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ABSTRACT Synchronous reference frame phase-locked loops (SRF-PLLs) are widely used in different
technologies, such as wind turbines, electric vehicles, more electric aircraft, and motor drives, to estimate
system’s variables. The SRF-PLL is an adaptive notch filter that is used to estimate a sinusoidal signal’s
amplitude, phase angle, and frequency. However, when the input signal is subjected to a considerable
variation or includes a significant noise, its stability and performance become challenging. In this paper,
the stability of the SRF-PLL for substantial changes in the input signal’s variables are investigated. To do so,
the nonlinear time-varying (NTV) model of the system is proposed and is used for the large-signal stability
assessment. Then, an adaptive tuning method, based on the proposed NTV model, is designed to improve its
transient performance during and after the variation. Simulation and experimental results are used to validate
the proposed method.

INDEX TERMS Grid-connected voltage source converters, large-signal stability, phase-locked loops, rate-
of-change-of-frequency, synchronization.

I. INTRODUCTION
The voltage magnitude, phase angle, and frequency bring
crucial information in control ofmost power-electronic-based
(PE-based) AC devices in different technologies such as wind
turbines, more electric aircraft, motor drives, etc., [1]–[5].
Most often, a synchronous reference frame phase-locked loop
(SRF-PLL), as a standard PLL, is employed to determine the
variables mentioned above [1]. An SRF-PLL is an adaptive
notch filter that is used to estimate its input phase [6]. The
SRF-PLL is widely used for the synchronization task; how-
ever, it is also employed for a wide range of applications
such as fault detection, islanding detection, position detec-
tion, etc., [7]–[9]. A challenging problem associated with
the PLLs is to estimate the system variables in the presence
of a large disturbance of the input signal. Focusing on the
synchronization performance, it is expected that the SRF-
PLL adapts with its input signal fast and is able to reject
disturbances [10]. However, this may be challenging when
the input signal is noisy by its amplitude, phase angle or
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frequency [11]. Regarding the noisy input signal, the liter-
ature can be divided into three main categories based on:
• Variations in input magnitude: This is mostly related to
the voltage dip [1], [12]. As the input signal magnitude
affects the SRF-PLL’s performance, a large deviation in
it may lead the system into an unstable mode [1], [2].

• Variations in input phase angle: Most often, it is related
to an unbalanced severe fault in the system or the start-
up problem of the PLL [2], [13]–[15].

• Variations in input signal frequency [6]: Different con-
ditions lead to frequency deviation of the system. Either
a severe fault or unbalancing between the generations
and loads in the electrical system, such as power systems
and more electric aircraft, may cause frequency devia-
tion [16], [17].

Researchers often use filters in the input signal (pre-loop
filters) or inside of the control loop (in-loop filters) to deal
with the polluted input [1]. The concept behind most works
regarding the enhancing of performance of synchronization
control is to make the PLL less sensitive to its input signal
variations [1], [6], [10], [14]. Regarding the magnitude vari-
ation of the input, one can use an amplitude normalization
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scheme (ANS) in the PLL structure to decouple it by its
magnitude [1], [18].

On the other hand, the input phase angle deviation may
lead to an unstable situation or an incorrect preventive action.
In [13], it is reported that a large amount of grid-connected
energy sources are disconnected from the system by the
wrong estimation of the frequency using the PLL during a
severe fault, viz., the phase jump on the grid side. Incorrect
frequency estimationmay be critical as the protection systems
may be set in a fraction of a second based on the state vari-
ables of the system [19]. In [14], an adaptive tuning technique
is introduced for the PLL to make the control system robust
from its input phase deviation. However, for a large phase
jump, the nonlinear model of the PLL is necessary to assess
its stability.

A nonlinear model of the PLL brings more accurate infor-
mation about the system in comparison with the small-signal
models [20]–[22]. In [20], a nonlinear model of the grid-
tied voltage source converter (VSC) is introduced. The large-
signal model of the PLL, in addition to the grid side model,
is used to determine the stability margin. However, the impact
of the PLL’s parameters on large-signal stability is not inves-
tigated. In [21], the nonlinear model of the type-1 PLL is pre-
sented, and its stability for the phase jump and frequency drift
is investigated. Although the SRF-PLL dynamic response to
the phase jump and frequency deviation is introduced in [21],
its large-signal stability model is not investigated. Moreover,
a solution to improve its estimation error during the transient
is not discussed. In [23], although the large-signal model of
the PLL is introduced, and its stability challenges is presented
based on the phase portrait concept, the impact of differ-
ent input model is not studied. For instance, it is not clear
how different frequency deviation models affect the system
stability.

