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Signal-Adaptive and Perceptually Optimized Sound
Zones with Variable Span Trade-Off Filters

Taewoong Lee, Student Member, IEEE, Jesper Kjær Nielsen, Member, IEEE,
and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—Creating sound zones has been an active research
field since the idea was first proposed. So far, most sound
zone control methods rely on either an optimization of physical
metrics such as acoustic contrast and signal distortion or a mode
decomposition of the desired sound field. By using these types
of methods, approximately 15 dB of acoustic contrast between
the reproduced sound field in the target zone and its leakage to
other zone(s) has been reported in practical set-ups, but this
is typically not high enough to satisfy the people inside the
zones. In this paper, we propose a sound zone control method
shaping the leakage errors so that they are as inaudible as
possible for a given acoustic contrast. The shaping of the leakage
errors is performed by taking the time-varying input signal
characteristics and the human auditory system into account when
the loudspeaker control filters are calculated. We show how this
shaping can be performed using variable span trade-off filters,
and we show theoretically how these filters can be used for
trading signal distortion in the target zone for acoustic contrast.
The proposed method is evaluated based on physical metrics such
as acoustic contrast and perceptual metrics such as STOI. The
computational complexity and processing time of the proposed
method for different system set-ups are also investigated. Lastly,
the results of a MUSHRA listening test are reported. The test
results show that the proposed method provides more than 20%
perceptual improvement compared to existing sound zone control
methods.

Index Terms—Adaptive control, human auditory system, mask-
ing effect, sound zones, variable span trade-off filters.

I. INTRODUCTION

SOUND zones are different listening areas in the same
acoustic environment for different audio contents, and

these zones are created by controlling a set of loudspeakers.
Typically, two types of sound zones are considered: a bright
zone and a dark zone. The bright zone is a confined region
in which the desired sound field is reproduced as faithfully
as possible, whereas the dark zone is a confined region in
which the energy of a reproduced sound field is suppressed as
much as possible. These two zones are created by filtering the
signals fed into the loudspeakers, and multiple bright zones can
be obtained by superimposing the individual bright and dark
zones for every input signal. Many different applications of
sound zones have been studied, including outdoor concerts [1],
automobile cabins [2]–[6], pedestrian alert systems [7], mobile
devices [8], personal computers [9], and other applications
[10], [11].

Many different methods for designing the loudspeaker con-
trol filters have been proposed over the last two decades
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since the concept was first introduced in [12]. Generally, these
control methods seek to reproduce the desired sound field in
the bright zone as faithfully as possible while also suppressing
its leakage to the dark zone as much as possible. The proposed
methods can be largely divided into three categories: mode
matching methods, acoustic contrast control (ACC) methods,
and pressure matching (PM) methods. Mode matching meth-
ods are based on that any sound field can be decomposed as
an infinite sum of spatial harmonics. In practice, however, the
sum is truncated up to a finite number of spatial harmonics
often referred to as modes. The fundamental idea is based
on [13], and several subsequent mode matching methods have
been proposed [14]–[17].

The ACC methods are designed to maximize the acoustic
contrast, defined as the ratio of the acoustic potential energies
between the bright and dark zones, and this is achieved by
solving a generalized eigenvalue problem [18]. Since ACC
only optimizes the acoustic contrast, it will in general not
maintain the spatial characteristics of the desired sound field.
Consequently, the ACC methods are most useful in situations
where the spatial characteristics are either not important or
very hard to reproduce due to complicated, dynamic acoustics
environments such as in car cabins [2]–[6]. Various variations
of the ACC method have been proposed. These include the
energy difference maximization [19], the planarity control
[20], subband optimization [3], multiple constraints on the
acoustic contrast for different frequency bands [6], and the
broadband ACC (BACC) method [21]. The BACC method is
different from the other methods in that it operates in the time-
domain instead of the frequency-domain. Since the BACC
method typically will produce control filters that will filter
out most of the energy in the input signal, except for the
few frequencies where the maximum acoustic contrast can be
obtained, the reproduced sound field will typically be severely
distorted. Various ways of mitigating this problem have been
proposed in [22]–[24].

The PM methods produce control filters that minimize the
reproduction error, defined as the difference between the repro-
duced and desired sound fields in the bright and dark zones.
The original method was proposed in [25], [26]. Compared
to the ACC methods, the signal distortion is much smaller,
but so is the acoustic contrast. To allow the user to trade-
off these two, largely two types of combination method have
been studied. In [27], a method which combines the energy
difference maximization method [19] and PM [26] in order
to control the acoustic contrast and the reproduction error has
been proposed. In [28], a method sometimes referred to as
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ACC-PM has been proposed, and it is a more flexible PM
method where the user can control the relative importance of
reproducing the desired sound field and minimizing acoustic
potential energy in the dark zone. The ACC-PM method has
also been proposed in a broadband version in [29]. We note
in passing that, despite its name, ACC-PM is actually not a
combination of the ACC and PM methods and is also referred
to by different names, e.g., in [30], [31]. A true combination
of the BACC and PM methods in the time-domain has recently
been proposed in [32].

Until now, an acoustic contrast of more than approximately
15 dB has only been reported in highly idealized experiments
where, e.g., an impractical number of loudspeakers are used,
the acoustic environment is time-invariant, or the performance
is evaluated using oracle knowledge of the acoustic environ-
ment [15]. Unfortunately, however, a much higher contrast
than 15 dB is needed, as reported in [33]. In [34], [35], it
was also found that a target-to-interferer ratio (TIR) of at
least 25 dB is needed. TIR is a metric closely related to
the acoustic contrast, but it measures the ratio of either the
acoustic potential energy or loudness between the reproduced
and interfering sound fields in a given zone (see [36] for more
on this).

Except for [17] where the sound zones were optimized
for preserving speech privacy and for [37] where the pre-
echoes were controlled over the attenuation of reflections in a
reverberant environment, existing sound zone control methods
design the control filters by minimizing physical metrics. A
problem of quantifying the performance using physical metrics
such as acoustic contrast and signal distortion is that they do
not directly relate to the human auditory system. Moreover,
the loudspeaker control filters are typically designed assuming
input signals with flat spectra. The main advantage of this
is that the control filters can be designed offline, but the
disadvantage is that array effort1 is wasted on controlling input
signal frequency components which might not be present in
the input signal or are inaudible. This is a general disadvan-
tage of the frequency-domain methods in which the control
filters are designed independently for every frequency bin.
With the exception of [39], sound zone control methods in
the frequency-domain do not trade-off the reproduction error
in one frequency bin for the reproduction error in another
frequency bin.

In this paper, we propose a perceptually optimized sound
zone control method in the time-domain, which takes both
the input signal characteristics and the human auditory system
into account on a segment-by-segment level and gives explicit
control of the trade-off between (weighted) acoustic contrast
and signal distortion. This approach is inspired by perceptual
audio coding, where quantization errors have been successfully
hidden by exploiting the characteristics of the human auditory
system. Famously in the early 1990s [40], the so-called 13 dB
miracle [41, Ch. 10] demonstrated that this approach drasti-
cally lowered the requirements to the signal-to-quantization
noise level without impacting the perceived quality, and these
principles have later been standardized in, e.g., MPEG-1/2

1The array effort is defined as the sum of mean squared control filters [38].

