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Chapter 1

INTRODUCTION

The process of implementing a damage detection strategy for a structure is referred as
structural health monitoring (SHM). In this context damage is defined as changes to the
material and/or geometric properties of these systems, including changes to the boundary
conditions and system connectivity, which adversely affect the system’s performance [7].

Damage detected in its early stage can avoid unnecessary shutdowns of in-service struc-
tures and decrease maintenance cost. SHM is used to monitor the condition of the structures
to provide, in real time, information regarding its integrity [7]. The evaluation of this infor-
mation can give an alarm of an early stage of damage, and allows to take immediate action
before any harmful or no repairable situation arises.

A SHM system consist of four levels. The first three levels are detection, localization
and quantification of any damage. These three levels are known as diagnosis. The fourth
level involves the assessment of the consequences of the diagnosed damaged and is known
as prognosis.

The first level is referred as structural damage detection (SDD). In this level the objec-
tive is to ascertain if damage is present or not in the structure. This thesis deals with the
implementation of an approach for SDD through the use of measured vibration signals from
the structure.

1.1 VIBRATION-BASED STRUCTURAL DAMAGE DETEC-
TION

Damage in a structure is typically associated with changes in mass, stiffness or damping
properties of the system. These characteristic of damage, in turn, change the vibrational
characteristics of the structure [5, 6]. Then the presence of damage can be evaluated from
the analysis of the damaged-induces changes in the vibration responses of the structure.

Since sensors cannot measure damage, an adequate vibration-based SDD approach is re-
quired to transform the vibration measurement responses into damage-sensitive information
that can be used to asses the presence of damage. Different approaches have demonstrated

3



4 Chapter 1. INTRODUCTION

promising results in experimental studies [14].
However, the implementation of vibration-based SDD approaches in realistic applica-

tion presents several challenges, among them: defining the number and proper location of
the sensors, extraction of damage-sensitive information and discriminate damage-induced
changes from changes induced by changing environmental and/or operational conditions.

Environmental variabilities (EVs) as wind, temperature, rain, snow, humidity and waves,
and operational variabilities (OVs) as loading conditions and operational speed affect the vi-
bration responses of the structure. This influence, arise a problem that need to be faced by
the SDD approach.

1.2 STATEMENT OF THE PROBLEM

The environmental and operational variabilities (EOVs) induced changes are among the
main obstacles to implement vibration-based SDD on structures in service. EOVs influence
can mask the changes actually caused by damage on the vibration responses or can lead to
false indications of damage. For that reason, it is important to investigate an approach to
remove or at least mitigate the influence of EOVs in vibration-based SDD.

1.3 THESIS SCOPE

This thesis investigates the use of cointegration, a technique from the field of econo-
metrics, to remove or at least mitigate the EOVs influences in SDD results. To this end,
numerical and experimental case studies are performed. The experimental case study is
based on actual data for an operating Vestas V27 wind turbine, which allows for evaluation
of the approach under real EOVs conditions.

1.4 THESIS OUTLINE

Five chapters follow this introduction, the outline of their content is given below:

Chapter 3 In this chapter, the principles of the outlier analysis method are presented to-
gether with its application for SDD. After, Mahalanobis square distances and cointegration
are introduced. These techniques are used as metric for the implementation of outlier anal-
ysis approach in SDD.

Chapter 4 In this chapter, the outlier analysis method and techniques introduced in chapter
3 are applied to numerical simulations. These simulations emulates different scenarios of
EOVs in order to validate the use of the outlier analysis approach.
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Chapter 5 The fifth chapter deals with an experimental application. Data from an op-
erating Vestas V27 wind turbine is used in order to verify if the outlier analysis based on
cointegration can remove or at least mitigate EOVs influences in the results.

Chapter 6 In the last chapter the discussion and conclusions are presented, followed by
suggestions for future research in this topic.





Chapter 2

DAMAGE DETECTION METHODS

The goal of any SDD approach is to classify the current state of a structure as undamaged
or damaged. Damage alters the stiffness, mass and/or damping properties of a structure,
which, in turn, will change the measured dynamic response of the system [5, 6] with respect
to its undamaged state. Then, from the analysis of the vibration responses, it would be
possible to classify the current state of the structure as undamaged or damaged. Outlier
analysis [17, 21, 22] is one of the methods used to reach this goal.

2.1 OUTLIER ANALYSIS PRINCIPLES

The outlier analysis method is a statistical method used to evaluate an observation as
consistent or inconsistent with a reference state of the data. For this, a baseline model is
constructed with a group of observations that represent the reference state, which are also
known as training observations. Any current observation is compared against the baseline
model; if the current observation is consistent with the baseline model it is classified as an
inlier; if not, it is classified as an outlier to the baseline model.

To perform outlier analysis, a variable or set of variables that represented the state of the
data at each observation are selected. Each of these variables is known as feature.

For data, which state can be represented for two features X1 and X2, the principles be-
hind the outlier analysis method are depicted as in figure 2.1. Each pair of values represents
a particular observation. The ellipse represents the threshold of the baseline model, all the
observations inside the ellipse are classified as inliers, and the observations outside the el-
lipse are classified as outliers to the baseline model.

Figure 2.2 represents a more complicated case, where some observations that are con-
sistent with the baseline model, circular marks, are allowed to be outside the threshold. This
tolerance is typically needed to avoid a high number of observations that are not consistent
with the baseline model, square marks, be placed inside the threshold. For example, if the
elliptical threshold is enlarged to include all circular marks, the number of square marks
inside it will increase up to five.

7



8 Chapter 2. DAMAGE DETECTION METHODS

X1

X 2

Inlier

Outlier

Threshold

Figure 2.1: Outlier analysis representation for two features data.

X1

X 2

True negative (Inlier)

True positive (Outlier)

False positve (Outlier)

False negative (Inlier)

Threshold

Figure 2.2: Outlier analysis representation for two features data, with allowed tolerance for the threshold.

A false positive is an observation that is consistent with the reference state that is la-
beled as an outlier; see figure 2.2. Conversely, a false negative is an observation that is not
consistent with the reference state that is labeled as an inlier. Following this description, a
true negative is an inlier observation that is consistent with the baseline model, and a true
positive is an outlier observation that is not consistent with the baseline model. To select
the threshold a percentage of false positives in the baseline model is allowed to avoid a high
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Figure 2.3: Representation of outlier analysis using a metric that projects multivariate features to a one-variate
representation.

percentage of false negatives. Current states of the data, represented by testing observations,
are compared against this selected threshold.

Metric is the technique used to measure the discordancy of the observations with respect
to the baseline model. It allows the observations to be judged to be statistically likely or un-
likely to have come from the baseline model [22]. For data characterized by more than three
features, it is difficult to graphically represent the observations and evaluate the discordancy
respect to the baseline model. In this case, one can use a metric that projects the multivariate
feature to a one-variate representation for each observation, as is shown in figure 2.3.

The baseline model is constructed with metrics computed from training observations
that corresponds to the reference state of the data, and a threshold value is selected allowing
a percentage of false positives, as depicted in figure 2.4.

The metric of the testing observations, under evaluation, is compared against the thresh-
old defined from the training observations. In this manner, the observations are classified as
inliers or outliers respect to the baseline model.

2.1.1 PERFORMANCE INDICATORS

Evaluation of the outlier analysis approach can be accomplished based on the number of
false positives and true positives obtained from the testing observations classification.

The evaluation of the selected false positive allowance, that is used to compute the
threshold, is done with two ratios, the false-positive rate (FPR) and the true-positive rate
(TPR). FPR is computed as the ratio of false positives to the sum of false positives plus true
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False negative (Inlier)

Threshold

Figure 2.4: Representation of outlier analysis for multivariate features projected to a one-variate representation,
with threshold based on false positive allowance.

negatives in the testing observations. TPR is computed as the ratio of true positives to the
sum of true positives plus false negatives in the testing observations, see figure 2.4.

The whole evaluation of the outlier analysis approach is done calculating TPR and FPR
for the whole range of thresholds, that is for all values of false positives that can be allowed
in the training observations (0% to 100%). Plotting the TPR against FPR results gives the re-
ceiver operating characteristic curve (ROC), see Figure 2.5. This curve allows evaluating the
implemented outlier analysis approach. An approach that performs a perfect classification
always detects 100% of true positives in the testing observations for any selected threshold.
It has the area under the ROC curve (AUC) equal to one [20]. A good approach has AUC
near one. Approaches with AUC equal to or lower than 0.5 are poor. An approach with
AUC equal to 0.5 gives random results, it is not able to classify the testing observations. An
approach with AUC lower than 0.5 classifies the testing observations incorrectly, classifying
true negatives as true positives and vise versa.

To perform outlier analysis for damage detection in SDD, a feature or set of features
together with a metric are required. The features represent the state of the structure at each
observation. The metric evaluates the features with respect to the reference state of the
structure.

2.1.2 FEATURES FOR SDD

Feature in SDD is a damage-sensitive property or properties extracted from the sensor
measurement responses. It is used to represent the state of the structure at each observation,
and it can allow to distinguish between the undamaged and the damaged states of the struc-
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Figure 2.5: Receiver operating characteristic curve (ROC)

ture [7]. The selection of the feature requires special attention [23]. The feature must be
as sensitive to damage as possible, and still, at the same time, insensitive to other variable
conditions that can mask damage-induced changes in the measurement responses, see sec-
tion 2.1.4. That is a compromise between both requirements.