Several methods using pre-loop and in-loop filters have
been addressed in many works to decrease the frequency
deviation impact on the PLL’s performance, [24]–[26]. In all
the latter references, the performance of the PLL concern-
ing the frequency variation is improved. However, only the
small-signal model of the control system is discussed for
both the stability assessment and the performance. Therefore,
the effectiveness of the proposed methods is not investigated
under severe system frequency deviations. In [6], the PLL is
modeled as a nonlinear time-invariant system, and the phase
portrait diagram is used to assess the system stability. In [6],
it is mentioned that the PLL is a nonlinear time-varying
(NTV) system, in which parameters change by time; how-
ever, the SRF-PLL stability for various frequency deviation
scenarios is not investigated. The major challenge is to design
the PLL that is able to deal with the large signal deviation of
the system characteristics.

This paper aims to assess the impact of the input signal
deviation on the large-signal stability model of the SRF-PLL.
Based on the large-signal stability assessment, an adaptive
model of the SRF-PLL is introduced that is able to overcome
frequency estimation errors caused by the noisy input signals.

In this way, the NTV model of the SRF-PLL is presented.
After that, different phase jump and frequency deviation
models are implemented as the input of the system. Math-
ematically, it is proved that as long as the energy function
constraints of the system are satisfied, the system can follow
the input’s frequency and stand stable. Based on the proposed
model for the large-signal stability, an SRF-PLL with an
adaptive loop gain is designed that is capable of keeping its
stability during frequency deviation and phase jump, while
its bandwidth is not affected. Considering the NTV model of
the SRF-PLL and the proposed adaptive model to enhance its
stability during a large disturbance, the main contributions of
this paper are:

• Introducing the NTV model of the SRF-PLL based on
the voltage dips, phase jump, and the frequency devia-
tion. This NTV model includes nonlinear terms of the
system, which are of the interest of large-signal stability
assessment.

• Large-signal stability assessment of the SRF-PLL based
on its NTV model. The proposed model depicts the
dynamic of the system during the transient. Therefore,
it is recommended to use it as a tool for tuning the system
parameters during a large disturbance in the system.

• Proposing an adaptive solution that increases the stabil-
ity margin of the SRF-PLL during a large disturbance of
the frequency and phase angle in the system. The pro-
posed method changes the SRF-PLL parameters during
the transition. However, neither the order of the system
increases nor the parameters are changed for the steady
state condition.

The rest of the paper is organized as follows. Section II
defines different concepts regarding the frequency deviation
and the phase jump in the system. The NTV model of the
SRF-PLL regarding the phase jump and frequency deviations
are proposed in Section III. Section IV discuss the stability
for different case studies of the phase jump and frequency
deviations through the simulation results. Section V presents
an adaptive design for the SRF-PLL to overcome stability
challenges. Conclusions are presented in Section VI.

II. DISTURBANCE IN POWER SYSTEMS
PE-based electrical systems are dynamic in their nature,
which means that their state variables change continuously.
Three important variables that indicate the system stability
conditions are voltage magnitude, phase angle, and its fre-
quency. In this section, the concept behind these three cate-
gories of the system, namely voltage magnitude variations,
phase jump, and the frequency drift, are discussed. An illus-
trative example tested on the IEEE 39-bus test system is used
in order to show the various concepts.

A. VOLTAGE DEVIATION OF THE SYSTEM
Voltage deviation in the system may happen either gradually
or within a short period. Basically, increasing the system load
leads to a decrease in the voltage magnitude; however, this
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FIGURE 1. (a) Voltage magnitude, (b) phase angle, and (c) frequency of
Bus 2, 25, and 26 of the IEEE 39-bus test system subjected to a
three-phase short circuit at t = 0.1 s and cleared at t = 0.2 s.

happens slowly. On the other hand, a severe fault, such as
a three-phase short circuit in the transmission line, causes a
voltage dip or a voltage sag. For instance, a three-phase short
circuit event on the line 2-3 of the IEEE-39-bus test system
causes voltage dip in the buses close to the event location.
The fault starts at t = 100 ms and is cleared after 100 ms.
Fig. 1(a) shows the voltage magnitudes of Bus 2, 25, and 26,
which are close to the line 2-3. The fault causes a voltage
dip instantaneously after the fault. Bus 2 is closer to the
line 2-3; therefore, its voltage magnitude is subjected to a
larger deviation in comparison with other buses.