Layer-3 (MP3) [42], [43]. In the sound zones application,
we have reproduction errors instead of quantization errors. By
using masking curves for designing weighting filters that shape
the reproduction errors in a perceptually meaningful way, we
can, therefore, ensure that the largest control effort is spent on
maximizing the contrast and/or minimizing the reproduction
error in the perceptually most important frequency regions.
The proposed sound zone control method will be based on
the variable span linear filter, which is a subspace approach
initially proposed for signal enhancement [44]–[48] (see [49]
for more on the relation between these problems). An interest-
ing feature of the proposed method is that it reduces to existing
sound zone control methods, such as broadband PM, BACC,
and broadband ACC-PM, in special cases. We remark that this
paper is an extension of our preliminary work reported in [32],
which considered only the un-weighted case, and [50], which
considered the weighted but non-adaptive case. Moreover, we
here also report more elaborate experimental analyses and
results, including a MUSHRA (MUltiple Stimuli with Hidden
Reference and Anchor) listening test [51].

The paper is organized as follows: in Sec. II, the sound zone
control method with an arbitrary weighting of the reproduction
error is explained, and it is shown how the input signal
characteristics can be taken into account. In Sec. III, we
discuss how the weighting filters are designed to take the
characteristics of the human auditory system into account.
Furthermore, it is extended to explain how the input signals are
segmented in blocks and how the loudspeaker control filters
are updated. In Sec. IV, the performance of the proposed
method is evaluated via not only typical physical metrics
such as the acoustic contrast (AC), the normalized signal
distortion (nSDP), and the TIR, but also perceptual metrics,
including the short-time objective intelligibility (STOI) [52]
and the instantaneous perceptual similarity measure (PSMt)
from the perception model based audio quality assessment
method (PEMO-Q)2 [54]. In addition to this, the results of
a MUSHRA listening test are reported. Finally, in Sec. V, the
paper is concluded.

II. A WEIGHTED VAST FRAMEWORK

In this section, the proposed weighted variable span trade-
off (VAST) framework is described. To do this, we consider
the simple system setup depicted in Fig. 1. The figure shows
the bright and dark zones as spatially confined regions sampled
by MB and MD microphone positions, respectively. Moreover,
the figure shows L loudspeakers, with the lth loudspeaker
having the finite impulse response (FIR) control filter with
filter coefficients ql and the input signal x[n]. As alluded
to in the introduction, we can design multiple bright zones
by superimposing the solutions to the individual bright and
dark zones for each input signal. Throughout the theoretical
part of this paper, we, therefore, consider the problem of
creating a bright zone and a dark zone, and we use subscripts
B and D to represent the bright and dark zones, respectively.

2PEMO-Q was chosen because it shows a higher prediction accuracy in
known data and a more robust prediction performance on completely new
data over the perceptual evaluation of audio quality (PEAQ) in [53].
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Fig. 1. An illustration of a system geometry of sound zones. The input signal
x[n] is fed into L loudspeakers after being filtered by the corresponding
control filter {ql}Ll=1. The RIR from loudspeaker l to control point m and
the impulse response from virtual source z to control point m is represented
as hml and hmz , respectively.

The reproduced sound pressure pm[n] at microphone position
or control point m is represented by the linear convolution
between input signal x[n], the L control filters {ql}Ll=1 of
length J , and the L room impulse responses (RIRs) {hml}Ll=1

of length K, i.e.,

pm[n] =

L∑
l=1

K−1∑
k=0

J−1∑
j=0

x[n− k − j]hml[k]ql[j]

=
L∑
l=1

yTml[n]ql = yTm[n]q, (1)

where

yml[n] = X[n]hml, (2)

hml =
[
hml[0] · · · hml[K − 1]

]T
, (3)

X[n] =

 x[n] · · · x[n−K + 1]
...

. . .
...

x[n− J + 1] · · · x[n−K − J + 2]

 , (4)

ym[n] =
[
yTm1[n] · · · yTmL[n]

]T
, (5)

q =
[
qT1 · · · qTL

]T
, (6)

ql =
[
ql[0] · · · ql[J − 1]

]T
. (7)

The known signal vector yml[n] is the uncontrolled repro-
duced sound pressure at control point m originating from
loudspeaker l, as this is what we have when there is no control
over the zones, i.e., the control filters are all equal to the
Kronecker delta function. The goal is then to design the control
filters q so that the reproduced sound pressure pm[n] matches
a desired sound pressure dm[n] across all control points as
well as possible. Typically, the desired pressures are all 0 for
the control points in the dark zone, whereas those in the bright
zone are defined as part of a sound field generated by a virtual
source z emitting x[n]. Thus, the desired sound pressure at
control point m is defined as

dm[n] =

{
(hmz ∗ x)[n] m ∈MB

0 m ∈MD
, (8)

where ∗ denotes the linear convolution operator, MB and
MD are the set of control point indices for the bright and

dark zones, respectively, and hmz[n] is the impulse response
from the virtual source z to control point m, as depicted in
Fig. 1. Note that sound zone control methods have to implicitly
perform dereverberation in order to match the desired and
reproduced sound fields if the desired sound field is defined
in an anechoic environment.

In sound zone control, two zones labeled α and β are
typically considered as illustrated in Fig. 1. If we consider
two zones, each having their own desired sound field, then
the bright and dark zones for audio input signal x(α)[n] are
zone α and zone β, respectively, and those for audio input
signal x(β)[n] are zone β and zone α, respectively. To this
end, multiple bright zones can be obtained when the two
reproduced sound fields are superposed.

How close the reproduced sound field is to the desired sound
field can be quantified by the reproduction error, defined as the
difference between the desired and reproduced sound pressures
across all control points in a given zone such that

εm[n] = dm[n]− pm[n] . (9)

More generally, we can filter the reproduction error by a
weighting filter wm[n] so that

ε̃m[n] = (wm ∗ εm)[n] = d̃m[n]− p̃m[n] , (10)

where, e.g., p̃m[n] means that pm[n] has been filtered with the
weighting filter wm[n]. If we plug this into (1), we obtain the
weighted and reproduced sound pressure at control point m
as

p̃m[n] = (wm ∗ pm)[n] =

L∑
l=1

ỹTml[n]ql = ỹTm[n]q (11)

where ỹTml[n] is defined as in (2), except for that the source
signal x[n] is pre-filtered with the weighting filter. Note that
the weighting filter is assumed to be known and is used
to shape the reproduction error according to some design
criterion. This will be elaborated upon in the next section.

We are now able to measure the distance between p̃m[n]
and d̃m[n] for each of the zones. This can describe how
much distortion is present in the bright zone and how much
power is remaining in the dark zone. This allows us to define
the weighted signal distortion power (SDP) S̃B(q) and the
weighted residual error power S̃D(q), respectively, as

S̃B(q) =
1

|MB|N
N−1∑
n=0

∑
m∈MB

|ε̃m[n]|2

= σ̃2
d − 2qT r̃B + qT R̃Bq, (12)

S̃D(q) =
1

|MD|N
N−1∑
n=0

∑
m∈MD

|ε̃m[n]|2 = qT R̃Dq, (13)
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where N is the number of observations and

σ̃2
d =

1

|MB|N
N−1∑
n=0

∑
m∈MB

|d̃m[n]|2, (14)

r̃B =
1

|MB|N
N−1∑
n=0

∑
m∈MB

ỹm[n]d̃m[n], (15)

R̃C =
1

|MC|N
N−1∑
n=0

∑
m∈MC

ỹm[n]ỹTm[n], (16)

with R̃C for C ∈ {B,D} being the spatial correlation matrix
for the corresponding zone, r̃B being the spatial correlation
vector for the bright zone, and σ̃2

d being the variance of the
desired sound field.