In this thesis, all measurement responses and features are real values, and each feature is
a set of properties group into a vector x ∈Rp, where p is the dimension of the feature.

At each observation, the state of the structure is represented with a feature. The prob-
lem is to find a reduced dimension quantity that depends on the damage [23], but not on
other variable conditions. Several options from vibration time-series responses have been
tested, for example, unique elements of covariances matrices between responses [17], major
components from principal component analysis of the responses [21], selected frequencies
points of the transmissibility function between responses [22], selected frequencies points
of the power spectra of the response [22], auto-regressive coefficients of the responses [7,
16], and modal parameters estimated from the response [12].

The selection of the most appropriate feature depends on each application, there is not
an optimal feature for all the problems, even for the same problem, different options are
possible. For this reason, it is essential to tailor the feature selection to the specific problem,
based on engineering judgment, with the goal of preserving the information from damage
[23] and to reduce the influence of other variable conditions.

In SDD, the reference state is the undamaged state of the structure. Training features,
from training observations, represent the undamaged state and are used to construct the base-
line model. Testing features, from testing observations, represent the states of the structure
being evaluated against the baseline model. If a testing feature is consistent with the baseline
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model, the state of the structure is classified as undamaged. If not, it is classified as dam-
aged. To perform such classification, an adequate metric to measure the discordancy with
respect to the baseline model is required.

2.1.3 METRICS FOR SDD

To classify the structure as damage or undamaged, it is necessary to measure the dis-
cordancy of the multivariate features with respect to the baseline model. The Mahalanobis
square distance can be used as a metric to this end. It is described in section 2.2.

Cointegration is an approach that can be used to represent the baseline model and to
investigate the discordance of multivariate features. And it can mitigate the influence of
environmental and operational conditions on the features. It is described in section 2.3.

2.1.4 INFLUENCE OF EOVs

Environmental conditions as wind, temperature, rain, and operational conditions as ma-
chine speed, loading, among others under which in-service structures operate, affect the
response signals. These varying conditions can often mask the subtle changes in the struc-
ture’s vibration responses caused by damage [15], producing false positive indications of
damage which could erode confidence in the SDD approach [7]. The problem increases
when measurements of the EOVs are not available, as is usually the case for real structures.

To mitigate the influence of EOVs in SDD procedures, one approach that has been used
is data normalization [7]. For instance, the response signals can be normalized by the mea-
sured inputs or the features can be normalized by a characteristic of the responses. However,
for the success of this approach, training datasets must be collected over a wide range of
EOVs. Otherwise, abnormal environmental and operational conditions can have similar ef-
fects as that of damage [15]. Furthermore, if the changes in the features caused by EOVs
produces similar changes to those caused by damage, it will be necessary to measure the
variability source to detect damage [7].

Cointegration is being used to mitigate the influence of EOVs [1, 2, 4]. In this approach,
the monitored features are treated to remove their common trend caused by EOVs in the
measurements. This is the approach investigated in this thesis and it is described in section
2.3.

2.2 MAHALANOBIS SQUARE DISTANCE

For a univariate feature (p = 1), the deviation statistics can be used as metric [22],
equation 2.1, where Zζ is the discordance value, Xζ is the feature being evaluated as a po-
tential outlier, and X and S are the mean and standard deviation of the ntr training features
corresponding to the baseline model.
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Zζ =
|Xζ −X |

S
(2.1)

For a multivariate feature, with feature dimension p > 1, the equivalent of equation 2.1
is the Mahalanobis square distance measure [22], given by equation 2.2. The baseline model
is represented by the mean x ∈ Rp and the covariance matrix S ∈ Rp×p of the ntr training
features Xtr ∈Rp×ntr , and xζ ∈Rp is the feature under evaluation.

Dζ =
(
xζ −x

)T
[S]−1 (xζ −x

)
(2.2)

The mean and covariance matrix are evaluated as exclusive measurements, meaning that
the feature under evaluation xζ is not taken into account for their calculation. It is because
the healthy state of the structure is known beforehand, then the Mahalanobis square distances
are computed as exclusive values from the training observations. This allows computing the
baseline model without contaminating its statistic with a potential damage feature from the
testing state.

The use of Mahalanobis square distances as a metric requires two assumptions. First,
the features used to compute the baseline model must have normal distribution [22], Xtr ∼
N(x, S); that is, they must have time-invariant x and S, this assumption will not generally be
true. However, if the deviations from the normal distribution are small, the outlier analysis
can work adequately [7]. Small deviations from the normal distribution mean that the dis-
tribution has a clear most frequent value, and it has appropriately weighted tails. Second, it
must be possible to construct a training data set that contains only healthy states of the struc-
ture[22]. To accomplish this assumption, the training observations must be obtained when
it is known that the structure is in its undamaged state, for instance, at the beginning of the
service. All the examples and experiments in this thesis comply with the last assumption.

In the context of SDD, if the Mahalanobis square distance of a damage-sensitive feature
exceeds the threshold, it means that the current state of the structure does not correspond to
the reference state. In principle, this implies that damage has occurred, but one has to ensure
that the change in the feature is not governed by EOVs [23].

2.3 COINTEGRATION

Cointegration is a technique from the field of econometrics. It identifies long term rela-
tionships (trends) among non-stationary time series [9]. Hence, it can be used to detrend the
common dependence on one or more unmeasured factors from these time series.

Stationary time series have a well defined mean and variance that do not change over
time [10]. By contrast, non-stationary time series do not fulfil this requirement. If two or
more non-stationary time series are cointegrated, they can be linearly combined to make a
stationary time series from which the common trends of the original non-stationary series
have been purged [3]. This concept can be illustrated by taking the two non-stationary time



14 Chapter 2. DAMAGE DETECTION METHODS

x1(t)

d(t)

t

x2(t)

d(t)

t

z(t)

Cointegration

Figure 2.6: Non-stationary time series x1(t) and x2(t) are cointegrated into a stationary linear combination z(t)

series of equation 2.3, where the common trend is represented by d(t) = t, and the param-
eters fi and ai ∀i ∈ [1, 2] are the amplitudes and frequencies of the cosine functions. The
stationary linear combination z(t) of these time series is obtained subtracting one time se-
ries from the other, equation 2.4. This stationary linear combination does not content the
common trend d(t) of the non-stationary time series. A graphical representation is shown in
figure 2.6.

x1(t) = a1 cos(2π f1t)+ d(t)

x2(t) = a2 cos(2π f2t)+ d(t)
(2.3)

z(t) = x1(t)− x2(t) = a1 cos(2π f1t)−a2 cos(2π f2t) (2.4)

Equation 2.4 can be represented as in equation 2.5. The vector β and the stationary
linear combination z(t) are called the cointegrating vector and the cointegrated residual. The
cointegrated residual will continue being stationary regardless of the trend d(t). It is seen
that, for the two time series (n = 2) in equation 2.3, there is one (n - 1) linear independent
cointegrating vector.

z(t) = β
T
[

x1(t)
x2(t)

]
; β =

[
1
−1

]
(2.5)

The following sections present the relevant mathematics required to explain the coin-
tegration procedure applied in this thesis. These sections are based on [2], where a more
detailed treatment of the cointegration technique can be found.
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2.3.1 COINTEGRATION FORMULATION

In this thesis each time series is represented by a 1×novector, being no the total number
of observations. The n times series are grouped into a n×no matrix Y. The rows of Y, are
the individual time series represented by the 1×no vector y. The columns of Y contains the
observations of the n times series at time i and are represented by the n-vector yi ∀i∈ [1, no].

A set of two or more non-stationary time series are cointegrated if a linear combina-
tion of them is stationary. This is represented by equation 2.6, where the n-vector β is the
cointegrating vector and zi is the cointegrated residual at time i. If cointegration of the n non-
stationary time series is possible, there are as many as n - 1 linear independent cointegrating
vectors as is shown in the previous example with equations 2.3 to 2.5.

zi = βT yi (2.6)

A non-stationary time series y that becomes stationary after differencing it d times is
said to be integrated of order d, which is denoted y ∼ I(d). Thus, a time series y ∼ I(0) is
stationary. For the cointegration to be possible, the non-stationary time series must satisfy
two requirements. First, they must have common trends, which is clear from equations 2.3 to
2.4. Second, they must be integrated of the same order, which means that they must have the
same degree of non-stationarity. Specifically, to apply the cointegration procedure followed
in this thesis, the time series must be I(1), as is explained in section 2.3.3.