B. PHASE JUMP
The phase jump, also known as the phase shift, may happen
in the system either unintentionally due to a fault, black
start, etc. [13], [14], or deliberately for the sake of power
transferring facilitation [27]. Most often, voltage drops are
associated with phase jumps [28]. Fig. 1(b) shows the change
in the phase angle of Bus 2, 25, and 26. The phase jump can
be detected after the fault instantaneously. The phase jump
can cause critical challenges for various system components,
especially PE-based units controlled in direct-quadrature (dq)
frame, because the phase angle is used for changing the
control frame [5].

C. FREQUENCY DEVIATION
The frequency, as a global state of the system, is known as
one of the most important key points in evaluation of the
system condition, and may change for different reasons in
various electrical applications. For instance, a line trip may
cause frequency deviations as shown in Fig. 1(c). In PE-
based power systems, the frequency may change because
of unbalance between loads and generations. Most often,
the frequency deviation in power systems should be in a
specific range ( a fraction of a Hertz), so the system works in

its normal condition [19]. However, the frequency should be
determined appropriately for a system subjected to a severe
fault, in which the frequency drift may exceed some Hertz
from the fundamental value. In more electric aircraft, fre-
quency changes between 350 and 800 Hz, in order to adjust
the engine speed with a desired value [16]. With this in mind,
determining the frequency deviation is important in PE-based
electric systems.

The frequency deviation is mostly defined as its rate of
change, called rate-of-change-of-frequency (ROCOF), which
is determined as follows:

ROCOF =
df
dt

(1)

where f and t are the frequency and time, respectively.
Practically, ROCOF is calculated based on the average of
the frequency deviation over a measuring window, given as
follows [29]:

ROCOF 1
=

1
Nr

Nr∑
i=1

(
1fi
1tr

)
(2)

where Nr is the sampling number and 1fi is the ith fre-
quency change during 1tr period. However, a linear equiv-
alent model, shown as follows, can be used as the ROCOF
equivalent:

f = f0 + Rt (3)

where f0 and R are the steady-state frequency and the ROCOF
value, respectively. However, the frequency change can be a
function of time with a higher order. For instance, in [13],
the frequency change is presented as a second order deviation
during a severe fault in the system. In fact, the true mod-
eling of the ROCOF can significantly affect the frequency
estimation, especially when a PLL is used to determine the
frequency of the system.

III. NONLINEAR TIME-VARYING MODEL OF THE SRF-PLL
Accurate modeling of the PLL is needed to evaluate the
stability margin and tune its parameter. The block diagram
of a SRF-PLL is shown in Fig. 2(a), while its small-signal
model is illustrated in Fig. 2(b). This model has been inves-
tigated extensively in the literature [1]. Although the small-
signal model of the PLL gives an adequate approximation
of the system behavior as long as the system is in a quasi-
locked state, it cannot accurately predict the actual behavior
of the real system subjected to a large disturbance. Therefore,
a nonlinear model of the PLL, as shown in Fig. 2(c), provides
a higher accuracy. The discrepancy between the small-signal
and large-signal model of the PLL shows an outstanding
division during large disturbances. The aim of the SRF-PLL
is to estimate the three-phase grid voltage signal’s parameters,
which is given as follows:

υ (t) = Vpcc cos

θ︷ ︸︸ ︷
(ωt + ϕ) (4)
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FIGURE 2. SRF-PLL analysis (a) Block diagram of the SRF-PLL. (b) Its
linear model. (c) Its nonlinear model.

where Vpcc, θ , ϕ, and ω are the input signal amplitude, phase
angle, initial phase angle, and angular frequency of the point
of common coupling (PCC), respectively. The output of the
SRF-PLL can be used for the estimation of the input signal’s
parameters, given as follows:

υ̂ (t) = V̂pcc cos

θ̂︷ ︸︸ ︷(
ω̂t + ϕ̂

)
(5)

where V̂pcc, θ̂ , ϕ̂, and ω̂ are the estimated values of input
signal amplitude, phase angle, initial phase angle, and angular
frequency, respectively. It is worth mentioning that system
variables are time dependent, due to the integrator in the PI
controller. Although the time dependency is eliminated in
small-signal model of the PLL, it is applied to the large-signal
model. This is shown later in (10).

