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Chapter 1

Introduction

This project focuses on exploring computer vision for ergonomic assessment with the purpose of
monitoring and adapting the movements of an assistive collaborative robot in order to improve
the working environment for human workers. The specific applicational context for this project
is the working environment of butchers working in a mass production meat packing facility.
This chapter will examine the technical challenges related to the problem as well as give a brief
overview of the motivational background to the problem.

1.1 Motivation

Musculoskeletal Disorders (MSDs) can be defined as any health problems ranging from light to
irreversible in the locomotor apparatus. MSDs include conditions that a�ect muscles, ligaments,
tendons, nerves, and blood vessels. Conditions induced or aggravated by work are considered
Work related MSDs (WMSDs). (Chander and Cavatorta, 2017; Punnett and Wegman, 2004) In
2017 MSDs was the most frequently reported occupational illness in Denmark (see Figure 1.1)
(Arbejdstilsynet, 2018). Many shop floor workers in industry are subject to strain and, ulti-
mately, risk factors for MSDs. This also applies to the workers in the food industry in Denmark,
especially the butchers working in facilities of the meat packing industry. For several decades the
industry has been associated with a high rate of injuries and illnesses such as MSDs.(Grant and
Habes, 1997; Moore and Garg, 1998; Tappin et al., 2008) In fact, a study conducted on behalf of
the Danish trade union for workers in the food industry, "Fødevareforbundet NNF," shows that
butchers were responsible for just below half of the work related injuries reported on average
yearly among their members in the years 2010-2013. Just about two thirds of these reports were
occupational illnesses. Likewise, a report by the Danish Working Environment Authority reveals
that the meat packing industry had the highest incidence of occupational illnesses in Denmark
in 2017. Furthermore, the meat packing industry had the highest incidence of MSDs reported
among any of the investigated industries in Denmark in 2017; an amount 5 times higher than
the average amount reported per industry MSDs (see Figure 1.2). (Arbejdstilsynet, 2018)
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4 Chapter 1. Introduction

Figure 1.1: The distribution of the reported occupational illnesses in 2017 in Denmark.1

Figure 1.2: Number of reported MSDs per 10.000 employed (incidence) in 2017 in Denmark distributed across
industry groups.2

Several sources report that this specific group of workers is at high risk for MSDs such as
Carpal Tunnel Syndrome, Rotator cu� syndrome and Epicondylitis(Moore and Garg, 1998;
Gorsche et al., 1999; Bjarne Thomsen (Chef consultant), Tommy Jensen (Federal consultant),
Per Hansen (Federal secretary), 2019). Moreover, according to Fødevareforbundet NNF, every
second member has consumed pain medication or had the need for pain treatment within a time
period of three moths as a consequence of their work (Toxverd, 2018). Though not stated, with
the workers in the meat packing industry having the largest incidence of work related injuries
and illnesses, it is likely that they also are the group of members consuming the most pain
medication. There are several factors that cause the work to be straining, and which makes
the possibilities of improvements to the current situation an intricate a�air. Firstly, di�erent
parts of the work carried out requires a lot of force exertion by the worker e.g. handling and
cutting the meat. Secondly, the work conducted by the butchers in the slaughterhouse is highly
repetitive due to the need of a high production rate. The workers stand in lines along the side of
conveyer belts and work at a high pace for hours with limited possibility for taking small stretch
breaks in between. The workers are paid based on a basic amount combined with piecework
payment (Fødevareforbundet NNF and DI, 2017). This means that the butchers earn more the
harder they work, which gives them motivation to maintain a high work pace ignoring the need
to lower the pace or take breaks.

The competition on the international meat market puts pressure on the production costs
and, thereby, sets a need for a high production rate. In the mean time, the danish welfare and
the trade union push for good conditions and environments for the workers, which urges the
employers to limit their demands and compromise to such an extend that a conflict of interests

2Figure was created based on data from Arbejdstilsynet (2018).



1.2. The ACMP Project 5

arises.

The management at the slaughterhouses and the trade union are aware of these challenges
and do have measures in place for limiting the risk factors a�ecting the workers. During intro-
duction and education of a new worker, specific instructions on the right course of action and
the right movements are given. Furthermore, ergonomic inspections of the employed workers
are conducted, where it is also assessed whether the workers follow the instructions or should be
given elaborate lessons. Finally, in order to minimise the repetitiveness of the work, rotations
have been implemented such that the workers are not doing the exact same movements for an
entire shift but have some variation. (Bjarne Thomsen (Chef consultant), Tommy Jensen (Fed-
eral consultant), Per Hansen (Federal secretary), 2019)

Because of these well known factors and conflict of interests, investigations and experiments
have been conducted thought the last decades in order to examine bodily activity, forces and
strain during the working positions. Some of the investigations have merely provided insights
or mapped the conditions under which the butchers work while other have lead to information
which can be used for the suggestion of specific improvements to the work environment and
tools. (Grant and Habes, 1997; Pontonnier et al., 2014; Moore and Garg, 1998)

Changes which will increase the pressure on the business strategies of the management of the
slaughter houses and influence the static power balance between cost and conditions are expected
to play a roll in the foreseeable future. As a consequence, investigations are made into how the
meat production industry of the future should look like including new technologies, more flexible
and autonomous solutions, and improvements to the working environments. An example of a
project concerned with such investigations is the Augmented Cellular Meat Production (ACMP)
project.

1.2 The ACMP Project

The Augmented Cellular Meat Production (ACMP) project is hosted and lead by the Techno-
logical Institute branch Danish Meat Research Institute (DMRI) in collaboration with several
partners: the workers union "Fødevareforbundet NNF," educational and research institutes,
such as Aalborg University (AAU) and DTU, and management of select slaughterhouses among
other3. The project is financed by ’Innovation Fund Denmark.’ The purpose of the project
is to innovate and reform the traditional meat packing industry. This is done by investigating
possibilities for implementing technology in order to make the facilities more flexiblility, improve
the quality, minimise mistakes and implement solutions that support the butchers in their work.
As a part of the latter improving the working environment and lessen the load for the butchers
is considered. The project includes three work packages each concerned with implementing as-
sistive systems based on new technologies and higher level of automation in the meat packing
industry.

The first package is called ’Quality inspection and contaminant detection’ and focuses on
detecting flaws and contaminants with x-rays. Furthermore, it is concerned with finding the
optimal visual way to communicate this information to the butchers who are responsible for the
removal of the contaminants.

"Belly trimming with handling assistance" is the title of the second work package. This work
package is concerned with obtaining the perfect thickness of the fat layer on the belly pieces
and providing support for the workers during the handling of the pieces. This includes tasks
such as automatic unloading of belly pieces, presentation of pieces to the butchers, providing

3Information about the ACMP project is provided by The Danish Meat Research Institute



6 Chapter 1. Introduction

visualisation of the optimal trim with updated feedback during trimming, and recognition of
the belly pieces. Furthermore this work package includes investigations into how a robot can be
utilised for providing the mentioned support.

The third work package, "Augmented carcass processing Assistance," is focussed on cells for
meat processing that are flexible and highly automated but keeps the human in the loop. The
work package includes investigation into automated processing like parting pork, cutting ears
etc. using robots but keeping the human in the loop. One of the aims is to find the best dis-
tribution of the work between a human worker and the robot. Other focus points of this work
package are investigation of how to handle and adapt to the biological variation in the carcasses,
and the human-robot communication.

This master thesis mainly relates to the second work package and to the handling and presen-
tation of the belly pieces. It builds on additional thoughts expressed during meetings between
the parties involved with the ACMP project. The thesis focusses on how to improve ergonomic
conditions and limit the butchers exposure to ergonomic risk factors during their handling and
processing of belly pieces. More specifically, it investigates whether and how an assisting collab-
orative robot through its movements automatically can facilitate this and adapt to the human
operator when it presents the belly pieces to the butcher. In section 1.3 a possible design outline
of such a system will be provided.

1.3 System Outline
This section gives an outline of how a possible system that aligns with the thoughts and wants
expressed by the working group in the ACMP project could be structured.

A system able to adapt according to human poses is dependent on several components. A
basic outline can be seen in Figure 1.3. A system with the abilities described in section 1.2 have
to receive some input from the butcher/operator in order to be able to adapt. This could be
input actively provided by the operator, but since the aim is to relieve the operator and make
the robot responsible for autonomously adapting, monitoring of the human is preferable. This
requires sensors of one or more types. Also, a control system probably consisting of several
submodules is needed for processing the input received from the sensors, decision making and
generation of control output for a collaborative robot. Finally, a robot or manipulator is needed
for providing assistance and perform the actual adaptation to the operator.

Control
System

Input Output

Figure 1.3: The basic system outline.

When taking a closer look at the functional requirements for the control system it is clear that it
will consist of several modules each responsible for some specific processes or operations needed
in the system. Because the goal is optimisation in relation to ergonomic conditions and as
posture is an important aspect of ergonomics, detection of the operator’s posture is inevitably
important. This sets specific requirements to the monitoring system including both the sensors
and the processing module. A posture processing module should be able to calculate information
about the operator’s posture based on the sensor input. Subsequently, an ergonomic estimation
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module should be able to estimate some measure of the ergonomic state of the operator. Based
on the ergonomic information a decision making module should find the right course of action in
order to minimise strain and ergonomic risk factors based on a robot response model. Lastly, a
robot control module should send control information to the robot such that the wanted course
of action is carried out. An overview of the control system with the di�erent modules can be
seen in Figure 1.4.

Signal
Processing

OutputInput Robot
Control

Ergonomic 
Estimation

Control System

Decision
Making

Figure 1.4: The expanded structure of the control system with the di�erent functional modules.

In section 1.4 an investigation of the state of the art methodology in relation to these modules
is presented. As the signal processing done in order to obtain a pose estimation is closely linked
to the sensors used, these two topics will be addressed together in section 1.4.1. Similarly,
the connection between the ergonomic estimations and adaptive behaviour of a robot will be
explored in section 1.4.3.

1.4 State of the Art
This section explores the state of the art in regards to di�erent subareas related to the problem
and system introduced in section 1.2 and section 1.3.

1.4.1 Human Pose Estimation
This section gives a brief overview of the field of human pose tracking/estimation and some of
the general methods within the field.

Through the years, a lot of work has been conducted investigating methods for pose estima-
tion or motion capture of the human body. The motivation behind comes from a wide range
of applications such as biomechanical analysis (Dugan and Bhat, 2005), animation for movies
and games (Lee et al., 2002), gesture recognition and pose estimation for interaction purposes
(Ubisoft; T. C. Tan and Arai, 2011).

The methods that have been implemented varies in respect to the technology used and the
performance achieved. The choice of method is dependent on requirements and constrains of
the application at hand. While all methods are dependent on some kind of sensing, some are
based on camera technology while others are based on e.g. Inertial Measurement Unit (IMU)s.
Examples of the latter is Smartsuit Pro from the company Rokoko4, or the products from the
company Xsens5.

Methods that are vision based also vary. Some methods utilise markers. Examples hereof
are the systems o�ered by Vicon which utilise reflective markers, an infrared strobe and several
cameras (Vicon, 2019). Another example is the PhaseSpace Impulse X2 system which uses active
LED markers and records using infrared stereocameras (Wang et al., 2015). The markers are
matched between the images from the di�erent angles in order to obtain precise positions of the
markers in the three dimensional cartesian space. Another example of a marker-based method
is presented by Marcon et al. (2017). They use ArUco fiducial markers attached to clothing and
observed with a camera in order to obtain the posture of the upper body.

4https://www.rokoko.com/en/products/smartsuit-pro
5https://www.xsens.com/products/

https://www.rokoko.com/en/products/smartsuit-pro
https://www.xsens.com/products/
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The Microsoft Kinect cameras with the related software, e.g. Microsoft Kinect SDK6 or
OpenNI tracker7, are examples of a marker-less vision based method for human pose estima-
tion. Here computer vision algorithms are used to identify key points (Wang et al., 2015).
Abobakr et al. (2017) presented a di�erent method using the Kinect camera where joint angles
were directly estimated from depth images. Another source combined two Kinect cameras in
order to improve the performance of tracking (Yeung et al., 2013).

For a more elaborate overview of human body motion capture methods, please see (Xia et al.,
2017; Filippeschi et al., 2017).

1.4.2 Ergonomic Assessment
As the world has developed a larger focus on occupational health and safety, the need for tools for
e.g. ergonomic assessment has become more pressing. International competition and changing
demographics also result in the idea that sustainable Human Resource Management is needed in
the future. Ergonomic considerations and tools are included in the design of products as well as
production process and workstation layouts in production. (Schaub et al., 2012; Högberg et al.,
2017)

The purpose of ergonomic assessments is to estimate the severity of exposure to ergonomic
risk factors typically in order to estimate whether subjects are susceptible to MSDs (McAtamney
and Corlett, 1993). Typically, the assessment is conducted including estimations of one or more
key aspects that are considered risk factors for MSDs. The aspects encountered in literature
are posture, force/load, frequency, repetitiveness, duration, vibration, recovery time, movement
velocity etc.(Occhipinti, 1998). The aspect most commonly included in assessments are the first
two mentioned; however, the influence of other aspects such as duration and repetition on the
risk of MSDs should not be underestimated. (David, 2005; Kroemer, 1989; Descatha et al., 2009;
Grandjean and Hünting, 1977)

A variety of ergonomic assessment tools and methods for di�erent purposes have been intro-
duced and improved through the years, and new methods are still being developed (Chander and
Cavatorta, 2017). Generally the methods are categorised into the groups: self-reporting, direct
measurement and observational methods based on the technique used for measuring (Abobakr
et al., 2017; Yazdanirad et al., 2018; Vignais et al., 2013).

Self-reporting techniques, which include questionnaires and interviews, are characterised by
being dependent on the subject of the assessment to provide the valuable insights. This means
that the method relies on rather subjective experiences and impressions.

The direct measurement techniques rely on precise measurements of the body, positions of the
body segments and joints. The need for high precision usually means that one of the methods
described in section 1.4.1 where the attachment of units or markers to the body is required for
measuring is utilised. The measurements are typically used in combination with biomechanic
models of the human body for complex, demanding calculations and simulations. The output
of such systems is typically kinetic and dynamic information calculated from masses and kine-
matic information. As a consequence of the complexity of the models and the calculations, it
is currently not possible to process data realtime using these tools. An example of such a tool
is Anybody.8 Systems as these provide an opportunity to get detailed information about the
strain in the di�erent joints in the form of force and torque values; however, as a rule it does not
o�er any analytic parameters in regard to ergonomics such as scores. This means that either an

6https://www.microsoft.com/en-us/download/details.aspx?id=44561
7https://github.com/ros-drivers/openni_tracker
8https://www.anybodytech.com

https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://github.com/ros-drivers/openni_tracker
https://www.anybodytech.com
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expert has to assess the ergonomic conditions based on the values, or an additional programme
has to be used which is able to calculate scores or indices equivalent to the ones obtained in the
observational methods (mentioned below) but on an more informed basis.

In the observational methods non-invasive monitoring of the subjects is done, and tools or
metrics are used to evaluate the ergonomics of the observed. Traditionally, a human observer
would utilise tools in the form of worksheets either by evaluating immediately at the scene or by
evaluating postures at a later time using video recordings. The tools or worksheets utilised in the
observational methods are useful as they aid alignment and conformity of assessments conducted
by di�erent ergonomists or observers. A study conducted by Eliasson et al. (2017) showed great
variance in assessments conducted without tools or structured methods by ergonomists. Even
the variance of the same observer assessing the same task with a minimal of three weeks between
was unacceptable.

Well known tools include Rapid Upper Limb Assessment (RULA) (McAtamney and Corlett,
1993), Rapid Entire Body Assessment (REBA) (Hignett and McAtamney, 2000), Novel Er-
gonomic Postural Assessment Method (NERPA)(Sanchez-Lite et al., 2013), NIOSH (National
Institute for Occupational Safety and Health) Lifting Equation (Waters et al., 1993, 1994) and
the Snook tables (Snook and Ciriello, 1991). While tools such as RULA and REBA are focussed
on the general posture assessment under any circumstances, other tools such as NIOSH Lifting
Equation, Wisha Lifting Guide and The Snook Tables are focused on analysis in regards to
a specific operation, in this case lifting or pushing, pulling and carrying, respectively. More
extensive lists have been comprised by David (2005) and Roman-Liu (2014).

In both RULA and REBA the assessments are based on angles observed in the body. Based
on defined intervals a score is assigned to the di�erent angles. A final score is found by combining
sub-scores found through table lookups, and combining the obtained scores with scores for other
aspects such as coupling, load and activity level. See Figure 1.5a.

NIOSH Lifting Equation is di�erent in the way that the identified variables are used in
equations in order to obtain a risk index and a lifting index as well as a recommended limit for
the weight to be lifted in the given task.

The OCRA, an index of exposure to repetitive movement of the upper limbs, is inspired by
the NIOSH Lifting Equation in the way that the index is calculated based on a series of other
variables. It includes aspects of force, posture, frequency etc. (Occhipinti, 1998).

NERPA was designed to be an improved assessment tool taking its starting point in RULA
but modified according to a specific set of ISO standards. This is done in an attempt to improve
on some of the RULA method’s shortcomings; one of them being the presence of false negatives.
(Sanchez-Lite et al., 2013), See Figure 1.5b

In literature there are also examples of tools that are specifically designed for assessment in
a constrained context. One of such tools is the Agricultural Lower-Limb Assessment (ALLA)
suggested by Kong et al. (2010), which, as the name indicates, was developed with the purpose
of assessing the ergonomics of lower-limb postures that occur within agriculture. The method
was validated by comparing its compliance with expert assessments to the compliance of other
assessment methods applied to the same cases. The study showed that ALLA more accurately
matched the expert assessment when evaluating postures in Korean farming than other methods
tested; however, the other methods tested were RULA, REBA etc. which are not specialised
in lower-limb assessment like ALLA is (Kong et al., 2018). Another example is the ergonomic
walkthrough checklist proposed by Bhattacharya et al. (1997) with the object of identifying
ergonomic risk factors related to tasks carried out in carpentry. The checklist tool was designed

9Source: Neese Consulting, https://www.physio-pedia.com/images/e/e6/RULA.png
10Source: Sanchez-Lite et al. (2013)

https://www.physio-pedia.com/images/e/e6/RULA.png
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(a) The RULA worksheet.9

Figure 1.5: Examples of ergonomic assessment worksheets.

to accommodate the more unstructured and flexible sequence of tasks throughout a work day
in carpentry compared to manufacturing work where ergonomic assessment tools are most often
applied. The assessment carried out using this method takes its starting point in a range of
postures and repetitive movements that are likely to occur in a carpentry tasks(Bhattacharya
et al., 1997).

Many of the tools are worksheets that are typically used by an observing evaluator who, based
on priorly gathered information, determines some key situations/positions to examine. The
evaluator then combines observations with gathered information and follows the guidelines of
the tool in order to calculate a score, an index or some other descriptive value. The benefit of
such tools is usually that they are fast and easy to utilise and do not require evaluators with an
advanced skill level or complicated technical setups. On the other hand the assessment is very
much dependent on the evaluator’s personal ability to estimate certain values such as angles.

