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Abstract—This paper proposes an Embedded Enhanced-Boost 
Z-Source Inverter (EEB-ZSI) with fault tolerant capabilities for 
PV applications. Compared with the prior-art Embedded 
Source Inverters (E-ZSI) and Enhanced-boost Z-source 
Inverter (EB-ZSI), the proposed topology features that when 
one dc source like one PV panel is short circuit (SC) or open 
circuit (OC), the inverter can tolerate the faults and still operate 
with a compromised conversion ratio. However, the conversion 
ratio is still larger than the traditional E-ZSI. This topology can 
be further applied to the cascaded H-bridge inverter systems for 
multi-level applications with fault-handling capabilities. A 
detailed fault-tolerant analysis is conducted on the EEB-ZSI 
and simulations are provided to validate the analysis. Small 
signal modelling, analysis, cascading operation, and 
experimental verification will be provided in the final version. 

Keywords- Impedance source converter, embedded source 
converter, fault-tolerant circuit,  

I.  INTRODUCTION  

Traditional Voltage Source Inverters (VSIs) are widely 
used in industrial applications, e.g., motor drives, distributed 
power systems, and hybrid electric vehicles [1], which are 
typically operated in the buck operation mode. Generally, a 
dc-dc boost converter is added to obtain a desired ac output. 
However, this two-stage power conversion increases the 
system cost and lowers the efficiency. The Z-source inverter 
shown in Fig. 1 [2] as a single-stage conversion effectively 
tackles those issues. Hence, many attempts have been made in 
recent years to improve the performance of Z-sources 
inverters through topological innovations and advanced 
control schemes [3]-[12].  

In order to increase the boost capability, more passive 
components (inductors, capacitors and diodes) should be 
added into the classic Z-source network in Fig. 1. For instance, 
a switched inductor (SL) Z-source inverter [3] as shown in 
Fig. 2 adopts two SL cells to replace the two inductors (L1 and 
L2) in the traditional Z-source inverter, and thus leading to a 
higher conversion ratio. Based on the SL-ZSI topology, 
modified topologies were developed [4]-[10] to further 
increase the boost ratio. In [9], a topology with switched 
impedance network was introduced, as shown in Fig. 3, which 
can achieve an even higher boost factor due to the shorter 
shoot-through duration and a larger modulation index.  

However, the inverter volume also increases because of the 
extra inductors and/or capacitors. 
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Fig. 1. Classic three-phase Z-source inverter. 
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Fig. 2. Three-phase switched-inductor Z-source inverter [3]. 

Additionally, the dc current of Z-source inverters is 
normally chopped due to the shoot-through operation. To 
address this problem, a number of embedded Z-source 
inverters were proposed [11], [12], which may also achieve 
lower capacitor voltage ratings. A typical parallel-embedded 
Z-source inverter (E-ZSI) is shown in Fig. 4, where it can be 
observed that two dc sources (e.g., PV panels) are directly 
connected in series with the inductors (i.e., L1 and L2) of the 
classic ZSI in Fig. 1. This topology is especially suitable for 
PV or fuel cell systems. 

Inspired by the above, in this digest, a new topology with 
fault-tolerance capabilities is proposed by modifying the 
embedded Z-source and switched impedance-source 
inverters. The proposed topology has a good capability of 
fault-tolerance if an open circuit or a short circuit happens in 
the system; however, the boost factor remains to be a 
relatively large value. In § II, the operation principle of the 
proposed topology under normal operation and fault operation 
is presented. Comparisons with normal operation and fault 
operation are performed, and the benchmarking results are 



shown in § II. Simulation results are provided in § III, which 
verify the high performance of the proposed Z-source 
topology in terms of high boost factor and fault-tolerance 
capabilities 
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Fig. 3. Enhanced-boost Z-source inverter [8]. 
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Fig. 4. Parallel-embedded Z-source inverter [11]. 

II. PROPOSED Z-SOURCE INVERTER  

A. Operation principle of the proposed topology 

Fig. 5 shows the topology of the proposed Embedded 
Enhanced-Boost Z-Source Inverter (EEB-ZSI), where two 
symmetrical Z-source networks with embedded dc sources. 
The operation principle of the EEB-ZSI is the same as that of 
the conventional ZSI: the shoot-through state and non-shoot-
through state. 
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Fig. 5. Proposed three-phase embedded enhanced-boost Z-source inverter. 
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Fig. 6. Shoot-through state of the proposed Z-source inverter. 
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Fig. 7. Non-shoot-through state of the proposed Z-source inverter. 

The equivalent circuits of the proposed Z-source 
converter in the shoot-through state and non-shoot-through 
state are shown in Figs. 6 and 7, respectively. It is assumed 
that all capacitors (and inductors) in the proposed topology 
are identical. Moreover, the dc sources in the two Z-source 
networks are the same. According to the topological 
symmetry, it can be obtained that 

 1 2 3 4       C C C CV V V V    (1) 

in which VC1, VC2, VC3, and VC4 are the corresponding voltage 
across the capacitor C1, C2, C3, and C4. As mentioned above, 
the operation can be separated into two states:  

Shoot-Through State. As shown in Fig. 6, D1 and D2 are 
ON with D3, D4, and Din are being reverse-biased in the shoot-
through state. Additionally, L1 and L2 are in parallel with C1 
and C2, respectively. Then, it can be obtained that 

