

Aalborg Universitet

Modeling, Annotating, and Querying Geo-Semantic Data Warehouses

Gür, Nurefsan

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Gür, N. (2020). Modeling, Annotating, and Querying Geo-Semantic Data Warehouses. Aalborg
Universitetsforlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 10, 2024

https://vbn.aau.dk/en/publications/c67a7c12-1580-4a62-b0c6-d1a17ea1b98c

N
u

r
efşa

n
 G

ü
r

M
o

d
eling

, Ann

o
tating

, a

n
d

 Q
u

er
ying

 G

eo
-Sem

a
n

tic
 D

ata W
a

r
eh

o
u

ses

Modeling, Annotating,
and Querying Geo-Semantic

Data Warehouses

by
Nurefşan Gür

Dissertation submitted 2020

T BII

D C

Modeling, Annotating, and
Querying Geo-Semantic Data

Warehouses

Ph.D. Dissertation
Nurefşan Gür

Dissertation submitted January, 2020

A thesis submitted to the Technical Faculty of IT and Design at Aalborg Uni-
versity (AAU) and the Faculty of Engineering at Université Libre de Bruxelles
(ULB), in partial fulfilment of the requirements within the scope of the IT4BI-
DC programme for the joint Ph.D. degree in Computer Science. The thesis is
not submitted to any other organization at the same time.

Dissertation submitted:	 January, 2020

AAU PhD Supervisor:	 Prof. Torben Bach Pedersen
			 Aalborg University, Denmark

AAU PhD Co-Supervisor: 	 Prof. Katja Hose
			 Aalborg University, Denmark

ULB PhD Supervisor: 	 Prof. Esteban Zimányi
			 Université Libre de Bruxelles, Belgium

PhD committee: 	 Associate Professor Kristian Torp (chairman)
			 Aalborg University
			 Professor Lars Harrie
			 GIS Centre, Lund University
			 Researcher Sandro Bimonte
			 National Research Institute of Science and Technology
			 for Environment and Agriculture (IRSTEA)

ULB PhD Committee: 	 Assoc. Prof. Stijn Vansummeren
			 Université Libre de Bruxelles, Belgium
			 Assoc. Prof. Mahmoud Sakr
			 Université Libre de Bruxelles, Belgium
			 Assoc. Prof. Kristian Torp
			 Aalborg University, Denmark
			 Professor Lars Harrie
			 GIS Centre, Lund University			
			 Dr. Sandro Bimonte, National Research Institute of
			 Science and Technology for Environment and
			 Agriculture - IRSTEA, France

PhD Series:	 Technical Faculty of IT and Design, Aalborg University
Department:	 Department of Computer Science
ISSN (online): 2446-1628
ISBN (online): 978-87-7210-587-1

Published by:
Aalborg University Press
Langagervej 2 | DK – 9220 Aalborg Ø
Phone: +45 99407140 | aauf@forlag.aau.dk | forlag.aau.dk

© Copyright: Nurefşan Gür

Printed in Denmark by Rosendahls, 2020

Abstract

Due to recent advances in Semantic Web (SW) technologies and world-wide
movement on publishing Linked Open Data (LOD) by following a set of
principles on the SW, many governmental organizations and public agencies
have been publishing large volumes of geospatial data on the SW. This large
amount of spatial data on the SW yields a need for advanced analysis. In the
traditional database world, data warehouses and On-Line Analytical Process-
ing (OLAP) is proven to be a well constructed and efficient way of storing and
querying massive amounts of data with advanced analytical perspectives.
Current state-of-the-art SW technologies support only multi-dimensional an-
notation of data warehouses and querying with traditional OLAP operators
over non-spatial data. To reveal new perspectives over SW data, it is impor-
tant to utilize the spatial information of the data sets being published, while
modeling and querying the (SW) data warehouses. Even though there are
many studies around the geospatial SW, none of them addresses the multi-
dimensional aspects of spatial data being published or support querying with
spatial OLAP (SOLAP) operators. We believe a large number of spatial data
sets on the SW can be utilized with their full potential by addressing the
lack of methods, tools, and applications of spatial data warehouses on the
SW. Therefore the thesis addresses several challenges related to geo-semantic
data warehouses to model, query, and derive analytical perspectives over a
huge amount of geo-semantic data with SOLAP operators and spatial multi-
dimensional enrichment of SW data.

This thesis first presents the best practices for publishing Danish govern-
mental data sets from agricultural, spatial, and business domains on the SW
as an initial effort to publish open governmental data as Linked Open Data in
Denmark. The published LOD endpoint is queried with standard and aggre-
gate query templates and evaluated against three different query processing
scenarios with native RDF, relational and virtual strategies. Query perfor-
mance for aggregated query templates on native RDF demonstrated signifi-
cantly faster response time than the other strategies. The results establish a
promising basis for geo-semantic data warehouses, as aggregate queries are
fundamental in multi-dimensional models and in data warehousing.

iii

Next, the thesis proposes a multi-dimensional cube vocabulary for SO-
LAP - QB4SOLAP as an initial step of a foundation for geo-semantic data
warehouses. The thesis defines full formalizations of multi-dimensional spa-
tial concepts from QB4SOLAP (such as spatial dimension hierarchies, spatial
measures, aggregate functions, topological relations) in RDF format. By us-
ing the QB4SOLAP vocabulary, spatial data can be annotated and published
on the SW with complete spatial multi-dimensional concepts, which were
not available before. Spatial multi-dimensional annotation of RDF data with
QB4SOLAP overcomes several limitations of spatial analytical querying of
SW data with a set of SOLAP operators (e.g., s-roll-up and s-slice), where SO-
LAP operators reveal new analytical perspectives to the users. SOLAP oper-
ators create a dynamic interpretation of the multi-dimensional concepts (i.e.,
dynamic spatial hierarchy) by employing spatial functions (e.g., distance)
or topological relations (e.g., within). Due to the fact that data warehouse
queries typically involve nesting of SOLAP operators, which makes it almost
impossible for non-SW-experts to formulate nested SOLAP queries in native
RDF query language (SPARQL), the thesis proposes algorithms for translat-
ing individual and nested SOLAP queries from high-level multi-dimensional
expressions into SPARQL query syntax.

Furthermore, using the generation algorithms and formalizations of QB4-
SOLAP and SOLAP operators, a geo-semantic OLAP tool for the SW - GeoSem-
OLAP is introduced to remove the entry barrier for data warehouse users to
query geo-semantic data warehouses without knowledge of RDF/SPARQL.
The GeoSemOLAP tool is tested and demonstrated with a non-trivial spa-
tial multi-dimensional use case, which is modeled with the QB4SOLAP vo-
cabulary. By using the QB4SOLAP multi-dimensional schema definitions,
GeoSemOLAP parses the use case data with corresponding spatial multi-
dimensional concepts, such as spatial levels, spatial attributes, and spatial
measures, which can be used as input parameters to the SOLAP operations
from an intuitive and easy-to-use graphical user interface that is provided
with interactive maps.

The QB4SOLAP vocabulary is validated on several use cases including
Danish governmental, environmental, agricultural, farming, and spatial data
sets, which can be annotated with spatial multi-dimensional concepts of
QB4SOLAP. By applying QB4SOLAP on complex real-world data sets from
various organizations and resources, a comprehensive insight is brought on
to spatial and multi-dimensional modeling of governmental data with best
practices, discussions, and perspectives. In order to exploit the data with
new analytical perspectives that were not available before, the use cases are
queried with a set of common (individual and nested) SOLAP operators in
SPARQL.

Finally, the thesis addresses the lacking automated methods for spatial
multi-dimensional annotations on the Semantic Web and proposes an enrich-

ment framework namely RDF2SOLAP to enrich the existing RDF data cubes.
The thesis proposes a set of hierarchical enrichment algorithms and a set of
factual enrichment algorithms within the scope of the RDF2SOLAP enrich-
ment process. In each set, there are algorithms for detecting explicit relations
and discovering implicit relations between spatial level members (hierarchical
enrichment) and between fact-level members (factual enrichment). Moreover,
in factual enrichment, the fact schema is automatically redefined from the
outcome of the instance level enrichment algorithms over fact members and
level members. RDF2SOLAP enrichment process allows spatial data ware-
house users to query the existing spatial RDF endpoints with SOLAP oper-
ators without needing to download, convert, model and store the data in an
offline spatial data warehouse. Experimental evaluation results show that the
proposed framework demonstrates the efficient processing of the enrichment
algorithms directly on the RDF data.

Resumé

På grund af de seneste fremskridt omkring Semantic Web (SW) teknolo-
gier og den verdensomspændende bevægelse for at udgive Linked Open
Data (LOD) ved at følge et sæt af principper på det semantiske web (SW),
har mange regeringsorganisationer og offentlige myndigheder udgivet store
mængder geo-spatielle data på det semantiske web. Denne store mængde af
spatielle data kræver avanceret analyse. I den traditionelle database-verden
er datavarehuse og On-Line Analytical Processing (OLAP) anerkendt for at
være en velstruktureret og effektiv metode for at gemme og forespørge på
enorme mængder af data med et avanceret analytisk perspektiv. De seneste
SW teknologier understøtter kun multi-dimensionel annotering af datavare-
huse og forespørgsler med traditionelle OLAP operatorer over ikke-spatiel
data. For at kunne understøtte nye perspektiver og avanceret (spatiel) analyse
over SW data, når man modellerer og forespørger på (SW) datavarehuse, er
det vigtigt at anvende de datasæt med spatiel information, der bliver udgivet
imens. Selvom der er mange studier vedrørende det geo-spatielle semantiske
web, er der ingen der adresserer det multi-dimensionelle aspekt af spatiel
data, der bliver udgivet eller understøtter forespørgsel af spatiel OLAP (SO-
LAP) operatorer. Vi mener at mange spatielle data sæt på det semantiske
web man blive anvendt til deres fulde potentiale ved at adressere manglen
på metoder, værktøjer og applikationer af datavarehuse på det semantiske
web. Derfor adresserer afhandlingen adskillige udfordringer relateret til geo-
semantiske datavarehuse til at modellere, forespørge på og aflede analytiske
perspektiver over enorme mængder af geo-semantiske data.

Først præsenterer afhandlingen den bedste praksis for at udgive danske
offentlige datasæt fra landbrugs-, spatielle- og forretningsdomæner på det
semantiske web som en initiel indsats til at udgive offentlige regeringsdata
som Linked Open Data (LOD) i Danmark. De udgivne LOD endpoint bliver
forespurgt på standard og aggregerede forespørgselsskabeloner og evalueret
mod tre forskellige forespørgselsprocesseringsscenarier med RDF, relationelle
og visuelle strategier. Effektiviteten af forespørgslerne for aggregerede fore-
spørgselsskabeloner på RDF demonstrerede betydelig hurtigere responstid
end andre strategier. Resultaterne etablerer en lovende basis for geo-semantis-

vii

ke datavarehuse som aggregerede forespørgsler, da aggregerede forespørgsler
er fundamentale i multi-dimensionelle modeller og i datavarehusning.