In the recent years investigations into digital utilisation of the observational methods in
combination with vision technology has given rise to a merged fourth category, one could say.
(Vignais et al., 2013; Busch et al., 2017; Abobakr et al., 2017) Often the assessment tool dig-
italised is subject to some modifications. Some tools are hard to implement in a system as
they have input parameters that are di�cult to obtain through sensing techniques. An example
hereof is the parameter coupling, i.e. grasp, in the NIOSH lifting equation. Other tools are
easier to implement and have already been applied in automatic systems as they are dependent
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(b) The NERPA worksheet.10

Figure 1.5: Examples of ergonomic assessment worksheets.

on parameters which more easily can be estimated using existing sensor technology. RULA is an
example of such a tool which has been frequently implemented in systems striving to conduct
automatic ergonomic assessment(Vignais et al., 2013). While RULA is subject to critique be-
cause no epidemiological data supports the patterns of influence resulting from combination of
factors RULA implies, and because RULA does not consider how the risk for MSDs is influenced
by the cumulative time spend in di�erent ranges (Vignais et al., 2013); a recent study indicated
that the tool outperforms other similar tools (Yazdanirad et al., 2018).

The rise of this new category and the interests in utilising ergonomic assessments as an inte-
gratedx part of systems promotes investigation into the potential, pros and cons of the di�erent
assessment categories from a technical point of view. In order to give an overview, the three
categories of assessment methods have been assessed in respect to seven aspects. A scheme
intended to map-out and display these properties is presented in Table 1.1.
From a technical point of view it is clear that the observational methods o�er the most advantages
and potential for utilisation in systems that are to assess realtime in a real work setting. This
presumably is also the reason that mainly observational methods, such as RULA, have been
incorporated in digital systems for such purposes. However, observational methods still have an
important limitation in respect to technical incorporation which is related to being optimisable.
This will be addressed in section 1.4.3.

1.4.3 Ergonomically Optimising Robot Movement
As mentioned in section 1.4.2 observational ergonomic assessment methods have been rekindled
through the incorporation of digital adaptions with recent technologies. A natural question
arising as an extension of these tendencies is whether observational ergonomic assessment meth-
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Table 1.1: Dependencies, properties and potential of the assessment methods
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Direct measurement (-) - x x x - x

An overview of dependencies, properties and potential of the three categories of assessment
methods from a technical point of view. x = yes or true, - = no or false. Parentheses indicate

yes or no with reservations or somewhat true or false.

ods can be utilised for optimisation of system behaviour as opposed to mere evaluation. More
specifically, the interest point in respect to this project is whether a robot could use the output
of ergonomic assessment as an input and adjust its behaviour accordingly such that the exposure
of a human collaborator to ergonomic risk factors is minimised. This, however, is challenging,
and the works in literature addressing this are relative few. While some tools, like RULA, can be
implemented in software it does not o�er a direct, unique mapping between the score obtained
and the pose analysed. Also, it is, in its original form, not di�erentiable nor continuous, which
makes it di�cult to use as a feedback measure for a system meant to optimise the pose. In
literature ergonomics are used during design, interaction design or development of new methods
in relation to robots interacting with humans (Park et al., 2004; Courreges et al., 2009; Crainic
and Preitl, 2015; Wang et al., 2019). There are also examples of utilising ergonomics in relation
to robotic behaviour towards humans (Bortot et al., 2013).

A few articles from Busch et al. (2017) describe an investigation of planning of motion and
tasks in human-robot collaboration in such a way that the ergonomics of the human is optimised.
In the work described, they fit a di�erentiable model to the REBA score and use this as a cost
function for planning of motion and tasks in the system (Busch et al., 2017, 2018). This very
similar to the system suggested and investigated in this project and the wanted properties of the
system, but there are some points to address. Firstly, the system presented by Busch et al. (2017)
uses marker-based tracking, where a non-invasive method might be more desirable because it
is less obstructive. Secondly, the tests conducted on their system did indeed a�ect the REBA
scores obtained positively; however, the consequences of the method were not addressed. By
minimising and thus potentially eliminating some of the postures with high risk scores without
taking into account the time spend in those poses, the resulting postures and movements after
applying the method might be characterised by higher repetition, longer durations and less
variation. This relates to the third critique point which is that their method in fact does not
take time spend in postures or repetition of movements into account.

Peternel et al. (2017) also present a method for optimising ergonomics, i.e. minimising me-
chanical overloading in the human body during human-robot collaboration though adaptive
robotic movements. In their work they build their method around forces and overloading joint
torques rather than utilising known ergonomic tools. Their method is to minimise overloading
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joint torques and maximise manipulability of the human arm. The overloading joint torques
are found through the variations in the Center of Pressure (CoP), which are estimated using a
dynamic model of the human whole-body CoP integrates external load and interaction forces
from robot end-e�ector measurements. Their method was tested on movements in the sagittal
plane and with a human model including 5 Degrees of Freedom (DOF). During testing the body
kinematics were monitored using a MVN Bodymech suit (Xsens Technologies), a IMU-suit and
the subjects muscle activity was monitored using Electromyography (EMG). The muscle activity
measured through EMG showed a successful decrease in the overloading joint torques compared
to the unoptimised condition. (Peternel et al., 2017)

In literature there are also examples of research in adapting robot behaviour and human-
robot collaboration to ergonomics on a higher level than only robotic movements. One example
is the work already mentioned by Busch et al. (2018) where they strive to optimise task allocation
and motion planning simultaneously for generating more ergonomic situations in human-robot
collaboration. Another example is the work by Pearce et al. (2018) in which they attempt to
create a framework for optimising task assignment and scheduling in human-robot collaboration
based on time and ergonomics. Their method presents an approach for scheduling tasks based
on a set tradeo� between minimising makespan of the task and the strain of the work elements
on the human measured using a variation of the Strain Index (SI) presented by Moore and Garg
(1995).

Though the more recent research in the area is more advanced, researchers have previously
speculated in how robots can facilitate ergonomic conditions in Human-Robot Interaction (HRI).
For example, Lynch and Liu (2000) investigated the opportunities in create guides for the sup-
port of manually manipulating heavy loads from one state to a goal state. The guide shape was
created according to a set of parameters, among other an object function based on ergonomics.
They also speculated in using a cobot for implementing the guides.

The field is advancing rapidly and within the last one and a half year several new works in the
area of ergonomic adaptation of robotic movements in HRI have been published. The work pre-
sented by Peternel et al. (2017) has been advanced by groups consisting of some new researchers
as well as some of the original researchers on the project(Lorenzini et al., 2019; Kim et al., 2019).
The advancements presented include an overloading joint fatigue model and a recovery model
created in order to consider commutative e�ects of overloading joint torques (Lorenzini et al.,
2019). Other advancement presented are the combining of the previous mentioned advancements
with a framework for adaptation to intentions (handedness, intended manipulation, change in
human position in the workspace) and the change from using IMUs for online monitoring of
the human kinematics to the use of a stereo-vision camera together with OpenPose (Kim et al.,
2019).

Shafti et al. (2019) presents a di�erent approach utilising an ergonomic assessment tool.
Focussing only on the ergonomics of the arm they use the parts of RULA that describe the
arm. In their approach a human is monitored using an RGB-D camera, the Microsoft Kinect,
and IMUs to obtain the RULA score of the arm. If the observed score is higher than a set
threshold the robot will assist in moving to a more ergonomic state by adjusting the position
of the workpiece it is holding. The RULA score for the arm is determined by the states of
di�erent arm segments. By monitoring the individual RULA scores of the arm segments, the
arm segment causing a high RULA arm score can be determined. For each of the states of the
arm segments Shafti et al. (2019) have determined an appropriate robot response, and using the
individual RULA scores and a prioritisation protocol the appropriate response for improving an
unergonomic state can be found. The presented method was verified through testing that showed
that the method indeed did result in better RULA arm scores than without robot assistance
over the course of a conducted test task.





Chapter 2

Project Delimitation

This chapter specifies and outlines the focus of this project. Also, requirements for the desired
system are specified

2.1 Scope of the Project
This section serves to summarise and outline the problem area investigated in this project.

In the previous chapter it has been addressed what challenges the meat packing industry is
facing, and how improvement in the working environment of the butchers is wanted. A specific
work package of the ACMP project was introduced as the context, and a general system out-
line and an exploration of state of the art of related areas was provided. The general system
outline was simply concerned with a system capable of adapting robot movements to ergonomic
conditions of the human. However, if a system with these capabilities is to be implemented
for a specific application, it is likely that there are some constrains to consider in relation to
the specific context in which it is applied. The butchers working in meat production are mak-
ing rapid movements with their upper limbs in particular with a high number of repetition.
Some of the pose estimation methods explored in section 1.4.1 have the benefit of not being
constrained to a small dedicated area and might work wireless at the same time, but they, on
the other hand, are dependent on devices mounted on the human or special garments. These
are characteristics which are not convenient in the context of the butchers, who need to wear
protective equipment, and while the ability to work in an unconstrained space is attractive, it is
not strictly needed as the butchers typically work in a limited confined space. Similarly, some of
the methods might have a high precision but be dependent on strict environment configurations
and markers on the body, which, again, is inconvenient for the hard working butchers. Based
on these considerations it is deducted that a "non-invasive" method would be preferable. Conse-
quently, this leads to a focus on observational methods using vision technology without markers.

In section 1.4.3 recently suggested methods for ergonomic adaptation of robotic movements
was presented. Regarding the method by Busch et al. (2017), it would be interesting to ex-
amine their exact methods performance in respect to ergonomic improvements when utilising
marker-less vision-based pose estimation. This will, however, not be the focus of this project;
nonetheless 2D marker-less vision-based pose estimation will be utilised. Also, it is common
for ergonomic assessment methods to mainly consider movements in the 2D sagittal plane (see
Figure 2.1) (Roman-Liu, 2014). This project will seek to advance the field of ergonomic adap-
tation of robotic movements by including some element considering the repetitiveness, duration
or variation in the adaptation approach, which is not frequently encountered in the literature.
The investigations will be conducted in the context of a specific use case which will be described
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in section 2.1.2.

Figure 2.1: The three most commonly used planes of the body.1

In relation to collaborative robots as the one that is included in the proposed system in this
project, safety is always a topic that is of great concern. Although this project might address
safety in relation to the parts implemented in this project and in relation to any user testing,
it is not considered a focus point of this project. No in depth investigation of safety issues in
relation to collaborative robots will be conducted, nor will the system be implemented with
excessive software or hardware modules to ensure an entirely safe system as would be required
in a commercial context.

2.1.1 Hypothesis
Previous works have proven that robotic movements can be adapted according to ergonomic
measures in order to minimise ergonomic risk measures, However, there are little work shoving
that it is possible to do so while actively counteracting repetitiveness in the operations of the
human. The hypothesis for this project is as follows:

Through the use of ergonomic measures and constrains it is possible to optimise the
ergonomic state of a human collaborating with a robot as well as minimise exposure
to repetitiveness.

The aim of this project is, thus, to examine how and whether a collaborative robotic system
which adapts according to the operators ergonomic conditions can be implemented in such a
way that it considers repetitiveness.

2.1.2 Project Use Case
This section describes the use case in the context of which the research of this project will be
conducted.

1Source: Donna Browne, (Browne, 2015)
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As stated earlier, the context of this project is the second work package of the ACMP project.
The specific use case for the investigations in this project is inspired by the mentioned work
package. The use case is thus the handling and presentation by the robot of belly pieces to the
butcher for processing purposes. The processing operation assumed here is cutting of the edges
of the belly pieces in order to get a wanted square shape of meat. The cutting of the meat is
standing work for the butcher.

In practice, the use case chosen will be simulated through simplified setups for convenience
of the development in this project. Likewise, no actual meat pieces will be used during this
project.

In a potential application setting of a final system it is likely that more people will appear
on input images from the sensors. In order for a robot to be able to work in collaboration with
and adapt to the right human operator, the system in that case should have some method in
place for distinguishing between the human collaborator and other humans in view and thus
prioritise adaptation to that collaborator above others. Nonetheless, the use case and test setup
in this project will be constrained to having one person in the image view at all times; thus, a
prioritisation method will not be necessary nor will it be implemented.

2.2 Requirement Specification
This section describes the functional requirements of the system to be developed. The require-
ments are justified with arguments about relevance and importance. Each requirement will be
described in its dedicated paragraph.

Vision system The system needs a means of monitoring the human operator. Since the sys-
tem is developed with the intent of longterm monitoring with the purpose of providing estimated
poses as input to a robot, it is inconvenient to have a system dependent on elements or units
that are physically attached to the monitored worker. Consequently, it is preferable to have
a non-invasive vision-based system able to observe the worker analytically without the use of
markers. Therefore, a vision system able to detect human poses is a requirement.

Ergonomic Assessment As the system is supposed to adapt based on ergonomics, a method
for assessing the ergonomic conditions is required. The method should include a measure for
posture which is commonly used as the central factor in ergonomic assessment methods. Fur-
thermore, the method should include a measure for repetition as required by the hypothesis
stated in section 2.1.1.

Adaptive Behaviour The system should be able to adjust its movements and/or configura-
tion based on input in order to facilitate optimisation of the ergonomics conditions of the human
pose and minimise exposure to ergonomic risk factors, including repetitiveness.

2D capabilities The system should be able to detect human’s exact pose in the 2D sagittal
plane with an accuracy of ±2.5cm but also be able to make adaptive movements in the equivalent
2D Cartesian space.

Realtime As the system is supposed to continuously adapt to a human present in the work
space, realtime properties are necessary. Due to the slow speed the robot should adjust with, the
realtime constraints in relation to this project are less restrictive than in other contexts. From
research within prosthetics it is known that the recommended delays within the 100-400 ms
interval are unnoticeable for the human (Farrell and Weir, 2007). In the context of this project,
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it is not required that the human does not perceive the delay. However, the delay should also
not be too large such that the adaptive moves when executed are outdated and improper for
the current situation. The robot should during execution of an action receive control commands
with a rate of at least 2 commands pr. sec., and the delay in response should ideally not exceed
1 sec. such that the human operator in spite of a small delay still has the notion of immediate
response.

Collaborative robot manipulator Although safety is not a focus point in this project it is
still important to include in considerations; especially, as user testing might be conducted and
subjects should be safe. As a consequence, it is a requirement that the system is developed util-
ising a designated collaborative robot manipulator which is designed to work in close proximity
to humans. Such manipulators are characterised by force, torque and/or speed limits, rounded
edges, and often also soft padding and elasticity in joints.

These are the system requirements that have been identified initially. As the work proceeds
new issues encountered might introduce new requirements or lead to modifications of existing
requirements.



Chapter 3

Methods and Means

This chapter investigates some of the methods relevant to this project and to the desired system
described in chapter 2.

3.1 Non-invasive Vision-Based Human Pose Estimation Meth-
ods

As a result of the delimitation to non-invasive vision-based pose estimation methods, this sec-
tion explores a variety of such available methods. A requirement to the method needed is that
it outputs key points or a "skeleton" model of the human and, e.g., does not simply output a
segmented point cloud of the human. Furthermore, the method should be a more or less o� the
shelf solution since this is not the central focus point of this project. As a consequence, only
solutions with available software or code are investigated.

One available method is PoseNet by Tensorflow. PoseNet is able to detect poses of one or
multiple persons in images. An image is first fed through a convolutional neural network which
then can return di�erent confidence measures, such as overall pose confidence score, and key
point information, up to 17 key points per pose. PoseNet has some limitation. First of all, the
output model is inconvenient for determination of, e.g., the spine. Second, the method is only
trained for pose detection in 2D input. This software is open source. (Papandreou et al., 2017)
(Tensorflow, 2018)

HRnet is a di�erent pose estimation network presented by Microsoft in collaboration with
University of Science and Technology of China. This network utilising high resolution repre-
sentations throughout has performed very well breaking three records on the COCO dataset.
The network structure consists of parallel pipelines of convolution operations which are inter-
connected with up and down samplings between the pipelines. (Sun et al., 2019)

Another available open source method is the OpenPose developed by CMU perceptual com-
puting lab. This software is able to detect multiple humans, it can run both on the CPU and
GPUs and it can be used to detect key points and estimate poses realtime in both 2D and 3D.
The software also enables the use of di�erent pose models. (CMU Perceptual Computing Lab,
2019; Cao et al., 2017)

wrnchAI is a network by wrnch with a comparable performance in respect to precision and
recall to OpenPose. OpenPose outperforms wrnchAI in classification of large images while the
opposite is true for small input images. The wrnchAI, however, is much faster. The software is
available through access request by signing up on wrnch’s homepage. (Gupta, 2019)

The Microsoft Kinect camera mentioned in section 1.4.1 is also a non-invasive method that
could be considered. The device, which is a stereo camera, can be used with the connected soft-
ware developed by Microsoft or with software from other parties such as software from iPi soft
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(iPi Soft, 2019). The Kinect cameras are also able to provide positions of key points in 3D space.
Unfortunately there are also reports that the Kinect system fail to successfully detect the pose
if there is any self-occlusion or if other object occlude parts of the human(Obdrzalek et al., 2012).

In addition to the methods mentioned there are a selection of methods presented in research
papers for which the code is also provided; however, as it is the intention to integrate the method
into a Robot Operating System (ROS) application it is a requirement that a ROS interface or
wrapper is available for the method used as it will be too time-consuming in respect to this
project to create one. In general the less known methods do not have ROS wrappers available
as those are often made by external developers taking an interest into certain methods (often
methods with a lot of publicity). Of the methods mentioned only PoseNet, OpenPose and the
Kinect are solutions that can easily be interfaced with ROS. Due to the need for an interface for
ROS, the flexibility of choosing between models, and the reports on instability of pose detection
by the Kinect, OpenPose was chosen as the method to be applied and investigated initially.

3.2 Ergonomic Feedback
Currently there seem to be very few ergonomic assessment methods available that would serve
as a suitable tool for ergonomic feedback for robot control and which have been designed for
the purpose. The only methods encountered in literature at the onset of this project are two
methods already mentioned in section 1.4.3. The first one is the di�erential REBA by Busch
et al. (2017), which essentially is a modification of an existing tool for a di�erent purpose (pure
evaluation) and which has been subject to quite some critique. The second is the method striving
to minimise overloading joint torques described by Peternel et al. (2017) which to some extend
assumes equal severeness of torques in all joints.

Perhaps the field of ergonomic human-robot interaction lacks a model or a function that is
purposely created to aid ergonomic optimisation. Yet, designing such a function is a study in it
self; one that requires extensive knowledge about the musculoskeletal system and ergonomics and
as well as control. Design of such a function is beyond the scope of this project. Consequently,
the model used for ergonomic optimisation in this project will either be a modification of an
existing ergonomic assessment method or a constructed model based on well known ergonomic
facts and correlations.

3.3 Structure of the Work
Due to the rather explorative nature of this project, the work is structured based on principles
from agile management methods. The benefit of the agile methods is the continuous adjustment
of the work to changing conditions to limit redundancy and ine�ciency.

There are several examples of well defined agile methods such as The Lean Start-up or Scrum;
however, while the work will utilise some of the general principles common in agile methods, no
established agile method will be strictly applied. A core aspect in many agile methods is the
iterative development approach which gives opportunity to advance the work iteratively. This
is usually done continuously through small cycles of work and evaluation of the achieved and
planning the next step. The work in this project is also conducted in iteratively. An Initial
System (IS) will be implemented and subsequently advanced in the following iterations. The
work of each iteration will be evaluated and adjustments to the direction of the work and, if
necessary, the specified requirements will be carried out.

Due to the fact that the implementation work is carried out utilising aspects of the agile method,
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the chapters describing the implementations will be characterised hereby. The first implemen-
tation chapter will be about the implementation of the IS while the subsequent chapters will be
about iterations of advancement.





Chapter 4

Design of the Initial System (IS)

The initial development work was conducted on implementing an IS. In this project the IS is an
elementary version of the full system going from a visual input obtained from observation of a
human collaborator to an ergonomic adapted robotic movement. In the following sections the
system structure of the IS and the development work will be described.

4.1 System Overview
The design of the system implemented as the IS consists of three main components: a camera, a
control system running on a desktop and a robot. The camera delivers input which is processed
and used for generating control output for the robot (see Figure 4.1).