Using these definitions, we can pose the convex optimiza-
tion problem

minimize S̃B(q) subject to S̃D(q) ≤ ε, (17)

where ε is a nonnegative scalar representing the power allowed
in the dark zone. The Lagrangian function corresponding to
the problem in (17) is

L(q) = S̃B(q) + µ(S̃D(q)− ε), (18)

where µ ≥ 0 is the Lagrange multiplier. As also assumed in the
signal enhancement literature [47], this Lagrange multiplier is
here treated as a user-defined parameter that controls the trade-
off between minimizing S̃B(q) and suppressing S̃D(q). We
note in passing that minimizing (18) for µ = 1 and µ equal
to a constant produces the broadband PM solution and the
broadband ACC-PM solution, respectively, when no weighting
is applied, i.e., w[n] is the Kronecker delta function, and the
input signal is assumed to have a flat spectrum.

The matrices R̃B and R̃D are real, symmetric, and at
least semi-positive definite matrices. Provided that R̃D is
positive definite, these properties allow us to compute a joint
diagonalization for those two matrices [49], [55, Ch. 8.7]. As
exploited for signal enhancement [47], we can use this diag-
onalization to obtain more control over the trade-off between
the SDP and the acoustic contrast. Specifically, we obtain this
control by solving (18) with a low-rank approximation to the
control filters q. The two matrices R̃B and R̃D can be jointly
diagonalized as

UT
LJR̃BULJ = ΛLJ , UT

LJR̃DULJ = ILJ , (19)

where ΛLJ = diag(λ1, · · · , λLJ) is a diagonal matrix con-
taining the generalized eigenvalues in descending order, i.e.,
λ1 ≥ · · · ≥ λLJ ≥ 0, ILJ is the LJ × LJ identity matrix,
and ULJ is a nonsingular matrix containing the generalized
eigenvectors sorted according to the eigenvalues. The matri-
ces ULJ and ΛLJ are computed by solving the eigenvalue
problem

R̃
−1
D R̃BULJ = ULJΛLJ . (20)

It is worth noting that R̃D is typically positive definite when
MDmin(N,K + J − 1) ≥ LJ .

µ

VAST

1 LJ
0

1
BACC BACC-PM

PM, Wiener

MVDR

VS Wiener

VS MD

The number of eigenvectors V

Fig. 2. VAST plane that illustrates how the various special cases of the
VAST solutions are related in terms of a function of the user parameters
1 ≤ V ≤ LJ and µ ≥ 0.

Since any vector can be represented as a linear combination
of the columns of a nonsingular matrix, q can be written as

q = ULJaLJ , (21)

where aLJ is an LJ coefficient vector. If we plug (21) into
(12) and (13), we obtain

S̃B(ULJaLJ) = σ̃2
d − 2aTLJU

T
LJ r̃B + aTLJΛLJaLJ , (22)

S̃D(ULJaLJ) = aTLJaLJ . (23)

Interestingly, we can observe from (23) that S̃D is only
represented by aLJ . Hence, this joint diagonalization leads
us to analyze how S̃B and S̃D behave in terms of the
eigen information. Furthermore, we benefit from introducing a
V (≤ LJ)-rank approximation by forcing the LJ−V smallest
eigenvalues to 0, which directly reduces S̃D. How this affects
S̃B is explained later. Now we can approximate q by using the
first V eigenvectors such that

q ≈ UV aV , (24)

where 1 ≤ V ≤ LJ and optimize L over aV instead of q
directly. The cost function (18) is then

L(UV aV ) = σ̃2
d − 2aTVU

T
V r̃B + aTVΛV aV

+ µ(aTV aV − ε).
(25)

The solution to this is analytically derived and given by

aP-VAST(V, µ) = argmin
aV

L(UV aV)

= [ΛV + µIV ]
−1

UT
V r̃B . (26)

Finally, we plug (26) into (24) and obtain the control filter as

qP-VAST(V, µ) = UV aP-VAST(V, µ) =

V∑
v=1

uTv r̃B

λv + µ
uv, (27)

where λv and uv are the vth generalized eigenvalue and
eigenvector, respectively.

Interestingly, we can obtain different solutions by varying
V and µ, including many existing solutions as shown in Fig. 2
assuming no weighting of the reproduction error and an input
signal with a flat spectrum. For example, the BACC solution
is obtained when V = 1, the broadband PM (or Wiener)
solution is obtained when V = LJ and µ = 1, the broadband
ACC-PM solution is obtained when V = LJ , and the MVDR
solution is obtained when V = LJ and µ = 0. As we have
shown in App. A, the maximum acoustic contrast but also
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Fig. 3. The block diagram to get the reproduced sound field at the given time segment i for AP-VAST. Note that * denotes the linear convolution in the
time-domain, Wm[ω, i] denotes the weighting filter in the frequency-domain at frequency ω and time segment i at control point m, FFT and IFFT denote
the fast Fourier transform and its inverse, respectively, MBMD denotes a concatenated index set of MB and MD, and Ql[ω, i] denotes the control filters
in the frequency-domain at frequency ω and time segment i for loudspeaker l.

the maximum SDP is obtained for V = 1. Increasing V and
keeping µ fixed decrease both, and we obtain the minimum
SDP but also the minimum acoustic contrast for the maximum
number of eigenvectors, i.e., V = LJ . Thus, V is also a
user parameter that can be used for controlling the trade-off
between the acoustic contrast and the SDP. Clearly, µ also
controls aspects of this trade-off and can, e.g., be set so that the
acoustic contrast is completely ignored (the MVDR solution).

III. SIGNAL-ADAPTIVE AND PERCEPTUALLY OPTIMIZED
SOUND ZONES

As alluded to in the introduction, audio coding was revo-
lutionized by exploiting simple mathematical models for the
human auditory system. These models encode the principle
that a certain sound also known as maskee becomes less
audible or inaudible in the presence of a stronger masker
close to the maskee in the time- and/or frequency-domain
[56]. This phenomenon is generally referred to as the masking
effect, and it allows us to make large modifications to audio
signals without changing how they are perceived by humans.
In the sound zones application, we can only find a set of
control filters that renders the reproduction errors to exactly
zero provided that the multiple-input/multiple-output inverse
theorem (MINT) conditions are satisfied [57], [58], i.e., it is
necessary (but not sufficient) to have more loudspeakers than
control points, something which is seldom satisfied in practice.
We thus cannot avoid making a reproduction error, but we
can seek to shape this error to be as inaudible as possible.
In the proposed sound zone control method, the reproduction
error is shaped in the following way. For control point m,
we compute a masking curve from a given input signal based
on a psychoacoustic model, e.g., [59]. This masking curve
is defined as an amplitude spectrum describing the sound
pressure level below which any sound is modeled to be
inaudible. The weighting filter is calculated as the reciprocal of
the masking curve. In other words, we apply a small weight to
those part of the spectrum where the masker has a high power,

TABLE I
DESIRED SIGNAL AND MASKER FOR CONTROL POINT m AND GIVEN TIME

SEGMENT i

Zone α (m ∈Mα) β (m ∈Mβ)

Desired signal d
(α)
m [ni] d

(β)
m [ni]

Masker d
(α)
m [ni] d

(β)
m [ni]

whereas we penalize reproduction errors more by applying a
larger weight in those part of the spectrum where the masker
has a low or no power.