Derefter foreslår afhandlingen en multi-dimensionel kubeontologi for SO-
LAP, QB4SOLAP, som det første skridt for et fundament for geo-semantiske
datavarehuse. Afhandlingen definerer fuld formalisering af multi-dimensio-
nelle spatielle koncepter fra QB4SOLAP (fx. spatielle dimensionshierarkier,
spatielle målinger, aggregerede funktioner og topologiske relationer) i RDF
format. Ved at anvende QB4SOLAP ontologien, kan spatielle data blive an-
noteret og udgivet på det semantiske web med komplette spatielle multi-
dimensionelle koncepter, som ikke tidligere var tilgængelige. Spatielle multi-
dimensionelle annoteringer af RDF dataen med QB4SOLAP overvinder ad-
skillige begrænsninger med spatielle analyseforespørgsler af SW data med et
sæt af SOLAP operatorer (fx. s-roll-up og s-slice), hvor SOLAP operatorerne
giver nye analytiske perspektiver for brugerne. SOLAP operatorerne laver en
dynamisk fortolkning af de multi-dimensionelle koncepter (dvs. et dynamisk
spatielt hierarki) ved at anvende spatielle funktioner (fx. afstand) eller topol-
ogiske relationer (fx. indenfor). Pga. at datavarehusforespørgsler typisk
involverer indlejring af SOLAP operatorer, som gør det næsten umuligt for
ikke-SW-eksperter at formulere indlejrede SOLAP forespørgsler på RDF fore-
spørgselssprog (SPARQL), foreslår afhandlingen algoritmer til at oversætte
individuelle og indlejrede SOLAP forespørgsler fra højniveau multi-dimensi-
onelle udtryk til SPARQL forespørgselssyntaks.

Yderligere, ved at anvende generering af algoritmer og formaliseringer
af QB4SOLAP og SOLAP operatorer, introduceres et geo-semantisk OLAP
værktøj for SW, GeoSemOLAP, som fjerner de indgangsbarrierer datavare-
hus brugere har i forhold til at forespørge geo-semantiske datavarehuse uden
viden om RDF/SPARQL. GeoSemOLAP værktøjet er testet og demonstreret
med et ikke-trivielt spatielt multi-dimensionelt eksempel for anvendelse, som
er modelleret med QB4SOLAP ontologien. Ved at anvende QB4SOLAPs
multi-dimensionelle skemadefinitioner, fortolker GeoSemOLAP dataen for
anvendelseseksemplet med tilsvarende spatielle multi-dimensionelle koncep-
ter, som spatielle niveauer, spatielle attributter og spatielle målinger, som kan
blive anvendt som inputparametre til SOLAP operationerne fra en intuitiv og
letanvendelig grafisk brugerflade som er forsynet med interaktive kort.

QB4SOLAP ontologien er valideret på adskillige eksempler for anven-
delse. Disse inkluderer offentlige, miljømæssige, landbrugs og spatielle data
sæt, som kan blive annoteret med spatielle multi-dimensionelle koncepter for
QB4SOLAP. Ved at anvende QB4SOLAP på komplekse datasæt fra den virke-
lige verden fra forskellige organisationer og ressourcer, er en omfattende ind-
sigt opnået på spatiel og multi-dimensionel modellering af offentlig data med
bedste praksis, diskussioner og perspektiver. For at udnytte dataen med nye
analytiske perspektiver, der ikke tidligere var tilgængelige, er anvendelsesek-
semplerne forespurgt på et sæt af fælles (individuelle og indlejrede) SOLAP

operatorer i SPARQL.
Til slut adresserer afhandlingen manglen på automatiserede metoder for

spatiel multi-dimensionel annotering på det semantiske web og foreslår et
berigelsessystem, RDF2SOLAP, til at berige de eksisterende RDF dataku-
ber. Afhandlingen foreslår et sæt af hierarkiske berigelsesalgoritmer og et
sæt af faktuelle berigelsesalgoritmer inden for rammerne af RDF2SOLAP
berigelsesprocessen. I hvert sæt er der algoritmer til at detektere eksplicitte
relationer og til at detektere implicitte relationer mellem spatielle niveaumed-
lemmer (hierarkisk berigelse) og mellem fakta-niveaumedlemmer (faktuel
berigelse). Derudover er faktaskemaet i faktuel berigelse automatisk rede-
fineret ud fra udfaldet af instansniveau berigelsesalgoritmer over faktamed-
lemmer og niveaumedlemmer. RDF2SOLAP berigelsesprocessen tillader spa-
tielle datavarehus brugere at forespørge på eksisterende spatielle RDF end-
points med SOLAP operatorer uden at være nødsaget til at hente, konvert-
ere, modellere og gemme dataen i et offline spatielt datavarehuse. Eksper-
imentelle evalueringsresultater viser, at det foreslåede system demonstrerer
effektiv processering af berigelsesalgoritmerne direkte på RDF dataen.

Résumé

En raison des récents progrès des technologies du Web sémantique (WS) et
du mouvement mondial de publication de données ouvertes liées (Linked
Open Data ou LOD en anglais) en suivant un ensemble de principes sur le
WS, de nombreuses organisations gouvernementales et agences publiques
ont publié de grands volumes de données géospatiales sur le WS. Un telle
quantité de données géospatiales sur le WS entraîne un besoin d’analyse
avancée. Dans le domaine des bases de données, les entrepôts de données
(Data Warehouses en anglais) et le traitement analytique en ligne (OnLine
Analytical Processing ou OLAP en anglais) se sont avérés être un moyen
bien conçu et efficace de stocker et d’interroger des quantités massives de
données avec des perspectives avancées d’analyse. Les technologies logi-
cielles de pointe actuelles ne prennent en charge l’annotation des entrepôts
de données multidimensionnels et l’interrogation avec des opérateurs OLAP
traditionnels que sur des données non spatiales. Pour révéler de nouvelles
perspectives sur les données du WS, il est important d’utiliser l’information
spatiale des jeux de données publiés, tout en modélisant et en interrogeant
les entrepôts de données sur le WS. Même s’il existe de nombreuses études
sur le WS géospatial, aucune d’entre elles n’aborde les aspects multidimen-
sionels de gestion des données spatiales publiées ni permet d’interroger les
données à l’aide d’opérateurs OLAP spatiaux (Spatial OLAP ou SOLAP en
anglais). Nous croyons qu’un grand nombre de jeux de données spatiales sur
le WS peuvent être utilisés à leur plein potentiel en remédiant au manque
de méthodes, d’outils et d’applications des entrepôts de données spatiales
sur le WS. Par conséquent, cette thèse aborde plusieurs défis liés aux en-
trepôts de données géo-sémantiques afin de modéliser, d’interroger et de
dériver des perspectives analytiques sur une énorme quantité de données
géo-sémantiques avec les opérateurs SOLAP et l’enrichissement spatiale et
multidimensionnelle des données sémantiques.

Dans un premier temps, la thèse présente les meilleures pratiques pour la
publication de jeux de données gouvernementales danoises sur les domaines
agricole, spatial et commercial sur le WS, comme un premier effort pour pub-
lier des données gouvernementales ouvertes sous forme de données ouvertes

xi

liées au Danemark. Le point d’accès (endpoint en anglais) LOD est interrogé
via des modèles de requête standard et agrégés, et évalué par rapport à trois
différents scénarios de traitement de requêtes, à savoir, des solutions RDF
natives, des solutions relationnelles, et des solutions virtuelles. Les modèles
de requête agrégés sur RDF natif ont démontré un temps de réponse signi-
ficativement plus rapide que les autres stratégies. Les résultats établissent
une base prometteuse pour les entrepôts de données géo-sémantiques car les
requêtes agrégées sont fondamentales pour les modèles multidimensionels et
pour l’entreposage de données.

Ensuite, la thèse propose un vocabulaire pour des cubes multidimension-
nels et SOLAP - QB4SOLAP comme étape initiale d’une fondation pour les
entrepôts de données géo-sémantiques. La thèse définit des formalisations
complètes des concepts spatiaux multidimensionels de QB4SOLAP (tels que
les hiérarchies de dimensions spatiales, les mesures spatiales, les fonctions
agrégées, les relations topologiques, etc.) en format RDF. En utilisant le vo-
cabulaire de QB4SOLAP, les données spatiales peuvent être annotées et pub-
liées sur le WS avec des concepts multidimensionels spatiaux complets, qui
n’étaient pas disponibles auparavant. L’annotation spatiale des données RDF
avec QB4SOLAP permet de surmonter plusieurs limitations de l’interrogation
analytique spatiale des données sémantiques via un ensemble d’opérateurs
SOLAP (p. ex. s-roll-up, s-slice, etc.) qui révèlent de nouvelles perspectives
analytiques aux utilisateurs. Les opérateurs SOLAP créent une interprétation
dynamique des concepts multidimensionels (c.-à-d. une hiérarchie spatiale
dynamique) en employant des fonctions spatiales (p. ex., la distance) ou des
relations topologiques (p. ex., à l’intérieur). Du fait que dans les entrepôts
de données les requêtes impliquent typiquement l’imbrication des opérateurs
SOLAP et que cela rend presque impossible pour les non-experts en entrepôts
de données de formuler des requêtes SOLAP imbriquées en langage de re-
quêtes RDF natif (SPARQL), la thèse propose des algorithmes pour traduire
des requêtes SOLAP individuelles et imbriquées à partir d’expressions mul-
tidimensionnelles de haut niveau en syntaxe SPARQL.

De plus, en utilisant les algorithmes de génération et les formalisations
des opérateurs QB4SOLAP et SOLAP, un outil OLAP géo-sémantique pour
le WS - GeoSemOLAP est proposé pour supprimer la barrière d’entrée pour
les utilisateurs d’entrepôts de données sans connaissance de RDF/SPARQL
lorsqu’ils interrogent des entrepôts de données géo-sémantiques. L’outil
GeoSemOLAP est testé et illustré avec un cas non-trivial d’utilisation de mul-
tidimensionels spatial, qui est modélisé avec QB4SOLAP. En utilisant les déf-
initions du schéma multidimensionel de QB4SOLAP, GeoSemOLAP analyse
les données du cas d’utilisation avec les concepts multidimensionels spati-
aux correspondants, tels que les niveaux spatiaux, les attributs spatiaux et
les mesures spatiales, qui peuvent être utilisés comme paramètres d’entrée
pour les opérations de SOLAP à partir d’une interface utilisateur graphique

intuitive et facile à utiliser qui est fournie avec des cartes interactives.
Le vocabulaire QB4SOLAP est validé dans plusieurs cas d’utilisation, y

compris des jeux de données gouvernementales, environnementales, agri-
coles et spatiales du Danemark, qui peuvent être annotés avec les concepts
multidimensionels spatiaux de QB4SOLAP. En appliquant QB4SOLAP sur
des jeux de données complexes du monde réel provenant de diverses organi-
sations et ressources, un aperçu complet est apporté à la modélisation spatiale
et de gestion des données gouvernementales avec des meilleures pratiques,
discussions et perspectives. Afin d’exploiter les données avec de nouvelles
perspectives analytiques, les cas d’utilisation sont interrogés avec un ensem-
ble d’opérateurs SOLAP (individuels et imbriqués) communs en SPARQL.