Figure 4.1: The overall system in the IS

The system is meant for working in close relation to human operators and adapting to them.
As a consequence the system could be loosely viewed as a closed loop system when including
the human in the loop (Figure 4.2). The "feedback loop" is given by the camera observing the
human and builds on the assumption that the robot movements will a�ect the human’s pose.

Figure 4.2: The closed loop system principle including the human.1

1Source: van den Broek and Moeslund (2020)
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The IS in this project is intended to be a basic first version of a fully functional system, meaning
a system adapting to ergonomic conditions of a human based on visual input. For simplicity
reasons, the task addressed in the IS in respect to the use case described in section 2.1.2 is
reduced to adapting only the height of a presented belly piece. This can be viewed as equivalent
to adjusting the height of a work surface. In the IS the inclusion of a repetitive measure will not
yet be considered. The adaptation of robotic movements will in the IS happen based on a well
known ergonomic fact as mentioned in section 3.2. This fact relates to the ergonomic risk factor
posture and is the well known fact that standing upright with a straight back is preferable over
any over stretching of the back or stooping posture for standing work in any extended period
of time. More concretely, the idea is that the system observes a single angle in the body pose,
the hip angle, by capturing from a side view of the human with an RGB camera. In this way,
the human pose in the 2D sagittal plane (see Figure 2.1) is observed. This also complies with
the movements mainly considered in ergonomic assessment methods as mentioned in section 2.1.
The assumption is that the hip angle in standing work will indicate whether a butcher is over
stretching or stooping.

For di�erent states of the observed hip angle, appropriate robot responses should be speci-
fied which can be executed whenever the di�erent angle states are observed. Based on the hip
angle observed the system should either be static, elevate or lower the work surface in order
to facilitate correction of the unergonomic posture and guide the butcher towards an upright
working posture. Thus, the IS only has one degree of freedom. The detailed implementation
and functionalities of the system will be elaborated in later sections.

The system described is achieved using some "out-of-the-box" solutions, software implementa-
tions and existing hardware that su�ce for the purpose of this initial demonstrator of a system.
The following sections will describe the hardware and software used for the IS.

4.1.1 Hardware
This section will describe the camera, the desktop and the robot used.

The camera used is a Logitech� QuickCam E 3500, which is a standard webcam. The cam-
era has true resolution of 640×480 pixels and a hardware frame rate limit of 30 fps. The camera
has a diagonal Field of View (FOV) angle of 60○. The camera connects with a corded usb 2.0
connection. Logitech (2019)

Figure 4.3: The Logitech� QuickCam E 3500 used for the IS.2

2Source: Logitech�, https://secure.logitech.com/assets/30973/e3500-front-and-side.jpg

https://secure.logitech.com/assets/30973/e3500-front-and-side.jpg
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The desktop computer used has an Intel Core i7-3770 CPU with 32 GB memory running with 4
cores at 3.40 GHz. The computer is equipped with an Nvidia GeForce GTX 1080 Ti graphics-
card with 3584 Cuda cores and a total memory of 11 GB (Nvidia, 2020). The desktop is running
Ubuntu 18.04.2 LTS (Bionic Beaver).

Figure 4.4: The Sawyer collaborative robot from Rethink Robotics used for the IS.3

The robot used for the IS is the collaborative robot Sawyer from the company Rethink Robotics
(see Figure 4.4). The robot is referred to as collaborative due to its rounded edges, soft padding,
force limitations, elastic actuators and user friendly software, which makes it safe to use in close
proximity to humans and easy to operate and apply (Rethink Robotics, 2019). The robot has a
manipulator with 7 Degrees of Freedom (DOF), a payload of 4 kg and a max reach of 1260 mm.
Furthermore, the robot contains a screen and two cameras, one placed just above the screen
and one placed close to the end e�ector. Connecting to the robot happens through ethernet/IP.
The manipulator and controller is mounted on a pedestal with wheels making it easy to move
around, and with supportive feet enabling stable placing.

4.1.2 Software
In relation to the implementation of the IS some choices have been made regarding which
software to use. The part of the system that interacts with the robot is beneficial to program in
Robot Operating System (ROS) as it is a flexible environment with a large community enabling
easy implementation of robot applications. ROS comes in di�erent versions, but one of the most
used, and thus most supported in extra libraries, is the ROS Kinetic Kame. Therefore, this ROS
distribution is the one chosen for the IS.

The ROS only runs on Linux and since the Kinetic distribution is primarily targeted Ubuntu
16.04 (Xenial) this release is used.

In the IS an existing human pose estimation library is used. Due to accessibility, the argu-
ments provided in section 3.1 and previous experience with the software, the OpenPose4software
from CMU Perceptual Computing Lab is chosen.

The OpenPose is dependent on parallelism and GPU computing in order to achieve a re-
altime performance. Therefore, Nvidia’s CUDA and cuDNN are needed for OpenPose to run
satisfactory. CUDA 10.1 and cuDNN 7.0 are used in the IS.

3Source: RG Robotics, https://www.rg-robotics.com/wp-content/uploads/2018/09/collaborative-robot-
sawyer.png

4https://github.com/CMU-Perceptual-Computing-Lab/openpose/

https://www.rg-robotics.com/wp-content/uploads/2018/09/collaborative-robot-sawyer.png
https://www.rg-robotics.com/wp-content/uploads/2018/09/collaborative-robot-sawyer.png
https://github.com/CMU-Perceptual-Computing-Lab/openpose/
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For ROS to be able to communicate and interface with OpenPose in an appropriate and
convenient way a ROS wrapper for OpenPose was needed. Luckily, di�erent developers have
implemented their suggestion and posted it opensource on git for free use. Kevin Zhang has
made a convenient wrapper available on which he is still exercises support continuously making
sure it works with the last commit on OpenPose.5

Finally, Rethink Robotics provides a software, Intera SDK6, which serves as a bridge be-
tween the Sawyer robot and ROS. This is used for parsing control information from the robot
application implemented in ROS to the robot’s own system.

4.2 Reproducibility
It is essential to the quality and validity of scientific work that the results achieved are repro-
ducible. In order to ensure and facilitate reproducibility of the system implemented during this
project, the system is implemented in a virtual environment using Docker. Docker is a useful,
valuable tool for ensuring fast reconfiguration of software setups on di�erent computers. As
Docker was an unfamiliar concept, time was invested in getting to know Docker and its usage.
In the following an insight into how Docker works and how it was used during this project is
given.

4.2.1 Docker
Docker is a programme used to create virtual environments in a simple and flexible way. The
environments are set up using the so called "Dockerfile". The Dockerfile serves as a recipe
for a certain configuration of a virtual environment. In the Dockerfile the base system along
with the necessary subsequent commands to set up the system exactly as wanted are specified.
From the Dockerfile a "blue-print" called a "Docker Image" is build. Once built, images take
up a considerable amount of storage space; nonetheless, with an image available, an instance
of a system with the configuration as outlined in the image can be created in the form if a
Docker container within seconds. This also makes it easy to bring configurations from one
device to another as long as they both have Docker set up. Building the image is a time-
consuming process, and so can the scripting of the Dockerfiles be. Furthermore, Docker also
provides an online community which facilitates the sharing of created Docker images. When
a virtual environment of a certain configuration is needed, it can either be downloaded from
the online platform "Docker hub" where o�cial images and unassociated developers’ personally
implemented images are available, or it can be scripted in a Dockerfile and build. Due to the
fact that there was no Docker image found on Docker Hub with the exact system configuration
needed for this project, a Dockerfile was scripted.

4.2.2 The Dockerfile
Initially di�erent available images were investigated. The system needed is one with ROS and
OpenPose installed, but a Docker image containing this configuration was not available on
Docker Hub. ROS has o�cial Docker images available with di�erent ROS versions, but they do
not contain OpenPose. Similarly, some developers have made Docker images available contain-
ing OpenPose but not ROS. Some of the OpenPose Docker images were even deprecated as they
were downloading the latest version of OpenPose code but did not contain the functionalities
for handling the latest version resulting in a multitude of errors. Based on these facts it was
decided that a Dockerfile of a system containing the necessary parts in a time invariant way

5https://github.com/firephinx/openpose_ros
6https://github.com/RethinkRobotics/intera_sdk

https://github.com/firephinx/openpose_ros
https://github.com/RethinkRobotics/intera_sdk
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would be scripted. Also, scripting of Dockerfiles is useful to learn for future projects as well.

The process of creating the Dockerfile along with the challenges encountered in the process and
how these were overcome is described in Appendix A. The Dockerfile for the IS contains the
majority of the softwares mentioned in section 4.1.2; however, scripts coded during this project
which undergo continuous change are included as linked directories from the host sytem when
a container is run. More details as to why this choice was made can be found in Appendix A.
The final Docker image has been shared on Docker Hub7 as it might be valuable to others, and
likewise, the the Dockerfile has been shared in a public git repository om Bitbucket8.

4.3 Connection Between the Docker Container and Sawyer
Once the wanted system with the needed elements had been setup in Docker, the next step was
to connect the running Docker container with the robot.

The robot is connected to the desktop through an Ethernet connection on a shared LAN. In
order for the Docker container to be able to communicate with the robot, the Docker container
should be able to access the LAN and the communication on the network.

Docker provides di�erent flags that can be used when running the containers, one of them is
the –net flag which, when given the argument "host", enables the container to access the host
network. The container should be able to access the LAN that the "host" desktop is a part
of. However, when running the container, and running the script provided by Intera SDK for
establishing connection to the Sawyer robot in ROS it was not possible to communicate with
the robot properly. The issue was solved through the use of the –add-host when running the
container which made it possible to map the Sawyer host name to its IP address and thus enable
successful two-way communication between the robot and the desktop. The solution was found
through an explorative process; for details, please see Appendix B.

4.4 The ROS Setup
This section describes the robot application implemented in ROS and its structure.

The structure is inspired by, and very similar to, the control system overview described in
section 1.3. The robot application implemented in the IS consist of several ROS nodes, some
provided by other developers which already existed prior to this project, and some specifically
programmed for this project. A list of the ROS nodes used in this application and a brief
explanation of their functionality is provided below.

7https://hub.docker.com/r/mkvdb/ros_openpose
8https://bitbucket.org/mkvdb/mkvdb-open-source/src/master/dockerfiles/ROS_Openpose_Image/

Dockerfile

https://hub.docker.com/r/mkvdb/ros_openpose
https://bitbucket.org/mkvdb/mkvdb-open-source/src/master/dockerfiles/ROS_Openpose_Image/Dockerfile
https://bitbucket.org/mkvdb/mkvdb-open-source/src/master/dockerfiles/ROS_Openpose_Image/Dockerfile
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cv_camera_node A node responsible for obtaining the raw image from the USB
camera and publishing it in a ROS topic.

openpose_ros_node A node which subscribes to a image feed topic and uses the Open-
Pose software to detect human poses in the images and, subse-
quently, publish the pose information in a ROS topic.

angle_calculation_node A node which subscribes to the pose information topic, calculates
relevant angles between segments of the body model and publishes
this information.

robot_adaptation_node A node that makes decisions about adaptive moves based on re-
ceived angle information and publishes control commands.

robot_control_node A node parsing control commands published to a specific topic
through to the robot.

An overview of the nodes and their intercommunication can be seen in Figure 4.5.

Figure 4.5: The structure of the robot application with the communication ways implemented in ROS. The
names of published topics are provided along the arrows.

In the following sections the functionalities will be elaborated and the use and implementa-
tional work, if any, explained for all of the mentioned nodes except the simple cv_camera_node.

4.5 The OpenPose ROS Node
This node is the OpenPose-ROS wrapper. It subscribes to any topic in which image frames are
published. In theory you can let OpenPose process images of any visualised modality (RGB,
thermal, depth), but since the network at the core of OpenPose is trained for RGB images
specifically, this is the modality that will work the most robustly. In the implemented system
the node subscribes to the /cv_camera/image_raw topic posed by the cv_camera_node based
on the input from the Logitech camera described in section 4.1. The images posted to the topic
are RGB images. When an image is published to the topic the openpose_ros_node analyses the
image by detecting humans in the image and estimating the body model of each of the humans
in the image. OpenPose is able to use and fit one of a few di�erent models to the detected
humans. The model used in the IS was the BODY_25 model, which describes the pose through
25 key points throughout the body (see Figure 4.6a.

OpenPose works with a bottom-up approach. The core of the method is the use of a Convo-
lutional Neural Network CNN and Part A�nity Fields (PAFs), which are sets of 2D vector fields
that encode the location and orientation of limbs. In OpenPose a full image, possibly depicting
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several people, is fed as input to a multi-stage CNN which jointly predicts both confidence maps
and PAFs. The confidence maps are used for body part detection, while the PAFs are used for
part association. In a subsequent step body part candidates are associated through a set of bi-
partite graph matchings. The found pairs from the matchings are in the end combined such that
a full body pose for each person in the image is obtained. Finally, the key points for the body
pose can be provided according to the chosen body model. (CMU Perceptual Computing Lab,
2019)

In Figure 4.6b OpenPose can be seen in action detection key points of humans in an image
captured by the Logitech� QuickCam using the BODY_25 model.

(a) The BODY_25 pose
model used by OpenPose in
the IS.9

(b) An example of how the key points are detected in an image using
the BODY_25 model.

Figure 4.6: The key points found by OpenPose.

The node publishes its output to the /openpose_ros/human_list topic. The output is published
in a format which contains header information of the published message self, header information
about the image frame processed, number of humans in the frame, and a list of information
from each human in the frame. Each entry in the list of humans will contain several parameters
and selections of key points related to the human in question, among other the key points of the
body pose.

4.6 The Angle Calculation Node
This node serves as the ergonomic estimation module of the IS. As mentioned in section 4.1, this
first version of the system is to adapt based on a simple ergonomic posture measure, namely,
the hip angle. The context of the system is work conducted standing upright; thus, if the angle
at the hip is changing from the standard upright position, the observed human must be either
over stretching the back or stooping, both of which are unergonomic working positions for an
extended period of time. Hence, this node estimates the hip angle which serves as the ergonomic
assessment model in the IS.

9Source: CMU Perceptual Computing Lab, https://github.com/CMU-Perceptual-Computing-Lab/openpose/
blob/master/doc/output.md

https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md
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The node subscribes to the /openpose_ros/human_list topic published by the openpose_ros_node.
From the data it receives it currently uses the number of humans in frame parameter and the
body pose information from each of the detected humans. The hip angle is calculated based on
segments of the body model which spans between pairs of key points as shown by the colourful
lines in Figure 4.6a. The way the angle is calculated is based on vector calculations. As a
result, the first step carried out by the angle_calculation_node when it receives input, is to
check whether the necessary key points for each of the humans were detected and calculate the
vectors if they were. The first vector calculated is the "spine vector" which represents the the
spine and is calculated with the direction from the manubrium to the lower end of the spine.
Also, vectors representing, respectively, the left and the right thigh or humerus are calculated
with the direction pointing towards the knees. When the vectors are calculated in this way, the
angle between the hip and the thigh angles will be close to zero when the human is standing
upright regardless of the angle of observation.

If none of the thighs or the spine vector can be calculated, the node will print a warning
to inform that insu�cient key points were detected. If, however, both or only one thigh and
the spine could be calculated the angle between the spine and the legs, the hip angle, will be
calculated using either an average of the two thigh vectors or simply the single available thigh
vector. Since the vectors are calculated based on only one RGB image, the angles calculated
between them will be projections of the real angle in 3D space onto the image plane. As a
consequence, the ideal observation angle or capturing angle for the camera will be directly from
the side.

The hip angle was calculated using the formula for angles between two vectors which is
shown in Equation 4.1.

�Between = arccos� #»v ⋅ #»u
��#»v �� ��#»u ��� (4.1)

The problem with this equation is that it calculates the angle between vectors and not from one
vector to another; meaning, the calculated angle has no direction or sign (see Figure 4.7). In
practice this means that it is not possible to distinguish whether a human observed from the
side is bending towards the left or the right in the image. For the applications at hand this is
not beneficial, because information about whether the human is over stretching or stooping is
necessary in order to determine the right course of action.
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20°20°

(a) The unsigned angles obtained using Equa-
tion 4.1

-20°20°

(b) The wanted behaviour with signed angles.

Figure 4.7: Examples of the angle calculation behaviour.10

In order to obtain a signed angle, the cross product of the two vectors is calculated. The sign of
the crossproduct is then assigned to the calculated angle. This gives a sign based on the angle
direction, but as shown in Figure 4.8 the sign of the angle simply follows the direction in the
image and not the orientation of the human. It is beneficial if the angle directions is relative
to the human pose such that the system is more flexible and less dependent on the capturing
angle.

-20°20°

(a) The signed angles obtained by using the sign
of the crossproduct.

20° -20°

(b) The sign of the angle is consistent with the
direction of the angle in the image plane.

Figure 4.8: Examples of the sign of the calculated angle dependent on the angle direction in the image plane.11

To be able to assign the sign in relation to the pose some additional vectors and angles have
to be calculated. When the BODY_25 model is fit to an upright human, most pose segments
will be fitted in a way such that they in a 3D space all would be, or nearly be, contained in
one plane. This also makes it di�cult to determine in which direction the detected human is
looking. The only exceptions are some of the segments between the key points in the face and
neck. The segment between point 0 and point 1 in Figure 4.6a goes between the manubrium and
the nose, and it gives some indication of which direction the nose is pointing. This was utilised
by calculating the vector from the nose to the manubrium and, subsequently, calculating the
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signed angle from the spine vector to the nose-manubrium vector. The sign of this angle will
indicate roughly in which direction in the image the human is oriented. Based on the obtained
orientation of the human, a sign change will be added to the hip angle if necessary. The resulting
behaviour can be seen in Figure 4.9.

-20°20°

(a) The signed angles.

20°-20°

(b) The wanted behaviour with signed angles fol-
lowing the orientation of the human.

Figure 4.9: Examples of the sign of the calculated angle dependent on the human orientation.12

Using the method described above a vector containing the signed hip angles for all humans in
the image for which su�cient key points were detected is created and published to the /an-
gle_calculation/body_angles topic.

4.7 The Robot Adaptation Node
This node is responsible for the decision making in regard to the adaptive moves the robot
should make. This mapping between the input and the appropriate robot actions can be
called the robot response model. In the IS the functionality of this node, and, thus, the
robot response model, is quite simple. The robot_adaptation_node subscribes to the /an-
gle_calculation/body_angles topic and uses the hip angle it obtains from the received message.
Based on the angle, one of three actions is chosen by the robot response model and published to
the /ergonomic_adaptation/adaptive_action topic. The decision by the robot response model
is made using thresholds. The thresholds were found through a simple trial and error test where
the fluctuation in the hip angle of a person standing upright with the side towards the camera
was observed. The standing upright interval was initially found to be from −10○ to 30○ but was
later refined to be −10○ to 2○ for an upright non-curved back.

0-10 2

Static ElevateLower

Figure 4.10: The correlation between the thresholds and intervals in the hip angle and the adaptive move chosen
by the robot response model. The angle is reported in degrees.

12Figures with the side silhouette of a man are created based on image from http://archive.zbrushcentral.com/
showthread.php?170747-Critiques-please!!

http://archive.zbrushcentral.com/showthread.php?170747-Critiques-please!!
http://archive.zbrushcentral.com/showthread.php?170747-Critiques-please!!
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The correlation between the thresholds and the action chosen is as follows: if the hip angle is
smaller than −10○, the action chosen will be lowering the work surface; if the hip angle is in the
interval from −10○ to 2○ the action will be to hold the work surface static; if the hip angle is
larger than 2○ the work surface will be elevated (see Figure 4.10).