To compute the masking curve at control point m, we must
first figure out where the control point is located. If it is in zone
α, say, the masking curve is computed from the desired signal
d
(α)
m [n] at this control point when zone α is the bright zone.

Note that we have used the superscript (·)(α) on the desired
signal to stress that this signal does not change with which
zones are considered as bright or dark zones. Thus, when zone
α is considered to be the bright zone, the masking curves for
the control points in the dark zone, i.e., zone β, are calculated
not from dm[n] = 0 but from d

(β)
m [n]. Note that the masking

curves are calculated from the desired signal to avoid an
iterative procedure for computing the control filters, although
the actual masker is the reproduced signal. For precisely this
reason, the masking curves used in audio coding are also
calculated from the unquantized signal, although the actual
masker is the quantized signal [60]. The above discussion is
summarized in Table I. If a zone is desired to be a dark zone,
the masking curve for the zone will simply be the threshold
in quiet.

Although average masking curves can be computed from
audio signals, we can expect to obtain the best performance if
the masking curves are updated on a segment basis so that the
control filters are adapted to the current input signal segment.
To do this, we divide x[n] into I time segments, and q is
calculated at each of these time segments. For the segment-
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wise approach, the observation index n can be considered as
a local time-index, and this is related to the global time-index
ni as

ni = (N − η)(i− 1) + n, i ∈ I, (28)

where I denotes the set of the segment indices, η ∈
{0, 1, . . . , N − 1} is the number of overlapping samples
between segments, and n = 0, 1, · · · , N − 1. This indexing
is used in Fig. 3, which shows the implementation of the
proposed sound zone control method, referred to as signal-
adaptive and perceptually optimized variable span trade-off
(AP-VAST). Fig. 3 shows that the weighting and the filtering
with the control filters are implemented in the short-time
Fourier-transform (STFT) domain with a 50% overlap and
with identical analysis and synthesis windows given by [61]

g[n] = sin

{
π

N

(
n+

1

2

)}
. (29)

This implementation of the time-varying filtering is adopted
since it has proven successful in many speech and audio pro-
cessing applications, including audio coding. The room model
ĥml indicates that the RIRs have been measured or modeled in
advance. It should be noted that AP-VAST has a special case,
which we refer to as perceptually optimized sound zones (P-
VAST), that uses averaged input signal statistics and masking
curves.

IV. EXPERIMENTAL VALIDATION AND DISCUSSION

This section presents an evaluation of the proposed method
and comparisons to the reference methods in both anechoic
and reverberant environments. We here consider the case
of two bright zones. In other words, two input signals are
considered, and each of them becomes the desired signal in
the corresponding zone. Individual problems of sound zones
for each input signal are solved, then the reproduced sound
fields are superimposed.

A. Set-up

As depicted in Fig. 4, a circular array with a radius of rc =
2 m with eight omnidirectional loudspeakers evenly placed
on the circumference was considered. The two virtual sources
were located outside of the array at the same location, which
was 0.5 m away from the 7th loudspeaker. It is depicted as
a dashed line loudspeaker in Fig. 4. The zones were located
in the interior of the loudspeaker array and spatially sampled
by 25 control points on a 2D grid with la = 5 cm spacing
between the control points to cover the size of a human head.
The control points are shown as black dots in Fig. 4 and were
used to calculate the control filters. Besides, 16 monitor points
were used to evaluate the performance. These points are shown
as gray crosses in Fig. 4 and located in between the control
points. The centers of the two zones were lc = 2 m apart from
each other. All loudspeakers, control points, and the virtual
sources were assumed to be located in the same plane at the
height of 1.5 m. All the parameters that are common in all
experiments are summarized in Table II.

Fig. 4. The system geometry used in the validations. Note that the illustration
does not follow the actual scale but is magnified for better visualization.

For the performance evaluation, the typical physical metrics
– AC, nSDP, and TIR – as well as the perceptual metrics –
STOI [52] and PSMt3 [54] – were used. AC, nSDP, and TIR
are here defined as

AC = 10 log10


MD

MB

N−1∑
n=0

∑
m∈MB

|pm[n]|2

N−1∑
n=0

∑
m∈MD

|pm[n]|2

, (30)

nSDPm = 10 log10

(∑N−1
n=0 |pm[n]− dm[n]|2∑N−1

n=0 |dm[n]|2

)
, (31)

TIR(α;β)
m = 10 log10

(∑N−1
n=0 |p

(α)
m [n]|2∑N−1

n=0 |p
(β)
m [n]|2

)
. (32)

Although these metrics are typically defined for an input signal
with a flat spectrum, we calculated the metrics from the desired
and reproduced sound fields because they should depend on
those sound fields. Since AC is defined as a zone-wise metric,
AC was calculated zone-wise. On the other hand, nSDP, TIR,
and the perceptual metrics were calculated point-wise. Note
that the metrics calculated point-wise can be easily converted
to the zone-wise metrics and vice versa. The mean values and
the error bars with the 95% confidence intervals are shown for
the metrics calculated point-wise4.

It is also important to note that AC and nSDP are the metrics
per input signal, whereas TIR is the metric per zone. Besides,
the reference signal for STOI and PSMt is the desired signal
at each point d(α)m [n], and the processed signal for STOI and
PSMt is the observed signal that is the sum of the reproduced
signal p(α)m [n] and p(β)m [n] at the corresponding point. We used
the freely available MATLAB toolboxes of STOI and PSMt for

3PSM and PSMt showed a similar trend throughout all experiments, so
only the results of PSMt are displayed.

4For the case of multiple bright zones, a family of perceptual source
separation metrics in [62] was also reviewed. Unlike STOI and PSMt,
however, these metrics did not correlate very well with an informal listening
test, so we did not include the metrics in this paper.
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TABLE II
THE PARAMETER DETAILS FOR THE SIMULATIONS

Variable Value Variable Value
MB , MD (control) 25 M ′

B , M ′
D (monitor) 16

L 8 rc 2 m
lc 2 m lg 0.2 m
la 0.05 m

sampling frequency 16 kHz speed of sound, c 343 m/s
K 3200 J 240

obtaining the results [52], [54], respectively, and the default
values in each toolbox were used. Finally, the RIRs were
calculated using the RIR generator toolbox [63], which is a
MATLAB implementation of the image source method [64], for
both the anechoic environment (T60 = 0 s) and the reverberant
environment (T60 = 200 ms). Lastly, the 48 kHz RIRs were
generated and then downsampled to 16 kHz.