Enfin, la thèse aborde la manque de méthodes automatisées pour les
annotations multidimensionnelles spatiales sur le WS et propose un cadre
d’enrichissement, à savoir RDF2SOLAP, pour enrichir les cubes de données
RDF existants. La thèse propose un ensemble d’algorithmes d’enrichissement
hiérarchique et un ensemble d’algorithmes d’enrichissement factuel dans le
cadre du processus d’enrichissement RDF2SOLAP. Dans chaque ensemble, il
y a des algorithmes pour détecter les relations explicites et découvrir les re-
lations implicites entre les membres de niveau spatial (enrichissement hiérar-
chique) et entre les membres de niveau factuel (enrichissement factuel). De
plus, dans l’enrichissement factuel, le schéma de faits est automatiquement
redéfini à partir du résultat des algorithmes d’enrichissement au niveau de
l’instance sur les membres d’un fait et les membres d’un niveau. Le processus
d’enrichissement RDF2SOLAP permet aux utilisateurs de l’entrepôt de don-
nées spatiales d’interroger les « endpoints » RDF spatiaux existants avec les
opérateurs SOLAP sans avoir besoin de télécharger, convertir, modéliser et
stocker les données dans un entrepôt de données spatiales hors ligne. Les ré-
sultats de l’évaluation expérimentale montrent que le cadre proposé démon-
tre l’efficacité du traitement des algorithmes d’enrichissement directement
sur les données RDF.

Acknowledgements

I would like to thank to a number of people who have helped and supported
me during the years of pursuing my Ph.D. studies.

Firstly, I would like to express my sincere gratitude to my supervisor
Prof. Torben Bach Pedersen for giving me the opportunity to work with him.
I would like to thank him for his constructive feedback, continuous support,
and motivation. He has always been patient and available to help me under
any circumstance, which I am very grateful for. Besides his professional and
technical guidance, his motivational advice helped me during the research
process and completing the writing of this thesis. Next, I would like to thank
my co-supervisor Prof. Katja Hose for her invaluable support during my
Ph.D. studies. She has been a great advisor and a mentor for improving the
quality and presentation of the whole research. I would also like to thank
Prof. Esteban Zimányi as my co-supervisor at Université Libre de Bruxelles
(ULB), Belgium. I would like to thank him for the inspiring discussions and
his generous support during my visit. Collaborating with him during the
year of my visit to ULB helped me to build one of the important cornerstones
of my research and the thesis.

Further, I would like thank to all my colleagues and friends both at Aal-
borg University and Université Libre de Bruxelles. I am very grateful to have
the chance to work at Database, Programming and Web Technologies (DPW)
research group, which has been intellectually very stimulating and never
boring. In particular, I would like to thank Kim Ahlstrøm M. Mathiassen
from the very first year of my research, for being a helpful and enthusiastic
colleague and a great friend. My special thanks go to İlkcan Keleş for his
friendship and support, for our endless discussions and his valuable advice;
I would also especially like to thank his wife Emel for her friendship and
being with us during sleepless nights, while we were working. In addition, I
would like to thank students, whom I co-authored research papers together:
Alex B. Andersen, Kim Ahlstrøm, and Jacob Nielsen. Special thanks go to
my significant other Mikael Midtgaard for writing the Danish abstract and
co-authoring one of the journal papers during the Ph.D. studies. I am very
grateful to Luis Galárraga for writing the French abstract within such a short

xv

notice. I also would like to express my gratitude and appreciation to admin-
istrative staff Helle Schroll and Helle Westmark who have been always very
helpful. In addition, I would like thank to my employer and colleagues at
Accobat A/S, where I have been working as a BI consultant during the last
two years of my Ph.D. studies, for their support. Especially, I would like to
thank Mikael Iuel-Brockdorff and Jannick Raunow for accommodating and
supporting me to complete this thesis.

Finally, I would like to thank my dearest friend Yasemin Gödel for always
being there for me, believing in me, and supporting me mentally throughout
writing this thesis and at every step of the Ph.D. studies. I would also like
to thank Sofie Orry Amby for her friendship, support, and providing endless
fun during the years in Aalborg and in Copenhagen. I thank my partner and
my dearest - Mikael for comforting me and listening to me and helping me
in every way he can. I am also very thankful to his family for their support.
Last but not least, I would like to thank all my family members (my mom,
my dad, my brothers Şamil and Münir and their wives and my friends Merve
and Mine) for their unconditional love and support.

Nurefşan Gür
Aalborg, January 15, 2020

This research has been funded by the European Commission through the Eras-
mus Mundus Joint Doctorate “Information Technologies for Business Intelligence” -
Doctoral College (IT4BI-DC).

Contents

Abstract iii

Resumé vii

Résumé xi

Acknowledgements xv

Thesis Details xxi

I Thesis Summary 1

Thesis Summary 3
1 Introduction . 3

1.1 Background and Motivation 3
1.2 Geo-semantic Data Warehouses and Spatial OLAP . . . 7
1.3 Organization . 8

2 Publishing Spatial and Governmental Linked Open Data 9
2.1 Motivation and Problem Statement 9
2.2 Use Case Data Lifecyle 10
2.3 Technical Details and Query Runtimes 13
2.4 Conclusion and Discussion 15

3 Enabling SOLAP operations in SPARQL over Spatial Multidi-
mensional Data Cubes on the SW with QB4SOLAP Vocabulary 17
3.1 Motivation and Problem Statement 17
3.2 State of the Art . 18
3.3 Spatial Multidimensional Data Semantics 19
3.4 SOLAP Query Generation 30
3.5 Conclusion and Discussion 37

4 The GeoSemOLAP Framework 40
4.1 Motivation and Problem Statement 40

xvii

Contents

4.2 Understanding Spatial Semantic Data Warehouse Queries 43
4.3 System Architecture and GeoSemOLAP Workflow . . . 45
4.4 Demonstration and Discussion 46

5 Use Case: Spatial OLAP over Environmental and Farming Data
with QB4SOLAP . 49
5.1 Motivation and Problem Statement 49
5.2 Spatial Data Cube of Livestock Holdings in Danish Farms 50
5.3 SOLAP examples over GeoFarmHerdState in SPARQL . 58
5.4 Discussion and Perspectives 61

6 Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP
Framework . 65
6.1 Motivation and Problem Statement 65
6.2 Enrichment Approach . 66
6.3 RDF2SOLAP Enrichment Algorithms 68
6.4 Implementation Details 77
6.5 Implementation Results 77
6.6 Evaluation and Discussion 80

7 Conclusion and Summary of Contributions 84
8 Future Work . 89
References . 90

II Papers 95

A Publishing Danish Agricultural Government Data as Semantic Web
Data 97
1 Introduction . 99
2 Use Case . 100
3 Data Annotation and Reconciliation 101
4 Experiments . 104
5 Conclusion . 106
References . 107

B Modeling and Querying Spatial Data Warehouses on the Semantic
Web 109
1 Introduction . 111
2 State of the Art . 112
3 Spatial and OLAP Operations . 114

3.1 Spatial Operations . 114
3.2 SOLAP Operations . 115

4 Semantics of Spatial MD Data and OLAP Operations 118
4.1 Defining MD Data in QB4OLAP 118
4.2 Defining Spatially Enhanced MD Data in QB4SOLAP . 122

xviii

Contents

4.3 SOLAP Operators . 124
5 Use Case Scenario: GeoNorthwind Data Warehouse 125
6 Querying the GeoNorthwind DW in SPARQL 128
7 Conclusion and Future Work . 129
References . 129

C A Foundation for Spatial Data Warehouses on the Semantic Web 133
1 Introduction . 135
2 Related work . 137
3 Preliminary concepts . 139

3.1 Spatial objects . 139
3.2 Spatial operations . 139
3.3 Data cubes . 140
3.4 Spatial data cubes . 142
3.5 OLAP operators . 142
3.6 Spatial OLAP operators 143

4 The QB4SOLAP vocabulary . 145
4.1 Defining spatial data cube schemas with QB4SOLAP . . 147
4.2 Defining spatial data cube members with QB4SOLAP . 157

5 Semantics of SOLAP operators 159
6 Generating SOLAP queries in SPARQL via QB4SOLAP 168

6.1 Generation algorithms . 168
6.2 Nested SOLAP operations to SPARQL 179

7 Conclusions and future work . 182
A Appendix . 184

A.1 Query Run Times . 184
A.2 Table of Contents . 185

References . 185

D GeoSemOLAP: Geospatial OLAP on the Semantic Web Made Easy 191
1 Introduction . 193
2 Queries for Spatial Semantic Data Warehouses 195
3 System Overview . 197

3.1 GeoSemOLAP Workflow 197
3.2 GeoSemOLAP Architecture 198

4 Demonstration Scenario . 198
5 Perspectives and Future Work . 200
References . 201

E Enabling Spatial OLAP over Environmental and Farming Data with
QB4SOLAP 203
1 Introduction . 205
2 Background and Motivation . 206

xix

Contents

3 State of the Art . 206
4 Source Data . 208
5 Publishing Spatial Data Cubes with QB4SOLAP 210

5.1 GeoFarmHerdState Cube Schema in RDF 211
5.2 GeoFarmHerdState Cube Instances in RDF 216

6 SOLAP Operators over GeoFarmHerdState cube 217
6.1 SOLAP operators . 217
6.2 Nested SOLAP Operations 221

7 Discussion and Perspectives . 222
8 Conclusion and Future Work . 224
References . 224

F Multidimensional Enrichment of Spatial RDF Data for SOLAP 227
1 Introduction . 229
2 Preliminaries . 232

2.1 Spatial Data Warehouses and SOLAP 232
2.2 QB4SOLAP: Spatial RDF Data Cube Vocabulary for SO-

LAP operations . 236
3 System Architecture . 239
4 RDF2SOLAP Enrichment Algorithms 240

4.1 Hierarchical enrichment phase 241
4.2 Factual enrichment phase 252

5 Implementation . 262
5.1 QB4SOLAP triples generation 262
5.2 Detecting explicit topological relations 263
5.3 Discovering implicit topological relations 270
5.4 Generating fact schema 271
5.5 Implementation Choices 272

6 Experimental Evaluation . 273
6.1 Quantitative Evaluation 274
6.2 Comparison Baselines . 276
6.3 Qualitative Evaluation . 277
6.4 Technical Lessons . 278
6.5 Experimental Summary 279

7 Related work . 279
8 Conclusion and Future Work . 282
References . 283

xx

Thesis Details

Thesis Title: Modeling, Annotating, and Querying Geo-semantic Data
Warehouses

Ph.D. Student: Nurefşan Gür
Supervisors: Prof. Torben Bach Pedersen, Aalborg University

Prof. Katja Hose, Aalborg University
Prof. Esteban Zimányi, Université Libre de Bruxelles

The main body of the thesis consists of the following papers.

[A] Alex B. Andersen, Nurefşan Gür, Katja Hose, Kim A. Jakobsen, and
Torben Bach Pedersen. “Publishing Danish Agricultural Government
Data as Semantic Web Data”. In : Semantic Technology - 4th Joint Inter-
national Conference, JIST 2014, Chiang Mai, Thailand, Vol. 8943, pp. 178-
186, Springer LNCS, 2014.

[B] Nurefşan Gür, Katja Hose, Torben Bach Pedersen, and Esteban
Zimányi. “Modeling and Querying Spatial Data Warehouses on the
Semantic Web”. In: Semantic Technology - 5th Joint International Con-
ference, JIST 2015, Yichang, China, Vol. 9544, pp. 3–22, Springer LNCS,
2015.

[C] Nurefşan Gür, Torben Bach Pedersen, Esteban Zimányi, and Katja
Hose. “A Foundation for Spatial Data Warehouses on the Semantic
Web”. In: Semantic Web Journal, Vol. 9, no 5, pp. 557–587, IOS Press,
2018.