 1 2 1 2C C L LV V V V     (2) 

According to the Kirchhoff’s voltage law, the voltages on the 
inductors L3 and L4 can be expressed as 

 3 3 0.5L C inV V V    (3) 

 3 3 0.5L C inV V V    (4) 

with VL1, VL2, VL3, and VL4 being the inductor voltages in the 
shoot-through state.   
Non-Shoot-Through State. As shown in Fig. 7, D3, D4, and Din 
are ON, and D1 and D2 are OFF. In one cycle, the inductor 
average voltage should be zero, and then applying the volt-
second balance principle to all the inductors gives 

 1 11L NON C

D
V V
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

  (5) 

  3 3 0.5
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D
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Furthermore, according to Fig. 7, the following can be 
obtained by applying the Kirchhoff’s voltage law: 

 1 3 1 0L NON C CV V V      (7) 

 1 3 20.5 0L NON L NON in CV V V V       (8) 

 3 30.5 0L NON in dc CV V V V       (9) 

Accordingly, the capacitor voltage VC3 and the peak dc-link 
voltage Vdc

 ^  can be expressed as  
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where 
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is the boost factor. 

The peak output voltage of the inverter is expressed by 
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in which G is the buck-boost factor, M is the modulation 
index, and Vdc is the average dc-link voltage. The buck-boost 
factor can be represented in terms of modulation index M as: 
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B. Fault-tolerant analysis 

Open circuit analysis: The open circuit condition of the 
proposed topology is shown in Fig. 8. 
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Fig. 8. Open circuit condition of the proposed EEB-ZSI.  
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Fig. 9. Shoot-through state of the proposed Z-source inverter under open circuit 

condition. 
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Fig. 10. Non-shoot-through state of the proposed Z-source inverter under open 

circuit condition. 

The operation principle in this condition is different from 
the normal EEB-ZSI due to the open circuit. The equivalent 
circuits during the shoot-through state and non-shoot-through 
state are shown in Figs. 9 and 10, respectively. 

With the previous analysis, it is known that D2 is on and 
D4 is reverse-biased in these two states and the following 
equations can be obtained: 
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Short circuit analysis: When one dc source is short-
circuited, the corresponding hardware schematic is shown in 
Figs. 11, 12 and 13.  
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Fig. 11. Open circuit condition of the proposed EEB-ZSI.  
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Fig. 12. Shoot-through state of the proposed Z-source inverter under short circuit 
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Fig. 13. Non-shoot-through state of the proposed Z-source inverter under short 

circuit. 

The operation principle in this condition is the same as 
the normal EEB-ZSI. Thus, a similar analysis can be applied, 
and the boost factor can be derived as 
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A detailed comparison in terms of the boost factor is shown in 
Table I. Fig. 14 shows the relationship between the shoot-
through duty ratio and the boost factor among these 
topologies. Although the boost factor of the proposed EEB-
ZSI during open circuit or short circuit is lower than that of 
the normal operation of the EEB-ZSI, it is higher than the 
traditional E-ZSI, as observed in Fig. 14. In addition, Fig. 15 
compares the voltage gains in respect to the modulation index. 
It can be seen in Fig. 15 that the voltage gain of the proposed 
impedance-source topology under normal or fault operation is 
higher than the conventional E-ZSI. Moreover, the voltage 
gain can be maintained by controlling the modulation index to 
achieve fault-tolerant operation.  Additionally, the topology 
can be extended with cascaded H-bridge converters in order 
to achieve multi-level voltages while maintaining the fault-
tolerant capability. 
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Fig. 14. Boost factor comparison between topologies. 

 
Fig. 15. Voltage gain comparison between topologies. 

III. SIMULATION RESULTS 

Referring to Figs. 5-13, simulations are performed in 
PLECS with the system parameters being L1=L2=L3=L4= 350 
µH and C1=C2=C3=C4= 250 µF, switching frequency fs = 10 

kHz, and three phase load L = 5 mH and R = 25 Ω. The 
simulation results are shown in Figs. 16-18, where M = 0.75, 
D = 0.25, and Vin = 100 V. As it can be seen from Fig. 16-18, 
the proposed inverter can operate normally under open circuit 
and short circuit conditions, and the peak dc-link voltage Vdc 
under three cases are, respectively, boosted to 600, 120, and 
300 V. The simulation results are in agreement with the 
theoretical analysis and comparison in Table I.  

      
Fig. 16. Simulation results of the proposed EEB-ZSI. 

 
Fig. 17. Simulation results of the proposed EEB-ZSI under open circuit condition 

for one of the DC sources. 
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Fig. 18. Simulation results of the proposed EEB-ZSI under short circuit condition 

for one of the DC sources. 

IV. CONCLUSION 

In this paper, an embedded enhanced-boost Z-source 
inverter with fault-tolerant capabilities has been proposed. 
Compared with the traditional embedded ZSI, the boost factor 
of the proposed topology is much higher. Additionally, the 
proposed topology has a fault-tolerant capability which cannot 
be achieved in the conventional enhanced-boost ZSI. 
Simulation results have demonstrated that the proposed 
topology has a good boost capability compared with the 
traditional embedded ZSI and a good fault-tolerant capability 
compared with the conventional enhanced-boost ZSI. Future 
work includes the experimental verification and further 
cascaded H-bridge applications in PV systems considering the 
fault condition. 
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