As the reference methods for the performance compari-
son to the proposed method, AP-VAST, we used broadband
PM (i.e., equivalent to broadband ACC-PM in [29] with
ξ = µ/(1 + µ) = 0.5), the frequency-domain ACC5 [18],
VAST [32], and P-VAST. As a baseline, we also evaluated
the performance without any control, i.e., the control filters
were all set equal to the Kronecker delta function. For AP-
VAST, the time-varying weighting filters were obtained from
masking curves computed from each 60 ms time segment with
a 50% overlap, whereas the weighting filter for P-VAST was
calculated from an averaged masking curve computed from
all 60 ms time segments. The psychoacoustic model in [59]
was used to calculate masking curves. AP-VAST followed the
implementation described in Fig. 3. Lastly, a control filter
length of J = 240 samples (i.e., 15 ms at a sampling frequency
of 16 kHz which corresponds to a frequency grid of 66.67 Hz
in the ACC method) for all methods, and a segment length
of N = 960 samples (i.e., 60 ms at a sampling frequency
of 16 kHz) for AP-VAST were used6. Therefore, the number
of eigenvectors V was in the range from 1 to 1920 since
1 ≤ V ≤ LJ . Note that the same (V, µ) for the two input
signals were used for each data point in the following figures.

B. Performance evaluation on the proposed method AP-VAST

In the first experiment, we considered two input signals
as six seconds of dialogues excerpt from the Disney movie
“Zootopia” in two different languages (English and Danish).
These were used for the desired signal in zone α and zone β,
respectively. The energy of the two signals was calibrated to
be identical, and they were downsampled from 44.1 kHz to
16 kHz. The number of segments for AP-VAST was equal to
I = 201.

5Note that a regularization based on the truncated singular value decompo-
sition (TSVD) in [28] was used and that the magnitude normalization factor
of the control filter was calculated as described in [28] for the entire frequency
range, except at the first frequency component (i.e., the DC-component) and
the Nyquist frequency, which were both set to 0.

6To compute the joint diagonalization, R̃D has to be full rank, which
requires MDmin(N,K + J − 1) ≥ LJ .
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Fig. 5. (a) A subset of the speech signal for zone α in the first experiment,
one of the speech segments and one of the silent segments are shown in
red and in blue, respectively, (b) The masking curve (red) and the masking
curve (blue) are computed from the speech segment and the silent segment,
respectively, (c) Masking curves from each segment (gray) and the averaged
masking curve across all the masking curves (black).

Masking curves of the speech signal for zone α are shown
in Fig. 5. Note that the desired signal at the 1st control point
d
(α)
1 [n] is considered. As an example of the masking curves,

one of the silent segments and one of the speech segments
are depicted in blue and in red, respectively in panel (a).
From these segments, the masking curves corresponding to
each of the segments are calculated and plotted in Fig. 5 (b)
with the same color as the segments. In other words, if the
input segment barely contains any signal characteristics, a
masking curve (blue) close to the threshold-in-quiet with a
shallow slope is obtained. Otherwise, the masking curve (red)
is calculated based on the corresponding input segment. Lastly,
the masking curve (gray) from each segment and the averaged
masking curve (black) across all the segments are shown in
Fig. 5 (c). The averaged masking curve is used in P-VAST.

First, AC and nSDP obtained by AP-VAST from the speech
signal for zone α for five different µ’s are shown in Fig. 6.
Regardless of µ, a clear trend is that AC and nSDP decrease
with increasing V . For V = 1, in any case of µ, the highest
AC but also the largest nSDP is obtained. The smallest nSDP
along with the lowest AC is obtained when V = LJ with a
fixed µ. This trend certainly shows the trade-off between AC
and SDP, which is the core property of AP-VAST.

As µ increases from µ = 0, both AC and nSDP increase
for a fixed V . The lower bound of AC and nSDP can be
observed when µ = 0. In this case, AP-VAST searches for
the solution to minimize the signal distortion in the bright
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Fig. 6. (a) AC in dB and (b) nSDP in dB as a function of V for five different
µ: µ = 0 (blue), µ = 0.1 (red), µ = 1 (yellow), µ = 10 (purple), and
µ = 100 (green). Note that nSDP is represented with the 95% confidence
interval (error bars).

zone instead of reducing the residual power in the dark zone.
Hence, the case of V = 1920 and µ = 0 guarantees the least
nSDP, but so is AC, which is close to 0 dB. Interestingly, AC
and nSDP become less sensitive for V as µ increases. If µ
is large enough, e.g., µ = 100, the degradation on AC and
nSDP with increasing V is smaller than when µ is small, e.g.,
µ = 1. This trend can be interpreted as AP-VAST seeks the
solution to reduce the residual power in the dark zone more
than to minimize the signal distortion in the bright zone as µ
increases. Even though TIR is not plotted in this experiment,
TIR follows the same trend as AC.

Secondly, STOI and PSMt obtained by AP-VAST from the
speech signal for zone α for five different µ’s are shown in
Fig. 7. As alluded to earlier in this section, the observed signal
is the sum of the reproduced signal by input signal α and the
interference signal by input signal β. This affects STOI and
PSMt to decrease, especially as µ decreases and V increases.
The lower bound of STOI and PSMt can be found for µ = 0
as in AC and nSDP, and they decrease as V increases. PSMt
drops sharply for V ≥ 960 and µ < 1 particularly because
the interference is more dominant than the reproduced signal.
Therefore, we can see this as AC and TIR are more important
than nSDP in order to have higher STOI and/or PSMt. We
can expect from the STOI metric that the reproduced sound is
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Fig. 7. (a) STOI in a range between 0.0 and 1.0 and (b) PSMt in a range of
between −1.0 to 1.0 as a function of V for five different µ: µ = 0 (blue),
µ = 0.1 (red), µ = 1 (yellow), µ = 10 (purple), and µ = 100 (green). Note
that both are plotted with the 95% confidence interval (error bars).

intelligible if V ≥ 120 is used in this experiment7. On top of
this, we can expect from PSMt that it has a better perception if
µ ≥ 1. We can expect that STOI and PSMt will not decrease in
the case of one bright zone and one dark zone as V increases
or µ decreases because nSDP decreases. A similar trend in
these metrics is also observed from zone β.

C. Performance comparison

In the previous experiment, we investigated AP-VAST with
respect to the physical and perceptual metrics as a function
of V and µ in Figs 6 and 7, respectively. In this experiment,
a comparison between AP-VAST and the reference methods
is carried out. Specifically, how the signal-adaptive approach
improves the performance is investigated by comparing VAST,
P-VAST, and AP-VAST. The same input signals as in the
previous experiment are used, and µ is set to µ = 1.

AC, nSDP, and TIR from the speech signal for zone α
performed by five different methods are illustrated in Fig. 8. As
seen in Fig. 8 (a), AC from all methods is improved compared
to the initial AC, which is 0 dB due to the symmetry of the
system. ACC and PM provide around 15.7 dB and 14.3 dB of
AC, respectively, whereas VAST and P-VAST vary depending
on V , but equal to or higher than 15 dB. PM gives the lower

7According to [52], a STOI score of more than 0.80 maps to approximately
100 % speech intelligibility.
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Fig. 8. (a) AC in dB, (b) nSDP in dB, and (c) TIR in dB as a function of V
for five different methods: PM (purple dash-dot) [29], ACC (black dash-dot)
[18], VAST (blue dash) [32], P-VAST (green dot), and AP-VAST (red solid).
Note that nSDP and TIR are represented with the 95% confidence interval
(error bars).

bound of AC, and we can observe that AC by VAST converges
to the lower bound as V increases. AP-VAST provides the
highest AC across V in this experiment and follows the same
trend, which can be found in AC and nSDP, as in the previous
experiment.