[D] Nurefşan Gür, Jacob Nielsen, Katja Hose, and Torben Bach Pedersen.
“GeoSemOLAP: Geospatial OLAP on the Semantic Web Made Easy”.
In: Proceedings of the 26th International Conference on World Wide Web
Companion (WWW 2017), Perth, Australia, pp. 213–217, ACM, 2017.
(Awarded as Best Demo by Reviewer’s Choice)

xxi

Thesis Details

[E] Nurefşan Gür, Katja Hose, Torben Bach Pedersen, and Esteban
Zimányi. “Enabling Spatial OLAP over Environmental and Farming
Data with QB4SOLAP”. In: Semantic Technology - 6th Joint International
Conference, JIST 2016, Singapore, Singapore, Vol. 10055, pp. 287–304,
Springer, LNCS, 2016.

[F] Nurefşan Gür, Torben Bach Pedersen, Katja Hose, and Mikael Midt-
gaard. “Multidimensional Enrichment of Spatial RDF Data for SO-
LAP”. In preparation for submission to: Semantic Web Journal, 2020.

This thesis has been submitted for assessment in partial fulfilment of the PhD
degree. The thesis is based on the submitted or published scientific papers,
which are listed above. Parts of the papers are used directly or indirectly in
the summary of the thesis. As a part of the assessment, co-author statements
have been made available to the assessment committee and those are also
available at the at the Technical Faculty of IT and Design at Aalborg Uni-
versity and the Faculty of Engineering at Université Libre De Bruxelles. The
permission for using the published articles in the thesis has been obtained
from the corresponding publishers with the conditions that they are cited
and DOI pointers and/or copyrights/credits are placed prominently in the
references.

Nurefşan Gür
Aalborg University, January 15, 2020

xxii

Part I

Thesis Summary

1

Thesis Summary

1 Introduction

1.1 Background and Motivation

The increasing popularity of Open Data continuously leads governmental or-
ganizations and agencies to share their content formally on the Semantic Web
(SW) in many countries. Prevalence of public data on the SW made huge
amounts of data accessible from different disciplines such as environment,
health, agriculture, industry, statistics and geography in a non-proprietary
open format: Resource Description Framework (RDF)1. From those disci-
plines, many of the data sets are containing spatial information with geo-
graphical coordinates. The geographical data on the SW needs to be treated
differently as the spatial format of the data allows users to derive differ-
ent perspectives with spatial analysis. Therefore, publishing and process-
ing geographical/spatial RDF data have been very interesting research areas
in the SW community. This increasing amount of spatial data from differ-
ent disciplines on the geo-semantic web needs to be analyzed efficiently. In
the non-semantic web database world, data warehouses are the best way to
analyze relational data. Data warehouses require certain multi-dimensional
(MD) modeling and analytical operators (On-Line Analytical Processing -
OLAP) for querying the data warehouse. Similarly, spatially extended MD
models and spatial OLAP (SOLAP) operators are available in the traditional
(non-semantic web) database world. Adapting these methods of building
spatial data warehouses and querying spatial data warehouses for the SW,
requires building SW ontologies/vocabularies for modeling spatial MD data,
SOLAP query operators and techniques for supporting the SW query lan-
guage: SPARQL, which stands for SPARQL Protocol and RDF Query Lan-
guage. By following the SW standards and using the SW tools and technolo-
gies, we can truly structure, build and query geo-semantic data warehouses.

1RDF format allows data publishers to formulate statements about resources, where each
statement consists of subject, predicate, and object, which compose a triple.

3

To build and publish geo-semantic data warehouses, firstly, it is essential
to understand the geospatial semantic web and existing relevant research and
technologies. Thus, as an initial effort the GovAgriBus Denmark RDF data
set was published to the Linked Open Data (LOD) cloud (Fig. 1). The data
set contains data from governmental, agricultural, business and geographi-
cal data. Geographical data contains spatial information, coordinates of the
agricultural fields, which brings opportunities of interesting spatial queries
(e.g., queries with spatial containment relationships or distance functions,
etc.) across the data set. Examples of these queries could be that a customer
demands in the market are for seasonal beer, Christmas trees, or pumpkins,
where a supplier company would like to find specific and organic crops from
a local region within North Jutland of Denmark. Such a query can be built by
using the within containment relationship of organic fields of the crops in de-
mand and the region border of North Jutland. The supplier company would
also like to calculate the proximity of the organic field to its own location,
where a spatial distance function can be utilized for calculating the distance
between the location of the company and the field.

Fig. 1: GovAgriBus in LOD Cloud (2014)

As a general principle of publishing Linked Open Data, GovAgriBus data
is linked with unique references (URIs) to external ontologies (such as Geo-
Names [36] and AGROVOC [31]), so that more related resources and things
can be discovered via the URIs. Besides, this type of governmental data

4

1. Introduction

(i.e., agricultural, environmental, geographical) is regularly published and
updated from public portals (minimum frequency as a yearly basis), this
brings the question on how to exploit this type of huge open geographic data
with advanced analytical perspectives on the SW.

Our question led us to investigate how spatial data is handled in organi-
zational data warehouses (DWs) with existing business intelligence (BI) tech-
nologies. Extending multi-dimensional (MD) models with spatial concepts
and complex geometry features (i.e., continuous fields), defining an extended
MD algebra that supports spatial data types, and extending On-Line Analyt-
ical Processing (OLAP) operations with spatial features are a few of the exist-
ing advancements in traditional spatial data warehouses. In order to query
spatial data warehouses efficiently with advanced analytical queries, the con-
cept of spatial OLAP (SOLAP) and spatially extended MD models have been
widely implemented in non-semantic spatial data warehouses. Carrying these
concepts to the geo-semantic web will be a significant improvement and key
to answering our question.

Fig. 2: Related work areas

The keyword (geo)spatial appears in the intersection of the above men-
tioned two research areas: Geospatial Semantic Web and Spatial DW/OLAP
(Fig. 2). Before our attempt of implementing the geo-semantic data ware-
house concepts, let us briefly ignore the spatial aspect of the two research
areas and look into the intersection of DW/OLAP and SW to understand
the current state of the BI on the SW. There are several approaches consid-
ered with RDF Data Cube (QB) Vocabulary2 and QB4OLAP Vocabulary [10].
QB4OLAP addresses the limitations of QB vocabulary by introducing com-
plex MD features such as dimensions with hierarchies, hierarchy steps and

2QB Implementations: https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations

5

https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations

supporting OLAP queries directly on the RDF data. To support these ad-
vanced MD features on QB data sets, the QB2OLAP enrichment module
is proposed [33] for a semi-automatic transformation of QB data sets with
QB4OLAP semantics.

Even though there are promising research and technologies around data
warehouses and OLAP on the SW, none of them supports spatial data ware-
houses or SOLAP operators over RDF data. Still, we use the existing tech-
nologies as a starting point for building geo-semantic data warehouses. This
way, we acknowledge and utilize existing technologies and prevent redun-
dant work. To build geo-semantic data warehouses we have studied the re-
cent work thoroughly in the three main areas depicted in Fig. 2. Our work
lays in the intersection of these three areas for building spatial data cubes
and enabling SOLAP on the SW.

SOLAP operators utilize the geometry attributes of data warehouse mem-
bers by including a spatial condition (such as a spatial function like closest
distance or a spatial boolean predicate like within) in the analytical SOLAP
query. Including spatial operations in a SOLAP query creates a dynamic
interpretation of the data warehouse members, e.g., dynamic spatial hier-
archy levels can be used to reveal new perspectives. For instance, a tradi-
tional OLAP operator to aggregate some numerical measures (e.g., popula-
tion) from the post-code area level to city level does not require any spatial
operations in the query. However, assuming that both the post-code area and
city level members have geometry attributes representing their borders as a
polygon geometry (with a set of coordinates), we would like to reveal new
perspectives to calculate the total population in cities. Thus, we modify the
query to aggregate the measures from post-code areas, which are not neigh-
boring another city to the city spatial level. This means that we would like
to calculate the population only in the inner cities, therefore, we have to use
a spatial operation to exclude the postcode areas where the border of the
area touches a city border, which can be done with SOLAP operators. Simi-
lar examples of SOLAP operators can be reproduced by calculating distance
between the center points of the geometries.

Moreover, we can ensure the explicit annotation of topological relations
between level members in geo-semantic data warehouses. For example, in
a spatial hierarchy, some cities might belong to two geographical regions,
meaning that the city borders intersect with two different geographical re-
gions. This creates a many-to-many relation between child-parent (city-region)
spatial levels in a data warehouse hierarchy, which might cause aggregating
measures incorrectly between these levels. In a geo-semantic data warehouse,
spatially enriched schema definitions allow us to explicitly annotate, when a
city is within a region or when a city intersects a region. In order to prevent
aggregating measures (e.g., population) incorrectly from city spatial level to
region spatial level, we need first a spatial drill-down of measures to a lower

6

1. Introduction

spatial level such as postal area, and then sum the total population of postal
areas that are within the region.

By building geo-semantic data warehouses and addressing challenges
such as querying with SOLAP operators or automated geo-semantic and MD
annotation of existing RDF data sets, we aim to deliver a robust methodology
with advanced technologies and tools, which are not available in the current
state of the (geospatial) semantic web. Our approach aims at allowing BI
and SW enthusiasts to query existing RDF data sets with SOLAP operators
directly (from SPARQL endpoints), without needing to download the RDF
data, model the offline data with spatial data warehouse concepts, and load
to a spatial data warehouse to query with SOLAP operators, which is non-
practical, isolated, and fundamentally against to the rationale of semantic
web and linked open data principles.

We now give an overview of the contributions of the thesis, with further
details given in the next Sections 2 - 6.

1.2 Geo-semantic Data Warehouses and Spatial OLAP

We propose a cube (QB) vocabulary for spatial OLAP on the Semantic Web
- QB4SOLAP, which is a generic and extensible vocabulary, suitable for MD
modeling of all kinds of geographical domain data sets to publish on the
SW. QB4SOLAP is based on the latest stable version of the QB4OLAP Vo-
cabulary. We validate QB4SOLAP by modeling two non-trivial use cases with
QB4SOLAP, which have complex geometries and spatial MD concepts such
as spatial hierarchy steps (between spatial dimension levels) that require an-
notation of topological relations between the level members.

Together with QB4SOLAP, common SOLAP operators are formally de-
fined with MD semantics over RDF data. Previously modeled use cases are
published as geo-semantic data warehouses in RDF format, where we can
test the SOLAP operators. When a SOLAP operator is written in SPARQL, it
can be very complicated for new BI users on the SW. As a common BI prac-
tice, OLAP/SOLAP queries are written in nested form, which makes writing
nested SOLAP queries in SPARQL extremely long and overwhelming for in-
experienced users. Thus, we have a outlined vision of geo-semantic data
warehouses with a set of frameworks and tools that can address these and
similar challenges (Fig. 3).

In this line of work, we provide algorithms for translating individual or
nested SOLAP operators to SPARQL queries by using the spatial MD model
semantics and formal semantics of defined SOLAP operators. On top of these
algorithms, the GeoSemOLAP tool is implemented for users to formulate
SOLAP queries interactively via using a graphical user interface and maps,
which are instantly translated to SPARQL.