To evaluate the non-stationarity of a time series y, it can be fitted to an auto-regressive
model of order q (AR(q)), see equation 2.7. In this model the evolution of each observation
yi is described by its q past observations, and εi can be consider to be a normally distributed
random noise process εi ∼ N(0, 1).

yi =
q

∑
j=1

a jyi- j + εi (2.7)

To illustrate the non-stationarity evaluation, assume that the time series if fitted to an
AR(1) model, as shown in equation 2.8. If |a1|< 1 the time series will be stationary, because
the a1yi−1 component will decrease with time, leaving the normally distributed noise. If
|a1| > 1 the time series will be non-stationary and it will increase or decrease indefinitely.
In the case |a1| = 1 the time series will be non-stationary, but its first difference will be
stationary as is shown in equation 2.9. In the latter case, the time series is said to have a unit
root and it is integrated of order one such y∼ I(1). Then, the parameter a1 gives information
on the stationarity of a time series that is fitted to the AR(1) model.

yi = a1yi-1 + εi (2.8)

∆yi = yi− yi-1 = εi (2.9)

In this thesis, the augmented Dickey-Fuller (ADF) test [13] is used to fit the times series
to an AR(q) model in order to evaluate its non-stationarity.
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2.3.2 AUGMENTED DICKEY-FULLER TEST

The ADF test follows the premise that if a time-series represented by an AR(q) model
has a unit root, it will be inherently non-stationary as has been illustrated in equation 2.9.
But, in the ADF test, the time series is fitted to a more sophisticated model, which is stated in
equation 2.10. In this model, a suitable number q of lags are added to ensure that εi becomes
a normally distributed random noise εi ∼ N(0, σ2). The difference operator ∆ is defined as
∆yi- j = yi- j− yi- j-1.

∆yi = ρyi-1 +
q−1

∑
j=1

b j∆yi- j + εi (2.10)

To fit the model, the ADF test estimates the parameters in equation 2.10 by least-square
methods. Then the null hypothesis that the time series has a unit root (is a non-stationary
I(1)) Ho : ρ = 0 is tested.

To evaluate the hypothesis, the test static tρ is calculated as stated in equation 2.11.
There, φ̂ is the least-square estimate of φ and σ2

φ
is the variance of this parameter. The

computed tρ is compared against a critical value tc from Dickey-Fuller tables [13].

tρ =
ρ̂

σ2
ρ

(2.11)

The null hypothesis Ho is accepted if tρ ≥ tc, then the time series has a unit root, it is
non-stationary and it is I(1). If the null hypothesis Ho is rejected, the time series can be
fitted to a stationary AR(q) model, then it is I(0). The more negative the tρ obtained, the
more stationary is the time series. [4]. A summary of this evaluation is presented in equation
2.12.

tρ ≥ tc −→ Accept Ho −→ I(1)
tρ < tc −→ Re ject Ho −→ I(0)

(2.12)

Once it has been verified that all the time series are I(1), the Johansen cointegration
procedure can be applied [2].

2.3.3 JOHANSEN PROCEDURE

The Johansen procedure is used to test if n non-stationary I(1) time series are cointe-
grated. If the cointegration is possible, it gives the r linear independent cointegrating vec-
tors (r < n), and determines which of these cointegrating vectors yields the most stationary
cointegrated residual. The implicit assumption of this procedure is that all the non-stationary
time series being tested are I(1).

The AR(q) model in equation 2.7 can be extended to include n time series. Doing this,
the vector auto-regressive model VAR(k), in equation 2.13, is obtained. In this model the
evolution of the n time series is described by combinations of k past outputs from each series.
The n-vector yi contains the observations of the n time series at time i ∀i∈ [1, no]. The n×n
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matrix Ai contains the parameters of the model and the components εi of the n-vector εεε i can
be considered to be generated from normally distributed random noise process εi ∼ N(0, 1).

yi =
k

∑
j=1

A jyi- j + εεε i (2.13)

To test the cointegration of the time series, the Johansen procedure transforms the VAR(k)
model, equation 2.13, into the vector error-correction model (VECM) stated in equation
2.14. In this model, k is the model order or number of included lags. The n-vector εεε i is a
normally distributed noise εεε i ∼ N(0, S). The n×n matrices Π and C j are parameter matri-
ces.

∆yi = Πyi-1 +
k−1

∑
j=1

C j∆yi- j + εεε i (2.14)

The consideration that the time series are I(1) implies that ∆yi and ∆yi- j are stationary.
Then, if a true VECM(k) exists, the series given by Πyi−1 would be stationary and the time
series would be cointegrated. In that case, since yi-1 is of dimension n, there must be at
most n−1 linear independent combinations of this product, or in other works the parameter
matrix Π must be rank deficient, say of rank r (r < n). Therefore Π can be decomposed into
two n× r matrices as stated in equation 2.15.

Π = ABT (2.15)

If a true VECM(k) exists, the rows of Π give the linear combination that makes yi−1

linear. Each row of Π is a linear combination of the rows of BT , then the rows of BT are the
cointegrating vectors [10]. In other words, each of the r columns of B can be taken as one
cointegrating vector β.

In a true VECM(k), the parameters in Π contain information about the long-run equi-
librium between the time series, see equation 2.14. The parameters in C j account for the
short-run adjustments needed to return ∆yi to equilibrium after changes. In equation 2.15,
the parameters in B are the long-run equilibrium coefficients. The parameters in A represent
the speed of adjustment to disequilibrium [18].

In the Johansen procedure, for a selected lag value k, the maximum likelihood estimates
of the parameters C j and A are expressed in terms of BT . Then εεε i, in equation 2.14, is
expressed in function of BT . The estimate BT is B̂T . It is computed solving the eigenvalue
problem that maximize the likelihood of observing the entire correct sequence of εεε i. This
likelihood is equal to ∏

no
i=1 p (εεε i), where p (εεε i) is the probability density function of εεε i. The

computed eigenvectors are the columns of B̂T . It turns out that the best cointegrated combi-
nation B̂T yi-1 is given by the eigenvector associated with the largest eigenvalue. The larger
the eigenvalue, the more stationary the cointegrated combination. Then the eigenvector re-
lated to the largest eigenvalue is chosen as the cointegrating vector β.

In the previous steps, to find B̂T , it is assumed that a true VECM(k) exists for the times
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series. After calculating B̂T and finding out β, the Johansen procedure performs a statistical
test to verify if the time series are cointegrated with the selected number of lags k. In this
test, the rank r of Π is computed to verify that 0 < r < n. If r = 0, cointegration of the time
series is not possible with this procedure for the selected k. If r = n, full rank, cointegration
is not possible with this procedure for the selected p, and the inference is that the time series
are stationary(I(0)). If 0 < r < n, a true VECM(k) exists, r cointegrating vectors are found,
and the one related to the largest eigenvalue is chosen to be used as β.

After obtaining β, the time series are projected onto β to compute the stationary coin-
tegrated residual z applying equation 2.16. The n×no matrix Y contains the n times series
and z is a 1×no vector.

z = βT Y (2.16)

In case one or more stationary time series I(0) are input into the Johansen procedure it
gives trivial solutions, with cointegrating vectors that contain ones and zeros related to the
stationary and non-stationary inputs respectively. The zero components remove the infor-
mation of the non-stationary signals from the residual. This is another reason to check the
non-stationarity of the time series before testing for cointegration.

The cointegrating vectors obtained from the Johansen procedure could be real or com-
plex values, even if the input time series are real Y ∈ Rn×no . In this thesis, only the real
cointegrating vectors β ∈ Rn are taken into account for the damage detection procedure
described in the following section.

2.3.4 COINTEGRATION FOR STRUCTURAL DAMAGE DETECTION

For SDD damage detection, cointegration is used to removed or at least mitigate the
influence of the common EOV trends in the response signals. The cointegrated residual can
be used as a metric for outlier analysis. The aim is to represent the different states of the
structure with cointegrated residuals that are independent of the EOVs, but still sensitive to
damage.

OUTLIER ANALYSIS WITH COINTEGRATED RESIDUALS

For the outlier analysis, the baseline model is constructed with a training cointegrated
residual obtained from the reference state of the structure. To this end, the training features
Xtr ∈Rp×ntr computed from a set of ntr training observations are used as the time series Y in
the Johansen procedure. From this procedure, the cointegrating vector β ∈Rp is calculated.
Then, the training cointegrated residual ztr ∈R1×ntr is obtained from equation 2.16.

If such cointegrating vector β can be found, the stationarity or non-stationarity of the
features from the testing state projected onto β can be used as an indicator that the struc-
ture continues to operate in its reference state or not. The appearance of a new trend due to
damage will usually destroy the balance imposed by the cointegrating vector and leave the
damage exposed [1].
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To find β, a suitable set of damage-sensitive and cointegrable training features Xtr are
needed. There are two requirements that must be fulfilled. First, these features must share the
EOVs’ trend. In SDD, response signals from the same structure, and the features computed
from them, are likely to share common trends if they are driven by the same EOVs. Second,
the features must be I(1) to apply the Johansen procedure. Many of the response signals of
interest to SDD, and the features computed from them, appear to exhibit non-stationarity[1].
However, to avoid null or full rank solutions of Π in equation 2.15, the features are tested
with the ADF test to ensure that they are I(1).

Since the cointegrated residual is distributed around its mean, it could give positive or
negative values. For this reason, the threshold is defined with an upper and lower limit. These
limits establish lower and upper boundaries for ztr according to a false positive allowance.
Each of the limits leaves half of the allowed false positives outside their boundaries.