As depicted in Fig. 8 (b), ACC and PM provide around 0 dB
and −13.5 dB of nSDP, respectively. Note that the initial nSDP
is about 11.9 dB, but this is excluded in Fig. 8 (b) for better
visualization. Interestingly, nSDP of not only VAST but also
P-VAST and AP-VAST seems to be upper- and lower-bounded
by ACC and PM, respectively. By comparing Figs. 8 (a) and
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Fig. 9. (a) STOI in a range between 0.0 and 1.0 and (b) PSMt in a range
between −1.0 to 1.0 as a function of V for five different methods: PM (purple
dash-dot) [29], ACC (black dash-dot) [18], VAST (blue dash) [32], P-VAST
(green dot), and AP-VAST (red solid). Note that both metrics are represented
with the 95% confidence interval (error bars).

8 (b), we can observe that higher AC yields larger nSDP from
ACC, PM, and VAST, which do not have perceptual weighting.
However, this is not the case for P-VAST and AP-VAST since
higher AC can be observed even at lower nSDP by comparing
P-VAST and AP-VAST, e.g., when V = 960. As alluded to
previously in this section, TIR follows the same trend in AC,
as seen in Figs. 8 (a) and (c).

In Fig. 9, we observe STOI and PSMt. When there is no
control, a STOI of 0.6 and a PSMt of −0.01 are observed but
excluded in Fig. 9 for better visualization. We can observe
that STOI and PSMt by VAST converge to that of PM as V
increases. P-VAST gives higher scores than VAST, and finally
AP-VAST provides the highest STOI and PSMt amongst the
methods across any V .

From these experiments, we can observe that AP-VAST
does not have the best performance across the physical metrics
but does have it for the perceptual metrics.

D. Performance comparison in a reverberant environment

In the third and last experiment, we considered two input
signals, which were 4.5 seconds of track 49 (English female
speech) and track 50 (English male speech) excerpt from the
EBU SQAM database [65]. They were the desired signal
in zone α and zone β, respectively. As in the signals used
in the previous experiments, the energy of the signals was
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TABLE III
THE MEAN AND THE 95% CONFIDENCE INTERVAL OF THE PERFORMANCE METRICS OF THE SPEECH SIGNAL FOR ZONE β IN THE REVERBERANT

ENVIRONMENT

Method Parameter Performance metric

1 ≤ V ≤ 1920 µ ≥ 0 AC (dB) nSDP (dB) TIR (dB) STOI PSMt

No control NAa NA −1.3 14.2± 0.5 −0.1± 0.3 0.64± 0.004 0.14± 0.025

PM [29] 1920 1.0 10.5 −9.9± 0.7 11.5± 0.5 0.80± 0.003 0.39± 0.009
ACC [18] NA NA 9.2 0.4± 0.8 9.3± 0.4 0.77± 0.013 0.40± 0.014

VAST [32] 1080 1.0 12.2 −7.8± 0.7 12.8± 0.7 0.80± 0.004 0.43± 0.016
P-VAST 1080 1.0 14.9 −7.2± 0.6 11.8± 0.6 0.76± 0.004 0.40± 0.022

AP-VAST 1080 1.0 12.0 −8.4± 0.4 12.2± 0.3 0.82± 0.004 0.54± 0.010

a NA: Not applicable

TABLE IV
THE COMPUTATIONAL COMPLEXITY FOR THE CALCULATION OF SPATIAL

STATISTICS AND CONTROL FILTERS

Method Spatial statistics Control filter

PM [29] O(ML2J2) O(L3J3) for solving the least squares
ACC [18] O(L2J) O(L3J) for solving J GEPs

VAST [32] O(MNL2J2) O(L3J3) for computing JD
P-VAST O(MNL2J2) O(L3J3) for computing JD

AP-VAST O(IMNL2J2) O(IL3J3) for computing I JDs

GEP: generalized eigenvalue problem
JD: joint diagonalization

calibrated to be identical, and the signals were downsampled
from 44.1 kHz to 16 kHz. The number of segments for AP-
VAST was equal to I = 135.

For the reverberant environment, a room with T60 = 200 ms
and a volume of 140 m3 was considered. In order to compare
AP-VAST to the reference methods, the user parameters V
and µ are selected as V = 1080 and µ = 1, respectively.
Note that we can expect AP-VAST to have a lower nSDP as
well as higher AC, STOI, and PSMt if a high µ is selected,
which can be explained in Figs. 6 and 7. However, here µ = 1
is specifically chosen in order to compare AP-VAST to PM
directly. Although the dereverberation might not be performed
well because the length of the control filter is shorter than that
of the reverberation, the performance comparison is still fair
since this applies to all the candidate methods.

The performance of all the metrics as a function of mean and
95% confidence interval is summarized in Table III. In general,
compared to the performance in the anechoic environment
depicted in Figs. 8 and 9 for V = 1080, performance
degradation on all metrics is observed from all methods due
to the reverberation. The highest AC, the minimum nSDP,
and the largest TIR are obtained by P-VAST, PM, and VAST,
respectively, but none of them provides the highest STOI or
PSMt. Although AP-VAST provides neither the highest AC
nor the lowest nSDP in this experiment, AP-VAST provides
the highest STOI and PSMt.

E. Computational complexity and processing time

The experiments showed that AP-VAST outperformed the
reference methods in terms of the perceptual metrics. Thus,

there is a clear benefit to making a sound zone control
algorithm signal-adaptive and perceptually optimized. The
price for this, however, is a higher computational complexity
since we must update the control filters for every segment
instead of just once for all segments. To quantify this, we
here use the big-O notation O from [55] to denote the com-
putational complexity of an algorithm. By using this notation,
the joint diagonalization in AP-VAST, P-VAST, and VAST
has a computational complexity of order O(L3J3) where L
and J are the number of loudspeakers and the control filter
length, respectively. Since the joint diagonalization has to be
performed for every segment in AP-VAST, the resulting com-
plexity is O(IL3J3) where I is the number of segments. The
joint diagonalization is performed from the spatial statistics. If
the spatial statistics are computed naı̈vely, the computational
complexity is O(MNL2J2) for every segment where M and
N are the number of control points and the segment length,
respectively. Note that the complexity becomes high for P-
VAST if N becomes large. The broadband PM and ACC-
PM, on the other hand, demand the same order of complexity
as the joint diagonalization, i.e., O(L3J3) to solve a large
least-squares problem. Since the ACC method is solved in the
frequency-domain, we get many smaller problems rather than
one big problem, one for every frequency bin, which results in
a complexity of O(L3) for solving the generalized eigenvalue
problem and a complexity of O(L2) for forming the spatial
statistics in one of J frequency bins. The above discussion is
summarized in Table IV.

Lastly, the mean processing times for calculating the spatial
correlation matrix and the joint diagonalization by AP-VAST
are shown in Fig. 10. Note that the 95% confidence interval
was negligible compared to the processing time. The same
setup and the input signals used in Sec. IV-B except for
the number of loudspeakers were used for computing the
processing times. Four different numbers of loudspeakers
were chosen, L = {4, 8, 12, 16}; therefore, the corresponding
dimensions of the spatial correlation matrices are LJ =
{960, 1920, 2880, 3840}, respectively, because the length of
control filters is J = 240. All timings were computed on a
Windows 10 desktop PC (Dell OptiPlex 5040) with a 3.4 GHz
Intel(R) Core(TM) i7-6700 CPU and 8 GB RAM using the
function in MATLAB 2019a called timeit. As can be seen
from Fig. 10, when LJ = 960 for a 60 ms time segment,
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Fig. 10. The processing time of AP-VAST for calculating (a) The spatial
correlation matrix RC and (b) The joint diagonalization. Four different
numbers of loudspeakers L = {4, 8, 12, 16} with a fixed control filter
length J = 240 lead us to have four different dimensions LJ of RC:
LJ = {960, 1920, 2880, 3840}.