In this paper, as the frequency changes gradually, a phase
jump is defined as the step change in ϕ, while frequency
deviation relates to the change in ω. Therefore, phase jumps
and frequency deviations are analyzed separately. However,
frequency deviation leads to phase change.

A. THE SRF-PLL DYNAMIC RESPONSE CONSIDERING
VOLTAGE MAGNITUDE CHANGE
Considering Fig. 2(c), the control loop gain is related to the
PCC’s voltage magnitude. The following equation shows the
estimated phase angle to its input:

θ̂ =

∫ [
VpccKp sin

(
θ − θ̂

)
+Ki

∫
Vpcc sin

(
θ − θ̂

)
dt + ωn

]
dt (6)

where θ̂ and θ are the estimated and actual voltage phase
angle, respectively. ωn is the nominal frequency value in

FIGURE 3. The SRF-PLL using normalized magnitude (in red).

rad/sec, which is typically equal to 100π or 120π . Kp and
Ki are the proportional and integral gains of the PLL. Vpcc
indicates the voltage magnitude of the PCC. A simple method
to make the control system insensitive from the PCC voltage
magnitude, is to use the normalized value of the Vq, as shown
in Fig. 3. This technique has been well established in the
literature [1]. Therefore, sensitivity analysis to the voltage
magnitude can be eliminated from the large-signal stability
assessment of the SRF-PLL.

B. LARGE-SIGNAL MODEL OF THE SRF-PLL
CONSIDERING THE PHASE ANGLE DEVIATION
In order to evaluate the stability of the PLL subjected to
a large deviation in the phase angle of the input, a linear
approximation is not valid anymore. Therefore, in order to
evaluate the phase jump impact on the nonlinear model of the
SRF-PLL, one can assume (6) with a fix input frequency and
magnitude. Therefore, θ̈ = 0 and V̇pcc = 0. By using two
times derivative of both sides of the equation, the following
equation can be obtained:

¨̂
θ=

(
θ̇ −
˙̂
θ
)
VpccKp cos

(
θ − θ̂

)
+ VpccKi sin

(
θ − θ̂

)
. (7)

Now, by defining x1 =
(
θ − θ̂

)
and x2 =

(
θ̇ −
˙̂
θ
)
,

the following model can be represented:{
ẋ1 = x2
ẋ2 = −

[
VpccKpx2 cos (x1)+ VpccKi sin (x1)

]
.

(8)

As parameters are fixed by time, (8) presents a nonlinear
time-invariant state-space model of the SRF-PLL. The fre-
quency deviation is studied in the next part.

C. LARGE-SIGNAL MODEL OF THE SRF-PLL
CONSIDERING THE FREQUENCY DEVIATION
Considering the nonlinear model of the SRF-PLL, shown
in Fig. 2(c), one can show its mathematical model given as
follows:

ω̂ = ωn +

(
Kp + Ki

∫ ) [
Vpcc sin

(
ωt − ω̂t

)]
(9)

where ω̂ is the estimated frequency in rad/s, andKp andKi are
the SRF-PLL’s proportional and integral gain, respectively.
The initial phase angle of the input signal is considered as a
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fixed value, and the focus of the study is only on the frequency
deviation of the system.

Using the first order deviation with respect to the time of
(9) and rewrite it, the following nonlinear time-varyingmodel
of the estimated frequency is obtained as:

˙̂ω = ω̇ +

[
VpccKp

(
ω − ω̂

)
cos

(
ωt − ω̂t

)
1+ VpccKpt cos

(
ωt − ω̂t

)
+
VPCCKi sin

(
ωt − ω̂t

)
− ω̇

1+ VpccKpt cos
(
ωt − ω̂t

)
−

ω̇

1+ VpccKpt cos
(
ωt − ω̂t

)] . (10)

The model is time-varying as t appears in the denominator of
the right side of (10), and it is nonlinear due to the sin and cos
operator in (10). For the initial point at t = t0, the estimated
ROCOF is obtained as ˙̂ωt0 = VPCCKp

(
ωt0 − ω̂t0

)
, which

also can be concluded from Fig. 2(b). In addition, the final
value of the estimated ROCOF in a stable case in an infinite
time is ω̇, which means that if the SRF-PLL works in its
stable mode, it will follow the frequency change. However
tracing the frequency change is a challenge that needs to
be clarified using the stability assessment, as the operating
point is a time variant variable, which is discussed in the next
section.