As an extra division the angle interval for the elevation action has been divided into two
angle intervals for elevation at two di�erent speed steps. Thus, if the hip angle is between 2○ and
30○ the elevation happens slow, while elevation happens faster when the angle is larger than 30○.
This functionality was implemented such that obtaining an ergonomic posture would happen
faster when the posture is far from ergonomic. The di�erence in the two speed steps will be
elaborated in section 4.7.1. The flowchart in Figure 4.11 presents how the robot response model
is implemented.

Figure 4.11: The flow of the implemented robot response model in the IS.13

4.7.1 The Robot Control Node
The purpose of this node is to have a standard interface between the robot application and
the Intera SDK running on the robot. The node subscribes to a "robot command" topic; and
based on the commands published to the topic, the robot_control_node calls the right control
command from the Intera SDK. Intera SDK is implemented using rospy and, thus, consists of
python scripts while the majority of the robot application is implemented in C++. In order to
facilitate interfacing between the robot application and Intera SDK, the robot_control_node
is implemented in python and subscribes to the ROS topic published by the C++ scripted
robot_adaptation_node.

The robot_control_node is implemented as a two part solution consisting of a python mod-
ule and an executable. The module contains the definitions of all the necessary control func-
tions while the executable is the actual ROS node. The ROS node subscribes to the /er-
gonomic_adaptation/adaptive_action topic and has a callback function in which a function
from the module responsible for initiating the right robotic action is called. The function called
takes the message parameters "action" and "speed-step" from the topic as input and calls a
designated function corresponding to the action argument. In that way the functionality of
the function is a decision tree. The designated action functions then calls a "move to cartesian
point" function with a point slightly higher or lower than the current position of the endpoint of
the robot and a cartesian move speed dependent on the action. Two possible speed steps have
been defined for the elevation action. The maximum linear speed is set to 0.3 m

s for the slow
elevation and 0.6 m

s for the fast elevation.

During the implementation of this node some issues were encountered. The first problem en-
countered was related to the execution of the commands parsed to the robot. The movements

13Source: van den Broek and Moeslund (2020)
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parsed to the robot are planned using a cartesian interpolation between the current pont and
the goal point. However, for some reason this interpolation was not possible with any start
configuration of the robot. Therefore, a start configuration that proved useful for overcoming
this issue was added as the first step in the node.

Another issue encountered was the fact that the robot is not interrupted when it is executing a
movement. This fact combined with queues related to the received messages from the ROS topic
and the callback function resulted in an accumulating delay of the execution of the robot control
commands. The problem was that during the time the robot is executing a movement several
control messages are received and saved for later execution. When the robot has finished the first
execution it will move on to executing the next in the queue during which even more control
messages are accumulated in the row. This eventually means that the executed movements
will be increasingly outdated the longer the robot application runs. The source of the delay
was discovered by enumerating the control messages sent and observing that the messages were
reported as an unbroken sequence by the robot_control_node despite the delay caused by the
execution of the movements.

To fix this problem, several unsuccessful trails were made with queues for the di�erent topics
and callback functions set to 1, However, the issue was eventually fixed when the queue size for
the subscriber to the /ergonomic_adaptation/adaptive_action topic in the robot_control_node
was set to 1. Subsequently, the robot was able to successfully adapt the height of a work surface
by monitoring the human operator as shown in Figure 4.12.

Figure 4.12: The end of the robot arm simulating the work surface. The height of the end e�ector is continuously
adapted vertically according to the hip angle as indicated by the red arrows.

The adjustment of the height of the end e�ector in the current implementation happens stepwise
with approximately one second breaks between the adjustments.

4.8 Evaluation of the IS
This section evaluates the implemented IS in respect to observations and considerations made
and the initial requirements specified in section 2.2.
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When running the system, evaluations of the frame rates were made. The frame rate was evalu-
ated by examining the average rate across 20 frames with which messages are published to the dif-
ferent ROS topics in play in the system. The first topic examined is the /cv_camera/image_raw
topic which represents the rate with which the cv_camera_node publishes images. The average
rate was 10.970 calculated across 20 samples. The rate of the output of the openpose_ros_node
published to the /openpose_ros/human_list topic was 10.965. The rate of publication to the
/angle_calculation/body_angles topic was 9.288. Lastly, the publication to the topic /er-
gonomic_adaptation/adaptive_action also happed with a rate of 9.288. A rate of approximately
nine inputs per second should be su�cient for this application as the movements of the robot are
supposed to be executed at limited speed. Furthermore, the robot does not receive new inputs
while it is executing a command. A small test showed that the execution times for the stepwise
adjustments varies dependent on where in the robot workspace it is performed. The recorded
execution times varied from 0.4 to 1.0 seconds. This means that the requirement of 2 commands
per second is too low to have a new command available for the robot at all times; however, with
a rate of approximately 9 commands per second su�cient commands are published.

Similar to the frame rate, the delay of the system response is valuable to know. However,
with a modular system as ROS, this measure is hard to obtain. The nearest indicator might be
calculating the combination of the average publishing intervals, which gives 0.397 seconds. This
is below the set requirement of a less than 1 second delay; however, there are many unknowns
that are not included in such a calculation. Also, it should be noted that the delay was clearly
perceivable by humans, which suggests that it most likely was larger than the calculated 0.397
seconds. However, the delay in the current system is small enough that the adaptive moves are
executed within a few seconds (1-2 seconds) after a change in the posture. While the delay does
not necessarily comply with the set requirement, it seems tolerable for this application.

All in all this means that the real time capabilities of the system partially comply with the
requirement specified in section 2.2.

One of the requirements specified is that the system should have a non-invasive vision-based
human pose estimation system. As described in this chapter, this requirement has been met
through the use of the Logitech� QuickCam and the OpenPose library. The setup is able to
detect the key points of the human pose. However, the OpenPose has some flaws. Every now
and then it will recognise things that seemingly resemble a human body and detect false key
points on the objects. Also, it sometimes exhibit problems with identifying certain key points
like the elbow and knees when the limbs are perfectly straight. This issue presumably arises due
to lack of distinctive features for the positioning of e.g. the elbow. Consequently, oscillations of
the key points along the limbs can sometimes be observed. Nonetheless, this only seems to be
an issue when the limbs are perfectly straight which does not happen frequently for the arms in
the use case, and for the legs the observed angle does not change due to this oscillation.

Ergonomic assessment capabilities is also specified as a requirement. Though basic, the IS
fulfils this requirement partially by assessing the hip angle; however, the IS does not include a
measure for repetitiveness. The ergonomic assessment capabilities should be advanced in the
next cycle of the work such that it includes a more elaborate measure for the posture and a
measure for repetitiveness.

The next requirement is the adaptive behaviour. The system is able to successfully adapt
the height of a work surface dependent on the hip angle. The adaptation approach used was
not a direct optimisation of the posture but rather a direct mapping between certain observed
conditions and suitable robot movements. This approach resembles the approach used by Shafti
et al. (2019) presented in section 1.4.3. This approach is a relative straight forward way to



36 Chapter 4. Design of the IS

implement robotic behaviour that guides the human to more ergonomic conditions. However,
the method has its limitations. One of the limitations of the method is that it builds on assump-
tions about how certain robotic movements will a�ect the posture of the human and relies on
these assumptions to be true to reach the optimal positioning of the work surface or the meat
piece. Another related limitation is that this method does not provide any means of knowing
the exact configuration of the optimal human posture or positioning of the meat independent
of the iterative adjustments. This also means that it is hard to include and adapt to a measure
for repetitiveness. In order to find the optimal posture, the adaptation has to happen based on
optimisation of e.g. a di�erentiable cost function. In the context of this project this essentially
means that a di�erentiable ergonomic measure is needed since this is the aspect the system
strives to optimise according to.

Another aspect of the adaptive behaviour worth addressing is the manner in which the robot
carries out the adaptation. As mentioned in section 4.7.1 the robot carries out the adaptive
movements realtime in abrupt steps. This stepwise adaptation is partially a consequence of
the uninterruptible execution of the movements and partially due to the parameters set for
the execution of the movement. Possibly the adaptation of the movements would appear more
pleasant and easier to adjust to for the human operator if the movements are executed more
smoothly. However, considering the use case at hand, this continuous realtime adaptation may
be inconvenient and even unwanted behaviour. If the robot suddenly moves during the butchers
processing operations, it will likely complicate the task and possibly introduce errors or unsafe
situations for the butcher. Furthermore, there are examples in the literature that indicate that
autonomous robot behaviour in Human-Robot Interaction (HRI) increases the cognitive load
for the human, especially when the robotic actions are incomprehensible for the human, which
to some extend must be true for the unannounced unexpected adaptive moves by the robot in
the IS (Zhang et al., 2015, 2017). For these reasons, it is preferable that the robot only adapt
its initial positioning of the meat but does not continuously execute adaptive movements. Since
the robot then only is able to optimise the position of the meat and, thus, the ergonomics at
specific time instances, it is also insu�cient to adapt the position of the meat through reactive
iterative operations as described above. The system needs to be able to determine an ergonomic
position for the meat independently of the current body posture. Thusly, the implementation
of ergonomic positioning at given time instances also calls for an optimisation approach as the
one discussed above.

As a result of these reflections, the requirements for realtime and ergonomic assessment ca-
pabilities and adaptive behaviour are adjusted. The robot should not continuously adapt its
movements but should optimise the position at the start of each processing cycle. The ergonomic
assessment should still continuously monitor the human operator. As mentioned, the ergonomic
measure used for the adaptation of the position of the meat should be di�erentiable for the
purpose of optimisation.

The next requirement to address are the 2D capabilities. The designed system does have 2D
capabilities in respect to monitoring the human. The movements are monitored in the sagit-
tal body plane as previously described. The robot’s adaptive movements, however, are only
carried out in one dimension, namely, along the vertical axis. Though it is common for the
ergonomic assessment methods to focus on the movements in the 2D sagittal plane in respect to
the posture, there are aspects of the pose considered in ergonomic assessments that will not be
included if only the sagittal plane is monitored. Furthermore, if the robot should place the meat
in an optimised position in respect to the human in the 3D cartesian space, the 3D position of
the human is necessary even if the adaptation only happens in respect to ergonomic measures
deducted from 2D spaces. For this reason, and with the purpose of advancing the system, the
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requirement of 2D capabilities is revised to a requirement for 3D capabilities. For the IS, it is
not possible to evaluate the Euclidean precision of the detected key points as only angles were
considered and were calculated based on key points specified in pixel coordinates.

The last requirement specified in this project was the need for a collaborative robot manipula-
tor. This requirement has been met through the use of the Sawyer robot by Rethink Robotics,
which has force control, padding and a flexible and interactive design. However, it should be
mentioned that this robot would not be suitable for application in the actual use case. This is
due to the fact that the robot’s payload is too small compared to the weight of the processed
belly pieces.

Table 4.1 summarises this evaluation by provides an overview of the requirements and, if rele-
vant, key words for the mentioned revisions. The system as an entity works as intended for the

1 Non-invasive vision system 3
2 Ergonomic assessment 3 More Elaborate Measure
3 Repetition measure 7
4 Adaptive behaviour 3 From task to task, analytical
5 2D capabilities 3 3D capabilities
6 Precision of ±2.5 cm 7
7 Realtime 3 Only monitoring
8 Command Rate ≥ 2 3 ≥ 3
9 Delay ≤ 1 s 7
10 Collaborative Manipulator 3

Table 4.1: A checklist of the requirements. The last column provide keywords related to the revision of the
requirements.

IS. At its current state the system is able to detect the human pose, evaluate the hip angle as
long as the human is oriented with either hip facing directly towards the camera, and move the
robot end e�ector accordingly simulating the work surface with the meat. The work with the
system implemented as the IS has been presented at the ACM/IEEE International Conference
on Human-Robot Interaction and has been published in (van den Broek and Moeslund, 2020).
There are still many potential advancements to investigate. Chapter 5 presents the adjusted
design and the advancements made in order to meet some of the reviewed requirements and
technical issues addressed in this section.





Chapter 5

Advancing the Ergonomic
Adaptation

This chapter describes the second iteration of research work carried out in this project. The
focus of this iteration is to advance the IS in respect to a selection of aspects pointed out in
section 4.8.

5.1 The Goal of the Advancements
As discussed in section 4.8, a selection of advancements are needed in order to achieve a setup
that enables the introduction of a measure for repetitiveness, or more specifically, a method
for reducing repetitiveness during Human-Robot Collaboration (HRC). The necessary advance-
ments in order to create a method for ergonomic optimisation of robotic movements that takes
repetitiveness into account are related to the parts of the system marked with the red squares
in Figure 5.1 and Figure 5.2.

Figure 5.1: The part of the system subject to the advancements.

Figure 5.2: The part of the control system that is advanced during this iteration of research work.

The aim of the advancements is to enable the system to successfully place a piece of meat in
an ergonomically optimised position in front of the butcher each time a new piece should be
processed. The use case is thus brought to a higher level of complexity, where adjustment in 3D
and in respect to more ergonomic factors is the goal.

Based on the considerations described in section 4.8 a list of the necessary advancements can
be compiled.

39
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1

A more advanced ergonomic assessment method is needed and the method should enable optimi-
sation. Thus, ideally, the ergonomic assessment method should provide an ergonomic measure
as a di�erentiable function of the considered ergonomic factors.

An ergonomic assessment in the described convenient form can be obtained by using the
method presented by Busch et al. (2017) to obtain a di�erentiable version of the Rapid Entire
Body Assessment (REBA) method. This ergonomic measure is also based on more postural
components. The creation of a di�erentiable REBA is described in section 5.4 and the utilisation
of the method is presented in section 5.5.

2

3D capabilities are needed for obtaining the necessary information for the REBA, but is also
necessary for the robot to be able to find the correct placement of e.g. the meat piece in the
context of the use case.

In order to obtain the mentioned 3D capabilities a two-fold advancement of the system is
needed. First, a sensor that provides 3D data is needed. This will be addressed in section 5.2.
Secondly, signal processing that provides 3D pose information of the human is needed. This
point is described in section 5.3.

3

The method for adaptive robot movements should include a measure for repetitiveness that
ensures generation of movements that facilitate lower repetitiveness for the human in the tasks
carried out.

In order to introduce a measure for repetitiveness an investigation of this aspect in relation to
the use case is needed as well as an examination of how repetitiveness is evaluated in literature.
These points are addressed in section 5.7. Subsequently, a method for introducing repetitiveness
limitation in adaptive robot movements is proposed and presented in section 5.8.

The sections describing the advancements of the di�erent elements appear according to their
order in the pipeline when going from sensor input to the adaptive robot movements: first the
sensor and the signal processing, then the advanced ergonomic assessment method and its usage,
and finally the work with introducing a measure for repetitiveness.

5.2 The ZED2 Camera
As a consequence of the revised 3D requirement, a new sensor, which supports 3D data recording
is required. The camera chosen is the ZED2 camera from Stereolabs, which is a stereo camera
(see Figure 5.3). The ZED2 camera was chosen for its large field of view and depth range
which provides flexibility in respect to the positioning of the camera. The camera has variable
resolutions and frame rates which are correlated in a trade-o� relationship; however, the highest
available resolution is 4416 × 1242 pixels and the highest frame rate possible is 100 Hz. The
camera consists of two RGB cameras with a horizontal, vertical and diagonal Field of View
(FOV) of 110○, 70○ and 120○, respectively. The range for the depth imaging is 0.2-20 meters
distance, and the depth imaging is subject to the same FOV as the individual RGB cameras.
Likewise, the available resolutions and frame rates for the depth sensing are equal to those for
the native video. Besides the imaging sensors, the camera also contains motion and position
sensors such as, e.g., accelerometer and barometer. The camera connects through a USB 3.0.
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Figure 5.3: The ZED2 stereocamera from Stereolabs used to obtain 3D data.1

The ZED camera is a passive stereo camera. This means that it through the use of two RGB
cameras placed adjacent is able to detect the distance from the camera to points in the recorded
scene. The ZED2 camera uses neural depth sensing, which means that synchronised images
from the two RGB cameras are used in neural networks in order to obtain the depth map of the
scene.

For more information about the specifications of the ZED2 camera please see (Stereolabs,
2020).

5.2.1 Setup for the ZED2
The ZED2 camera comes with a ZED SDK2 which provides both basic and more advanced func-
tionalities. In order to use the SDK the existing Docker image has been edited to accommodate
dependencies of the SDK and include the SDK. In this process, the CUDA tool kit version has
been changed to 10.2 and OpenGL, libcuvid and libpcl have been included to support the use of
point clouds and visualisation. During this work the ZED SDK 3.1 for CUDA 10.2 and Ubuntu
16.04 is used.

To be able to run a container and use the ZED camera inside the Docker container, the
Docker engine, Docker API and the Nvidia Container Toolkit have to be updated, and the USB
busses and virtual video device nodes have to be parsed to the container at launch.

For convenient interfacing in Robot Operating System (ROS), the zed-ros-wrapper3 provided
by Stereolabs is also used and has been added to the Docker image. The wrapper contains a
large range of parameters which provide an easy way of specifying the wanted functionalities.
As default the wrapper published images in the image topics with a 720HD resolution and with
a frame rate of 15.0 Hz. The sampling rate is 30.0 Hz.

5.3 3D OpenPose
In order to obtain the human pose key points in 3D, a ROS wrapper for OpenPose that sup-
ports 3D point detection is needed. For that reason, the available selection of ROS wrappers for
OpenPose has been reviewed in order to identify which wrappers fulfil this requirement while
being suitable for working together with the ZED2 camera. A total of five wrappers have been
investigated of which only two provide 3D capabilities, and one of the two is deprecated. How-
ever, the remaining ros_openpose wrapper created by Ravi Prakash Joshi4 unfortunately did
not directly support the ZED2 camera. Consequently, work with adapting the wrapper and
creating the necessary files for interfacing with the ZED2 camera has been done. To ensure

1Source: Stereolabs, https://cdn.stereolabs.com/assets/images/zed-2/zed-2-front.jpg
2https://www.stereolabs.com/developers/release/
3https://github.com/stereolabs/zed-ros-wrapper
4https://github.com/ravijo/ros_openpose

https://cdn.stereolabs.com/assets/images/zed-2/zed-2-front.jpg
https://www.stereolabs.com/developers/release/
https://github.com/stereolabs/zed-ros-wrapper
https://github.com/ravijo/ros_openpose
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interfacing with the ZED2, a new ROS launch file including ZED2 specific arguments was cre-
ated. The arguments provided include the name of the RGB image topic, the name of the depth
map image topic, a camera_info topic containing camera parameters and the transform frame
specifying the frame in which the data is captured by the camera. The wrapper also contains
files for setting up visualisation in RViz which, likewise, was created for the ZED2 camera with
the necessary transform frame and the point cloud topic of the ZED2 camera specified.

(a) An o�-set and faulty projection of the human
model.

(b) All body segments are seemingly visualised
in one point.

(c) The visualised human model seems out of proportion and
projected out from an anchor point.

Figure 5.4: Issues visible in the Rvis visualisation of the output of the ros_openpose wrapper.

With the created files the wrapper was able to run with the ZED2 camera, however, from visu-
alisation (see Figure 5.4) and inspection of the returned key points it was evident that the key
point detection was faulty. The problem turned out to be that the depth map image published
by the ZED ROS wrapper was in the wrong format. By changing the openni_depth_mode
parameter in a file in the ZED wrapper the depth map format was changed from 32-bit float
in meters to 16-bit uchar in millimetres which was needed for the ros_openpose wrapper. Fig-
ure 5.5 shows visualisation in RViz after successfully interfacing with the ZED wrapper. The
adapted files for the ZED2 camera and the knowledge about how to make the wrapper run with
the camera have been shared with Ravi Joshi, and the ZED2 support has now been added and
made available to others on the public git repository.
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(a) The detected 3D human pose model. (b) Visualisation of the detected human model
aligned with the point cloud detected by the ZED
SDK.