TABLE V
LIST OF EXCERPTS USED IN THE MUSHRA TESTS

Scenario Data set Zone Excerpt

S1 D1 α Female speech, Track 49a

D2 β Male speech, Track 50a

S2 D3 α Pop music, Track 69a

D4 β Pop music, Track 70a

S3 D5 α Piano solo
D6 β Orchestra, Track 66a

S4 D7 α Guitar solo
D8 β Male speech

S5 D9 α Zootopia dialogue in Danish
D10 β Zootopia dialogue in English

a EBU SQAM in [65]

the mean processing times are approximately 647 ms and
88 ms, respectively, and they are nearly 6027 ms and 7484 ms
when LJ = 3840, respectively. The processing time for
computing the joint diagonalization grows approximately eight
times every time LJ doubles due to the cubic complexity, as
summarized in Table IV. It should be noted that real-time in
a practical setup would be challenging due to its substantial
computational complexity.

F. Formal listening Test

In order to quantify the perceived performance of the
candidate methods, we conducted a subjective listening test.
The case of two bright zones was considered for five different
scenarios. This led us to have ten different data sets8, as
summarized in Table V. In other words, the two reproduced
sound fields were superposed; therefore, interference is present
in the processed signal. In the listening test, the signal at the
center of each zone was played back. Through this listening
test, we evaluated the overall preference, i.e., the quality
and the attenuation of the leakage to the other zone, of the
candidate methods.

1) Set-up: As illustrated in Fig. 11, a uniform linear array
of 16 equally-spaced loudspeakers was considered. Each zone,

8The audio examples of the reproduced signals are available online at the
following link: https://tinyurl.com/apvast2020

1.5 1.0 0.5 0

-0.5

0

0.5

wall

x [m]

y
[m

]

Loudspeaker Zone α
Zone β Virtual source

Fig. 11. The system geometry for the MUSHRA listening test. The number
of loudspeakers (black triangle) L = 16, the number of control points (orange
and blue circles)M = 37 for each zone, and the virtual source (green triangle)
are shown.

which consists of 37 control points, was located in front of
the loudspeaker array. The distance between the loudspeakers
was 9 cm. The same distance was used for the space between
the control points in each of the zones. A room with the
dimensions 4.5 m × 4.5 m × 2.2 m and a reverberation time
T60 = 300 ms was considered. The measured RIRs used
in [39], [66] were used for the listening tests. The impulse
response of the desired sound field hmz[n] for the bright zone
was chosen from the RIR of the 8th loudspeaker, after being
shortened to contain only the direct path component. The RIRs
were resampled from 48 kHz to 16 kHz. Except for the above
modifications, the same information described in Sec. IV-A
was used. Therefore, V is in a range of 1 ≤ V ≤ 3840 = LJ .

The user parameters V and µ were selected as V = 3840
and µ = 1, respectively, for both AP-VAST and P-VAST.
This choice allows us to directly compare the perceived
performance of the perceptually optimized sound zones (AP-
VAST and P-VAST) to that of the physically optimized sound
zones (PM), as well as the perceived performance between
AP-VAST and P-VAST.

2) MUSHRA test: A MUSHRA listening test was con-
ducted according to the recommendation in [51] using a
webMUSHRA software [67]. In total, 20 listeners with self-
reported normal-hearing have participated in the tests. The
listeners were asked to be located in a quiet place with wearing
a pair of headphones9. The listening test was divided into a
training phase and an evaluation phase. In the training phase,
the listeners were asked to get familiar with the interface and
all the processed signals. In the evaluation phase, the listeners
had to rate seven differently processed signals, the so-called
stimuli, per data set in a range of 0 to 100 according to the

9We conducted the listening tests using an online platform [67] due to
COVID-19 lockdown.
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Fig. 12. The mean values and the 95% confidence intervals of all MUSHRA
scores for four different methods and a hidden reference and the two anchors.
In total, 1400 ratings, specifically, 200 ratings (20 participants for 10 different
data sets) per method, were used. Note that the standard anchor and the hidden
reference are denoted as Anchor and Ref, respectively.

TABLE VI
THE WILCOXON SIGNED-RANK TEST STATISTICS FOR DIFFERENT PAIRS

OF THE SOUND ZONE CONTROL METHODS

Pair PM PM ACC ACC P-VAST
P-VAST AP-VAST P-VAST AP-PVAST AP-VAST

Z −9.536 −10.066 −9.018 −9.580 −1.145
p < 0.001 < 0.001 < 0.001 < 0.001 0.252

Z denotes the Z satistic.

quality with respect to the known reference. These stimuli
included the hidden reference and a standard anchor (the
low-pass filtered version of the reference at 3.5 kHz). The
hidden reference was used for examining the consistency of
the listener’s responses. The no control version was used as
an additional anchor. The remaining methods were ACC, PM,
P-VAST, and AP-VAST. In the test, they were displayed in
random order. Therefore, one listener had to give 70 ratings
(10 data sets, 7 stimuli) in total.

The statistical analyses at a significance level α of 0.05
were conducted in SPSS 25 and MATLAB 2019a. A Friedman
test [68] was performed10, as suggested in [69], because a
Shapiro-Wilk test [70], [71] found that the MUSHRA scores
were not normally distributed. It should be noted that the
reference and the two anchors are excluded in the analyses.
From the results of the Friedman test, a statistically significant
difference was found in the perceived performance across all
data sets between the related groups (ACC, PM, P-VAST,
and AP-VAST), NF = 200, χ2(3) = 183.799, p < 0.001

10Initially, a one-way analysis of variance (ANOVA) with repeated mea-
sures was considered to compare the mean MUSHRA scores between ACC,
PM, P-VAST, and AP-VAST because all the ratings by the same listener are
on the same continuous, dependent variable, i.e., the MUSHRA scores.

TABLE VII
THE WILCOXON SIGNED-RANK TEST STATISTICS BETWEEN AP-VAST

AND P-VAST FOR DIFFERENT DATA SETS

Scenario S1 S2 S3 S4 S5

Dataset D1 D3 D5 D7 D9

Z −1.269 −1.188 −3.511 −1.572 −2.073
p 0.205 0.235 < 0.001 0.116 0.038

Dataset D2 D4 D6 D8 D10

Z −0.763 −0.982 −3.287 −2.833 −2.199
p 0.445 0.326 0.001 0.005 0.028

(boldface): H0 is rejected, and AP-VAST has a higher mean MUSHRA score
than P-VAST. (underlined): H0 is rejected, and P-VAST has a higher mean
MUSHRA score than AP-VAST. Otherwise, H0 cannot be rejected due to
insufficient evidence to reject it.

where NF is the number of ratings per method, χ2(d) is the
Friedman’s Chi-square statistic with d degree of freedom, and
p is the significance of the result. It can be interpreted as at
least one pairwise difference is present, which is not surpris-
ing at all, considering Fig. 12. Therefore, post hoc analysis
with Wilcoxon signed-rank tests [72], [73] was separately
conducted. A Bonferroni correction was applied, resulting in a
corrected α = 0.05/5 = 0.01. We can observe the statistically
significant pairwise difference (p < 0.001) between all the
combinations, as summarized in Table VI, except for the pair
of P-VAST and AP-VAST.