The state of the structure to be evaluated is represented by a set of nte testing observa-
tions. From these observations, the testing features Xte ∈ Rp×nte are calculated. Then, the
testing cointegrated residual zte ∈ R1×nte is computed with equation 2.16. In that compu-
tation, the cointegrating vector β obtained from Xtr is used. The computed zte is plotted
and evaluated against the threshold. Figure 2.7 is a representation of outlier analysis using a
cointegrated residual as a metric.

PERFORMANCE INDICATORS

The performance indicators FPR, TPR and AUC are computed, taking into considera-
tion both threshold limits and following the procedure described in section 2.1.1. The test
statistic tρ , computed from the ADF test of ztr is added as indicator, equation 2.11. With this
indicator, the stationarity of ztr is evaluated.

SELECTION OF LAG VALUES

The number of lags q to be included in the ADF test moed, equation 2.10, depends on the
characteristic of the feature being tested, . To this author’s knowledge, the literature does not
offer a general rule or recommendation for q in SDD applications. In this thesis, the ADF
test is used in two cases. First, to check the stationarity or non-stationarity of the features to
avoid useless attempts of cointegration. Second, to assess the stationarity of the cointegrated
residuals for comparison. In both cases, since the goal is not forecasting the features, we
are not particular interested in the parameters of the ADF test model, equation 2.10. For
this reason, the number of lags for the ADF test is set as half the maximum value given by
equation 2.17, q = kmax/2, and reduced or increased if it is allowed or required.

The Johansen procedure requires selection of the number of lags k to be included in
the VECM, equation 2.14. The selection of k is one of the most important issues for the
implementation of this procedure. The results of the Johansen procedure, the cointegrating
vector and the cointegrated residual, relies on a proper selection of k. A small k may not
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Figure 2.7: Representation of outlier analysis with cointegrated residuals. The threshold is based on false
positive allowance of training observations.

capture the dynamic behaviour of the features. A large value will distort the data by adding
unnecessary lag terms and lead to a decrease in the power of the cointegration test [4].
Different criteria and rules of thumb for the selection of k are summarized in [4]. There, a
range of values k ∈ [kmin, kmax] to test for cointegration is proposed. This range is stated in
equation 2.17, where the square brackets denote the integer part of the result. In this thesis,
that range is used as a starting point to find the cointegrating vector.

kmin = 3

kmax =
[
12
( ntr

100

)1/4
] (2.17)

SELECTION OF THE COINTEGRATING VECTOR

For each k value, the Johansen procedure may compute as many as n−1 linearly inde-
pendent cointegrating vectors. That gives a maximum of (n−1)×(kmax−kmin+1) possible
cointegrating vectors. The most feasible for outlier analysis needs to be selected from them.
In this thesis, two options are proposed to perform that selection, Lag Option 1 and Lag Op-
tion 2, which are presented below. The evaluation of the effectiveness of the obtained coin-
tegrating vectors for outlier analysis is based on the performance indicators (tρ , FPR, TPR
and AUC). The selected β should yield cointegrated residuals that stay within the threshold
limits when the structure operates in its reference state, and outside the limits if not.

Lag Option 1 The procedure is as follows. First, perform the cointegration test for each
k ∈ [kmin, kmax], equation 2.17. In each test, where the cointegration is possible, select the
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cointegrating vector related to the largest eigenvalue. This is in agreement with the Johansen
procedure and gives a maximum of (kmax−kmin+1) cointegrating vectors. Second, compute
the cointegrated residuals for the selected cointegrating vectors. Third, perform the ADF test
for each cointegrated residual and compute their tρ , equation 2.11. The tests are performed
with the same q. Fourth, select as the cointegrating vector, the one that gives the cointegrated
residual with the lowest tρ ( most stationary).

Lag Option 2 According to the Johansen procedure, subsection 2.3.3, for a specific k, the
cointegrating vector related to the largest eigenvalue is the one that gives the most stationary
cointegrated residual. However, if the cointegrated residuals are tested for stationarity with
the ADF test, the most stationary one is not always related to the largest eigenvalue. It is be-
cause the Johansen procedure and the ADF test are based on different statistical procedures.
Taking that into account, Lag Option 2 is conducted as follows. First, compute all of the
feasible cointegrating vectors performing the Johansen procedure for each k ∈ [kmin, kmax].
This gives a maximum of (n−1)×(kmax−kmin+1) cointegrating vectors. Second, compute
their cointegrated residuals. Third, test all cointegrated residuals for stationary with the ADF
test and compute their tρ , equation 2.11. The tests are performed with the same q. Fourth,
select as the cointegrating vector, the one that gives the cointegrated residual with the lowest
tρ (most stationary).

SUMMARY OF THE PROCEDURE TO OBTAIN AND EVALUATE β

The procedure to obtain β and to evaluate its performance for outlier analysis is:

• Step 1: Select a damage-sensitive feature of dimension p.
• Step 2: Store the features associate with the ntr training observations in a matrix

Xtr ∈Rp×ntr .
• Step 3: Verify that each row of Xtr is I(1) with the ADF test. Use a lag value

q = kmax/2 as starting point. Continue if the series are found to be I(1). If not,
another feature or approach is required (Step 1).

• Step 4: Compute the range of lag values to be used for the Johansen procedure
k ∈ [kmin, kmax], equation 2.17.

• Step 5: Obtain one feasible β from Lag Option 1.
• Step 6: Obtain another feasible β from Lag Option 2.
• Step 7: Compute ztr and zte from the βs obtained with Lag Option 1 and Lag

Option 2, use equation 2.16.
• Step 8: Define the threshold. Plot ztr and zte of each option with the threshold

limits.
• Step 9: Compute the performance indicators (tρ , FPR, TPR and AUC).
• Step 10: Evaluate the performance indicators and the plots in order to assess the

effectiveness of the βs computed from both options. A good β should give results
that identify damage (TPR) without or minimum quantity of false positives (FPR).
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Also, evaluate if zte remain stable between the thresholds limits. AUC is used to
asses the whole performance of each option, and tρ is used to assess the
stationarity of ztr.

• Step 10: If a feasible β is not found, search with bigger values of k. Repeat steps
1 to 10 for k ∈ [kmax + 1, kmax + 10].

In steps 5 and 6, it is assumed that at least one cointegrating vector is found with the Johansen
procedure.



Chapter 3

NUMERICAL APPLICATIONS

To to get more insight into their applications and assumptions, and to validate their utility
for vibration-based SDD, the methods outlined in chapter 2 are tested with numerical exam-
ples before applying them to experimental data. The numerical simulations are based on the
spring-mass-damper system with n=10 degrees of freedom (DOF) depicted in figure 3.1.

m1 m2 m3 m10

k1 k2 k3 k10

c1 c2 c3 c10

F2

Figure 3.1: Spring-mass-damper system with ten DOF.

One end of the system is fixed and a driving force is applied to the second mass. The
mass mi and stiffness ki are set constant over time. A modal damping ratio is defined to
model the viscous damping as modal damping.

Damage is introduced by decreasing the stiffness of the third spring of the system k3 up
to 30%. This generates undamped eigenfrequencies of the system below 11 Hz for all the
simulated cases. With this in mind, a cosine swept with frequency increasing linearly from
0 to 20 Hz is set as the driving force, see figure 3.2. It will excite all modes in the system.

The nominal displacement responses to the driving force at each DOF, y ∈R1×nt , with
nt sample points, are computed through Newmark integration for 20 seconds at a sampling
frequency fs=60Hz. Results for all the DOF are stored in a nominal displacement response
matrix Y ∈Rn×nt . Figure 3.3 shows the nominal displacement response at the fourth DOF.

23
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Figure 3.2: Linear sweep-frequency cosine driving force with frequency range 0 - 20 Hz.

Figure 3.3: Nominal displacement response in the fourth DOF.



3.1. OUTLIER ANALYSIS APPLICATIONS 25

Figure 3.4: displacement response compared with the nominal displacement response at the fourth DOF.

Random normally distributed noise is added to the nominal displacement responses to
represent instrumental noise. This also generates random observations to represented the
states of the system. The added noise has zero mean and standard deviation equal to 1% of
the standard deviation of each nominal displacement response. Figure 3.4 shows an example
of one of these displacement responses compared against the nominal displacement response
for the fourth DOF.

Four states of the system are defined with the random observations. First, the training
state that corresponds to the undamaged system, and is represented by ntr random training
observations. Second, the testing undamaged state that also corresponds to the undamaged
system, and is represented by nte random testing undamaged observations. The last two are
the testing damaged state 1 and testing damaged state 2, which correspond to the damage
system with different levels of damage. They are represented by nd1 and nd2 random testing
damaged observations.

3.1 OUTLIER ANALYSIS APPLICATIONS

3.1.1 SIMULATED CASE 1: SCENARIO WITHOUT EOVs

To construct the baseline model, ntr = 200 random training observations are generated
from the displacement responses of the undamaged state of the system. In a similar way,
nte=100 random testing observations are computed from the undamaged system. They will
be used to test the ability of the approach to recognize the healthy state during testing.