In order to fully utilize the potential of the semantic web, existing RDF

7

RDF2SOLAP
module

External
Geo-

vocabularies

SOLAP

User Spatial RDF Data Warehouses

GeoSemOLAP

SOLAP to SPARQL

QB4SOLAP

Spatial RDF
Endpoints

Fig. 3: Geo-Semantic Data Warehouses Vision - Adapted from [15]

data sets that are also suitable for spatial and MD modeling (e.g., QB4OLAP
RDF data sets with level attributes that have geographical data) are enriched
in an automated way with QB4SOLAP semantics. This is achieved by the
RDF2SOLAP enrichment module. RDF2SOLAP defines two families of algo-
rithms for hierarchical enrichment and factual enrichment. In each family,
there are algorithms for 1) utilizing existing hypothetical QB4OLAP roll-up
relations to detect spatial relations between level members and level mem-
bers and fact members 2) assuming there are no explicit roll-up relations and
discovering the spatial relations between all members.

1.3 Organization

The rest of the thesis summary is organized as follows. Section 2 summa-
rizes Paper A, which is an initial attempt to publish Danish governmental
and spatial data set as Linked Open Data in order to derive new spatial
relations and analytics insights with SPARQL aggregate queries. Section 3
presents a detailed overview of Paper B and Paper C, where the QB4SOLAP
Vocabulary is introduced with multi-dimensional and spatial RDF seman-
tics, SOLAP operators are explained with high-level semantics and SOLAP
to SPARQL generator algorithms are given with examples. Section 4 gives
an overview of Paper D and explains the implementation and workflow of
the GeoSemOLAP tool, which is implemented as a tool using SOLAP gen-
erator algorithms. A non-trivial nested set of SOLAP operations is demon-
strated with GeoSemOLAP in Section 4. Section 5 summarizes Paper E with

8

2. Publishing Spatial and Governmental Linked Open Data

a real-world QB4SOLAP use case from Danish governmental, environmen-
tal, and geographical data sets together with interesting SOLAP operations
and new analytical perspectives in SPARQL. Section 6 summarizes Paper F,
introduces an RDF2SOLAP enrichment framework and outlines the spatial
multi-dimensional enrichment process for various cases with enrichment al-
gorithms. Finally, Section 7 gives a summary of the contributions and Sec-
tion 8 concludes the thesis summary and presents directions of future work.

2 Publishing Spatial and Governmental
Linked Open Data

This section gives an overview of Paper A [3].

2.1 Motivation and Problem Statement

The increasing popularity of publishing Open Data on the Semantic Web and
Linked Open Data(LOD)3 movement attracted many public, governmental
and non-governmental organizations. The Linked Open Data movement en-
courages data providers to publish and connect distributed data across the
web by following a list of best practices [19] and using common web stan-
dards (i.e., RDF, SPARQL, and HTTP URIs). Using these standards while
publishing Open Data on the web ensures discoverability, makes the data
easily dereferenceable (via URIs), and makes it relatable to other available
public resources.

Especially for governments, the main goal of publishing Open Data is to
improve collaboration, inspire innovative applications, and also attract en-
trepreneurs, which can lead to growth in the prosperity of the country and
resourcefulness of the governments, besides providing transparency to the
public at the governmental data level.

The Danish government has also started publishing Open Data on the web
at the end of 2012 [5], where several ministries and governmental agencies
from various domains (e.g., agriculture, forestry, and fishery, statistics, ge-
ographical and environmental domains) made their data publicly available.
However, the publishers made their raw data available in heterogeneous for-
mats such as PDF, CSV, XML, SHP (for geospatial data), XLS, etc. but none
of these data were available on the Semantic Web as Linked Open Data.

Our primary goal is to publish Danish governmental Open Data (from a
selected range of non-trivial domains) on the Semantic Web by following the
best practices of publishing Linked Open Data. We also assess the challenges
and share our experiences in order to provide guidelines for publishing Dan-
ish governmental data on the Semantic Web.

3Linked Open Data (LOD) Cloud: http://lod-cloud.net/

9

http://lod-cloud.net/

2.2 Use Case Data Lifecyle

We primarily choose to focus on the agricultural domain, since it is a non-
trivial and an interesting use case. It is non-trivial because agricultural fields
and areas have spatial information, thus, we encounter the complexity of the
spatial data format, besides we can link the spatial information with external
geographical data. It is interesting because the majority of Denmark’s land
use is spared to agriculture4 with 60% - 70. Secondarily, we decided to com-
bine the agricultural data with company data, which can provide interesting
query patterns for the agricultural industry that are not readily available by
considering the data sets separately.

Fig. 4: Relational schema of the use case data sets (adapted from [4])

GovAgriBusDenmark Raw Data sets

Linked Open Data set of GovAgriBusDenmark use case is composed of Dan-
ish Governmental, Agricultural, and Business data sets. Initial raw data for
governmental and agricultural data is published by the Ministry of Food,
Agriculture, and Fisheries of Denmark (FVM) in geospatial data (SHP) for-
mat. Business data is published by Central Company Register (CVR) in CSV
format.

We give an overview of the relational database schema of the use case
data sets from agricultural and business domains in Fig. 4. Agricultural data
has three main data sets in SHP format (with POLYGON coordinates): Field,
Organic field, and Field block. Organic field and Field block data sets have
referential integrity through the fieldBlockId key, which can be easily related
and linked. Field and Organic fields are related by using spatial joins (com-
puted from the spatial coordinates) through a GIS tool.

4https://tradingeconomics.com/denmark/agricultural-land-percent-of-land-area-wb-
data.html

10

2. Publishing Spatial and Governmental Linked Open Data

The business data has two main data sets in CSV format: Company and
Participant. These data sets have referential integrity through the LegalUnitI-
dentifier, which is the same as a unique CVR number for the companies. A
company is constituted by legal units and production units. Every legal unit
has at least one production unit. The relationship between legal units and
production units is illustrated in Fig. 5. Participants can be a person with a
unique Danish social security number (CPR number) or a legal unit with a
CVR number.

Fig. 5: Company structure (adapted from [4])

In Table 1, we give an overview of the number of records and attributes
from the raw (tabular) data sets from the selected use case domains.

Table 1: Use Case Raw Data Profile

Domain Data set
Number of columns

(attributes)
Number of rows

(records)

Gov.
Agri.

Field 9 641,081
Organic Field 12 52,060
Field Block 12 314,648

Bus.
Company

Legal Unit 59 >600,000
Production Unit 59 650,000

Participant 7 350,000

Data annotation and reconciliation

We follow an iterative transformation and integration process of: importing,
analyzing, refining, linking and publishing of data. The details of these main
activities are as follows:

Import. The first steps are to extract the raw data from the public resources
in its original format (SHP and CSV) and import it to a common operational
environment such as a relational database. At this step, for spatial data sets,
we initially import them to a GIS tool in order to implement spatial joins and
associate disjoint spatial data sets with referential integrity before loading
into a relational database.

11

Analyze. During data analysis, we profile the data sets, collect statistics and
get a better understanding of the attributes (columns), in order to formalize
an ontology for data annotation. During analysis, we decide on re-using the
existing ontologies in relation to our research domain as give in the following.

• WGS84: Used for defining the spatial objects/coordinates [7].

• GeoNames: Similarly, used for defining spatial objects and external
linking of place names (municipality names) [36].

• AGROVOC: Used for defnining fields and crops by linking with [31].

• FOAF: Used in business data rdfs:subClassOf-foaf:organization [1].

Refine The refinement step is the last part before linking and publishing
the data, where we get rid of the corrupt data, inconsistent fields, etc. by
cleansing and conversion scripts.

Link and Publish. We generate mappings by using Virtuoso Open Source [29],
where RDF data is generated and directly published.

We distinguish two different linking methods: Internal linking and exter-
nal linking. Internal linking is done, while we create our GovAgriBusDen-
mark ontology at the schema level, where we re-use external vocabularies.
Internal linking is at the conceptual level where we define the relationships
between classes and concepts that were identified during the Analyze stage.

Example 1 (Internal Linking)
The following example represents the internal linking of the Field and Field
Block classes using the geonames:contains predicate [3].

agri:contains rdf:type owl:ObjectProperty ;
rdfs:domain agri:FieldBlock;
rdf:range agri:Field ;
rdfs:subPropertyOf geonames:contains .

External linking is implemented at the instance level, where we link e.g.,
the URIs of the place names to their equivalent geographical names from
external ontologies and gazetteers.

Example 2 (External Linking)
The following example represents external linking of place name Aalborg
municipality (from the business data set) to GeoNames URI of Aalborg
withowl:sameAs predicate.

12

2. Publishing Spatial and Governmental Linked Open Data

bus:Aalborg rdf:type bus:municipality ;
wgs:lat "57.048"xsd:�oat ;
wgs:long "9.9187"xsd:�oat ;
owl:sameAs geonames:26224886 .

In total 32.457,657 triples are generated and published via SPARQL end-
point http://extbi.lab.aau.dk/sparql. The final Linked Open Data Sets
and ontologies are also published to the LOD cloud and available for down-
load from datahub.io5.

2.3 Technical Details and Query Runtimes

Finally, we present our system architecture and the set-up of experiments.
The system architecture is given in Fig. 6. The source layer is located on
various machines of the authors, and the hardware set-up of the source layer
is not relevant for (native) RDF query run-times. Hardware set-up of the
transformation and conceptual layer is an Ubuntu 13.10 Saucy server with
3.4 GHz Intel Core i7-2600 processor and 8 GB RAM, running OpenLink
Virtuoso 07.00.3203.

Import and Analyze (partially Refine) stages are hosted on the source
layer. In the transformation layer, we generate the RDB to RDF mappings by
using Quad (Map) Patterns. In order to map the raw literal data values (float,
string, etc.) IRI classes are used. The conceptual layer receives queries from
the presentation layer sent by the end-users. If the queries are already cached,
they are answered directly from the LOD repository cache, otherwise, they
are passed to the Native RDF Quad Store. If a query can be answered by the
quad store, Virtuoso provides the ontologies to annotate the data and rewrite
the query using inference in the given ontology [4].

Experiments

We have described three materialization strategies: virtual, relational material-
ization, and native RDF. Figure 7 shows different data flows for these strate-
gies with solid lines for processing the integration and load of the data, with
dashed lines for processing the queries.

The virtual strategy follows the arrows 1, 2 and 3 during query process-
ing (Fig. 7). We cleanse the data in relational SQL views and map to RDF
data from these views. In order to optimize the performance, indexes on
keys and spatial attributes are created. The relational Materialization strategy
is represented through the arrows: 4 during load, and 3 and 5 during query
processing. Relational tables in this strategy are created from the previous
SQL views with similar indexes. Finally, the Native RDF strategy is created

5https://datahub.io/dataset/govagribus-denmark

13

https://datahub.io/dataset/govagribus-denmark

Fig. 6: Multi-layered system architecture (adapted from [4])

Fig. 7: Data flow for the materialization strategies (adapted from [3])

by following the arrows 4, 5, and 6 during load and 7 during query process-
ing. This strategy is run natively on RDF data in a triple store. The RDF
data is created from the materialized views by annotating with the selected
ontologies and mapping them into the triple format.

Tables 2 and 3 show the processing times for data loading/transforma-
tion and running the queries. We provided query run times for a num-
ber of query templates, where AQT stands for aggregated query templates
and SQT stands for standard query templates. Aggregated query templates
use aggregate functions (e.g., MAX, SUM, COUNT, etc.) with grouping,
where standard query templates use basic transactional query constructs and
SPARQL1.0 constructs6.