We can visually see this difference by using a plot that
shows the mean MUSHRA scores with the 95% confidence
intervals, as shown in Fig. 12. First, we can observe that
the lowest mean MUSHRA score (32.7) when no control is
considered. One of the significant observations is that the
perceptual approaches (AP-VAST and P-VAST) outperform
the existing methods (ACC and PM) by at least 10 points in
general, which is more than a 20% improvement. Specifically,
a significant improvement, which is more than 15 points, is
observed by comparing the scores between AP-VAST and PM.
The mean MUSHRA scores for the four methods were as
follows: 48.63 for ACC, 45.29 for PM, 60.95 for P-VAST,
and 62.07 for AP-VAST. We emphasize that such a perceived
difference was achieved even in the worst case of AC, when
V = LJ for a fixed µ, for AP-VAST and P-VAST. Secondly,
the standard anchor obtained about the mean MUSHRA score
of 80.8, which is the second-highest score. This observation
can be interpreted that most listeners preferred the situation
in which no interference is present, i.e., TIR is infinite, even
though the processed signal is low-pass filtered. In other
words, higher TIR and/or AC is preferred even the distortion
(SDP) is present. This tendency seems more noticeable when
speech is the desired signal than the case of music. Thirdly,
the mean MUSHRA score by AP-VAST is slightly higher than
that by P-VAST.

We conducted Wilcoxon signed-rank tests for all the data
sets separately to identify the statistically significant pair-
wise difference between AP-VAST and P-VAST. A two-tailed
paired t-test [74, Ch. 8.4] could not be applied because the
pairwise difference was not normally distributed, as in the
previous analysis. The null hypothesis H0 is as follows: the
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perceived performance between AP-VAST and P-VAST is the
same. The null hypothesis is rejected if p < 0.05; otherwise,
the null hypothesis cannot be rejected due to a lack of evidence
to reject it at the significant level α = 0.05. The test statistics
of all the Wilcoxon tests are summarized in Table VII. The null
hypothesis H0 is rejected for the five data sets (D5, D6, D8,
D9, and D10), which show a statistically significant difference
in the perceived performance between AP-VAST and P-VAST.
Specifically, the higher MUSHRA scores were obtained by
AP-VAST over P-VAST from the four data sets: D6, D8, D9,
and D10. We believe that segment-dependent V and µ based
on certain design criteria for constraints rather than fixed V
and µ could lead the optimal performance of AP-VAST, which
will be dependent on the statistics of the input signals and
different acoustic environments.

V. CONCLUSION

In this paper, we proposed a signal-adaptive method for
creating perceptually optimized sound zones by using variable
span trade-off filters in the time-domain. This method was
achieved by taking the characteristics of input signals and
the human auditory system into account segment-wise. The
characteristics of input signals were integrated into the spatial
correlation matrices, and the human auditory system was
quantified mathematically by using a psychoacoustic model.
Masking thresholds were calculated by using this model from
the given input signal and used as perceptual weighting filters
applied to the input signals. To this end, it allowed us to shape
the reproduction error perceptually so that the interference
becomes less or ideally inaudible to the listener in a given
zone according to the human auditory system. Exploiting the
joint diagonalization of the spatial correlation matrices allowed
us to have a flexible control filter that trades-off the acoustic
contrast and the signal distortion. Through validations in both
anechoic and reverberant environments, the performance in
terms of the physical metrics – AC, TIR, and nSDP – as well
as the perceptual metrics – STOI and PSMt – was measured.
The performance across all metrics, zones, and input signals
was reasonably consistent, all indicating that the proposed
method provides a perceptually better reproduction of the
desired sound field, even though the physical metrics are not
necessarily better. Lastly, through a MUSHRA listening test,
it was verified that the perceptually optimized sound zones
provide more than 20% better perceived performance in terms
of the mean MUSHRA score compared to the existing sound
zone control methods.

APPENDIX A

A. Acoustic contrast

Since the acoustic contrast γ(q) is the ratio between the
power in the bright and dark zones, it can be written as

γ(q) =
MD

MB

qTRBq

qTRDq
, (33)

and if we plug qP-VAST(V, µ) from (27) into γ(q), then it yields

γ (qP-VAST(V, µ)) =
MD

MB

aTP-VAST(V, µ)ΛV aP-VAST(V, µ)

aTP-VAST(V, µ)aP-VAST(V, µ)
.

(34)

If we consider V and V + 1, respectively, then we obtain

γ (qP-VAST(V, µ)) =
MD

MB

∑V
v=1 |av|2λv∑V
v=1 |av|2

, (35)

γ (qP-VAST(V + 1, µ)) =
MD

MB

∑V+1
v=1 |av|2λv∑V+1
v=1 |av|2

, (36)

where av is the vth element in aP-VAST(V, µ). Subtracting (36)
from (35) and reducing to common denominator lead us to
have

γ (qP-VAST(V, µ))− γ (qP-VAST(V + 1, µ))

=
MD

MB

|aV+1|2
(∑V

v=1 |av|2λv − λV+1

∑V
v=1 |av|2

)
∑V
v=1 |av|2

∑V+1
v=1 |av|2

=
MD

MB

|aV+1|2
{∑V

v=1 |av|2
(
λv − λV+1

)}
∑V
v=1 |av|2

∑V+1
v=1 |av|2

. (37)

Since |av|2 and |aV+1|2 are nonnegative and λv ≥ λV+1 (the
equality holds when λv = 0), the acoustic contrast mono-
tonically decreases for increasing V , i.e., γ (qP-VAST(V, µ)) ≥
γ (qP-VAST(V + 1, µ)).

B. Signal distortion

If we plug qP-VAST(V, µ) from (27) into (12) and (13), we
obtain

S̃B(qP-VAST(V, µ)) = σ̃2
d − 2r̃TBUVG

−1UT
V r̃B

+ r̃TBUVG
−1ΛVG

−1UT
V r̃B

= σ̃2
d −

V∑
v=1

λv + 2µ

(λv + µ)2
|uTv r̃B|2, (38)

S̃D(qP-VAST(V, µ)) = r̃TBUVG
−2UT

V r̃B

=
V∑
v=1

|uTv r̃B|2
(λv + µ)2

, (39)

where G = ΛV + µIV . Interestingly, we can observe that
S̃B(qP-VAST(V, µ)) decreases and S̃D(qP-VAST(V, µ)) increases
monotonically for increasing V , respectively, because all vari-
ables in (38) and (39) are nonnegative. Finally, we plug (38)
and (39) into (18), then we obtain

L(qP-VAST(V, µ)) = σ̃2
d −

V∑
v=1

|uTv r̃B|2
λv + µ

, (40)

which decreases for increasing V . Therefore, we can obtain the
minimum reproduction error when all eigenvectors are used
and µ is a positive value, which means that the residual power
in the dark zone is still being controlled. Note that we obtain
the minimum signal distortion if µ = 0.
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