Figure 5.5: Successful visualisation of 3D human body model.

The way the ros_openpose wrapper determines the 3D key points is by projecting the 2D key
points found by OpenPose onto the depth map provided by the ZED wrapper. In practice, the
intrinsic camera parameters, the focal lengths and the principal point, and the x and y pixel
coordinates of the key points are used to to calculate the relation between the distance from the
camera and the x and y-coordinates, respectively, in the in the camera frame. These relation
values are then multiplied with the value of the depth map at the pixel x and y-coordinates to
obtain the mentioned x and y coordinates in 3D of the key points. The z-coordinate is given
directly by the value of the pixel of the depth map at the x and y pixel coordinates. Distortion
is not considered in the calculations in the ros_openpose wrapper.

5.4 Constructing the Di�erentiable REBA Method
This section describes how a di�erentiable REBA useful for optimisation was constructed. The
di�erentiable REBA is constructed based on the original REBA method presented by Hignett
and McAtamney (2000) (see Figure 5.6) following the approach presented by Busch et al. (2017).
The original REBA as shown in Figure 5.6 is a discrete function based on intervals and table
lookups. The function in Equation 5.1 describes the individual score for the trunk angle. Clearly,
it is a discrete function, and the scores for the remaining individual joints considered in REBA
are given by similar discrete functions.

Ctrunk(qtrunk) =

�������������������������������

3 qtrunk < −20
2 qtrunk ∈ [−20, 0)
1 qtrunk = 0
2 qtrunk ∈ (0, 20]
3 qtrunk ∈ (20, 60]
4 qtrunk > 60

(5.1)

Where qtrunk is the trunk angle, and Ctrunk is the individual REBA score for the trunk.
5Source: Neese Consulting, https://www.physio-pedia.com/images/a/a6/REBA.png

https://www.physio-pedia.com/images/a/a6/REBA.png
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Figure 5.6: The REBA method presented as a worksheet.5

As mentioned earlier, such discrete functions are inconvenient for optimisation and robot
control. A continuous di�erentiable function is preferable. Busch et al. (2017) have presented
a method for obtaining a di�erentiable function for the REBA score by fitting a di�erentiable
function to the original discrete function. Though their approach for creating a di�erentiable
REBA method is described in their article, their method is not described thoroughly. There are
several unknowns in regard to their choices made with respect to constructing the REBA. When
known and applicable for the context of this project, the choices made by Busch et al. (2017)
are used. When, however, insu�cient details are available in the article, choices are made and
arguments are provided.

The general approach described by Busch et al. (2017) is to fit a sum of weighted polynomials
as described by Equation 5.2 to the REBA method.

Cposture(q) = n�
i=1 wiQi(qi) (5.2)

Where n is the number of joints considered in REBA, Qi(q) is a second degree polynomial of
the angle qi at joint i, and wi is the weight of Qi(q) and is a scalar. The discrete function for
the individual joint scores Ci(qi) is thus represented by a di�erentiable polynomial Qi(qi).

Busch et al. (2017) approach is as follows: First, second degree polynomials are fitted to the
scoring levels described for each of the monitored angles in the REBA. Subsequently, a selection
of postures with corresponding REBA scores spread across the one to 12 score interval are used
to identify the weights for the individual polynomials. Following the same approach a second



5.4. Constructing the Di�erentiable REBA Method 45

degree polynomial was fitted to the scoring levels for each body part included in the REBA. The
first strategical choice which is not addressed by Busch et al. (2017) is how the data used for
the polynomial regression were based on the information in the original REBA. In the method
a score is given for an interval resulting in the discrete discontinuous plateaus; but when using
the information for the regression, the provided score has to be assigned to a specific angle.
Therefore, a policy for how this is done is needed in order to ensure that the same approach is
used for the creation of the basis for each polynomial regression. As the information approach
used in Busch et. al’s work was not disclosed, the following rules were set and followed:

1. If a score level is provided for one specific angle, this is used as a point.
2. If a score level is provided for a closed interval, the score value is assigned to the angle

deviating the most from the neutral position.
3. If a score level is given for an open interval, the score is assigned to the angle at the

maximally deviating angle from the neighbouring lower interval + 1
2 of the previous interval

size.
4. If a score level is provided for an open interval with no neighbouring lower interval, the

score is assigned to the nearest angle with a specified score + 20○

The scoring levels always seem to be symmetric around a given angle with the minimal score
except for the fact that they might not be specified to even deviation angles on both sides of the
given angle (Figure 5.7 exemplifies this). The choice was made to create symmetric data points
based on the indicated tendency to use as the base for the polynomial regression. Consequently,
points found for open intervals might be neglected and substituted by a point symmetric to a
point specified for a closed interval on the opposite side of the given minimum angle.

Figure 5.7: The score levels for the trunk in the original REBA. Note the symmetric tendency around the angle
of 0○ which is discontinued on one side.6

Following the rules described, data was generated and polynomial regressions were done, and
second degree polynomials were obtained. Figure 5.8 shows an example of a polynomial re-
gression. The plot shows the discrete score levels of the original REBA as well as the fitted
di�erentiable score function for the trunk angle. From the plot it is clear how the di�erentiable
second degree polynomial resembles the original discrete function. The found polynomial coef-
ficients and the R2 for the second degree polynomial for the di�erent body parts are provided

6Source: (Hignett and McAtamney, 2000)
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in Table 5.1. The data points and the plotting of all the found second degree polynomials can
be found in Appendix C.

Figure 5.8: The fitting of a second degree polynomial to the discrete REBA score levels for the trunk angle.
The red dots mark the generated datapoints used for the polynomial regression.

Score a b c R2

Trunk 3.87080868e-04 1.03037038e-17 0.00000000e+00 0.935
Neck 0.0025 -0.05 0.0 1.000
Legs 4.76190476e-04 -1.14290758e-18 0.00000000e+00 0.918
Upper Arm 2.33132981e-04 -3.37406021e-18 0.00000000e+00 0.960
Lower Arm 0.000625 -0.1 0.0 1.000
Wrist 1.48148148e-03 1.38998410e-18 0.00000000e+00 1.000
Side Flex 2.50000000e-03 5.42697202e-18 0.00000000e+00 1.000

Table 5.1: The polynomial coe�cients and the R2 of the fitted second degree polynomials for the scores for the
di�erent body parts. The letters refer to the coe�cients in a polynomial on the form f(x) = ax2 + bx + c.

Besides the scoring based on the angles of bodyparts, the posture scores in the REBA also
includes a few other scores for twists, side flexions, abduction, raised shoulders, arm support,
gravity assisted upper limb posture, and one leg support. The twists in body parts and the
raised shoulders are rather di�cult to detect with the used method; also, it is not stated in the
article that Busch et al. (2017) included this in their method. Due to this, the twist measures
for all body parts are ignored. The score for the side flex in the torso and head, the abduction
of the arm and the deviation of the wrist are all represented by the second degree polynomial
called side flex in Table 5.1 and Appendix C, which will be included in the final REBA one time
for each of the four scores. The arm support, gravity assisted upper limb posture and one leg
support can all be neglected based on the context of this work. The overall posture in which
the butchers are working is standing more or less upright, with both feet on the ground. As a
result, the last three mentioned scores can be ignored.
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The REBA also includes a few scores that are not related to posture. These scores are cou-
pling (grasp), force/load score and activity score. In the context of meat being presented to the
butcher by a robot, the only grasp the butcher has to do is the cutting tool and handling of
smaller parts. These would both be scored with 0 and therefore this can be neglected.

The force/load score requires a bit more intricate considerations. The score is determined
based on handled weight. The smaller pieces that are cut o� would not likely exceed the 5 kg
load which is the upper limit for a score of 0. Thus, the handling of the smaller pieces will not
cause an increase in the score. Next the forces used for cutting would be relevant to consider.
The force could be represented by determining the weight that a�ected by gravity results in
the same forces as the force exerted to cut the meat. Sources from literature are used to get
information about the realistic cutting forces. The forces needed for cutting the meat most
likely depends on several factors. It is possible that the temperature of the meat is one of these
factors. According to the Regulation(EC) No. 853/2004 of the Europa Parliament and of the
Council - laying down specific hygiene rules for food of animal origin annex III chapter V the
meat has to have a temperature of 7 ○C during cutting and boning, and the room temperature
during handling has to be 12 ○C(Council, 2004). In the literature research can be found that
investigates the cutting forces in meat at di�erent temperatures (Brown et al., 2005; Hägg et al.,
2012). However, the literature is not unanimous. The forces di�er in the range 10-560 N in
similar temperature ranges for di�erent setups indicating that the setup has a large impact on
the measured forces. With the di�erences in forces being so large and none of the setup closely
resembling the setup at the slaughterhouse in the context of this project, it makes it impossible
to determine a realistic force exertion. In a final implementation one might have to investigate
the exerted forces for the use case at hand and deduct a matching score, but in this project the
force will be ignored due to insu�cient knowledge. Besides, the load/force score would only be
included as an added constant scalar if the forces are assumed to be constant due to the lack
of realtime measuring. This means that while it might a�ect the size of the score it will not
a�ect the global minimum of the function, which is the property exploited when it is used for
optimisation.

The last score is the activity score. In our use case the activity score will be solely dependent
on the frequency criterion which is constant. This means that this also would be an added
constant scalar and would not influence the location of the minimum of the function.

After these considerations, the final sum of weighted polynomials consists of ten weighted
polynomials for the trunk score, trunk side flexion score, neck score, neck side flexion score, legs
score, upper arm score, upper arm abduction score, lower arm score, wrist score, wrist deviation
score, respectively.

In order to find the weights of the polynomials a selection of poses at di�erent REBA score
levels are created and used in a multiple linear regression. The highest score obtainable in the
original REBA method using the parameters included in the di�erentiable REBA is 11; there-
fore, 22 poses, two at each score level in the interval of 1-11 were created. The poses can be
found in Appendix D. Table 5.2 contains the determined weights as well as the R2. The found
model represents the tendency in the data points rather well as can be deducted from the value
of R2.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 R2

0.787 0.737 1.094 1.264 0.746 0.645 0.561 0.371 0.287 0.932 0.961

Table 5.2: The weights determined for the sum of weighted polynomials and the coe�cient of determination of
the fitted multiple linear regression.
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The created di�erentiable REBA might not actually result in the exact same score for di�erent
assessed postures as the original REBA; however, the important property is that it will have
the minimum at the same location as the original REBA.

5.5 Optimising the Posture
The di�erentiable REBA is optimised with respect to angles. One may observe that the REBA
score as a function of the angles is a convex function. This is known as it is a sum of positively
weighted polynomials with second order coe�cients, a > 0. The formal definition of convexity
for a function is:

A function f ∶ Rd → R is convex if ∀ a, b ∈ Rd and ∀ 0 < t < 1,

f(t ⋅ a + (1 − t)b) ≤ t ⋅ f(a) + (1 − t)f(b) (5.3)

For functions of a single variable such as the second order polynomials for the scores for the
individual body parts in the di�erentiable REBA, the convexity can be determined by examining
the second derivative of the function. This is given by the rule that a function f ∶ R→ R is convex
if and only if its second derivative f ′′(x) ≥ 0 everywhere. For the found individual weighted
second degree polynomials this holds as the second derivative of a second order polynomial with
a positive quadratic term is a positive scalar; and as this is multiplied with a positive weight, it
remains positive. Having established the convexity of the individual weighted polynomials we
can conclude that the di�erentiable REBA, the sum of weighted polynomials, is in fact a convex
function given the knowledge that the sum of convex functions will also be convex.

The convex optimisation problem to be solved is given by Equation 5.4.

min
q

n�
i=1 wiQi(qi) (5.4)

Where n is the number of joints considered in REBA, Qi(q) is a second degree polynomial of
the angle qi at joint i and wi is the weight of Qi(q) and is a scalar.

The optimisation is done using a quadratic cone programming function from the CVXOPT
package for python. Consequently, the di�erentiable REBA, the sum of weighted polynomials,
is represented in the form:

1
2

xT Px + qT x (5.5)

The matrix P is constructed as a diagonal matrix with entries calculated from the quadratic
coe�cients (a) and the weights (w) in the following way: Pnn = an ⋅wn ⋅2. Likewise q is constructed
by multiplying the linear coe�cients (b) with the weights (w), q = w ⋅ bT .

The matrices P and q are parsed to the optimiser as an unconstraint optimisation problem.
The identified optimum will give the optimal body angles for minimising the di�erentiable
REBA. The identified optimal angles are listed in Table 5.3, and the resulting optimal posture
can be seen in Figure 5.9.
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Trunk Trunk Neck Neck
Side Side

◊t ◊ts ◊n ◊ns
0.0 0.0 10.0 0.0

Right Left Right Right Arm
Knee Knee Upper Arm Abduction

◊rk ◊lk ◊rua ◊raa
0.0 0.0 0.0 0.0

Left Left Arm Right Left
Upper Arm Abduction Lower Arm Lower Arm

◊lua ◊laa ◊rla ◊lla
0.0 0.0 80.0 80.0

Right Right Wrist Left Left Wrist
Wrist Deviation Wrist Deviation

◊rw ◊rwd ◊lw ◊lwd
0.0 0.0 0.0 0.0

Table 5.3: The optimal body angles identified through unconstraint optimisation of the di�erentiable REBA.
The angles are stated in degrees.

Figure 5.9: The human body model in RViz showing the optimal posture. The uppermost segment is the line
from the top centre point of the manubrium to the nose.

By conducting a traditional REBA with the original discrete method of the found optimal pos-
ture, it can be confirmed that this posture indeed is an optimal posture that results in the lowest
possible REBA score, namely, a score of 1.

In relation to the use case addressed in this project, it is relevant to determine the correct
position of a meat piece presented by the robot to the butcher given the found angles. For this
purpose forward kinematics of the human body is useful. The method used for determining the
position where the robot should place the meat piece is explained in section 5.6.
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5.6 Optimal Robot Position
In order to simplify the problem of finding the optimal position for the meat piece, some assump-
tions are made. Firstly, the optimal position is found as the optimal position for static contact
rather than a dynamic interaction. Secondly, the point of contact for the human is assumed to
be a point central on the most distal edge of the palm of the hand. This assumption is made
as the butchers interact with the meat using their hands and tools. Though the real contact
point might be o�-set from the point at the palm due to a tool, it is a point realistically close
to where the real contact point would be and will serve as such. Another assumption made is
that the butcher is right handed.

In order to find the optimal position of the meat, the position of the contact point at the
palm has to be identified in 3D Cartesian space given the identified angles. As stated earlier,
this can be done with forward kinematics of the human body. Specifically, the kinematics from
the key point at the right ankle to the contact point at the distal edge of the right palm. The
forward kinematic of the body can be made based on the BODY_25 pose model; however, it is
necessary to know the length of all the body segments between the ankle and the contact point.
In order to get somewhat realistic measures for how long the segment lengths are perceived to
be by the system and to have a system that potentially could obtain this information from an
observed subject automatically, a script was coded that calculates the segment lengths from key
points detected by the ros_openpose wrapper. Subsequently, the average across ten poses was
made to minimise the e�ect of small errors. The calculated segment lengths from a subject are
given in Table 5.4, and these lengths will be used in the onward calculations.

Neck Spine Shoulder
ln lsp lsh

0.196 0.469 0.159
Upper Arm Lower Arm Palm

lua lla lpa
0.271 0.257 0.088

Pelvis Upper Leg Lower Leg
lpe lul lll

0.111 0.429 0.418

Table 5.4: The lengths of the body segments found from the body key points. The lengths are stated in meters.

Furthermore, it is necessary to know the angles that play a role in the joints between the ankle
and the contact point. While the REBA method considers a range of angles in the body, it does
not consider all angles; and, thus, by optimising the di�erentiable REBA, not all the needed
angles are identified. Due to this, the assumption is made that all angles excluded in the REBA
at all times are 0∗○. This is an acceptable assumption for all angles but one, namely the angle
at the ankle. The REBA does include the knee angle, and it is a known fact that bending in
the knees when standing forces a change of the angle at the ankle in order to keep the balance
(Bonnet et al., 2011). The most important e�ect the knee angle has on the position of the
rest of the body is a vertical translation. However, if the ankle angle is unknown, the resulting
translations can only be known if the side opposite to the knee angle in the triangle formed by
the ankle, knee and hip key points is assumed to be perfectly vertical. Therefore, the assumption
is made that the hip key point is located perfectly vertically above the ankle key point given any
knee angle (see Figure 5.10). Though this might not fully portray the complex body movements
that happen in order to keep balance when bending the knees, this is a convenient and necessary
simplification.
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Figure 5.10: The hip height, lhh as a perfect vertical line in the triangle formed by the ankle, knee and hip
key points. The upper and lower leg segments, lul and lll are marked as well as relevant angles around the knee
including the right knee angle included in the di�erentiable REBA ◊rk. The relations depicted in this figure forms
the basis for the calculation of lhh.

Utilising the stated assumption the variate height can be found as a function of the knee angle
by using the law of cosines.

c2 = a2 + b2 − 2 ⋅ a ⋅ b ⋅ cos(◊C) (5.6)

But as the e�ect of the angle is inverse in the sense that the hip height lhh = lul + lll for ◊rk = 0,
cos(◊C) in this case is set to be cos(fi − ◊rk) (see Figure 5.10). Thus, the resulting height of the
hip given the length of the upper and lower leg, lul and lll, and the knee angle, ◊rk, is given by:

lhh =�l2ul + l2ll − 2 ⋅ lul ⋅ lll ⋅ cos(fi − ◊rk) (5.7)

Having identified all the necessary segment lengths and the hip height, the forward kinematics
can be created by identifying the Denavit-Hartenberg parameters and, subsequently, construct-
ing the necessary transformation matrices for the human body. For the identification of the
Denavit-Hartenberg parameters, frames were a�xed to the links following the well known con-
vention and orienting the z-axis along the rotational axis and the x-axis along the common
perpendicular of the rotational axes of the current and the next following joint. The a�xed
frames for the considered part of the human body can be seen in Figure 5.11.
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Figure 5.11: The link frames a�xed to the human body. An arrow indicates the direction of an axis, a cirkle
with a dot in the center indicates an axis pointing towards the viewer while a circle with a cross in the centre
indicates an axis pointing away from the viewer. The colours of the markings indicate the axis, where the x, y
and z-axis are marked with red, green and blue, respectively. Where two frames are a�xed in the same point one
is drawn with an o�set and a white arrow indicated the correct a�xing point.

The Denavit-Hartenberg parameters derived from the a�xed link frames can be seen in Table 5.5.

i –i−1 ai−1 di ◊i

1 0 0 0 -fi
2

2 −fi
2
�

lul
2 + lll

2 − 2 ⋅ lul ⋅ lll ⋅ cos(fi − ◊rk) lpe ◊t

3 −fi
2 0 0 ◊ts

4 −fi
2 lsp lsh ◊rua

5 −fi
2 0 0 fi + ◊raa

6 −fi
2 lua 0 ◊rla

7 fi
2 lla 0 ◊rwd

8 −fi
2 0 0 ◊rw

9 0 lpa 0 0

Table 5.5: The Denavit-Hartenberg parameters for the KUKA KR6 R700 sixx that is used for the prototype.
The distances ai−1 and di are given in mm. The angles –i−1 and ◊i are given in radians.
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For each set of Denavit-Hartenberg parameters a transformation matrix of the following form is
constructed.

T i−1
i =

����������

c◊i −s◊i 0 ai−1
s◊ic–i−1 c◊ic–i−1 −s–i−1 −s–i−1di

s◊is–i−1 c◊is–i−1 c–i−1 c–i−1di

0 0 0 1

����������
(5.8)

The resulting matrices are multiplied as specified by Equation 5.9.