The damaged states are simulated by reducing abruptly the stiffness of the third spring
of the system. The mentioned stiffness is reduced by 20% for damaged state 1 and 30% for
damaged state 2. For each damaged state nd1=nd2 =100 random testing damaged observa-
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tions are computed.
The feature selected for this example is a vector that contains the unique elements of the

covariance matrix S ∈ Rn×n between the n displacement responses at each observation. It
means that the healthy state of the system is represented for the relations between its dis-
placements responses due to the driving force. Any variation in these relations that produce
a metric bigger than the threshold will classify the current state of the system as damaged.

The unique elements of the covariance matrix S are computed for each observation by
equation 3.1, where µ is the mean of each response given by equation 3.2. The unique
elements are stored in the feature vector x ∈ Rp. The dimension of the feature vector p,
number of unique elements, is given by equation 3.3. The feature vectors for no observa-
tions are stored in the feature matrix X ∈Rp×no . In this example, n=10 gives p=55.

∀i≤ j ∈ [1, n] : Si j =
1

nt −1

nt

∑
k=1

(Yik−µi)(Y jk−µ j) (3.1)

∀i ∈ [1, n] : µi =
1
nt

nt

∑
k=1

Yik (3.2)

p =
n(n+ 1)

2
(3.3)

Applying this procedure, the training feature matrix Xtr ∈ Rp×ntr , the testing undam-
aged feature matrix Xte ∈ Rp×nte , the testing damaged 1 feature matrix Xd1 ∈ Rp×nd1 and
the testing damaged 2 feature matrix Xd2 ∈ Rp×nd2 are computed from the corresponding
observations.

The baseline model is constructed with mean x ∈ Rp and covariance matrix S ∈ Rp×p

from the training features stored in Xtr. Based on this model, the Mahalanobis square dis-
tances are calculated, as exclusive values, for the training, testing undamaged and the two
testing damaged sets of features applying equation (2.2). The threshold value is set as the
value that allows 1% of false positives in the training data.

Figure 3.5 shows the results. It shows the training observations in black color, the test-
ing undamaged observations in blue color, the testing damaged 1 observations in green color,
and the testing damaged 2 observations in red color. It is clear that the selected feature and
the Mahalanobis squared distances allow to classify the undamaged and damaged states.
Three false positives are observed in the testing undamaged data, and all testing damaged
observations are correctly classified. With the current threshold, the FPR is equal to 3% and
TPR is equal to 100%.

The ROC curve from all testing observations is plotted in Figure 3.6. In this case, the
AUC equals to one, and the damaged classification is perfect for any selected threshold.
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Figure 3.5: Mahalanobis square distances for the damage detection approach of a spring-mass-damper system
without EOVs, using unique elements of the covariance matrix between displacement responses as a feature.

Figure 3.6: ROC for the damage detection approach of a spring-mass-damper system without EOVs, using
unique elements of the covariance matrix between displacement responses as a feature and Mahalanobis square
distances as metric.
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Figure 3.7: Mahalanobis square distances for the damage detection approach of a spring-mass-damper system
with driving force amplitude variation of 5%, using unique elements of the covariance matrix between displace-
ment responses as a feature.

3.1.2 SIMULATED CASE 2: SCENARIO WITH OVs

To investigate the sensitivity of the selected feature to EOVs, a loading variation is intro-
duced. Three new sets of testing observations are generated from the displacement responses
due to a driving force with an increase in amplitude of 5%. The testing undamaged and dam-
age features are computed, and its Mahalanobis squares distances are calculated with the
same baseline model used for the first simulated case (same training features). Figure 3.7
shows the results in comparison with the previous results without EOVs. The approach
recognises the two damaged states with force variability. However it fails to correctly clas-
sify any of the testing undamaged observations, which results in a FPR of 100%.

For the results in figure 3.7, it is clear that the selected feature is highly sensitive to load-
ing variations, and an extra step to mitigate the influence of the force variation in the results
is required. To mitigate this influence, the current feature is normalized by its standard devi-
ations σ [20]. The normalized feature is computed by equation 3.4. The standard deviation
σ is calculated from equations 3.5 and 3.2.

∀i≤ j ∈ [1, n] :
Si j

σiσ j
(3.4)

∀i ∈ [1, n] : σi =
1

nt −1

√
nt

∑
k=1

(Yik−µi)2 (3.5)

A new baseline model is computed from the training normalized features, and the Ma-
halanobis square distances are calculated for the training and testing normalized features for
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Figure 3.8: Mahalanobis square distances for the damage detection approach of a spring-mass-damper system
with driving force amplitude variation of 5%, using unique elements of the covariance matrix between displace-
ment responses normalized by its standard deviations as a feature.

both force scenarios. Figure 3.8 presents the results. Despite the force variation, only FPR
= 5% is obtained from the testing undamaged observations, and all testing damaged obser-
vations are correctly classified. The results show that the normalized feature is insensitive to
the amplitude force variation.

It is important to note that the normalized feature works, in this case, because normaliz-
ing the covariance matrix components with respect to their standard deviations gives the cor-
relation coefficients among the responses, and these are independent of the force amplitude
for this linear system. In the next case, a more complicated case of EOVs is investigated.

3.1.3 SIMULATED CASE 3: SCENARIO WITH EVs

In the previous cases, it was assumed that the stiffness of the springs are not a function
of time or temperature. The present case study introduces a time-dependent stiffness as a
function of temperature, where the temperature at each spring follow a defined temperature
field among observations. This allows to investigate the influence of temperature variation
in the damage detection approach.

Temperature fields are defined for each spring in the system. The temperature varies
in space among the springs and in time among the observations, while it is assumed to be
constant during the time the nt samples are measured at each observation. In space, the
temperature at each spring decreases 0.5◦C from the first spring (fixed end) towards the last
spring (free end). In time, among the observations of each state, temperatures Ti ∀i ∈ [1, no]

are characterized for non-stationary random walk models [10] as given by equation 3.6,
where εi ∼ N(0, 1) is a normally distributed random noise.
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Figure 3.9: Temperature fields over observations. For visualization purpose only temperatures for springs
one and ten are shown ( temperatures for other springs lie between them). Figure a), temperature field for
training observations. Figure b), temperature field for testing observations with temperatures inside the range
of temperatures of training observations, Figure c) temperature fields for testing observations with temperatures
outside the range of temperatures of training observations

Ti = Ti−1 + εi (3.6)

From the spatial and time distributions, three temperature fields are defined for each
spring; one for the training observations and two for the testing observations. Figure 3.9
shows the three temperature fields at springs number one and ten. Temperature fields at other
springs lie between them; these are not shown for visualization purposes. The temperature
fields give the temperature of each spring at any observation. Temperatures in figure 3.9b)
are inside the range of temperatures of the training observations, see figure 3.9a). Tempera-
ture fields in figure 3.9c) give temperatures outside the range of temperatures of the training
observations; these will be used to simulate the effects of abnormal temperatures in the test-
ing observations.

The stiffness as a function of the temperature is defined as a decreasing linear function,
see figure 3.10. The stiffness of each spring ki∀i ∈ [1, 10] at a particular observation is
obtained from this function according to the temperature of each spring at that particular
observation.
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Figure 3.10: Stiffness as a function of temperature

The system stiffness matrix is calculated at each observation according to the tempera-
ture field. Then nominal displacements responses are computed for the linear system thor-
ough Newmark integration. Random normally distributed noise is added to the nominal
displacement responses to represent instrumental noise. As in the previous case studies, the
added noise has zero mean and standard deviation equal to 1% of the standard deviation of
each displacement response.

Features and Mahalanobis square distances are obtained by equations 3.1 and 2.2 re-
spectively. The features generated for each state are graphically verified to not deviate from
the normal distribution.

Figure 3.11 shows the results when temperatures for the testing observations are ob-
tained from the temperature fields shown in figure 3.9b), which are in the same range as
temperatures for the training observations, in other words, when all temperature variations
in testing phase were taken into account in the training phase. In the bottom, the average
temperature from the ten springs at each observation is displayed.
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Figure 3.11: Mahalanobis square distances without abnormal temperatures in the testing observations. In the
bottom the average temperature of the ten springs at each observation is displayed.

Testing undamaged and testing damaged observations are correctly classified since the
whole temperature variability is accounted for during the training phase [21]. However, in a
real case, it will not be possible to consider all EOVs during the training phase.

To investigate the influence of temperature variations in the testing phase that are not
taken into account in the training phase, a new simulation is conducted. In this case,
temperatures for the testing observations are obtained from the temperature fields show in
figure 3.9c), where the temperature range is different than the range for the training obser-
vations. Results are depicted in figure 3.12.

Testing damaged observations are correctly classified; however, 42% of the testing un-
damaged observations are incorrectly classified as damaged. It is due to the abnormal tem-
perature variations which produce discordances in the features, with respect to the baseline
model, higher than the allowed threshold.

The Mahalanobis square distances from the undamaged testing observations with abnor-
mal temperatures show a similar tendency as the temperature over the observations. It means
that the features are highly sensitive to the temperature variation outside the training range,
which is explained because the variation of stiffness, due to the abnormal temperatures, in-
creases the discordance with respect to the baseline model.
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Figure 3.12: Mahalanobis square distances with abnormal temperatures in the testing observations. In the
bottom the average temperature of the ten springs at each observation is displayed.