6Supporting aggregate queries on SPARQL started in March,2013 with the release of

14

2. Publishing Spatial and Governmental Linked Open Data

Table 2: Load times in seconds (adapted
from [3])

Step Virt. Rel. Nat.
Data
Cleansing 74.92 603.35 603.35 5
Load
Ontology 1.01 1.01 1.01
Load
Mappings 8.76 12.35 12.35
Dump
RDF 0.00 0.00 4684.82
Load
RDF 0.00 0.00 840.04
Total 84.68 616.70 6141.56

Table 3: Query runtimes in seconds (adapted
from [3])

Query Virt. Rel. Nat.
AQT 1 5.92 3.39 1.04
AQT 2 13.32 7.00 0.23
AQT 3 10.81 7.70 0.05
AQT 4 – – 0.14
AQT 5 – 20.37 0.86
SQT 1 – – 2.35
SQT 2 0.09 0.12 0.10
SQT 3 2188.85 1.81 0.40
SQT 4 6.57 2.35 1.63
SQT 5 – 23.79 3.29
Average 370.93 8.31 1.01

By looking at the processing times, we have concluded that the virtual
strategy has the fastest load times (Table 2), however, it is the least efficient
in answering the queries. The native RDF strategy, on the other hand, is
the most efficient in answering even the aggregated queries fast, while it de-
mands more time during preparation and load of the RDF data as expected.
The relational strategy can be seen as a trade-off between load times and
query processing times, it is ten times faster in load times and eight times
slower in query run times than the native RDF strategy. For rapidly changing
data, where loading the data on a frequent basis is required, the virtual or
the relational strategy would be the most fitted. On the other hand, for large
volumes of data where aggregated querying is also required, the relational
strategy or the native RDF strategy would be most efficient by looking at the
query run times.

2.4 Conclusion and Discussion

Prompted by the popularity of the Open Data movement and the opportuni-
ties that the Semantic Web can provide for governmental data publishers, we
have investigated how to publish Danish governmental data sets (from agri-
cultural domain) on the Semantic Web. Furthermore, we have shown how to
link this domain with business data and external sources (GeoNames), and
annotate by using existing vocabularies.

In order to present the best practices, we have tested different extract,
transform, and load (ETL) strategies for preparing the Semantic Web data
in RDF format from heterogeneous sources in several formats. We have se-
lected the governmental agricultural domain with data sets in SHP file for-

SPARQL1.1 – https://www.w3.org/TR/sparql11-query/

15

https://www.w3.org/TR/sparql11-query/

mat and business domain with data sets in CSV file format. The large part
of our implementation and the system architecture is based on Openlink Vir-
tuoso, where both native and RDBMS-based RDF storage is supported. We
have reconciled the use case data from SQL Server views/tables to Virtuoso
RDF store graphs. We have mainly used SQL views and scripts for data
cleansing besides we have used other third-party tools such as OpenRefine7

(formerly known as Google Refine) for data cleanup and transformation. In
order to map the relational data to RDF, we have initially tried third party
ontology mapping (RDB2RDF) tools such as D2RQ8, however, we eventually
decided to proceed with a built-in RDFizer middleware Virtuoso Sponger,
which semi-automatically extracts the source data from various formats and
maps to RDF directly on Virtuoso server (Fig. 6). In order to annotate the use
case data, we have developed a new ontology, where we reused existing on-
tologies. An interesting challenge we have encountered was deriving spatial
containment relationships between field and field block data that were not
encoded in the original datasets (Fig. 4), where we had to implement spatial
joins using a third party GIS tool.

Next, we have presented our experiences with different load times and
query processing scenarios. The native RDF strategy demonstrated the most
efficient query run times compared to the two other strategies (relational and
virtual strategies), however, the native strategy decouples the RDF data from
the relational data, thus it is well suited for static data looking at the expen-
sive load times. The native RDF strategy requires technical improvements to
provide more efficient transform and load times.

The RDF data and all our experiments with a number of aggregated and
standard query templates (with and without built-in spatial functions) are
provided through our project web site9.

The work demonstrated within the scope of this paper is our first small
step to create “Geo-semantic Data Warehouses”. We have examined the avail-
able data sets from different domains with non-trivial spatial data, then, we
published RDF data from the agricultural domain. As proof of concept, we
measured query performance for aggregated query templates, which are fun-
damental in data warehousing and multi-dimensional models. We acquired
promising results from our experiments for AQTs that run on native RDF
data. The next step is to get closer to creating Geo-semantic Data Ware-
houses is to define conceptual models/vocabularies for annotating spatial
multi-dimensional data and show how we can make a difference with spatial
multi-dimensional query templates as explained in Section 3.

7http://openrefine.org/
8https://www.w3.org/2001/sw/wiki/D2RQ
9http://extbi.cs.aau.dk/govAgriBus/

16

http://openrefine.org/
https://www.w3.org/2001/sw/wiki/D2RQ
http://extbi.cs.aau.dk/govAgriBus/

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

3 Enabling SOLAP operations in SPARQL over
Spatial Multidimensional Data Cubes on the
SW with QB4SOLAP Vocabulary

This section gives an overview of Paper B [12] and Paper C [15]. Paper B is a
subset of Paper C. Paper C is extended from Paper B as a journal paper, where
the semantics of MD Data cubes with QB4SOLAP are improved and formal
definitions of SOLAP operators are revised. Moreover, we have provided
algorithms in Paper C for generating SPARQL queries from high-level SOLAP
operators.

3.1 Motivation and Problem Statement

Paper A demonstrated a use case on, how to publish Danish Agricultural
and Business data on the Semantic Web (SW). In the experiments of Paper A,
it is shown that aggregated queries demonstrated good performance on the
Semantic Web for a non-trivial set of domain data sets with complex data
types. The advances in the Semantic Web technologies make it possible to
query Linked Open Data with On-Line Analytical Processing (OLAP) style
queries containing aggregate operators. OLAP relies on multi-dimensional
(MD) data models and schemas used in Data Warehouse (DW) systems.

Spatial RDF
Endpoints

SOLAP

User Spatial RDF Data Warehouses

SOLAP to SPARQL

QB4SOLAP

Fig. 8: QB4SOLAP approach to SOLAP on the SW (adapted from [15])

The increasing popularity of publishing LOD data sets from various do-
mains (e.g., environmental, agricultural, climate and statistical data) with
spatial information on the SW brings opportunities for advanced (spatial and
multi-dimensional) analysis of these data sets. Several interesting spatial RDF

17

endpoints are published to the LOD cloud [15]10,11,12,13. We can reveal in-
teresting results for decision-makers and domain experts by querying these
data sets with analytical queries and spatial OLAP (SOLAP), however, the
data sets should be modeled and annotated with spatial and MD concepts
that are fundamental for SOLAP operations, beforehand being published on
the SW. The existing SW technologies only support annotating non-spatial
multi-dimensional data, which limits online analytical processing (OLAP)
queries over the non-spatial SW data sets. Fig. 8 shows a general overview of
our approach for enabling SOLAP and spatial multi-dimensional data ware-
houses (a.k.a data cubes) on the Semantic Web. In the current state of the SW,
users and decision-makers cannot query spatial RDF endpoints with SOLAP
operations, unless the RDF data is downloaded, mapped to a relational data
model e.g., star schema and imported to a traditional data warehouse that
supports spatial functions. This is a labor-intensive and cumbersome pro-
cess, which eventually isolates the published linked open data in a non-open
format in data silos and that defeats the purpose of publishing linked open
data in the first place. We propose QB4SOLAP - a vocabulary for annotating
spatial multi-dimensional data on the Semantic Web. Thus, the users can
query the Semantic Web data with SOLAP operations.

3.2 State of the Art

The following research areas are a recap from Fig. 2 with related work refer-
ences in each area.

DW/OLAP on the SW. Practice of multi-dimensional (MD) data warehouses
(DW) with RDF data and performing OLAP operations on the RDF data in
SPARQL have been an interesting research topic by many other researchers
[10, 18, 35]. However, none of the researchers focus on spatial data ware-
houses or spatial OLAP (SOLAP) operations on the Semantic Web. The state
of the art of multi-dimensional modeling and analysis on the SW is restricted
to non-spatial Semantic Web data.

Spatial DW/SOLAP. In a non-SW context, staging spatial data in data ware-
houses and querying spatial data warehouses with extended OLAP opera-
tions with spatial functions is a prevalent research field. The term spatial
OLAP (SOLAP) was first introduced in 1997 [6] for spatial data warehouses
and many researchers since then have been following up with valuable con-
tributions to the community [8, 20, 26].

10EuroStat: http://ec.europa.eu/eurostat
11UK Environmental Data: http://environment.data.gov.uk
12Danish Agricultural Data: https://datahub.io/dataset/govagribus-denmark
13Australian Climate Observations: http://datahub.io/dataset/acorn-sat

18

http://ec.europa.eu/eurostat
http://environment.data.gov.uk
https://datahub.io/dataset/govagribus-denmark
http://datahub.io/dataset/acorn-sat

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

Traditional DWs annotate the location/place dimension as a conventional
steady dimension without spatial features or attributes (e.g., coordinates) but
with alphanumeric attributes (e.g., a nominal reference to a place name). Sim-
ilarly, measures do not have spatial information such as coordinates. There-
fore, it is not possible to carry out advanced spatial analysis such as deriving
topological relations between hierarchy levels or define and operate with spatial
aggregate functions on spatial measures in non-spatial DWs [15]. In spatial data
warehouses, through the geographical coordinates of the location data, we
can also derive new perspectives (e.g., dynamic spatial hierarchies) during
query run time.

Geospatial SW. Semantic Web accommodates large volumes of geospatial
data, with the increasing popularity of publishing Linked Open Data by sev-
eral organizations. Various projects and organizations publish spatial data on
the Semantic Web (e.g., LinkedGeoData [30] interactively transforms Open-
StreetMap to RDF data, GeoKnow [28] links geospatial data from heteroge-
neous resources on the SW), as we have also published Danish agricultural
and business data (with spatial coordinates) to the LOD cloud as GovAgriBus
in Paper A (Section 2).

Spatial DW/SOLAP on the SW (OUR WORK). We have investigated the
state of the art for the three distinct highlighted research areas given above.
Our rationale for enabling spatial OLAP on the Semantic Web lays in the
intersection of these three areas.

Carrying spatial data warehouses and SOLAP to the SW context can pro-
vide methods for advanced analysis of geospatial data on the SW and easily
improves the existing models and tools for a thorough analysis of multi-
dimensional data with spatial support.

3.3 Spatial Multidimensional Data Semantics

The main fundamentals of spatial data warehouse (a.k.a spatial cube) con-
cepts should be defined precisely with an explicit vocabulary on the SW in
order to benefit from the spatial analysis capabilities of SOLAP operators.
During our survey on the state of the art of DW/OLAP on the SW, we found
QB4OLAP vocabulary [10], the most prominent in structure and technical ad-
vances to support modeling and annotating (non-spatial) data warehouses on
the Semantic Web. QB4OLAP is extended from RDF Data Cube (QB) Vocab-
ulary14, and supports OLAP operations with a full-bodied MD metamodel,
while QB vocabulary is limited to statistical data models without OLAP di-

14RDF Data Cube (QB): https://www.w3.org/TR/vocab-data-cube/

19

mensions and hierarchies. As a starting point, we decided to propose a spa-
tially extended metamodel on top of QB4OLAP vocabulary - QB4SOLAP.