T Ankle
Contact point = T Ankle

1 T 1
2 T 2

3 T 3
4 T 4

5 T 5
6 T 6

7 T 7
8 T 8

Contact point (5.9)

This gives the full transformation from the ankle to the contact point at the most distal edge of
the right hand palm in a coordinate system with the same orientation as the camera coordinate
system when the human is facing the camera. In this case both coordinate systems will have the
x-axis pointing left for the human, the y-axis pointing down and the z-axis pointing backwards.
The entries e1,4, e2,4 and e3,4 in T Ankle

Contact point will give respectively the x, y and z coordinates
of the contact point in respect to the coordinate system at the ankle dependent on the body
angles. The kinematic expressions for the three coordinates of the contact point are provided
in Appendix E. For simplicity reasons, only the position of the contact point and not the
orientation is considered. For now the meat pieces placed by the robot would maintain the same
orientation.

The optimal position of the meat piece in respect to the right ankle point can then be found
using the obtained kinematic equations for the coordinates and inserting the body segment
lengths and the optimised angles. Doing this the optimal position is found to be [x = −0.040, y =−0.999, z = −0.345].
To get the contact point in camera coordinates, a translational matrix constructed from the
detected key point at the right ankle in the camera coordinates should be included. The matrix
would depend on the detected point coordinates of the right ankle key point and would be on
the form specified in Equation 5.10 given the assumption that the human’s coronal plane (see
Figure 2.1) is parallel to the image plane.

T Camera
ankle =

����������

1 0 0 xankle
0 1 0 yankle
0 0 1 zankle
0 0 0 1

����������
(5.10)

With the optimisation established and the forward kinematics for finding the optimal contact
point in place, the next step is to investigate how to introduce some measure for repetitiveness
into the method.

5.7 Introducing a Measure for Repetitiveness
Repetitiveness, is a well known ergonomic risk that also is included in some ergonomic assess-
ment methods. The relationship between e.g. Musculoskeletal Disorders (MSDs) in the upper
limbs and repetition is supported by scientific evidence (Bonfiglioli et al., 2007; Ketola et al.,
2001). Minimising repetitiveness is thus desirable.

The word "receptiveness" is used to describe to which extend something is repetitive, or char-
acterised by repetition. When looking up the dictionary entry for repetition, it is describes as
the act of doing something again, or repeating an action. If something is described as highly
repetitive, it is thus highly characterised by repetition, and it is insinuated that a certain action
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is repeated at a high frequency. As mentioned, repetition describes the act of doing something
again. This also insinuates that the actions carried out each time are considered alike. In er-
gonomics definitions of what is considered repetitive are also given. An example is the following
statement cited from (Books, 2002).

Work is repetitive when it requires the same muscle groups to be used over and
over again during the working day or when it requires frequent movements to
be performed for prolonged periods.

In the field of ergonomic assessments the importances of both of these aspects (frequency and
variation) are discussed. The first aspect, the frequency, is considered an important risk factor.
There are several examples of observational assessment methods that include a frequency factor.
David (2005) provides a nice overview of which factors a selection of methods include. In
Table 5.6 the result of an investigation into how methods reported by David (2005) to include
frequency do so.

Method Reference Inclusion of repetitiveness
The Strain In-
dex (SI)

(Moore and Garg,
1995)

Di�erent intervals of exertions pr. minute map to
di�erent ratings, which through table look-ups result
in di�erent multipliers used in a multiplication to find
the final SI.

RULA (McAtamney and
Corlett, 1993)

Addition of a scalar if repetition higher than 4 pr.
min.

REBA (Hignett and
McAtamney, 2000)

Addition of a scalar if repetition higher than 4 pr.
min.

NIOSH Lift-
ing Equation

(Waters et al.,
1993)

Frequency multiplier is found based on frequency and
duration in a look-up table. Multiplier is then used
to calculate recommended weight limit and lifting in-
dex.

OCRA (Occhipinti, 1998) An index is obtained by dividing the
QEC (Li and Buckle,

2000)
Qualitative assessment

Manual
Handling
Guidance

(Books, 1998) Qualitative assessment

FIOH Risk
Factor Check-
list

(Ketola et al.,
2001)

Semi-quantitative method, only considers repetition
for the hand. If repetition is present a scalar of 1 is
added to a sum of

ACGIH TLVs Source was not found
Upper Limb
Disorder
Guidance
HSE60

(Books, 2002) Qualitative assessment

MAC (Monnington et al.,
2003)

Results in a score based on combined assessment with
load. Score is added to total score.

Table 5.6: The inclusion method for frequency/repetition in a range of assessment methods.

As Table 5.6 reports, there are mainly three ways frequency is included in the investigated as-
sessment methods. In the qualitative methods it is simply reported as one entry in an assessment
summary, and thus not combined with other factors. For the methods that combine frequency
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with other factors to obtain a single ergonomic measure, the frequency is either added as a scalar
or a multiplication factor. In some cases the magnitude of the factor varies dependent on the
recorded frequency.

It could be possible to adjust the behaviour of the robot to lower the frequency; however,
in the context of the use case at the slaughter house, this is not realistic. As mentioned in
section 1.1, the slaughter houses are under pressure and need to keep a high processing rate.

The other aspect of repetition, variation, is also important to the assessment of exposure to
ergonomic risk (David, 2005). As indicated by the quote above su�cient variation might lover the
repetitiveness of the tasks carried out. Furthermore, it is well known that variation is healthy for
the body and increases comfort (Vink et al., 2009). This is also why many assessment methods
punish static postures, which is also the case for the REBA. Variation, however, is usually
not directly included in traditional observational methods, where an observer assesses the work
situation. This is probably because it is hard to estimate the amount of variation with the bare
eye. Nonetheless, there are examples of more advanced video-based observational techniques and
direct measuring methods that enable relatively precise posture estimation and thus assessment
of posture variation. Examples of included measures for assessing posture variation are distance
of movement, angular changes, and velocity and acceleration (David, 2005).

The distance of movement and angular changes are measures that might be useful for intro-
ducing variation in ergonomic adaptation of the robotic movements. As mentioned in section 4.8,
the suitable approach for the robot adaptation in the context of the use case is to find an optimal
placement of the meat for each processing task carried out by the butcher and hold the meat
steady at that position for the duration of the processing task. Variation can then for example
be introduced by ensuring that the body angles when reaching the meat vary su�ciently from
processing task to processing task. At the same time, it is desirable to ensure that the result-
ing postures do not pose too high an ergonomic risk. In section 5.8 a method for introducing
variation based on the concept of angle changes while ensuring low risk postures is proposed.

5.8 The Variation Method
Since variation in posture is positive and desirable, but the existing ergonomic assessment meth-
ods do not provide measures for repetitiveness or, more specifically, variation that are directly
useable for ensuring variation in HRC, a new method based on angle changes is created. This
section presents the method proposed for introducing variation in HRC.

Whenever variation is introduced, it will inevitably cause a deviation from the optimal. In
this way, one can notice that there is a trade-o� relationship between wanting the optimal pos-
ture and introducing variation. The important task when introducing variation is to find variate
poses that do not deviate too much from the optimum. The limit for what is too much devia-
tion from the optimal posture is di�cult to define and probably should be specified by health
care researchers or other experts. However, tools like the REBA do provide an indication of
what postures are acceptable, and the postures generated with variation can thus be evaluated
afterwards with REBA in order to determine whether it is an acceptable posture. Regardless of
what the limit of deviation from the optimum is, the immediate challenge is how to introduce
variation while minimising deviation from the optimum.

The proposed method is based on generating a sampling set around the minimum found in
the optimisation in section 5.5. Since this function is strictly convex and in each dimension it is
symmetric around the optimal value found in that dimension, a sampling set can be defined by

S = {q ∈ Rn�q∗i −mi ≤ qi ≤ q∗i +mi} for i = 1, . . . , n (5.11)
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Where q is the posture consisting of joint angles, qi is the ith entry in q and is the angle for the
ith joint, q∗i is the ith entry in q∗ which is the minimum of the optimisation of the di�erentiable
REBA in section 5.5 and is the optimal angle for the ith joint, mi is the variation margin for
the ith joint, and n is the amount of joints.

If S is used for sampling postures it will be known that each joint angle q̂i in the sample (q̂)
will have a maximum distance to the optimal angle q∗i of mi. The sample set for each dimension
is created by generating si evenly spread samples in the interval [q∗i −mi, q∗i +mi], and si is an
uneven number in order to make sure that q∗i is one of the samples. However, the sample set
for the knee angle is an exception. For this joint the sampling interval is not [q∗i −mi, q∗i +mi],
but rather [q∗i , q∗i +mi]. This is due to how the knee angle is defined (see Figure 5.10) and the
fact that it is physically impossible to place the knee in a negative angle.

The sampling from the created sample set happens by generating a set of n random num-
bers, one in each of the n intervals [1, si]. The random numbers are sampled from a uniform
distribution. The set of random numbers are then used for extracting the corresponding sample
value for each joint and obtain a sample q̂ in S.

Subsequently, the distance from the sample to the k last found postures qj for j = 1, . . . , k
is examined. If the distance to all the k last postures is larger than a specified distance d,�q̂ − qj� ≤ d for j = 1, . . . , k, the sample is accepted as a new posture. If not all k last postures
are at an acceptable distance of the sample, the sample is discarded, and the process is rerun
starting with the generation of a new set of random numbers. When a new posture has been
accepted, the new contact point needed for the positioning of the meat can be calculated based
on the found posture using the forward kinematics of the human body presented in section 5.6.
The method is summarised in the simplified flowchart in Figure 5.12, and the full python code
for the method can be found in Appendix F.

The presented method has several parameters that can be adjusted according to wanted
properties or ergonomic knowledge. The parameters are the tolerated margins for the deviation
from the optimal posture (mi), the number of samples in the margin interval for each joint (si),
the required distance to the considered previous samples (d) and the amount of previous samples
to evaluate distance from (k). mi controls how far from the optimal posture samples can be
generated while si specifies the amount of di�erent possible sample values within the accepted
interval for each joint. si together with mi determines how densely the individual angle inter-
vals are sampled. d influences the amount of variation required from posture to posture, and k
determines for how many steps the space in the sampling set around a certain posture should
be avoided.

The proposed method is tested in a set of evaluational tests in section 5.9.
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Figure 5.12: The overall structure of the variation method.

5.9 Validation of the Variation
In order to validate the performance of the proposed method and ensure that the method intro-
duces variation in a desirable way, some test were conducted.

During the tests, the parameters mentioned in section 5.8 were set to the following values:

• mi = 15○∀i

• si = 31∀i

• d = 25
• k = 5

These values were estimated to be suitable. The value mi = 15○ allows for some variation in the
angles while not allowing very extreme angles. With mi = 15○ and si = 31 the possible angle
samples are exactly 1○ apart which seems convenient. d is set to be 25 to not be to restrictive
but still have e�ect during the tests. The same can be stated for the value of k = 5. When
specifying the parameters, one should be considerate of the combined e�ect that they have. For
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example, if d is moderate and k is very large or if k is moderate and d is very large, then the
"banned area" due to too small distance to qj for j = 1, . . . , k might cover the entire sampling
set S making it impossible to find a compliant posture.

The important properties of the variation method to validate is that the generated postures
in fact are distributed symmetrically around the optimal posture, and that the generated pos-
tures are ergonomically correct.

A test was run where 10.000 consecutive postures were generated in order to examine the
distribution of the samples. Each sample consist of 15 angles, as there are angles for, e.g., both
the right and the left arm. However, there is only one angle determined for the knees due to the
assumption in the use case of standing work with both feet on the ground. This implies that the
knee angle for both legs must be the same. Figure 5.13 shows the histograms of the angles for
the trunk and the knees found in the 10.000 postures. Equivalent histograms for the remaining
13 joints can be found in Appendix G.

(a) Histogram of the trunk angles.

Figure 5.13: The histograms of the 10,000 angles found using the variation method presented in section 5.8.
The red line indicates the mean of the sampled angles. The dotted black line indicates the optimal angle.
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(b) Histogram of the knee angles.

Figure 5.13: The histograms of the 10,000 angles found using the variation method presented in section 5.8
(cont.). The red line indicates the mean of the sampled angles. The dotted black line indicates the optimal angle.

From the histograms in Figure 5.13 and Appendix G it can be noted how the sampled angles
seem to be symmetrically distributed around the optimal angles. Furthermore, the sample mean
aligns well with the optimal angle with only small deviations from the optimal angle for a few
of the joints. The only clear exception is the knee angle, where there is a larger di�erence
between the sample mean and the optimal angle due to the asymmetric sampling for this joint.
Furthermore, it can be noted how the samples appear to be uniformly distributed. This is
expected as this is the distribution the random numbers in the variation method are sampled
from. Table 5.7 and Table 5.8 provide the mean values and the variance for the generated
angles at each joint for di�erent amounts of samples. To get a more thorough insight into
how the di�erence between the sample means and the optimal angles develop as the number of
samples increase, a test was run with 100.000 samples, where the optima-mean di�erences was
continuously calculated. A pair of examples of the resulting plots can be seen in Figure 5.14.
The plots for the remaining 13 angles can be found in Appendix H. The plots in Figure 5.14
and Appendix H indicate that as the amount of samples increase, the di�erences between the
sample mean and the optima go towards 0, except for the mean of the knee angles, which as
mentioned is a special case where the di�erence goes towards mknee

2 . In Table 5.9 the values for
the optima-sample mean di�erences for select amounts of samples are provided. From the values
in the table it can be noticed how the the optima-sample mean di�erences for all joints but the
knees are smaller than 0.1○ when considering a large amount of samples. The deviation of the
sample means from the optima is thus minimal, and the sampled angles are centred around the
optimal values for each joint.
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(a) The optimum-sample mean di�erence for the trunk angles.

(b) The optimum-sample mean di�erence for the knee angles.

Figure 5.14: Plots of the di�erence between the optimal angle and the sample mean as the number of samples
increases. The red line indicates the zero di�erence line.



5.9.
Validation

ofthe
Variation

61

Samples µ◊t µ◊ts µ◊n µ◊ns µ◊k µ◊rua µ◊raa µ◊lua µ◊laa µ◊rla µ◊lla µ◊rw µ◊rwd µ◊lw µ◊lwd
100 0.150 -0.1000 9.360 0.340 7.060 -0.580 -0.380 2.000 -0.910 80.280 80.670 -0.550 -0.430 0.050 0.020
1,000 0.737 -0.151 9.651 0.015 7.336 -0.106 0.150 -0.284 0.139 80.164 79.741 0.118 0.265 0.205 -0.263
10,000 0.004 0.077 9.865 -0.002 7.510 0.050 0.084 -0.119 0.021 80.048 80.073 -0.018 -0.019 -0.053 -0.057
100,000 -0.003 -0.0041 9.960 0.035 7.508 -0.017 0.032 -0.027 -0.028 80.013 79.986 0.016 -0.041 0.032 0.009

Table 5.7: The mean angles for the di�erent joints based on di�erent amounts of samples. The angles are stated in degrees.

Samples ◊t ◊ts ◊n ◊ns ◊k ◊rua ◊raa ◊lua ◊laa ◊rla ◊lla ◊rw ◊rwd ◊lw ◊lwd
100 84.587 65.330 70.090 73.104 20.561 88.884 71.056 71.340 84.142 82.002 78.201 82.647 80.825 81.728 75.980
1,000 80.534 75.550 80.929 77.851 19.142 82.205 74.214 81.391 78.522 75.901 78.916 81.818 77.363 77.251 76.798
10,000 80.841 78935 80.704 79.187 19.733 82.061 80.465 79.046 80.927 80.051 80.457 81.087 79.307 80.000 79.756
100,000 80.243 79.951 79.942 80.083 20.021 80.182 80.118 79.775 80.332 80.155 80.302 80.211 80.151 79.664 79.791

Table 5.8: The variance of the angles for the di�erent joints based on di�erent amounts of samples.

Samples ◊t ◊ts ◊n ◊ns ◊k ◊rua ◊raa ◊lua ◊laa ◊rla µ◊lla ◊rw ◊rwd ◊lw ◊lwd
100 -0.15 0.10 0.64 -0.34 -7.06 0.58 0.38 -2.00 0.91 -0.28 -0.67 0.55 -0.43 -0.05 -0.02
1,000 -0.74 0.15 0.35 -0.02 -7.34 0.11 -0.15 0.28 -0.14 -0.16 0.26 -0.12 -0.27 -0.21 0.26
10,000 -0.004 -0.077 0.13 0.002 -7.510 -0.050 -0.084 0.119 -0.021 -0.048 -0.073 0.018 0.019 0.053 0.057
100,000 0.003 0.041 0.040 -0035 -7.509 0.017 -0.032 0.027 0.028 -0.012 0.014 -0.016 0.041 -0.031 -0.009

Table 5.9: The optima-mean angle di�erences for the di�erent joints based on di�erent amounts of samples. The angle di�erences are stated in degrees.
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Having examined the distribution of the sampled angles, the next step is to investigate the
distribution of the resulting contact points in 3D. In Figure 5.15 the histogram plots of the x, y
and z-coordinates of the found contact points are presented.

(a) The histograms of the x-coordinates of the 10,000 points.

(b) The histograms of the y-coordinates of the 10,000 points.

Figure 5.15: The histograms of the 10.000 point coordinates found using the variation method presented in
section 5.8. The red line indicates the mean of the sampled point coordinates. The dotted black line indicates
the given coordinate of the point found with the optimal posture.

The histograms in Figure 5.15 indicate that the points obtained from the sampled postures are
distributed approximately symmetrically around the coordinates for the optimal point. Further-
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(c) The histograms of the z-coordinates of the 10,000 points.

Figure 5.15: The histograms of the 10.000 point coordinates found using the variation method presented in
section 5.8 (cont.). The red line indicates the mean of the sampled point coordinates. The dotted black line
indicates the given coordinate of the contact point derived from the optimal posture.

more, the coordinates of the points resemble a normal distribution. This means that a relative
large portion of the uniformly sampled postures result in a point close to the optimal contact
point. However, the distribution of the x-coordinates seem to be somewhat skewed and the mean
of the z-coordinates does not seem to fully align with the z-coordinate of the optimal point. To
get a better picture of the distribution of the derived sample points, Figure 5.16 provides a pair
of 3D plots of 500 of the points as well as the optimal point.

(a) A 3D plot of 500 contact point (view a). (b) A 3D plot of 500 contact point (view b).

Figure 5.16: 3D plots of 500 contact point calculated from the generated postures. The orange triangle marks
the contact point found from the optimal posture.
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The mean values and the variance of the coordinates are provided in Table 5.10 and Table 5.11,
respectively. The variances recorded are all between 0.0031 and 0.0086 this means that the
standard deviations are between 0.056 and 0.093 metres. If the distribution of the coordinates is
assumed normal, this means that 99.7% of the coordinates will be within µ±3⋅0.056 = µ±0.168 or
µ±3⋅0.093 = µ±0.279. However, with a normal distribution the majority of the coordinates will be
close to the mean. The variances obtained based on the largest amount of samples indicate that
the variance is larger for the y-coordinates compared to the x and the z-coordinates. This might
be a result of the fact the majority of the joints for which angles are samples are oriented in such
a way that they mainly a�ect the y-coordinate and to a smaller degree the other coordinates.

Samples µx µy µz

100 -0.044 -0.984 -0.322
1,000 -0.047 -0.985 -0.327
10,000 -0.047 -0.989 -0.326
100,000 -0.046 -0.988 -0.325

Table 5.10: The mean coordinates of the found contact points based on di�erent amounts of samples. The
coordinates are stated in metres.