A new simulation is conducted to investigate if the normalized feature, equation 3.4,
computed from the same responses can mitigate the influence of these abnormal tempera-
ture variations as in the case of amplitude force variation, figure 3.8. Results are shown in
figure 3.13. Both testing damaged states are correctly classify; however, the testing undam-
aged state has a FPR equal to 42% as in the previous simulation. Even with normalized
features, the presence of abnormal temperatures, that have not been taken into account in the
training phase, produces enough discordance to incorrectly classify almost one-half of the
undamaged testing observations, making the approach unreliable for this case.

3.1.4 SIMULATED CASE 4: SCENARIO WITH EVs

In the last case study, the use of a modal parameter as feature is examined. To this
purpose, the feature vector is constructed with the ten undamped eigenfrequencies of the
system ωn. At each observation, the stiffness matrix of the system is computed according to
the temperature fields. Then, the ten ωn are computed solving the eigenvalue problem [11].
Normal distributed noise with 1% standard deviation is added to account for instrument
noise. After that, the corresponding Mahalanobis square distances are calculated.

The results are shown in figure 3.14. Due to the abnormal temperatures, the metric is
unable to classify all the testing undamaged observations as undamaged. The FPR is equal
to 26%. For this simulated case study, the Mahalanobis squares distances from ωn show less
sensitivity to the temperature variations. However, in practical applications of SDD, the use
of modal parameters as feature is not feasible since they are more sensitive to EOVs than
damage [17, 21]. In this thesis, ωn is used as feature with a didactic purpose.
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Figure 3.13: Mahalanobis square distances from normalized features, and with abnormal temperatures in the
testing observations. In the bottom the average temperature of the ten springs at each observation is displayed.

Figure 3.14: Mahalanobis square distances from Wn as feature, and with abnormal temperatures in the testing
observations. In the bottom the average temperature of the ten springs at each observation is displayed.

3.1.5 SUMMARY OF SIMULATION STUDIES

From the simulated cases, it is clear that the selection of a feature that is sensitive to
damage but insensitive to EOVs, or a more robust approach to mitigate the EOVs’ influence
in the results is required. The selection of such feature is not straightforward. However,
different approaches exist that can project out the EOV-sensitive component of the features
while preserving the damage sensitivity [23]. One approach that can remove the EOVs’
influence in the measured responses or features is cointegration.
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3.2 COINTEGRATION APPLICATIONS

In this section, the use of cointegration to remove or at least mitigate the influence of
EOVs is examined with a simulated case study. The training and testing observations are
taking for the last scenario of the the simulated case 3 in section 3.1.3, whose results are
shown in figure 3.14. In this scenario, the undamped eigenfrequencies are used as feature
and abnormal temperature variations are present in the testing observations.

To compute the cointegrated vector β, the feature vectors from the training observations
are grouped into the feature matrix Xtr ∈Rnxntr , where n = 10 is the number of system’s ωn

and ntr = 200 the number of training observations.
Following the instructions stated in section 2.3.4, each row of Xtr is verified to be I(1)

whit the ADF test. Then, they are tested for cointegration applying the Lag Option 1 and
Lag Option 2 procedures. The range of k ∈ [3, 14] is computed from equation 2.17. Two
cointegrating vectors are obtained, one for each option.

For both options, the cointegrated residuals for the training, testing undamaged and test-
ing damaged observations (ztr,zte,zd1 and zd2) are computed applying equation 2.16. In that
equation the corresponding feature matrix (Xtr,Xte,Xd1 or Xd2) is input as the training series
Y. The threshold value is set as the value that allows 1% of false positives outside the lower
and upper threshold limits in the training observations.

The results computed from Lag Option 1 are shown in figure 3.15. The results computed
from Lag Option 2 are shown in figure 3.17. The results from both options are evaluated
through their performance indicators, which are shown in table 3.1. According to them,
both cointegrating vectors are able to remove the temperature variation influence in the re-
sults even for abnormal temperatures. Both of them correctly classify 100 % of testing
damaged observations, and they have the same values of TPR and AUC for the testing ob-
servations being evaluated. The cointegrating vector from Option Lag 1 produces 5% of
false positives and has a tρ = −0.33. However, the cointegrating vector from Option Lag 2
produces only 3% of false positives and has a tρ =−0.97. The lowest value of tρ means that
its Ztr is most stationary according to the ADF test. Then, it is concluded that Lag option 2
gives the most feasible cointegrating vector for this particular case study.

Table 3.1: Performance indicators of the cointegrated residuals obtained from cointegration in a range k∈ [3, 14]

Option k tρ FPR(%) TPR(%) AUC
Lag option 1 4 -0.33 5 100 1.00
Lag option 2 14 -0.97 3 100 1.00
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Figure 3.15: Cointegrated residuals using ωn as feature and Lag Option 1 is used to compute the optimal
cointegrated vector for pc = 4. System under temperature variation influence when temperature variations for
the training and testing observations have different ranges to represent abnormal temperatures in the testing
observations. In the bottom the average temperature of the ten springs at each observation is displayed.

Figure 3.16: Cointegrated residuals using ωn as feature and Lag Option 2 is used to compute the optimal
cointegrated vector for pc = 2. System under temperature variation influence when temperature variations for
the training and testing observations have different ranges to represent abnormal temperatures in the testing
observations. In the bottom the average temperature of the ten springs at each observation is displayed.
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Figure 3.17: Cointegrated residuals using ωn as feature and Lag Option 1 is used to compute the optimal
cointegrated vector for k = 28. System under temperature variation influence when temperature variations for
the training and testing observations have different ranges to represent abnormal temperatures in the testing
observations. In the bottom the average temperature of the ten springs at each observation is displayed.

To evaluate if feasible cointegrating vectors can be obtained from a k value outside the
range of equation 2.17, and additional cointegration is performed for a range k ∈ [15, 50].
In this range, only a suitable cointegrated vector from the Lag Option 2 is found. Their
computed cointegrated residuals and performance indicators are shown in figure 3.17 and
table 3.2. The performance indicators evidence that it is not better than the cointegrating
vectors found before.

3.2.1 SUMMARY OF SIMULATION STUDY

The results from this simulated case show that cointegration is an effective way two
remove the influence of abnormal temperature variations in the testing observations. The
two options proposed to find feasible cointegrated vectors, Lag Option 1 and Lag Option 2,
accomplish their purpose. The final evaluation of the cointegrated vectors can be achieved
with the performance indicators. Feasible cointegrating vectors can be found from k values
outside the range of equation 2.17.

Table 3.2: Performance indicators of the cointegrated residuals obtained from cointegration in a range k ∈
[15, 50]

Option k tρ FPR(%) TPR(%) AUC
Lag option 1 28 -0.33 3 94 99.11





Chapter 4

EXPERIMENTAL APPLICATION

In this chapter the methods described in chapter 2 and validated in chapter 3 are applied
to data from a real structure. The aim is to investigate their capability to remove or at least
mitigate the EOVs’ influences in the damage detection results under realistic conditions. To
this end, experimental vibrational data from an operating Vestas V27 wind turbine blade are
used.

The vibrational data correspond to the researches conducted in [17, 21]. In the next
section, a description of the experimental setup and recorded measurements are presented.

4.1 EXPERIMENT SETUP

The Vestas V27 wind turbine is a 225 KW wind turbine with 27 m rotor diameter, and
two speed regimes: 32 and 43 rotations per minute (RPM). It is a relatively old turbine with
blades stiffer than the blades of modern wind turbines. However, it represents an adequate
system to validate the methods being investigated in a realistic scenario.

4.1.1 INSTRUMENTATION

One of the V27 blades is instrumented with one electromechanical actuator and twelve
accelerometers on its outer surfaces. Figure 4.1a) shows the accelerometers mounted in
the blade, figure 4.2 illustrates their distribution and table 4.1 states their specifications.
Accelerometers A1, A4, A7 and A10 are mounted about 50 mm from the leading edge.
Accelerometers A2, A5, A8 and A11 are mounted about 50 mm from the trailing edge.
Accelerometers A3, A6 and A9 are mounted on top of the blade spar. Accelerometer A12 is
mounted near the actuator.

The actuator is mounted on the other side of the blade, see figure 4.1b). The actuator is
controlled by a signal to hit the blade surface periodically. The hits introduce mechanical
energy that propagates along the blade as measurable mechanical waves [21], which are the
vibration responses measured by the accelerometers.
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Table 4.1: Accelerometers and acquisition system specifications. Label refers to figure 4.2

Description Quantity Brand Type Sensitivity Label
Accelerometer 1 B&K 4507-B-001 1 mV/m/s2 A12
Accelerometer 11 B&K 4507-B-004 10 mV/m/s2 A1 to A11

(a) (b)

Figure 4.1: Instrumented blade of Vestas V27 wind turbine. (a) Accelerometers. (b) Actuator

A12

A1 A4 A7 A10

A3 A6 A9

A2 A5
A8 A11

A10

Accelerometers Actuator Damage

Figure 4.2: Illustration of the actuator, accelerometers and damage locations on the Vestas V27 wind turbine
blade
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Figure 4.3: Trailing edge opening of 30 cm to introduce damage in the blade.