QB4SOLAP Vocabulary

Version History. During the design of QB4SOLAP Vocabulary, there was
an earlier (non-stable) version of the QB4OLAP vocabulary(v1.1) available
under development. Our initial design (QB4SOLAPV1.1) was based on this
version of QB4OLAP, which is later stabilized in version v1.2 15. In Paper B
we have published QB4SOLAP V1.2 (Fig. B.3) based on the latest stable ver-
sion of QB4OLAP(v1.2) at the time being. With minor revisions of RDF in-
stance and RDF class representations from V1.2 to V1.3, the latest version of
the QB4SOLAP Vocabulary is published with Paper C, which is given in Fig-
ure 9 [15]. All versions of QB4SOLAP is available from our project website 16.

Fig. 9: The QB4SOLAP vocabulary (V1.3) (adapted from [15])

Multidimensional Data Cube. QB4OLAP vocabulary defines all the con-
cepts from multi-dimensional models in RDF terms. Multidimensional mod-

15QB4OLAP: http://purl.org/qb4olap/cubes_v1.2
16QB4SOLAP: http://extbi.cs.aau.dk/QB4SOLAP/index.php#qb4solapversions

20

http://purl.org/qb4olap/cubes_v1.2
http://extbi.cs.aau.dk/QB4SOLAP/index.php#qb4solapversions

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

els are usually interpreted as data cubes [12, 15], where cells of the cube cor-
respond to observation facts, which are the center of MD analysis. Facts have
a set of attributes known as measures, with defined aggragate functions. On a
multi-dimensional space, data cube has n dimensions (with contextual infor-
mation) to provide different analysis perspectives, where each dimension can
have hierarchies with levels. Levels (of dimensions) allow users to aggregate
measures (of facts) at different levels of detail (a.k.a. granularity). In order to
support this kind of analysis at different granularities, dimensions and facts
are related in the structure and definition of a data cube. Level have also
attributes, which define the basic characteristics of the level members17.

We distinguish the MD data cube elements by two definitions levels for
defining and annotating with QB4SOLAP, at the schema level and the in-
stance level, respectively. Cube elements such as dimensions, hierarchies,
hierarchy steps, levels, attributes, fact observations, measures, etc. are the
schema level cube elements. By using the QB4SOLAP vocabulary these MD
concepts (cube elements) and their roles and relations to each other are anno-
tated at the schema level in RDF triple format. From a relational point of view,
schema level (RDF) cube elements correspond to tables and columns (of ta-
bles) in an MD Star Schema model. Fact members with measure values, level
members with attribute values are instance level MD concepts, where we an-
notate them by using QB4SOLAP vocabulary at the instance level. These in-
stance level (RDF) cube elements correspond to the actual data rows/records,
which are annotated with QB4SOLAP in triple format. In Fig. 10, an MD
conceptual schema of a sample use case - GeoNorthwind 18, which is used
in [12, 15] is given.

In Paper B, we give the formal RDF semantics of each MD concept (above-
mentioned cube elements) and spatial extensions (Sections 4.1 and 4.2), with
respect to the common definition of an RDF triple19. In Paper C, we have
improved the presentation and explanation of formal definitions and spatial
extensions (Sections 4.1 and 4.2). The following definition (Def. 1) for Hierar-
chy steps is reproduced from Paper C. An overview of a hierarchy step (at the
schema level) - qb4o:HierarchyStep is depicted in Fig. 9 (bottom right) .

Definition 1. (Hierarchy steps - Reproduced from [15]) A hierarchy h has
a set of hierarchy steps HS(h) = {hs1, . . . , hsq}, which define the structure
of the hierarchy in relation with its corresponding levels. A hierarchy step

17Both Papers B [12] and C [15] give this general definition of MD cube concepts with examples
briefly in the introduction sections

18GeoNorthwind Datawarehouse is an extended version of Northwind database with spatial
data and modeled in a multi-dimensional way. Northwind Database:
https://github.com/microsoft/sql-server-samples/tree/master/samples/databases/northwind-
pubs

19An RDF triple t consists of three components; s is the subject, p is the predicate, and o is the
object, which is defined as: triple(s, p, o) ∈ t = (I ∪ B)× I × (I ∪ B × L) where the set of IRIs
is I , the set of blank nodes is B, and the set of literals is L.

21

hsi = (lc, lp, card) ∈ HS(h) entails a roll-up relation between a lower (child)
level lc to an upper (parent) level lp with a cardinality card. The cardinality
card ∈ {1-1, 1-n, n-1, n-n} describes the number of members in one level that
can be related to a member in the other level for both the child and the parent
levels.

Each hierarchy step hsi is defined in the cube schema graph GS as a blank
node _:hsi ∈ B with the qb4o:HierarchyStep predicate. Each hierarchy
step is linked to its hierarchy with the qb4o:inHierarchy property. The child
and parent levels are linked in a hierarchy step with the qb4o:childLevel

and qb4o:parentLevel properties, respectively. The cardinality card of a
hierarchy step is defined by the qb4o:pcCardinality property. The RDF
graph formulation of the hierarchy steps HS(h) is represented as

GS
HS(h) =

q⋃
i=1
GS

hsi

where

GS
hsi

=

{(_:hsi rdf:type qb4o:HierarchyStep)} ∪

{(_:hsi qb4o:inHierarchy idS(h))} ∪

{(_:hsi qb4o:parentLevel idS(lp))} ∪

{(_:hsi qb4o:childLevel idS(lc))} ∪

{(_:hsi qb4o:pcCardinality idS(card))}

Spatial Extensions. Our spatial extension in QB4SOLAP is inherited from
GeoSPARQL20 definitions, where they are supported for topological relations
and spatial aggregate functions.

In Fig. 9, on the left bottom corner, topological relations are given as a
spatial extension to the QB4OLAP vocabulary hierarchy steps. Hierarchy
steps occur in a hierarchy, where they relate the levels of a hierarchy from a
lower (child) level to a higher (parent) level. If a level has (a spatial) geometry,
which means that the spatial coordinates of the level members are recorded
as geometry data types at the instance level (directly on the data).Therefore,
the topological relations between the (parent-child) level members can be
derived and annotated both at the schema level and instance level.

On the top-right corner of Fig. 9, spatial aggregate functions are given as
subclass of QB4OLAP aggregate functions. The spatial extensions use qb4so:

prefix. By using these extended schema level definitions, we can annotate any
MD data cube with QB4SOLAP in RDF format. Spatial aggregate functions

20GeoSPARQL Ontology (http://www.opengis.net/ont/geosparql#) is an Open Geospatial
Consortium (OGC) standard for annotating spatial data and functions in RDF.

22

http://www.opengis.net/ont/geosparql#

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

are defined over spatial measures, where a measure should have a geometry
data type with coordinates at the instance level.

By using these spatial extensions from the QB4SOLAP vocabulary, we can
re-define a hierarchy step as spatial hierarchy step with the spatial extensions.
The following extension (Ext. 1) for spatial hierarchy steps is reproduced from
Paper C. The spatial hierarchy steps formalization uses the topological rela-
tions given in Fig. 9 (bottom left).

Extension 1. (Spatial hierarchy steps - Reproduced from [15]) A hierarchy
step is spatial if it relates a spatial child level lcs and a spatial parent level
lps , in which case it entails a topological relationships between these spatial
levels. A spatial hierarchy step is then a tuple hsis = (lcs , lps , card, topoRel)
where the topological relation topoRel belongs to the Trel class (Def. 2). The
topological relation between parent-child levels of a spatial hierarchy step is
defined by the qb4so:pcTopoRel property. The RDF graph formulation of
the spatial hierarchy steps HSs(h) (w.r.t. Def. 9) is represented as

GS
HSs(h)

=
q⋃

i=1
GS

hsis

where

GS
hsis

= GS
hsi
∪

{(_:hsi qb4so:pcTopoRel idS(topoRel))}

Example 3 (Spatial Hierarchy Step Example - Reproduced from [15])
The triples below show how the hierarchy steps of the Geography spatial
hierarchy in the Customer dimension of the GeoNorthwind DW (Fig. 10)
are represented in RDF using Def. 1 and Ext. 1. Note that all hierarchy
steps are spatial and have an associated topological relation qb4so:Within.
These topological relations in the conceptual schema figure are denoted at
each spatial hierarchy step with white in black circle signs.

Hierarchy steps

_:customerGeography_hs1 a qb4o:HierarchyStep ;

qb4o:inHierarchy gnw:customerGeography ;

qb4o:childLevel gnw:customer ;

qb4o:parentLevel gnw:city ;

qb4o:pcCardinality qb4o:ManyToOne ;

qb4so:pcTopoRel qb4so:Within .

_:customerGeography_hs2 a qb4o:HierarchyStep ;

qb4o:inHierarchy gnw:customerGeography ;

qb4o:childLevel gnw:city ;

qb4o:parentLevel gnw:state ;

23

qb4o:pcCardinality qb4o:ManyToOne ;

qb4so:pcTopoRel qb4so:Within .

_:customerGeography_hs3 a qb4o:HierarchyStep ;

qb4o:inHierarchy gnw:customerGeography ;

qb4o:childLevel gnw:state ;

qb4o:parentLevel gnw:country ;

qb4o:pcCardinality qb4o:ManyToOne ;

qb4so:pcTopoRel qb4so:Within .

Product

ProductID

ProductName

QuantityPerUnit

UnitPrice

Discontinued

Supplier

SupplierID

SupplierName

Address

PostalCode

Category

CategoryID

CategoryName

Description

Customer

CustomerID

CustomerName

Address

PostalCode

Employee

EmployeeID

FirstName

LastName

Title

BirthDate

HireDate

City

CityName

C
a

te
g

o
ri
e

s

G
e

o
g

ra
p

h
y

Country

CountryName

CountryCode

CountryCapital

CapitalGeo

Population

Subdivision

State

StateName

EnglishStateName

StateType

StateCode

StateCapital

CapitalGeo

Time

Date

DayNoWeek

DayNameWeek

DayNoMonth

DayNoYear

WeekNoYear

Calendar

Month

MonthNo

MonthName

Quarter

QuarterNo

Year

YearNo

DueDate

Order
Date

G
e

o
g

ra
p

h
y

Quantity

UnitPrice: Avg +!

Discount: Avg +!

SalesAmount

Freight

SalesPoint

Sales

Fig. 10: Conceptual multi-dimensional schema of the use case data: GeoNorthwind data ware-
house: The center of analysis is Sales fact cube in the middle. Measures are listed within the fact
cube. Fork shaped arrows link dimensions to the fact through the base levels. Level attributes are
listed within each level. Hierarchies are given in ellipse boxes attached to the base level of the
dimension. Spatial levels and attributes are given with point and polygon signs. Spatial hierar-
chy steps are denoted with a sign (white in black circle) to represent the within relations (adapted
from [15])

24

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

SOLAP Operations

We have grouped the spatial operations into three classes in Paper B; spatial
aggregation Sagg, topological relation Trel and numeric operation Nop [12].

SOLAP operations are built on top of classical OLAP operations (e.g., slice,
dice, roll-up, drill-down) with the constraint that they should include at least
one spatial condition from the spatial operation classes given above.