Samples x y z
100 0.00364 0.0086 0.0040
1,000 0.0031 0.0082 0.0036
10,000 0.0034 0.0086 0.0034
100,000 0.0034 0.0086 0.0033

Table 5.11: The variance of the coordinates of the found contact points based on di�erent amounts of samples.

The optima-sample mean di�erences for the point coordinates can be found in Table 5.12. The
values indicate that the di�erence for the x and y-coordinates is on the millimetre scale and is
less than 0.5 centimetres while the di�erence for the z-coordinates consistently seem to be 1 and
2 centimetres. It is possible that the optimal z-coordinate simply does not lie perfectly central
in the possible z-coordinates based on the sampling set.

Samples x y z
100 -0.0036 -0.0011 -0.0175
1,000 -0.0008 -0.0003 -0.0126
10,000 -0.0013 -0.0034 -0.0138
100,000 -0.0018 -0.0.0032 -0.0144

Table 5.12: The optima-mean point di�erences for the di�erent coordinates based on di�erent amounts of
samples. The coordinate di�erences are stated in metres.

The ergonomic correctness of the generated postures has also been examined in order to validate
that the postures indeed do not pose too high an ergonomic risk. The ergonomic risk was
evaluated using the discrete REBA, while still disregarding the factors mentioned in section 5.4.
The histogram of the resulting REBA score is shown in Figure 5.17.
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Figure 5.17: The distribution of the REBA scores of the 10,000 postures.

From Figure 5.17 it can be concluded that there is a higher frequency of the larger REBA scores.
When reflecting on this, it appears somewhat logical. This might simply be because there are
more possible combinations of angles that can cause the middle REBA scores in the same way
that there are more ways to get 7 eyes than to get 3 eyes when rolling two die. The average
REBA score for the postures found using the variation method is 3.4. The REBA method also
provides guidelines for how to interpret the score levels. A score of 1 should be interpreted as
"Negligible risk", while a score of 2-3 is described as "Low risk - change may be needed". A score
of 4-7 is considered "medium risk - further investigation - change soon". Taking into account
the fact that the proposed method indeed introduces variation or change, and the REBA scores
are all in the lower end of the scale, one could argue that the levels of ergonomic risk of the
generated postures are acceptable.

Besides the tests conducted in relation to validating the proposed method, a small performance
tests was carried out. In respect to using the method real-time for contact point generation for
the positioning of the meat pieces by a robot, it is relevant to know how fast the method can
generate new points. Therefore, a test was run 10 times where 10.000 points were generated.
The program finished within one minute in all runs, and the average execution time for finding
10.000 points was 56.7512 seconds. Though, the time will wary depending on the parameters
chosen for the method and the computing power available, the method seems to be fast enough
to use for the stepwise adaptation between the processing tasks carried out by the butcher. The
test was run with the parameters specified in the beginning of this section. During the gener-
ation of the 10.000 points with these parameters, 82 samples were discarded due to insu�cient
distance to the previous found postures.

In section 5.10 the system advancements made in this chapter are evaluated and compared
to the specified requirements revised in section 4.8.
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5.10 System Evaluation
This section evaluates the advancements made in this chapter in respect to the relevant require-
ments.

In this cycle of the research work a new camera and a new ROS-OpenPose wrapper was in-
troduced. The purpose of this was to gain the ability to detect the human pose in 3D. The
ZED2 camera with its associated wrapper successfully provides 3D data that can be used by the
ros_openpose wrapper.

The ros_openpose wrapper is able to successfully detect the human pose and provide the
3D key points. However, it has its limitations in respect to precision. Because the 3D points are
found in the way they are where the 2D key points are projected onto the depth map from the
ZED2 camera, the detected point will always be located on the surface of the detected human
even though it might be more anatomically correct and a better representation of the humans
true pose to have the points placed central in, e.g., limbs. For simple poses, this problem might
only result in a small o�sets while it might result in larger o�sets when the posture is self
occluding.

To summarise, the new setup does provide realtime non-invasive vision-based detection of
the key points, and it does provide 3D capabilities in respect to pose detection. However, the
precision can not be said to be within a ±2.5 margin due to the issues described above. The
advanced system currently does not provide 3D adaptation capabilities as it is not yet combined
with the robot. However, the 3D pose data provides the necessary information such that it can
be achieved.

The work carried out with creating a di�erentiable REBA and the variation method ensures
that a more complex and holistic ergonomic assessment is in place. Furthermore, the variation
method ensures that the system complies with the requirement for inclusion of a measure for
repetition.

Some of the requirements are closely related to the interplay of the rest of the system with
the robot. The robot should adapt from task to task. This means that the command rate
requirement and the delay requirement both change. The command rate is no longer required
to be high enough for a new command always to be available. With the task to task adaptation,
the important point is that a new positioning point is available when a new meat piece has to
be positioned in front of the butcher. This means that the required command rate depends on
the rate of the processing of meat pieces. Likewise, the requirement for the delay no longer
relates to the direct realtime response to input, but rather it relates to the delay in execution of
a given command or the time it takes to generate a new contact/placement point and move to
that point. As seen in section 5.9, the time needed for generating 10.000 points was less than 1
minute, so it is likely that the generation time for a single point will not exceed 1 second.

The framework for the task to task adaptation is not yet implemented; however, the er-
gonomic optimisation method now supports that this kind of adaptation approach can be im-
plemented.

The evaluation of the requirements is summarised in Table 5.13. The new modules developed
in this chapter work together in a di�erent way than the system overviews in Figure 5.1 and
Figure 5.2 portray. Though the ergonomics of the human might be monitored, this is not used as
a continuous input for the modules responsible for the adaptation. Likewise, there is no longer
an isolated decision making module. The ergonomic "decisions" are contained in the proposed
method for generating positioning points. The resulting new flow of the system is that when a
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1 Non-invasive vision system 3
2 Ergonomic assessment 3
3 Repetition measure 3
4 Adaptive behaviour from task to task 7
5 3D capabilities 7
6 Precision of ±2.5 cm 7
7 Realtime monitoring 3
8 Command Rate ≥ 3 3
9 Delay ≤ 1 s 7
10 Collaborative Manipulator 7

Table 5.13: A checklist of the requirements. Note that some requirements are marked unfulfilled because the
methods developed are not yet combined with the robot

meat piece should be positioned, the position and orientation of the human is obtained using
the 3D pose estimation. Then a semi-optimal posture is generated using the variation method;
and, subsequently, the positioning point is calculated using the information about the, position,
orientation and forward kinematics of the human as well as transformation from the camera
frame to the robot frame. Finally, a robot control module executes the positioning of the meat
piece. The new structure of the control system is shown in Figure 5.18.

Figure 5.18: A view of the structure of the new control system.

In in the following chapter, chapter 6, aspects of the research and the proposed methods will be
discussed.





Chapter 6

Discussion

In this chapter di�erent aspects of the research work and the developed methods are discussed
and related considerations are shared.

6.1 Variation Method Parameters
The proposed variation method is specified by a set of parameters: the margin sizes mi, which
specify the maximal allowed deviations from the optima; the sampling amount si, which specifies
the amounts of di�erent values of the joint angle qi in the [q∗i −mi, q∗i +mi] interval; the distance
d, which specifies the required minimal angle distance to the k last postures; and k, which
specifies the amount of previous postures evaluated with respect to distance.

During the tests in section 5.9, the parameters were specified as follows based on an at-
tempt to estimate somewhat realistic and suitable values that did not result in too unergonomic
postures.

• mi = 15○∀i

• si = 31∀i

• d = 25
• k = 5

However, the basis for assessing ergonomically valid values for these parameters is limited.
Ideally, some investigational work should be conducted by experts within the field of ergonomics
in order to determine the ergonomically correct values for the di�erent parameters. During the
tests all mi and si were set as the same, however, from an ergonomic point of view they might
have to be di�erent for each joint type. Some joints might be more sensitive to angle changes
than other.

The value d is currently used to find the distance from one set of angles to another. It
is possible that it would be more correct to have d = {d1, . . . , di}, and examine the distances
between the angles for each joint individually. Some joints might be less sensitive to repetition
or longer durations in the same configuration. For those joints, maybe the required distance to
the previous angle state should be smaller than for other joints, or the amount of considered
previous angles for that joint ki should be smaller.

Nonetheless, a method has been proposed that, thanks to the parameters, is flexible and can
be adjusted to comply with the relevant ergonomic knowledge.

6.2 Discussion of Variation Method
The proposed method successfully generates variate postures and, thus, variate contact points.
However, it samples uniformly from the sample set and does not actively seek the acceptable
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sample with the minimal ergonomic score. A di�erent approach for finding the next position
could be a method that actually finds this sample.

Taking a starting point in the optimisation carried out in section 5.5, an approach could
be constraint optimisation. A constraint optimisation that would introduce variation could be
optimising the di�erentiable REBA with the constraint that the solution should have a minimum
distance d to the k last points (see Equation 6.1).

min
q

n�
i=1 wiQi(qi)

subject to �q − qj� ≥ d for j = 1, . . . , k

(6.1)

Where n is the number of joints considered in REBA, Qi(q) is a second degree polynomial of
the angle qi at joint i and wi is the weight of Qi(q) and is a scalar. qj is the jth last found
solution to the optimisation given it exists.

However, this is an optimisation of a convex function over a non-convex set and, thus, not
a convex optimisation problem. This means that though optimisation of the problem might
lead to some local minimum, there is no guarantee that the global minimum will be found.
Essentially, the optimisation would continuously work towards minimising the variation while
the constrains would be set in place to ensure variation. Also, the amount of variation would
be solely dependent on the parameters k and d.

It is di�cult to determine whether this optimisation approach would be preferable to the
proposed method, and it is likely that the e�ects of the two methods could be similar depen-
dent on the set parameters. Then, for either approach it would be a question of tweaking the
parameters. Nonetheless. it is likely that the variation method proposed would requite less
computations and thus also provide new positioning points faster than a constraint optimisation
would.

6.3 E�ect of the Adaptive and Variation Introducing Methods
Methods for finding an ergonomically optimal placement of an object by a robot that a human
should interact with have been presented in chapter 4 and chapter 5.

The adaptive method applied in the IS indeed continuously adapt the position of the object
with the purpose of guiding the human to an optimal posture, but the success of the method
rests on the assumption that the adaptive moves will introduce a certain change in the posture
of the human. If this is not true, and the human adjusts to the change in a di�erent way than
expected, the method might never reach the truly optimal position, or might even "wander o�"
to a very inappropriate position.

For the optimisation method based on the REBA, it is certain that the optimal position
given the ergonomic relations reflected in REBA can be found. But even then, the human body
has many mechanical Degrees of Freedom (DOF) and there is no guarantee that the human
interacting with the object chooses exactly the found optimal posture from all the poses that
result in the hand being positioned at the object.

This challenge of the many DOF of the human body, and the humans freedom to chose
between the postures that ensure contact is a central and unavoidable issue when attempting
to a�ect the posture of a human through the positioning of a contact point or an interaction
object. This concern also a�ected the choices made when constructing the variation method.
For example, a key decision to make was whether to evaluate the distance to the k last samples
in the joint angle space or the cartesian space of the resulting contact points. The choice was
made to evaluate in joint angle space because it is the joint angles that essentially should be
varied. However, it can easily be argued that it is unknown whether the human choses the
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sampled posture to reach the resulting contact point. Conversely, if the Euclidean distance to
the k last contact points is evaluated, it can be argued that the change in position only has
minimal e�ect on the posture.

Conclusively, it can be stated that in order to validate the e�ect of the proposed method
and get a better understanding of the e�ect of the position of a contact point on the posture,
user testing should be conducted. During the tests, the contact point should be varied and
the pose of the test subjects should be recorded in order to examine the body angles and the
variance introduced in these angles. Only then will it be known if the method is truly e�ective
and to which extent repetitiveness has been reduced. It would, also, be interesting to compare
the comfort perceived by test subjects repeating a certain HRC task for an extended period of
time with and without the variation method.

6.4 Possible Advancements
This section describes a selection of possible advancements or new approaches that could be
the next step in improving the implemented system at its current state or the next step in the
exploration of adapting robotic movements based on ergonomics.

6.4.1 A Combined System
The most obvious advancement to make of the system in its current state would be to combine
the advancements described in chapter 5 with the unchanged parts of the system from the IS.
This would enable the robot to actually place a simulated meat piece at the generated cartesian
point in respect to a human.

In order to combine the parts of the system and make it function in the desired way, a few
things are needed. Firstly, the camera should be calibrated in respect to the robot, such that the
points detected by the camera can be obtained in the robots 3D space. Secondly, calculations
in order to obtain the orientation of the human in the 3D space of the camera is needed. A
framework for handling the task by task adjustment also needs to be set in place. And lastly, for
each subject the robot should adjust according to, the length of the body segments are needed.
These should either be determined beforehand and provided to the adaptive system or a module
for detecting them should be added to the system.

This combination of the system elements would be a valuable next step and this is also
needed if the user testing described in section 6.3 is to be carried out.

6.4.2 Cumulative Measure for Repetitiveness
A possible improvement of the system could be to consider the accumulated e�ect of postures
caused by a certain placement of the meat piece rather than simply choosing a new position for
each processing operation.

This could for example be done by using the same position until an accumulated, .e.g. REBA,
score for either the generated or the detected postures reaches a certain limit. Once the limit is
met then a new positioning of the meat could be chosen. Naturally, postures resulting in higher
scores will contribute more to the accumulation and will cause the accumulated score to reach
the limit within fewer postures. This means that positions of the meat that cause higher risk
postures only would be reused relatively few times while positions that cause low risk postures
can be reused more times.

A method like the described could help prevent unnecessary variation; however, by definition
such a procedure would decrease the variation otherwise introduced by the variation method
proposed in section 5.8. Essentially, the addition of this procedure would introduce yet another
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parameter for experts to specify in order to make the behaviour of the method comply with
knowledge about ergonomic relationships, namely, the accumulation limit.

6.4.3 Optimisation Across Cutting Line
In the proposed method the optimisation happens only for one contact point. However, in
relation to the cutting operation carried out by the butcher in the use case of this project, it
might be more correct to optimise in respect to the cutting motion or cutting line. Such an
optimisation might consider ergonomic score of only the butcher’s posture at the end points of the
cutting line, or it might include the ergonomic state at several via-points along the cutting line.
Such an optimisation might also be useful for finding the optimal orientation of the meat piece
such that the ergonomics of performing the cutting motion are optimised. However, creating
this optimisation is complex and requires knowledge of tool handling and inverse kinematics.
This will also be a non-convex problem, which again makes it impossible to guarantee that the
global optimum is found.



Chapter 7

Conclusion

The research work presented has been focussed on exploring the possibility of adapting robotic
movements in Human-Robot Collaboration (HRC) ergonomically according to vision-based in-
put. The research was conducted in the context of a use case defined within the meat packing
industry.

During the work an Initial System (IS) has been implemented that adapts according to pos-
ture and serves as a concept demonstrator. The IS has subsequently been subject to further
advancements in relation to the central focus of the research work specified by the hypothesis;

Through the use of ergonomic measures and constrains it is possible to optimise the
ergonomic state of a human collaborating with a robot as well as minimise exposure
to repetitiveness.

A method has been proposed for generating points for positioning of an objet by a robot that
is to be processed by a human collaborator. The method takes both posture and receptiveness
into account and ensures successful generation of semi-optimal variated placement points for the
robot. While a maximum tolerated ergonomic score for the posture can be specified, the method
does not find the global solution with the lowest known score for any given set of constraints.

In order to ensure and validate that the proposed method truly fulfils its purpose, user
testing should be conducted. Only through testing can the true e�ect of the generated contac-
t/placement points on the ergonomic state of the human collaborator be revealed, and, thus,
the hypothesis be confirmed.

On a final note, it can be concluded that ergonomic adaptation of robotic movements is a
field with many unknowns and unsolved challenges that needs further exploration and research.
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Appendix A

The process of creating the
Dockerfile

Installing software through Dockerfiles introduces several challenges which has to be solved using
a selection of workarounds. One of such is confirmation og dialog windows. When a Docker
image is build from a Dockerfile, the process has to run undisturbed, and if a dialog window is
generated, the process dies. This might be overcome simply by using flags that deactivates the
confirmation dialogs and simply assume accept such as the -y flag when installing packages using
Apt. Closely related but more complex is the challenge of software with Graphical User Interface
(GUI)s which might be needed for configuration. This is the case if you follow the standard
installation guide for OpenPose where it is suggested that preinstallation configuration is done
in the CMake GUI. Luckily, it is fairly easy to overcome in this case by using regular command
line CMake with di�erent flags; but if one is unfamiliar with this method, it takes time to figure
out how to use it.

An entirely di�erent challenge is when the installation or configuration requires editing of
lines in files. Under normal conditions one would open the file in a text editor with some user
interface; however, since this is not possible during the install process run by Docker an alter-
nate route is needed. For this purpose the GNU stream editor (sed) is very useful. sed is a
command-line tool for editing lines in files. In this project it was mainly used to edit commands
in sh files or path specifications. The last general challenge worth mentioning is issues related
to permissions. Some programmes or actions require special permissions which, on a normal
system, would be executed using sudo. Nonetheless, since sudo is not available in Docker envi-
ronments a workaround by using, eg., chmod is necessary. The use of chmod instead of sudo is
one of the modifications which can be done using sed and that is often needed in sh files.

Due to the way Docker and the containers work, there are some considerations that might
be valuable to make before implementing a system in Docker. What is written in a Dockerfile
will always be present in any container that is an instance of the given image. On the contrary,
all changes made to the system and data generated and saved on the system in a container are
specific to that container and once the container is closed the content will be lost. Docker o�ers
a linkage between directories in the host system and directories in the Docker container which
can be used to overcome this property. Then the content one wants to preserve is saved in a
directory on the host system which can be loaded in each time a container is run. With the
characteristics of the di�erent ways to access and combine the system with di�erent programmes
and file content it is worth making some design considerations in respect to functionality before
choosing what is included in the Dockerfile and what is loaded in from a host directory. A git
repository containing some software, for example, can be loaded both ways. If the software is
to be used in a specific state each time the container is run, it is beneficial to include it in the
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system setup in the Dockerfile. If, on the other hand, that same software is to undergo iterative
changes continuously through the work, it might be preferable to store the software with the
changes in an imported host directory. In this project ROS and OpenPose along with standard
software and tools such as CUDA, python, vim etc. are included in the Dockerfile for the IS
while the OpenPose-ROS wrapper and the ROS nodes implemented are stored in a host directory.

As mentioned earlier, the scripting of a Dockerfile can be very time consuming. This is due
to the fact that the compilation goes through several steps each time a Dockerfile is compiled.
As the steps often are installation of a software each step is costly and the compilation of a
system can continue for the duration of half an hour or more. Though the compilation utilises
cache memory to reuse previously compiled steps, changes to the Dockerfile often introduces
recompilation of an extensive part of the file. Also, if a time consuming step fails at the end this
will be a large amount of time spend compiling something that, in the end, is uncached. During
the development of the IS a lot of time was spend debugging and recompiling the Dockerfile, a
file which in its final state takes 15 to 20 minutes to compile. Even when a seemingly working
system was achieved, issues inside the container with interfacing between OpenPose and ROS
forced a new round of scripting and debugging of the Dockerfile. The issue encountered was
that OpenPose-ROS Wrapper crashed each time a proper input image was received. Through
extensive searches on the internet a solution for a di�erent issue was found and tested as a
last resort. The argumentation was that OpenPose had to be build with a linkage to the same
OpenCV as the one used by ROS. In order to do this, the install order in the Dockerfile had
to be changed, which resulted in more time consuming compilations. And even then, it was
not working with the current install method used for the OpenPose which introduced a few
hours of work implementing a di�erent install method and debugging the process. Eventually,
a container with the wanted setup working was achieved.