IV. STABILITY ASSESSMENT OF THE PROPOSED MODEL
FOR THE SRF-PLL
A. LARGE-SIGNAL STABILITY ASSESSMENT OF THE
SRF-PLL CONSIDERING THE PHASE JUMP
In order to evaluate the stability status of the model, the vec-
tor fields of the state variables can be used. Regarding the
concept of the vector fields, by mapping ẋ1 and ẋ2 on the
(x1 − x2) plane, for every initial value of (x10 − x20), the sub-
sequent value of the (x1 − x2) can be computed. The vector
fields of the PLL nonlinear model are shown in Fig. 4. The
arrows in Fig. 4 show that for every initial value of the state
variables, the system state will follow a trajectory, also called
state trajectories.

It is worth to mention that the initial value of the state vari-
ables plays a critical role in determining the state trajectories.
In order to determine the initial value for the phase error (x1)
and its velocity (x2), consider that the system works in its
steady state condition. In this condition, the phase error is
equal to zero. A phase jump (1θ) in the input signal of the
PLL makes the initial value of the phase error equal to the
phase jump. The reason is that the estimated phase cannot
change instantly. The initial value for the frequency error can
be estimated as follows:(

θ̇ −
˙̂
θ
)
init.
= −KPV sin

(
θ − θ̂

)
init.

(11)

where the subscript init. denotes initial values. The integrator
is eliminated in the initial value calculations as integrators
have a gradual response to a step change. The state trajecto-
ries of the SRF-PLL with Kp = 0.2 and Ki = 2 are shown

FIGURE 4. State trajectory of the nonlinear model of the PLL for different
initial values (Init.) of the phase jump.

in Fig. 4, which are typical values. In the next section, it will
be discussed how the phase jump in the PLL input may cause
a transient instability.

Apparently, the SRF-PLL stands stable considering any
initial condition of the phase jump in its input signal. How-
ever, considering the frequency error caused by the phase
jump may lead to a frequency protection trip. In conventional
systems, the frequency is allowed to vary based on the supply
and load imbalance. There is a limitation for the frequency
variation based on the international standards [20], [30].
Therefore, if an undesired frequency variation is detected in
the system, then the protection system should act. Regarding
the transient frequency change in the system based on the
mentioned standard [30], if a frequency less than 56.4 Hz or
greater than 61.7 Hz for a nominal value of 60 Hz is detected,
then the protection system should act instantaneously. As an
important example, detecting the under-frequency by the PLL
is reported as one of the main reasons for the energy inter-
ruption in California in [13], which leads to 1.2 GVA loss of
generation.

B. LARGE-SIGNAL STABILITY ASSESSMENT OF THE
SRF-PLL CONSIDERING THE FREQUENCY DEVIATION
In order to evaluate the SRF-PLL stability, the estimated
frequency should converge to the input frequency at infinity.
Therefore, based on (10), the second term on the right side
should converge to zero at infinity. This can be shown as
follows:

lim
t→∞

[
VPCCKp

(
ω − ω̂

)
cos

(
ωt − ω̂t

)
1+ VPCCKpt cos

(
ωt − ω̂t

)
+
VPCCKi sin

(
ωt − ω̂t

)
− ω̇

1+ VPCCKpt cos
(
ωt − ω̂t

)
−

ω̇

1+ VPCCKpt cos
(
ωt − ω̂t

)] = 0. (12)
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As ω and ω̂ vary with respect to the time, only the first term
in the numinator and the second term in the denominator
are considered for a large value of t. Therefore, (12) can be
simplified as follows:

lim
t→∞

ω − ω̂

t
= 0. (13)

Simply, for the first order equivalent of the system frequency,
the order of the nominator in (9) is equal to its denominator’s
order. However, for orders higher that one of the nominator of
(9), the system stability needs more evaluation. This is inves-
tigated by using the energy function and is shown through
case studies, as discussed in the following.

Regarding the large-signal stability of the SRF-PLL’s NTV
model in (10), one can define the Lyapunov function to deter-
mine the stability margins. In this way, the following energy
function based on the system frequency error is defined as:

V =
1
2
P
(
ω̂ − ω

)2 (14)

where P is a positive real value. In order to work in stable con-
dition, the Lyapunov function and its derivative with respect
to the time should be positive and negative, respectively.
From (14), it can be concluded that the Lyapunov function
is always positive; however, its derivative with respect to the
time is introduced as (15), shown at the bottom of this page,
which has a significant impact on determining the stability
margins. Eq. (15) can be rewritten as (16), shown at the
bottom of this page.