4.1.2 INTRODUCTION OF DAMAGE

Four states of the wind turbine blade are tested. The undamaged state and three damaged
states. Damaged states are introduced performing an opening of different sizes in the trailing
edge of the blade, see figures 4.2 and 4.3. The first damaged state corresponds to an opening
of 15 cm, this opening is increased to 30 cm for the second damaged state and to 45 cm for
the third damage state.

4.1.3 MEASUREMENTS

Together with the actuator drive signal and the vibration response signals from the ac-
celerometers, two signals that provide the rotor azimuth and the pitch sensor signal are
recorded from the wind turbine system. The recording is done with an acquisition sys-
tem installed inside the spinner. In total 16 signals with a sampled frequency of 16384 Hz
are recorded with the acquisition system.

The 16 signals are recorded from 10-15 seconds before the actuator hit to 15-20 seconds
after. With this, 30 seconds of each signal are recorded at each observation. Then, a record-
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Figure 4.4: Accelerations measured in accelerometer A1 during the 53rd observation of the undamaged state.
The inset plot highlights the interval of larger amplitudes.

ing of 16 measurement sequences of 491520 sample points is done at each observation.
At the same time, temperature, wind speed and direction, wind turbulence, atmospheric

pressure, and precipitation measurements are collected from a meteorological mast. Also,
RPM, power production and yaw angle measurements are obtained from the wind turbine
system.

In the measurement campaign, observations from the wind turbine operating in the four
states are collected in successive periods. The undamaged state runs from October 2014
until December 9th 2014. At that time, the first damaged state of 15 cm is introduced. On
December 15th 2014, the opening is increased to 30 cm to introduce the second damaged
state. The third damage state is introduced on January 4th 2015 and the turbine operates in
this state until January 19th 2015.

In total, 3065, 1770, 3407 and 3722 observations are recorded from the undamaged,
first, second and third damaged states, respectively. Figure 4.4 shows the accelerations cor-
responding to the vibration response signal in accelerometer A1 during the 53rd observation
of the undamaged state.

In each state, the turbine operates under different environmental and operational condi-
tions. Figure 4.5 shows the RPM, temperature and wind speed corresponding to the undam-
aged state observations.

4.2 DAMAGE DETECTION

Damage detection is performed in four steps. First, in the cleansing step, the vibration
response signals are prepossessing to obtain the data to be analysed. Second, features are
extracted from the Fast Fourier Transform (FFT) of the cleansed vibration responses. Third,
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Figure 4.5: RPM, temperature and wind speed recorded from all observations of the undamaged state.

the Mahalanobis square distances from the features associated with each accelerometer are
computed. These Mahalanobis square distances are used as advanced features for the next
step. Fourth, a cointegrated residual metric-based outlier analysis approach is applied to the
advanced features to conduct damage detection.

To assess if the described damage detection procedure is capable of remove or at least
mitigate the EOVs’ influence in the results, the training observations in steps three and four
are taken only from the 43 RPM regime of the wind turbine. However, the testing undamaged
and damaged observations are taken from both 32 and 43 RPM regimes. As a result of this
selection, the testing observations from the 32 RPM regimen represent abnormal operational
conditions.

4.2.1 DATA CLEANSING

The 32 RPM regime is defined, in this case study, as the observations where the wind
turbine operates at RPM ∈ [30, 34]. Likewise, the 43 RPM regime is defined as RPM
∈ [41, 45]. Only observations that correspond to these regimes are selected from the whole
observations of each state.

The observations are grouped into five sets, ntr training observations, nte testing undam-
aged observations, nd1 testing damaged-1 observations, nd2 testing damaged-2 observations,
and nd3 testing damaged-3 observations.

For the training observations, ntr = 500 observations of 43 RPM from the undamaged
state are extracted. For the testing undamaged observations, 300 additional observations of
43 RPM and 300 observations of 32 RPM were extracted from the undamaged state, giving
in total nte = 600 observations. For the testing damaged-1 observations, 79 observations
of 32 RPM and 100 observations of 43 RPM were extracted from the first damaged state,
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(a) (b)

Figure 4.6: Segment of vibration response signals from the 53rd observation of the undamaged state. The
extracted interval is shown between red dashed lines. The dashed line on the left is the time reference use to
align the twelve signals of this observation. (a) Accelerometer A12. (B) Accelerometer A8.

giving in total nd1 = 179 observations. For the testing damaged-2 and testing damaged-3 ob-
servations, 100 observations of each RPM regime were extracted from the second and third
damaged sates respectively, giving in total nd2 = 200 and nd3 = 200 observations. Thus, the
training observations only correspond to 43 RPM, while the testing observations correspond
to both RPM regimes.

In the measurement campaign, the recorded 30 seconds of the vibration response signals
are not obtained with a specific reference time. As it is stated in subsection 4.1.3, the record-
ing started 10 to 15 seconds before the actuator hit. Therefore, the vibration response signals
among the observations need to be aligned with the same reference. The actuator drive signal
is a measure of the input to the actuator, but not of its output. Since the accelerometer A12 is
near the actuator, the maximum peak amplitude of the vibration response signals measured
by it can be taken as an indication of the actuator hit. Then, the time at which this maximum
peak occurs is taken as the time reference to extract the required sample points from the
vibration response signals measured by the twelve accelerometers at each observation.

At each observation, the time reference is found. From this time reference, nt = 1024
sample points are extracted from the vibration response signals measured by the twelve ac-
celerometers. The selection of that number of sample points to be extracted is done for two
reasons. First, this interval corresponds to the period of time where the vibration responses
induced by the actuator hit are predominant. Second, a number equal to a power of 2 is rec-
ommended to increase the performance of the FFT algorithm [8]. Figure 4.6 shows between
reed lines the extracted interval from the vibration response signals of accelerometers A12
and A8. These vibration response signals correspond to the 53rd observation of the undam-
aged state.

Finally, the mean of each extracted interval is removed, and the data is stored. For
each of the five sets of observations, the cleansed vibration responses are stored in twelve
matrices Y j ∈Rnt×no ∀ j ∈ [1, 12]. There, nt is the number of extracted sample points, and
no represents the number of observations of each set: ntr, nte, nd1, nd2 or nd3. Each matrix
corresponds to one accelerometer, and each column of Y j is the vibration response from a
particular observation measured by a specific accelerometer j: y j ∈Rnt ∀ j ∈ [1, 12].



4.2. DAMAGE DETECTION 45

4.2.2 FEATURE EXTRACTION

The feature selected is the combination of the real and imaginary parts of the complex
Fourier coefficients obtained from the FFT algorithm. The FFT of each vibration response
y j is computed from the five sets of observations. The nt complex Fourier coefficients
are obtained, but these coefficients are unique only up to nt

2 [8]. Therefore, only half of
them are used to obtain the feature. These coefficients are stored in the complex vector
c j ∈ C

nt
2 ∀ j ∈ [1, 12]. The complex vector c j can be represented as c j = a j + ib j, where a j

and b j ∈ R
nt
2 ∀ j ∈ [1, 12]. The feature x j ∈ Rp ∀ j ∈ [1, 12], where p = nt is the feature

dimension , is obtained from equation 4.1.

c j = a j + ib j → x j =

[
a j

b j

]
(4.1)

From the five sets of observations, the associated training, testing undamaged, testing
damaged-1, testing damaged-2 and testing damaged-3 features are obtained. Each set of
features is stored in twelve matrices X j ∈ Rnt×no ∀ j ∈ [1, 12]. Each matrix contains the
features associated with a specific accelerometer j.

4.2.3 MAHALANOBIS METRIC-BASED OUTLIER ANALYSIS

Equation 2.2 is rewritten employing the variables being used, in this section, in equation
4.2. This equation is used to compute the Mahalanobis square distances from the features
associated with each accelerometer from the five sets of observations.

d j =
(
x j−xtr j

)T
[Str j ]

−1 (x j−xtr j
)

(4.2)

The mean xtr j and covariance matrix Str j , in equation 4.2 are computed from the ntr

training features. Then, one Mahalanobis square distance d j is obtained from each testing
feature x j. For each set of observations, the Mahalanobis square distances are stored in
twelve vectors d j ∈R1×no ∀ j ∈ [1, 12]. Each vector is associated with a specific accelerom-
eter j.

To investigate the performance of the computed Mahalanobis distances for damage de-
tection, Mahalanobis metric-based outlier analysis is performed. The threshold is defined
for a false positive allowance of 1% in the testing observations. Figure 4.7 shows the results
associated with accelerometer A8, and figure 4.8 their ROC. The performance indicators
are FPR=48.5%, TPR=100% and AUC = 0.99. Figure 4.9 show the results associated with
accelerometer A9, and figure 4.10 their ROC. In this case the FPR = 0.5%, but the TPR =
6.6%, and the AUC = 0.65. The results corresponding to all accelerometers are summarized
in table 4.2. The influences of the abnormal temperatures and RPMs in the testing undam-
aged observations can be appreciate in figure 4.7. Mahalanobis squares distances from the
accelerometers located in the trailing edge have TPR s = 100%, but with FPRs >32.2%, see
table 4.2. The results associated with the accelerometers in the spar appear to not follow the
temperature and RPM trends, but they have the worst performance with TPR 667.5%. From
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Figure 4.7: Mahalanobis square distances associated with accelerometer A8, and temperature and RPM at each
observation

Figure 4.8: ROC from Mahalanobis square distances associated with accelerometer A8

the Mahalanobis square distances and performance indicators results, it is clear that the Ma-
halanobis square distances alone can not remove the influence of the abnormal temperatures
and RPMs.