Appendix B

The process of establishing
connection between a Docker
container and the Sawyer robot

Because no communication could be established with the robot when running the Docker con-
tainer with the –net host flag, the connection was examined by pinging to the robot’s IP
address. As this was possible the IP address was set up in the mentioned script instead of the
robot host name. Subsequently, the container could seemingly partially access the network as it
was able to see ROS topics published by the robot but could not communicate with the topics
an a full two-way communication. In an attempt to fix the problem, the Docker functionality
of exposing and mapping ports and specifying the container’s IP address was tested without
success. Similarly, settings in the Sawyer robot of how it would express itself on the network
was changed without any e�ect.

Other researchers have been able to connect to di�erent robots from a similar setup with
ROS in a container or connecting to the Sawyer in a setup without Docker. Therefore, the
assumption was that the problem was some where with Docker, and the next approach was
to isolate the problem origin. In an attempt to examine whether the problem was the Docker
setup, a similar system was implemented in Virtual Box. This was chosen as the Intera SDK
requires a version of ROS which is incompatible with the host OS on the desktop. In Virtual
Box the connection between the robot and the virtual environment could be established without
any issues; thus, the problem was indeed related to Docker.

Experiments with Docker network were made. A bridge type network was created under
the assumption that it would resemble the way connection was established with Virtual Box.
However, this and an alternative network type, macvlan, were tested and both did not solve the
issue. Throughout all of the attempts and small changes made, a variation of trials were made
in the configuration of the Intera SDK to check for solutions.

Through extensive searches on the internet, a detail about Docker having its own namespace
even when connected to host network was discovered. Simultaneously, a git repository with
work with the Sawyer robot inside a Docker container was found. In the Docker run commands
used in the git repository a –add-host flag was used for mapping a host name in the Docker
container to an IP address. When this flag with a mapping of the Sawyer host name to its IP
address was added to the run command the problem was solved and full connection between
Sawyer and the container could be established.
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Appendix C

The second degree polynomial
regressions for the individual
postural subscores of the REBA

This appendix contains the plots of the second degree polynomial regressions carried out in order
to create a di�erentiable REBA. In each plot the red dots represent the data used as the base
for the regression while the blue line is the plot of the found second degree polynomial.

(a) The second degree polynomial found for the
trunk score with the coe�cient of determination
of R2 = 0.935.

(b) The second degree polynomial found for the
neck score with the coe�cient of determination of
R2 = 0.935.

Figure C.1: Plots of the fitted second degree polynomial for the di�erentiable REBA.
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(c) The second degree polynomial found for the
leg score with the coe�cient of determination of
R2 = 0.918.

(d) The second degree polynomial found for the
upper arm score with the coe�cient of determi-
nation of R2 = 0.960.

(e) The second degree polynomial found for the
lower arm score with the coe�cient of determina-
tion of R2 = 1.000.

(f) The second degree polynomial found for the
wrist score with the coe�cient of determination
of R2 = 1.000.

(g) The second degree polynomial found for the
side flexions, abductions and deviation scores
with the coe�cient of determination of R2 =
1.000.

Figure C.1: Plots of the fitted second degree polynomial for the di�erentiable REBA (cont.).



Appendix D

Body Poses created and used to find
the weights in the di�erentiable
REBA.
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Pose Trunk Trunk Side Neck Neck Side Legs Upper Abduction Lower Wrist Wrist REBA
No. Flexion Flexion Arm Arm Deviation Score
1 0 0 15 0 10 80 0 75 -10 0 1
2 0 0 5 0 25 -15 0 65 -15 0 1
3 0 0 20 0 10 30 20 50 15 0 2
4 -25 0 0 0 20 5 15 115 -15 0 2
5 0 0 5 0 70 10 0 80 10 10 3
6 0 0 10 0 10 60 20 110 20 0 3
7 30 20 10 0 0 60 20 30 10 0 4
8 -30 -10 15 0 50 -35 0 90 -20 0 4
9 -15 0 5 -15 75 95 0 70 -5 0 5
10 20 0 0 0 25 85 15 45 30 20 5
11 15 -10 10 15 75 -15 20 10 5 0 6
12 0 15 20 0 50 105 15 95 -10 -15 6
13 80 -10 -20 0 40 10 10 85 15 0 7
14 20 15 0 0 70 65 35 115 -5 10 7
15 -10 0 -10 20 40 100 20 10 0 0 8
16 70 -20 -20 -10 40 -40 0 20 10 -10 8
17 35 0 35 15 35 100 35 80 5 15 9
18 45 30 -15 -15 85 -35 10 50 -5 0 9
19 85 20 0 10 75 105 0 40 -30 0 10
20 70 -25 -10 0 55 95 30 25 -25 -20 10
21 70 10 -20 10 80 100 30 20 -20 0 11
22 70 20 -10 -20 70 120 30 120 25 15 11

Table D.1: The poses consisting of 10 angles in the body and the corresponding REBA score used for determining the weights. Angles are given in degrees (○).



Appendix E

Kinematic equations for the position
of the contact point

This appendix provides the found kinematic equations for the x,y and z coordinate of the contact
point at the right hand palm given the segment legnths and the body angles.

x = lpa ⋅((((− sin(◊ts) ⋅cos(◊rua) ⋅cos(◊raa+fi)+sin(◊raa+fi) ⋅cos(◊ts)) ⋅cos(◊rla)−sin(◊rla) ⋅sin(◊ts) ⋅
sin(◊rua))⋅cos(◊rwd)+(sin(◊ts)⋅sin(◊raa+fi)⋅cos(◊rua)+cos(◊ts)⋅cos(◊raa+fi))⋅sin(◊rwd))⋅cos(◊rw)−((− sin(◊ts) ⋅cos(◊rua) ⋅cos(◊raa+fi)+sin(◊raa+fi) ⋅cos(◊ts)) ⋅sin(◊rla)+sin(◊ts) ⋅sin(◊rua) ⋅cos(◊rla)) ⋅
sin(◊rw))+ lla ⋅ ((− sin(◊ts) ⋅ cos(◊rua) ⋅ cos(◊raa + fi)+ sin(◊raa + fi) ⋅ cos(◊ts)) ⋅ cos(◊rla)− sin(◊rla) ⋅
sin(◊ts) ⋅ sin(◊rua)) + lpe − lsh ⋅ cos(◊ts) − lsp ⋅ sin(◊ts) + lua ⋅ (− sin(◊ts) ⋅ cos(◊rua) ⋅ cos(◊raa + fi) +
sin(◊raa + fi) ⋅ cos(◊ts))
y = lpa ⋅ (((((− sin(◊t) ⋅ sin(◊rua) − cos(◊t) ⋅ cos(◊ts) ⋅ cos(◊rua)) ⋅ cos(◊raa + fi) − sin(◊ts) ⋅ sin(◊raa +
fi) ⋅ cos(◊t)) ⋅ cos(◊rla)− (− sin(◊t) ⋅ cos(◊rua)+ sin(◊rua) ⋅ cos(◊t) ⋅ cos(◊ts)) ⋅ sin(◊rla)) ⋅ cos(◊rwd)+(−(− sin(◊t) ⋅ sin(◊rua)−cos(◊t) ⋅cos(◊ts) ⋅cos(◊rua)) ⋅ sin(◊raa+fi)− sin(◊ts) ⋅cos(◊t) ⋅cos(◊raa+fi)) ⋅
sin(◊rwd)) ⋅ cos(◊rw)− (((− sin(◊t) ⋅ sin(◊rua)− cos(◊t) ⋅ cos(◊ts) ⋅ cos(◊rua)) ⋅ cos(◊raa +fi)− sin(◊ts) ⋅
sin(◊raa + fi) ⋅ cos(◊t)) ⋅ sin(◊rla) + (− sin(◊t) ⋅ cos(◊rua) + sin(◊rua) ⋅ cos(◊t) ⋅ cos(◊ts)) ⋅ cos(◊rla)) ⋅
sin(◊rw))+lla ⋅(((− sin(◊t) ⋅sin(◊rua)−cos(◊t) ⋅cos(◊ts) ⋅cos(◊rua)) ⋅cos(◊raa+fi)−sin(◊ts) ⋅sin(◊raa+
fi) ⋅ cos(◊t)) ⋅ cos(◊rla)− (− sin(◊t) ⋅ cos(◊rua)+ sin(◊rua) ⋅ cos(◊t) ⋅ cos(◊ts)) ⋅ sin(◊rla))+ lsh ⋅ sin(◊ts) ⋅
cos(◊t)− lsp ⋅ cos(◊t) ⋅ cos(◊ts)+ lua ⋅ ((− sin(◊t) ⋅ sin(◊rua)− cos(◊t) ⋅ cos(◊ts) ⋅ cos(◊rua)) ⋅ cos(◊raa +
fi) − sin(◊ts) ⋅ sin(◊raa + fi) ⋅ cos(◊t)) − sqrt(lll2 + lul

2 − 2 ⋅ lll ⋅ lul ⋅ cos(fi − ◊rk))
z = lpa ⋅ (((((− sin(◊t) ⋅ cos(◊ts) ⋅ cos(◊rua) + sin(◊rua) ⋅ cos(◊t)) ⋅ cos(◊raa + fi) − sin(◊t) ⋅ sin(◊ts) ⋅
sin(◊raa + fi)) ⋅ cos(◊rla) − (sin(◊t) ⋅ sin(◊rua) ⋅ cos(◊ts) + cos(◊t) ⋅ cos(◊rua)) ⋅ sin(◊rla)) ⋅ cos(◊rwd) +(−(− sin(◊t) ⋅cos(◊ts) ⋅cos(◊rua)+ sin(◊rua) ⋅cos(◊t)) ⋅ sin(◊raa+fi)− sin(◊t) ⋅ sin(◊ts) ⋅cos(◊raa+fi)) ⋅
sin(◊rwd)) ⋅cos(◊rw)−(((− sin(◊t) ⋅cos(◊ts) ⋅cos(◊rua)+ sin(◊rua) ⋅cos(◊t)) ⋅cos(◊raa+cos)− sin(◊t) ⋅
sin(◊ts)fi sin(◊raa + fi)) ⋅ sin(◊rla) + (sin(◊t) ⋅ sin(◊rua) ⋅ cos(◊ts) + cos(◊t) ⋅ cos(◊rua)) ⋅ cos(◊rla)) ⋅
sin(◊rw))+ lla ⋅(((− sin(◊t) ⋅cos(◊ts) ⋅cos(◊rua)+ sin(◊rua) ⋅cos(◊t)) ⋅cos(◊raa+fi)− sin(◊t) ⋅ sin(◊ts) ⋅
sin(◊raa +fi)) ⋅ cos(◊rla)− (sin(◊t) ⋅ sin(◊rua) ⋅ cos(◊ts)+ cos(◊t) ⋅ cos(◊rua)) ⋅ sin(◊rla))+ lsh ⋅ sin(◊t) ⋅
sin(◊ts)− lsp ⋅ sin(◊t) ⋅ cos(◊ts)+ lua ⋅ ((− sin(◊t) ⋅ cos(◊ts) ⋅ cos(◊rua)+ sin(◊rua) ⋅ cos(◊t)) ⋅ cos(◊raa +
fi) − sin(◊t) ⋅ sin(◊ts) ⋅ sin(◊raa + fi))
Where ◊rk is the right knee angle, ◊t is the trunk angle, ◊ts is trunk side angle, ◊rua is an-
gle of the right upper arm, ◊raa is right arm abduction angle, ◊rla is the angle of the right lower
arm or the elbow, ◊rw is the right wrist angle, ◊rwd is right wrist deviation angle, lsp is the spine
length, lsh is the length from the spine to the shoulder joint, lua is the length of the upper arm,
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lla is the length of the lower arm, lpa is the length of the palm of the hand, lpe is the length from
the spine to the hip joint, lul is the upper leg length and lll is the lo length.



Appendix F

The code for the variation method

The python code for the variation method proposed in section 5.8. The three functions
forward_kinematics_x(), forward_kinematics_y() and forward_kinematics_z() are place-
holders for the corresponding kinematic equation provided in Appendix E

1 import numpy as np
2 import random
3 import math
4
5 if __name__ ==" __main__ ":
6 random .seed (42)
7 optipose =[0.0 ,0.0 ,10.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,0.0 ,80.0 ,80.0 ,

0.0 ,0.0 ,0.0 ,0.0]
8 angle_num =len( optipose )
9

10 ########### parameters ##############
11 #m_i
12 vary_margins =15
13 #s_i
14 sampling_number =31 # should be an uneven integer
15 #d
16 req_min_distance =25
17 # number of poses to find in this run
18 number_of_poses =1000
19 #k
20 k_last =5
21 ###################################
22
23 # generate the sampling set
24 larm_sample_array =np. linspace ( optipose [10] - vary_margins , optipose

[10]+ vary_margins , sampling_number )
25 neck_sample_array =np. linspace ( optipose [2]- vary_margins , optipose

[2]+ vary_margins , sampling_number )
26 genral_sample_array =np. linspace ( optipose [0]- vary_margins , optipose

[0]+ vary_margins , sampling_number )
27 knee_sample_array =np. linspace ( optipose [0], optipose [0]+ vary_margins

, sampling_number )
28
29 found_poses =[ optipose [:]]
30 cont_mean_opti_diff =[[0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0]]
31
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32 for i in range (1, number_of_poses ):
33 temp =[]
34 distance_condition = False
35
36 while distance_condition == False :
37
38 randomlist = []
39 # generate a set of random indices
40 for k in range (0, angle_num ):
41 randomlist . append ( random . randint (0, sampling_number -1))
42
43 # obtain the resulting sample using the set of random

indices
44 temp =[ genral_sample_array [ randomlist [0]] ,

genral_sample_array [ randomlist [1]] , neck_sample_array [
randomlist [2]] , genral_sample_array [ randomlist [3]] ,
knee_sample_array [ randomlist [4]] , genral_sample_array [
randomlist [5]] , genral_sample_array [ randomlist [6]] ,
genral_sample_array [ randomlist [7]] , genral_sample_array [
randomlist [8]] , larm_sample_array [ randomlist [9]] ,
larm_sample_array [ randomlist [10]] , genral_sample_array [
randomlist [11]] , genral_sample_array [ randomlist [12]] ,
genral_sample_array [ randomlist [13]] , genral_sample_array
[ randomlist [14]]]

45
46 distanc_checks =[]
47 #check the distance to the k last postures
48 for s in range (1, k_last +1):
49 idx=i-s
50 if idx >= 0:
51 distance =np. linalg .norm(np.array(temp)-np.array(

found_poses [idx ]))
52 if distance >= req_min_distance :
53 distanc_checks . append (True)
54 else:
55 distanc_checks . append (False )
56 if all( distanc_checks ):
57 distance_condition =True
58 else:
59 print (" Discarded point due to insufficient distance ")
60
61 found_poses . append (temp)
62
63 #find cartesian points
64 cart_endpoints =[]
65 sp , sh , ua , ca , pe , th ,la ,ha =

[0.469 ,0.159 ,0.271 ,0.418 ,0.111 ,0.429 ,0.257 ,0.088]
66 for pose in found_poses :
67 ta , tsa , uaa , ab , ka , laa , de , wa = [pose [0]*( math.pi /180) ,

pose [1]*( math.pi /180) ,pose [5]*( math.pi /180) ,pose [6]*( math.
pi /180) ,pose [4]*( math.pi /180) ,pose [9]*( math.pi /180) ,pose
[12]*( math.pi /180) ,pose [11]*( math.pi /180)]

68 x= forward_kinematics_x ()
69 y= forward_kinematics_y ()
70 z= forward_kinematics_z ()
71 cart_endpoints . append ([x,y,z])



Appendix G

Histograms of the Sampled Angles
for the Joints

Plots showing the histograms of the sampled angles for each joint. Plots for 13 of the joints
are provided here, while the plots for the last two joints (trunk and knees) can be found in
section 5.9.

(a) (b)

(c) (d)

Figure G.1: The histograms of the 10,000 angles for each joint found using the variation method presented in
section 5.8. The red line indicates the mean of the sampled angles. The dotted black line indicates the optimal
angle.
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(e) (f)

(g) (h)

(i) (j)

Figure G.1: The histograms of the 10,000 angles for each joint found using the variation method presented in
section 5.8 (cont.). The red line indicates the mean of the sampled angles. The dotted black line indicates the
optimal angle.
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(k) (l)

(m)

Figure G.1: The histograms of the 10,000 angles for each joint found using the variation method presented in
section 5.8 (cont.). The red line indicates the mean of the sampled angles. The dotted black line indicates the
optimal angle.





Appendix H

Optima-mean Di�erence Plots

Plots of the di�erence between the optimal angle and the sample mean as the number of samples
increases. Plots for 13 of the joints are provided here, while the plots for the last two joints can
be found in section 5.9.

(a) (b)

(c) (d)

Figure H.1: Plots of the di�erence between the optimal angle and the sample mean as the number of samples
increases. The red Line indicates the zero di�erence line.
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(e) (f)

(g) (h)

(i) (j)

Figure H.1: Plots of the di�erence between the optimal angle and the sample mean as the number of samples
increases (cont.). The red Line indicates the zero di�erence line.
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(k) (l)

(m)

Figure H.1: Plots of the di�erence between the optimal angle and the sample mean as the number of samples
increases (cont.). The red Line indicates the zero di�erence line.


	Title Page
	Contents
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 The ACMP Project
	1.3 System Outline
	1.4 State of the Art
	1.4.1 Human Pose Estimation
	1.4.2 Ergonomic Assessment
	1.4.3 Ergonomically Optimising Robot Movement


	2 Project Delimitation
	2.1 Scope of the Project
	2.1.1 Hypothesis
	2.1.2 Project Use Case

	2.2 Requirement Specification

	3 Methods and Means
	3.1 Non-invasive Vision-Based Human Pose Estimation Methods
	3.2 Ergonomic Feedback
	3.3 Structure of the Work

	4 Design of the is
	4.1 System Overview
	4.1.1 Hardware
	4.1.2 Software

	4.2 Reproducibility
	4.2.1 Docker
	4.2.2 The Dockerfile

	4.3 Connection Between the Docker Container and Sawyer
	4.4 The ROS Setup
	4.5 The OpenPose ROS Node
	4.6 The Angle Calculation Node
	4.7 The Robot Adaptation Node
	4.7.1 The Robot Control Node

	4.8 Evaluation of the is

	5 Advancing the Ergonomic Adaptation
	5.1 The Goal of the Advancements
	5.2 The ZED2 Camera
	5.2.1 Setup for the ZED2

	5.3 3D OpenPose
	5.4 Constructing the Differentiable reba Method
	5.5 Optimising the Posture
	5.6 Optimal Robot Position
	5.7 Introducing a Measure for Repetitiveness
	5.8 The Variation Method
	5.9 Validation of the Variation
	5.10 System Evaluation

	6 Discussion
	6.1 Variation Method Parameters
	6.2 Discussion of Variation Method
	6.3 Effect of the Adaptive and Variation Introducing Methods
	6.4 Possible Advancements
	6.4.1 A Combined System
	6.4.2 Cumulative Measure for Repetitiveness
	6.4.3 Optimisation Across Cutting Line


	7 Conclusion
	List of Figures
	List of Tables
	Bibliography
	A The process of creating the Dockerfile
	B The process of establishing connection between a Docker container and the Sawyer robot
	C The second degree polynomial regressions for the individual postural subscores of the reba
	D Body Poses created and used to find the weights in the differentiable reba.
	E Kinematic equations for the position of the contact point
	F The code for the variation method
	G Histograms of the Sampled Angles for the Joints
	H Optima-mean Difference Plots