Assuming −π
/
2 ≤

(
ω − ω̂

)
t ≤ π

/
2 (which is a reason-

able assumption), the first two terms on the right side of (16)
are always negative. On the other hand, as ω̂ follows ω with
a lag, then by increasing ω, ω̇ is positive, while

(
ω̂ − ω

)
is

negative. This is also true for the decreasing of ω. Therefore,
the third term on the right side of (16) is positive. With this in
mind, In order to have a negative value for (15), which leads to
global stability of the system, the following inequality should
be valid:

For positive values of ω̇ :

VpccKp
(
ω − ω̂

)
cos

(
ωt − ω̂t

)
+ VpccKi sin

(
ωt − ω̂t

)
≥ ω̇

For negative values of ω̇ :

VpccKp
(
ω − ω̂

)
cos

(
ωt − ω̂t

)
+ VpccKi sin

(
ωt − ω̂t

)
≤ ω̇.

(17)

However, for both negative and positive values of ω̇,
the following inequality can be concluded by using some

linearization techniques:

ω̇ − VPCCKp
(
ω − ω̂

)
VPCCKi

(
ω − ω̂

) ≤ t. (18)

Eq. (18) can be rewritten as follows:

|ω̇| ≤ Kp
∣∣VPCC (ω − ω̂)∣∣+ Kit ∣∣VPCC (ω − ω̂)∣∣ . (19)

For a conservative case, if t � ε, in which t � ε is a small
positive value, the following inequality should be valid in
order to have a stable condition:

|ω̇| ≤ KpVPCC
∣∣ω − ω̂∣∣ . (20)

The conservative case means that the system change happens
instantaneously.

It can be concluded from (19) and (20) that despite of
the order of input deviation, if the proportional and integral
gains are tuned appropriately so the Lyapunov inequalities are
satisfied, then the system works in its stable condition. This
means that if the damping term of the error is larger than the
frequency change, then the systemwill stand stable. However,
if the frequency changes faster than it could be damped, then
the estimated frequency error will become larger and larger.
Although this is a general conclusion, which can also be
derived by the small-signal models, one can use the Lyapunov
inequalities for tuning the SRF-PLL’s parameters in order to
guarantee the system stability.

V. DESIGN AND PERFORMANCE ANALYSIS
In this section, the SRF-PLL’s response for different types
of variations in the input signal is presented. In the first part,
the SRF-PLL’s response to the phase jump is illustrated. After
that, its response to the first and second order frequency
deviations are show. Then, an adaptive design of the SRF-
PLL for damping the frequency impact on the system stability
is proposed.

A. SRF-PLL’S RESPONSE TO THE PHASE JUMP IN THE
INPUT SIGNAL
In order to evaluate the large-signal stability of the PLL,
different phase jumps are considered in the input signal.
Fig. 5 shows the state trajectories of the system for dif-
ferent phase jumps between −π to π . For phase jumps
more than π

/
2 or less than −π

/
2, the frequency error will

increase and then decrease until it reaches the origin point.
The stable and unstable regions for the frequency stability
are determined based on the standards [30], shown Fig. 5.

V̇ =
[
P
(
ω̂ − ω

)]
×

[
VpccKp

(
ω − ω̂

)
cos

(
ωt − ω̂t

)
+ VpccKi sin

(
ωt − ω̂t

)
− ω̇

1+ VpccKpt cos
(
ωt − ω̂t

) ]
. (15)

V̇ =
−PVpccKp

(
ω̂ − ω

)2 cos ((ω − ω̂) t)
1+ VpccKpt cos

(
ωt − ω̂t

)︸ ︷︷ ︸
−

+
PVpccKi

(
ω̂ − ω

)
sin
((
ω − ω̂

)
t
)

1+ VpccKpt cos
(
ωt − ω̂t

)︸ ︷︷ ︸
−

+
−Pω̇

(
ω̂ − ω

)
1+ VpccKpt cos

(
ωt − ω̂t

)︸ ︷︷ ︸
+

. (16)
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FIGURE 5. Transient stability analysis of the SRF-PLL based on proposed
state trajectories.

FIGURE 6. Time domain simulations of the SRF-PLL subjected to different
phase jumps.

Hence, if the transient frequency limit is violated, then it
is expected that the system works on its unstable transient
mode, and the protection systems may act subsequently.
This may lead to undesired trip of the converter and loss of
generation [13].

