Syst Tech J. 1948;27: 623–56. 21 

[23] Choi C, Micera S, Carpaneto J, and Kim J. Development and quantitative performance evaluation of a 22 

noninvasive EMG computer interface. IEEE Trans Biomed Eng 2009;56(1):188–91. 23 

10.1109/TBME.2008.2005950. 24 

[24] Rosenberg R. The biofeedback pointer: EMG control of a two-dimensional pointer, Wearable Computers 25 

Digest of Papers. Second Int Symp on 19-20 Oct. 1998: 162–63. 10.1109/ISWC.1998.729546. 26 

[25] Kuiken TA, Turner K, Soltys N,Dumanian G. First clinical fitting of an individual after bilateral TMR with 27 

intuitive pattern recognition control. Myoelectric Controls Symposium (Fredericton, NB). 2014 28 



18 
 

[26] Matrone GC, Cipriani C, Carrozza MC, Magenes G. Real-time myoelectric control of a multi-fingered hand 1 

prosthesis using principal components analysis. J Neuroeng Rehabil. 2012; 9:40. 10.1186/1743-0003-9-40 2 

[27] Smith LH, Kuiken TA, Hargrove LJ. Real-time simultaneous and proportional Myoelectric control using 3 

intramuscular EMG. J. Neural Eng. 2014; 11:066013. 10.1088/1741-2560/11/6/066013. 4 

[28] Kamavuako EN, Scheme E and Englehart KB. Combined surface and intramuscular emg for improved real-5 

time myoelectric control performance. Biomed. Signal Process Control.2014;10:102-107. 6 

10.1016/j.bspc.2014.01.007 7 

[29] He J, Zhang D, Jiang N, Sheng X, Farina D, Zhu X. User adaptation in long-term, open-loop myoelectric 8 

training: Implications for EMG pattern recognition in prosthesis control. J. Neural Eng. 2015;12(4):046005. 9 

10.1088/1741-2560/12/4/046005. 10 

[30] Jain S, Singhal G, Smith RJ, Kaliki R, Thakor N. Improving long term myoelectric decoding, using an 11 

adaptive classifier with label correction. in Proc. 4th IEEE/RAS-EMBS Int Conf Biomed. Robot Biomechatronics. 12 

2012:532-537. 10.1109/BioRob.2012.6290901. 13 

[31] Kaufmann P, Englehart K, Platzner M. Fluctuating EMG signals: Investigating long-term effects of pattern 14 

matching algorithms.  in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010:6357–6360. 15 

10.1109/IEMBS.2010.5627288. 16 

[32] Waris A, Niazi IK, Jamil M, Gilani O, Englehart K, Jensen W, Shafique M, Kamvuako EN. The effect of 17 

time on EMG classification of hand motions in able and transradial amputees. J Electromyography Kinesiol. 2018; 18 

40:72-80. 10.1016/j.jelekin.2018.04.004.  19 

[33] Smith LH, Kuiken TA, Hargrove LJ. Evaluation of linear regression simultaneous myoelectric control using 20 

intramuscular EMG. IEEE Trans Biomed Eng. 2016; 63(4):737-746. 10.1109/TBME.2015.2469741. 21 

[34] Kamavuako EN,  Scheme EJ, Englehart KB. On the usability of intramuscular EMG for prosthetic control: 22 

a Fitts’ law approach. J. Electromyography Kinesiol. 2014; 24:770-7. 10.1016/j.jelekin.2014.06.009. 23 

[35] Scheme E, Englehart K. Validation of a selective ensemble-based classification scheme for myoelectric 24 

control using a three-dimensional Fitts' law test. IEEE Trans. Neural Syst. Rehabil. 2012; 21(4):616-23. 25 

10.1109/TNSRE.2012.2226189. 26 

[36] Boyali A, Hashimoto N. Spectral collaborative representation based classification for hand gestures 27 

recognition on electromyography signals. Biomed. Signal Process. Control. 2016; 24:11-18. 28 

10.1016/j.bspc.2015.09.001 29 

[37] Benatti S, Casamassima F, Milosevic B, Farella E, Schönle P, Fateh S, Burger T, Huang Q, Benini LA 30 

versatile embedded platform for EMG acquisition and gesture recognition. IEEE trans. on biomedical circuits and 31 

systems. 2015;9(5):620-30. 10.1109/TBCAS.2015.2476555. 32 

[38] Kamavuako EN, Waris A, Mendez I, Englehart K. Patient-specific optimum motions: a need for mind shift 33 

in myoelectric control of prostheses? Myoelectric Control Symposium MEC 2017. 34 



19 
 

[39] Gusman J, Mastinu E, Ortiz-Catalan M. Evaluation of Computer-Based Target Achievement Tests for 1 

Myoelectric Control. IEEE Journal of Translational Engineering in Health and Medicine. 2017; 5:1-10. 2 

10.1109/JTEHM.2017.2776925. 3 

[40] Wurth SM, Hargrove LJ. A real-time comparison between direct control, sequential pattern recognition 4 

control and simultaneous pattern recognition control using a Fitts’ law style assessment procedure. Journal of 5 

NeuroEngineering and Rehabilitation. 2014; 11:91. 10.1186/1743-0003-11-91. 6 

[41] Williams M, Kirsch R, Evaluation of head orientation and neck muscle EMG signals as command inputs to 7 

a human–computer interface for individuals with high tetraplegia, IEEE Trans. Neural Syst. Rehabil. Eng. 2008; 8 

16(5):485–496. 10.1109/TNSRE.2008.2006216. 9 

[42] Simon AM, Hargrove LJ, Lock BA, Kuiken TA. Target achievement control test: evaluating real-time 10 

myoelectric pattern-recognition control of multi- functional upper-limb prostheses. J. Rehabil. Res. Dev. 2011; 11 

48(6):619–27. 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

Figure 1 25 



20 
 

 1 

Figure 1. Experiment setup with (a) number of motions for which data was recorded (b) showed the GUI for off-2 

line training and (c) for real-time testing. 3 
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Figure 2: 1 

 2 

Figure 2: Offline Classification performance comparison between WCE, BCE, and CCE over a week. Star (*) 3 
indicate the case where there is a significant difference.  4 
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 1 

Figure 3: 2 

 3 

Figure 3: Relationship between completion time (CT) and index of difficulty for Within day testing(WDT). 4 
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Figure 4: 3 

 4 

Figure 4: Relationship between completion time (CT) and index of difficulty for between day testing (BDT). 5 
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Figure 5: 5 

 6 

Figure 5: The overall results for all the performance metrics over days (A. Completion rate (%), B. Overshoot 7 
(%), C. Path Efficiency (%), D. Throughput (bits/s)) in within day testing (WDT), Between day testing (BDT) 8 
and Combine day testing (CDT).   9 
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Figure 6: 5 

 6 

Figure 6: Performance metrics (A. Completion Rate (%), B. Overshoot (%), C.  Path Efficiency (%), D. 7 
Throughput (bits/s)) averaged across all days in CDT, WDT and BDT. Stars (*) indicate case where there is a 8 
significant difference. 9 
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