The Mahalanobis square distances results are compared with the all environmental and
operational measured conditions available in the data: temperature, wind speed, wind direc-
tion, precipitation, RPM, rotor azimuth, pitch angle, yaw angle and power production. It is
observed that the driven EOVs are the temperature and RPM, which is in agreement with
what is stated in [19].
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Table 4.2: Performance indicators from the Mahalanobis squares distances results

Trailing edge Leading edge Spar
A2 A5 A8 A11 A1 A4 A7 A10 A3 A6 A9 A12

FPR (%) 47.0 50.7 48.5 32.2 29.2 26.0 45.3 5.7 31.8 6.2 0.5 27.5
TPR(%) 100 100 100 100 70.3 83.2 95.3 77.0 67.5 66.1 6.6 86.4
AUC 0.88 0.96 0.99 0.99 0.81 0.86 0.91 0.93 0.78 0.89 0.65 0.87

Figure 4.9: Mahalanobis square distances associated with accelerometer A9, and temperature and RPM at each
observation.

Figure 4.10: ROC from Mahalanobis square distances corresponding to accelerometer A9
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4.2.4 COINTEGRATION METRIC-BASED OUTLIER ANALYSIS

The Mahalanobis square distances associated with each accelerometer from the five set
of observations d j ∈R1×no ∀ j ∈ [1, 12] are used to construct advanced features associated
with each observation. A cointegration metric-based outlier analysis is performed with these
advanced features.

The twelve d j ∈ R1×ntr , from the set of ntr training observations, are grouped into a
training advanced feature matrix X′tr ∈ Rp×ntr , where each column is the advance feature
associated with a particular observation, p = n = 12 is the dimension of the advanced fea-
ture, and each row x′tri ∈R1×ntr ∀i ∈ [1, 12] corresponds to the d j associated with a specific
accelerometer according to equation 4.3.

x′tri = d j; ∀i = j ∈ [1, 12] (4.3)

Following the cointegration steps, section 2.3.4, each x′tri is verified to be I(1). Next,
the the procedures Lag option 1 and Lag option 2 are following to search for feasible coin-
tegrating vectors.

In the same way as for X′tr, the twelve d j for the nte testing undamaged, nd1 test-
ing damaged-1, nd2 testing damaged-2, and nd3 testing damaged-3 set of observations are
grouped to obtain the corresponding advanced feature matrices X′te, X′d1, X′d2 and X′d3.
Then the cointegrated residuals associated with each set of observations (ztr, zte, zd1, zd2

and zd3) are computed with equation 2.16 for Lag Option 1 and Lag Option 2.
Table 4.3 is the summary of the performance indicators from both options when lag val-

ues k ∈ [3, 17], obtained from equation 2.17, are used for the Johansen procedure. In that
case, two cointegrating vectors β, one from each option, are found. From Lag Option 1, a
feasible cointegrating vector with k = 17 is found. From Option 2 a feasible cointegrating
vector from the same k is found. The best performance corresponds to Lag Option 2, which
classify correctly 94.82% of the damaged observation giving 19.67% of false positives for
1% threshold. Also, its ztr is most stationary according to the ADF test, because its tρ is the
most negative. It must be noted, that from the ADF test, the most stationary ztr is not asso-
ciated with the highest eigenvalue of the Johansen procedure from a k = 7. Figure 4.11 and
figure 4.12 show the cointegrating residuals and ROC obtained from Lag Option 2 results.

An inspection of figure 4.11 reveals that the classification of the testing damaged-3
observations, with the β from Option Lag 2, is poor. The 54% of the testing damaged-3
observations are classified as true positives because they are under the lower threshold limit.
Furthermore, if its ztr is compared with the temperatures and RPMs in figure 4.7, it can be
appreciated the influence of the EOVs in the testing undamaged observations.

To investigate if a more suitable cointegrating vector can be found, the cointegration
procedure is performed for other range of values k ∈ [18, 50]. Table 4.4 presents the perfor-
mance indicators from the results of both Lag Options. It can be seen that the results from
Lag Option 1 with k = 36 have the best performance indicators.
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Table 4.3: Performance indicators of the cointegrated residuals obtained from cointegration in a range k∈ [3, 17]

Option k tρ FPR(%) TPR(%) AUC
Lag option 1 17 -3.52 21.33 94.99 0.964
Lag option 2 17 -7.79 19.67 94.82 0.964

Figure 4.11: Cointegrated residuals from Option Lag 2 and lag value k = 17, with Mahalanobis square distances
as advanced feature.

Figure 4.12: ROC from cointegrated residuals computed with Lag Option 2 and lag value k = 17



50 Chapter 4. EXPERIMENTAL APPLICATION

Table 4.4: Performance indicators of the cointegrated residuals obtained from cointegration in a range k ∈
[18, 50]

Option k tρ FPR(%) TPR(%) AUC
Lag option 1 36 -7.93 15.17 100 0.998
Lag option 2 23 -8.73 41.50 99.31 0.968

Figure 4.13: Cointegrated residuals from Option Lag 1 and lag value k = 36, with Mahalanobis square distances
as advanced feature.

Figure 4.14: ROC from cointegrated residuals computed with Lag Option 1 and lag value k = 36

The β from Lag Option 1 and k = 36 correctly classifies the 100% of the testing damaged
observations with 15.17% of false positives for a 1% threshold, see table 4.4. Its cointegrated
residuals and corresponding ROC are shown in figures 4.13 and 4.14. It performs almost a
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Figure 4.15: ROC from cointegrated residuals computed with Lag Option 1 and lag value k = 36

perfect classification with an AUC=0.998, despite it does not give the most stationary ztr

according to its tρ . The EOVs’ influences in the testing undamaged observations have been
mitigated. Consequently the Lag Option 1 with k = 36 gives the most suitable β for the
outlier analysis of this experimental case study.

From figure 4.13, it is seen that, the cointegrated vector from Lag Option 1 and k = 36
is able to differentiate the testing damaged-1 observations from the testing damaged-2 and
testing damaged-3 observations. However it can not differentiate between the two latter
sets of testing damaged observations. Also, the remaining EOVs’ influence in its testing
undamaged observations are observed to be driven, as in the case of the Mahalanobis square
distances, by the abnormal temperatures and RPMs, see figure 4.15.
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DISCUSSION AND CONCLUSIONS

5.1 DISCUSSION

In the Johansen procedure, the most stationary cointegrated residual is obtained with the
cointegrating vector associate with the largest eigenvalue [2]. However, this cointegrated
residual is not necessarily the most stationary when the ADF test is applied. Furthermore,
the aim of applying the Johansen procedure is to find a cointegrating vector that reaches two
goals. First, it should generate cointegrated residuals that remain stable between certain lim-
its from features that correspond to the reference state of the structure [2]. Second, the gen-
erated cointegrated residuals should be damage sensitive without or little EOVs influences.
Then, find the most stationary residual is not a priority for a SDD approach. Consequently,
the use of other cointegrating vectors do not associate with the largest eigenvalue, should not
be discarded.

Although the formula 2.17 recommended in [4] to set the maximum number of lags to
be included in the Johansen procedure is an acceptable start. Suitable cointegration vectors
can be found when higher numbers of lags are used.

5.2 CONCLUSIONS

It has been demonstrated, through simulated and experimental case studies, that cointe-
gration can mitigate the influence of EOVs in the results of a SDD approach. Nevertheless,
its application is not a straightforward process. It relies on assumptions for the mathematical
techniques that need to be taken into consideration during its implementation. Additionally,
the selection of the feature and required parameters, as the lag values, is an interactive pro-
cess that must be tailored to each application.

The procedure Option Lag 2 has proved to found feasible cointegrating vectors, which
must be taken into consideration for the cointegration metric-based outlier analysis. This
procedure selects a cointegrating vector from all the eigenvectors obtained from the Jo-
hansen procedure. The selection is based on the stationarity of their residuals, which is

53



54 Chapter 5. DISCUSSION AND CONCLUSIONS

assessed with the ADF test.
The vibration-based SDD approach presented in the experimental case is able to detect

the three damage states. An advantage of this approach is that it does not require signal
filtering in the cleansing step. Nevertheless, the approach is not able to differentiate between
the last two damage states. It could be due to the presence of the highest abnormal temper-
ature variations in combination with abnormal RPM in the third damage state. Or due to
other unmeasured EOVs. In [21] a clear identification of the three damage states was made
employing only observations from the 43 RPM regime. However, the use of observations
only from the 43 RPM regime will invalidate the aim of the present study.

5.3 FUTURE WORK

Future research could be done to investigate if signal filtering can improve the results
of the vibration-based SDD approach presented in the experimental case study. Also, the
influence of the selection of a different set of training observations as observations from both
RPM regimens or for a specific range of temperatures could be investigated. Additionally,
the influence of the selection of other interval from the acceleration time series responses
signals can be investigated.
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