A time domain simulation including π
/
6 and 5π

/
6 phase

jumps at t = 0.2 s, and −π
/
6 and −5π

/
6 phase jumps at

t = 0.4 s for the SRF-PLL is illustrated in Fig. 6. It can
be seen that the proposed large-signal model shows exactly
the same result with the nonlinear time-domain simulations,
which is for each initial value of the phase jump, the trend
and the maximum value of the estimated frequency is exactly
the same.

In order to verify the proposed method and the simula-
tions, experimental tests are done for the SRF-PLL with the
same configuration, shown in Fig. 7. The PLL is modeled
as an open loop control system. To emulate the PLL input,
the grid simulator manufactured by Chroma is used, and the
PLL system is implemented in dSPACE DS1007 system. The
dSPACE can be programmed using the block diagram envi-
ronment inMATLAB/Simulink. The SRF-PLL estimated fre-
quency error for different phase jumps are shown in Fig. 8.
Although the frequency of the input is constant, the esti-
mated frequency of the SRF-PLL presents a transient error,
which may lead to a protection system action [13]. In order
to avoid an undesired protection trip, it is recommended to

FIGURE 7. (a) Experimental setup at Aalborg University. (b) Laboratory
setup used to evaluate the estimated frequency of the SRF-PLL.

FIGURE 8. The SRF-PLL estimated frequency for different phase-jumps
(experimental results). (a)π/6, and (b) 5π/6 phase jump implement to the
PLL and are cleared after 200 ms.

consider a large-signal stability model of the SRF-PLL in the
design of it.

It is worth mentioning that the PLL is a feedback control
loop, which is used in the VSC control system. Therefore,
its performance can be affected by VSC DC voltage and the
main grid dynamic, in addition to other control loops with the
same dynamic time constant. In this way, the PLL may cause
system instability, for instance for the weak grid, which is out
of the scope of this paper [2].
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FIGURE 9. Estimated frequency by the SRF-PLL for different first order
frequency deviation at the input signal.

FIGURE 10. Estimated frequency by the SRF-PLL with standard dapmping
and very small damping coefficients considering a second order
frequency deviations at the input signal.

B. SRF-PLL’S RESPONSE TO THE FREQUENCY DEVIATIONS
OF THE INPUT SIGNAL
In this part, only the first and second order deviations of the
frequency are investigated. Fig. 9. shows the simulation result
of the estimated frequency considering the first order fre-
quency deviations in the input with different rate of change.
As it can be seen in Fig. 9, for instance, for a 2.5 Hz/sec
frequency deduction over a 0.2-second period, the estimated
frequency decreases from 50Hz to 49.5 Hz, whichmeans that
the frequency estimator follows the input frequency with the
first order deviation. To exaggerate the results of the PLL’s
performance, two case studies of the simulation results are
mentioned in Fig. 10 with a normal and a very low damping
factors. For a frequency deviation from 50 Hz to 48.5 Hz
during 10 ms period from t= 1 s to t= 1.01 s with a quadratic
polynomial function, the estimated frequency might not fol-
low the input frequency. Although the system is stable (even
for a low damping factor, shown in Fig. 10), the transient
behavior of the system is not appropriate for a low damping
factor. Therefore, the system needs considerationwith respect
to its parameter tuning, which is discussed in the next part.

C. DESIGN: ADAPTIVE TUNING OF THE SRF-PLL
A conservative solution to overcome stability problem is to
modify system parameters during the frequency deviation.
To do so, considering (20), if the input frequency changes
with the velocity of ω̇, then the system should be able to damp
it with a rate of KpVPCC

∣∣ω − ω̂∣∣, which should be more than
system change in order to keep the system stable. In this way,

FIGURE 11. Block diagram of the proposed adaptive SRF-PLL.

one can increase the damping factor, Kp, during the transient.
In this way, Kp should have an appropriate value during the
transient. Considering (20), by using an integration from both
side of the inequality, following inequality can be obtained:

1 ≤
KpVpcc

∣∣∣θ − θ̂ ∣∣∣
|ω|

. (21)

Therefore, Kp is designed in an adaptive manner in order to
change during the frequency deviation so (15) is satisfied.
If Kp modified as follows, the system will stand stable during
the frequency change.

Kp→ Kp

1+ λfc
VPCC

∣∣∣θ − θ̂ ∣∣∣∣∣ω̂∣∣
 (22)

where instead ofω in (21), one can use its estimated value and
assume that the system will stand stable during the frequency
deviation. λfc, called damping factor, is the a positive constant
value that set in a manner to keep (15) satisfied. The simu-
lation result of the adaptive SRF-PLL is shown in Fig. 11.
In order to make the design more general, so the system per-
formance improve for all system changes, a normalized form
of the PLL is used. Therefore, the modified PLL is insensitive
to the voltage magnitude change of the input signal.

To exaggerate the results, consider a system with a band-
width of 10 Hz and a very low damping factor of 0.01,
(ωn = 10 Hz, ξ = 0.01). Obviously, such a low damping
factor will not be intentionally set in the control where an
often used approach is to design for a damping ratio of 0.707.
However, as described in [2], [31], [32], the overall effective
damping associated with the synchronization loop may be
lower than this value during weak-grid and grid-fault con-
ditions. Accordingly, this low damping ratio is used here as
a test case for such severe conditions where the effective
damping ratio of the system may reach very low or negative
values. As the simulation result shown in Fig. 12, the PLL
exhibits weakly damping oscillations under a frequency devi-
ation from 50 Hz to 48.5 Hz for a period of 10 ms. However,
if the proposed adaptive method is used in order to damp
the transient deviation of the system, then the system stands
stable and shows an appropriate performance. The estimated
frequency of the SRF-PLL using different damping factors is
illustrated in Fig. 12. As the damping factor

(
λfc
)
increases,

28642 VOLUME 8, 2020



B. Shakerighadi et al.: Modeling and Adaptive Design of the SRF-PLL

FIGURE 12. Estimated frequency by the SRF-PLL for second order input
frequency deviation from t = 1 s to t = 1.01 s using the proposed
adaptive tuning method with different damping factors.

FIGURE 13. Estimated frequency by the SRF-PLL for 30◦ phase jump at
t = 1 s using the proposed adaptive tuning method with different
damping factors.

FIGURE 14. Experimental results of the estimated frequency by the
SRF-PLL for second order input frequency deviation using the proposed
adaptive tuning method with different damping factors.

the input deviation will be damped on the output signal.
However, the oscillation after change may not be damped,
as the parameters are only adapted during the change, and
they will come back to its initial values after the change.
It is also worth mentioning that the system parameters are
only adapted during the transition of the frequency; while it
has a fixed value during the normal condition of the system.
In other words, based on (22), the adaptive method is only
changing the SRF-PLL’s parameter in case that the input
variables are changing.

On the other hand, by increasing the system damping
during the change, it is expected to have a better perfor-
mance for phase jump. The proposed design is tested for the
phase jump scenario, and the simulation results are shown

FIGURE 15. Experimental results of the estimated frequency by the
SRF-PLL for 30◦ phase jump using the proposed adaptive tuning method
with different damping factors.

in Fig. 13. In this scenario, system parameters are set as for the
frequency deviation scenario with different damping factors.
It is shown in Fig. 13 that the system performance is improved
as the damping factor increases. In order to have the best
performance for both phase jump and frequency deviation,
an appropriate value of the

(
λfc
)
should be chosen, which can

be selected based on the required performance.
To demonstrate the effectiveness of the proposed method,

some simulation results are presented in Fig. 14 and Fig. 15.
These experimental results are obtained by using the config-
uration shown in Fig. 7. In this way, Simulation results of
the frequency deviation and phase jump case studies shown
in Fig. 12 and Fig. 13, are verifiedwith the experimental setup
and presented in Fig. 14 and Fig. 15, respectively.

VI. CONCLUSION
In this paper, a nonlinear time-varying model of the SRF-
PLL is introduced in order to evaluate its performance for dif-
ferent types of input frequency deviations and phase jumps.
To do so, first, the NTV model of the SRF-PLL is presented.
Based on the NTV model, the system stability is assessed for
large disturbances. In this way, nonlinear stability assessment
techniques, such as the Lyapunov stability and the phase
portrait are used to determine stability margins. Thereafter,
based on the proposed model and its stability assessment,
an adaptive method is proposed for the SRF-PLL design,
so the system performance is improved for different input
frequency deviations and phase jumps. The proposed model
and the performance of the designed SRF-PLL are verified
by using simulation and experimental results. By using the
proposed adaptive model of the SRF-PLL, improved results
are accomplished when the system is subjected to a large
disturbance in its input phase angle and frequency.
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