Spatial aggregation operators aggregate spatial (data) objects and returns a
new composite spatial object. Some of the spatial aggregation operators are
union, convex hull, minimum bounding rectangle (MBR) etc. These operators can
be annotated at the schema level with QB4SOLAP (Fig. 9), and used on the
instance level (applied on spatial measures) if the triple store supports spatial
aggregation over spatial data types.

Topological relations are spatial Boolean predicates such as intersects, within,
contains, crosses etc., that can be applied on two spatial objects, which return
true or false as a result. Topological relations can be annotated at the schema
level with QB4SOLAP (Fig. 9) between child and parent levels at a hierarchy
step. Prior to annotating the topological relations at the schema level, topo-
logical relations should be derived between the child-parent level members
at the instance level, by applying the set of topological relations from the
QB4SOLAP definitions. Afterward, satisfied topological relations (the ones
that return true) should be annotated at the schema level. Finally, numer-
ical operations are spatial functions that are applied on spatial objects and
returns a numeric value, e.g., perimeter, area, distance, etc.

Numerical operations can be applied directly on the instance level to spatial
level attributes (with spatial data type), or to spatial measures (with spatial
data type), and they are not annotated at the schema level. By using oper-
ations in this class we can reveal dynamic spatial hierarchy levels and new
spatial members as we explain in the following example (Ex. 4) and shown
in Fig.11.

City Customer
Supplier Sales Total

Saless1 s2 s3

Düsseldorf
c1 8pcs. – 3pcs. 11pcs.

c2 10pcs. – – 10pcs.

Dortmund
c3 7pcs. 4pcs. – 11pcs.

c4 – 20pcs. 3pcs. 23pcs.

Münster c5 – – 30pcs. 30pcs.

Table 4: Sample (Instance) Data for Sales (adapted from [12, 15])

25

All

Customer Supplier

City

Country

ClosestCity

Distance function

Fig. 11: Dyn. Hier.
(adapted from [12, 15])

Fig. 12: Example Map of Sales (Instance) Data (adapted from [12,
15])

Example 4 (SOLAP example (s-roll-up) - Reproduced from [12, 15])
In this example we give an spatial extension to classical OLAP operator
roll-up, which is used aggregate measures in order to get the data at a
higher granularity level. Consider a sales fact cube with measures such as
number of sales, sales price, etc. The fact cube has (spatial) dimensions for
instance, customer, supplier, etc. with spatial hierarchy geography, which has
city, state, country, continent, etc. as spatial levels. Using the classical roll-up
operator, a user can aggregate the total amount of sales to customers up to city
level (shown with straight arrows in Fig. 11).

Moreover, by using a spatial operation with roll-up we can query with
s-roll-up, which can reveal new perspectives, such as, total sales to customers
by the city of the closest suppliers. By using this s-roll-up operation, we create
a dynamic spatial hierarchy during the query, with a spatial constraint to
aggregate measures to the closest city of the suppliers (shown with curved
arrows in Fig. 11). In order to demonstrate the difference between the
classical roll-up and s-roll-up we give the instance data on the map in
Fig. 12, with the number of sales made (in parcels) to each customer from
the corresponding suppliers. The map also represents the distances with
arrows between the customer and supplier locations in each city. Sale data
instances between customers and suppliers are summarized in Table 4. We
also give the calculated distances between customer and supplier locations
in Table 5.

Finally, in Tables 6 and 7, we give the results of roll-up and s-roll-up op-
erations, respectively. As shown in Table 5, customer c3 is in city Dortmund,
though its closest supplier is not in Dortmund but in Düsseldorf, which is

26

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

Sup. City Düsseldorf Dortmund Münster

Cust. City
PPPPPPPPCust.

Sup.
s1 s2 s3

Düsseldorf
c1 15 km.s 45km.s 30 km.s
c2 15 km.s 60 km.s 60 km.s

Dortmund
c3 15 km.s 30 km.s 45 km.s
c4 45 km.s 15 km.s 15 km.s

Münster c5 60 km.s 45 km.s 15 km.s

Table 5: Customer to Supplier Distance (km.s) (adapted from [12, 15])

supplier s1. Similarly, customer c4 from Dortmund is closer to supplier
s3, which is not from Dortmund city but from Münster. Dynamic spatial
hierarchy changes the aggregation level city in s-roll-up, therefore we can
have new analyses perspectives, which are normally not possible to reveal
with traditional roll-up. Due to this new perspectives we observe different
results in Tables 6 and 7.

City Sales

Düsseldorf 21pcs.

Dortmund 34pcs.

Münster 30pcs.

Table 6: Roll-up (adapted from [12, 15])

City Sales

Düsseldorf 25pcs.

Dortmund 20pcs.

Münster 33pcs.

Table 7: S-Roll-up (adapted
from [12, 15])

SOLAP Semantics

We have described the formal SOLAP semantics of four common spatial
OLAP operators: s-slice, s-dice, s-roll-up, and s-drill-down in details in Pa-
per C. These formal semantics are necessary to be re-used in the SOLAP
(to SPARQL) query generator algorithms. In order to give an overview of the
SOLAP semantics, the following remark (Remark 1) gives the definition of
traditional dice operator, definition (Def. 2) gives the definition of s-dice with
high level SOLAP semantics, and finally Ex. 5 exemplifies the s-dice solap
operator for different cases, which are all reproduced from [15].

Remark 1. (Dice - Reproduced from [15]) The traditional dice operator takes
a cube and a Boolean condition φ, which returns a new cube containing only

27

the cells that satisfy the Boolean condition φ. Dice operation is analogous
to relational algebra, R selection; σφ(R), but the argument is a cube not a
relation. For example, the query “sales to customers of type LLC (Limited
Liability Company)” is a dice operation. (Cube is the sales, dimension is the
customer, and the Boolean condition is the customer type if they are LLC).

Definition 2. (S-Dice Reproduced from [15]) Similarly, the s-dice operator
takes an n-dimensional cube C as an argument, which has the cube schema
CS = (D, M, F) with the fact members f ∈ FM as given in Def. 16 (Paper C).
As a parameter s-dice takes a spatial Boolean predicate, which is denoted by
φS . The s-dice operator keeps the cells of the cube C that satisfies the spatial
predicate over spatial dimension levels ls, attributes as, and measures m.

The semantics of the operator is defined as:
SD(C)[φS] = C ′ where spatial predicate φS can be applied on spatial level
member values φS (vls), spatial attribute values φS (vas), measure values φS (vm)
and/or a combination of these.
SD operator returns a sub cube C ′ ⊆ C, which has the schema CS =

(D′, M′, F′) where D′ = D , M′ = M, and F′ = F. Unlike the s-slice operator,
s-dice keeps all the dimensions D in the output cube C ′. The set of measures
M and the fact type F also remains the same, though the new cube C ′ is a
subset of the original cube C with filtered fact members f ∈ FM′, which is
explained in the following.

The s-dice operator selects a subset FM′ of the fact members’ set FM′ ⊆
FM with respect to the spatial predicate φS on level members as follows;

1. Spatial predicate on level values: FM′ = { f ∈ FM | ∃ vlb ∈ LM(lb), vls ∈
LM(ls) : f vlb ∧ vlb v vls ∧ φS (vls)}.

2. Spatial predicate on level attribute values:
FM′ = { f ∈ FM | ∃ vlb ∈ LM(lb), vls ∈ LM(ls) ∧ vls vas : f vlb ∧ vlb v
vls ∧ vls vas ∧ φS (vas)}.
Note that the filtering the facts through level members can be done by vls
(level values) or attribute values vas by applying the spatial predicate φS .
Finally filtering of the facts is on associated measure values is defined in the
following;

3. Spatial predicate on measure values of ms: FM′ = { f ∈ FM | ∃ vms ∈
Codomain(ms) : f vms ∧ φS (vms)}.
For complex cases, i.e., combining these three types; the result set is also
followed by combining the basic result sets.

Example 5 (S-Dice Example - Adapted from [15])
The s-dice operator can be implemented on the level and attribute values
by filtering level members in the cube or on measures by filtering the facts
in the cube. In both cases, the spatial predicate φS is used.

28

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

The query for the s-dice operator could be “sales to customers, which
are located within 5 km distance from their city center” where the s-dice
is on level members by filtering the customer level. The spatial predicate
φS can be interpreted in two different ways (See Table 8 for comparison of
their query run times in conclusion and discussion section (Sect. 3.5)).

S-Dice (1) The first method is assuming a buffer area of 5 km from the
coordinates of the city center and checking customers’ locations by within
operator from topological relations φS ∈ Trel if it meets the condition. The
following SPARQL query shows the implementation of this method on
level members.

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city ;

gnw:customerGeo ?custGeo .

?city gnw:cityGeo ?cityCentGeo .

FILTER (bif:st_within (?custGeo, ?cityCentGeo,

5))}

S-Dice (2) Second method is checking if the distance from a customer lo-
cation to the corresponding city center is less than 5 km, by using distance
function from numeric operations fS ∈ Nop. In this case the spatial pred-
icate φS is a combination of a spatial function fS and a regular Boolean
predicate φ. Spatial function is distance from numeric operations and the
predicate is less than (<). The following SPARQL query shows the imple-
mentation of this method for s-dice on level members.

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city ;

gnw:customerGeo ?custGeo .

?city gnw:cityGeo ?cityCentGeo .

BIND (bif:st_distance (?custGeo, ?cityCentGeo)

AS ?distance) FILTER (?distance < 5) }

29

3.4 SOLAP Query Generation

In the previous section we have mentioned about two SOLAP operators: s-
roll-up in Ex. 4 to give a general understanding of SOLAP operators and s-
dice in Ex. 5 to clarify the given semantics of spatially extended dice operator
with Remark 1 and Def. 2. In order to keep it simple, we have chosen only
one SOLAP query generation algorithm to be explained in the summary and
that is s-roll-up21.

The SPARQL queries that are generated from SOLAP operators are de-
noted with Q and has the form “Q = SELECT R WHERE GP”, where GP
represents a graph pattern that contains triple patterns and R is the set of
parameters, which are returned as a result of the query. As can be observed
from the above s-dice examples (Ex. 5) skos:broader property is used to de-
fine the roll-up relation between levels (e.g., {?cust skos:broader ?city}).
In order to represent roll-up paths for hierarchy levels of a dimension, we
defined a helper function RUPath (Algorithm 1), which creates these roll-up
paths included in GP in the body of the WHERE clause.

Algorithm 1: RUPath(GS
(C), lb, ls, aID, ?as, ?f) :GP - Adapted from [15]

Input: GS
(C), lb, ls, aID,?as, ?f

Output: GP
1 begin
2 GP = (?f rdf:type qb:Observation)
3 GP = GP ∪ (?f idS(aID) ?lb ∧ ?lb qb4o:memberOf idS(lb))
4 foreach (idS(lc), idS(lp)) ∈ GS

(C) | lp v ls do
5 GP = GP ∪ (?lb skos:broader ?lp ∧ ?lp skos:broader ?ls)

6 let GP = GP ∪ (?ls idS(as) ?as)

7 return GP

Roll-up Path. The roll-up path triple pattern is created as a path-shaped join
of triples with the following form: {(s1 p1 o1), (o1 p2 o2), (o2 p2 o3), . . . (on−1
p2 on)}. The root of the pattern is s1, which corresponds to fact members
(a.k.a. observations) (Line 2 in Algorithm 1). The predicate p1 is idS(aID),
which is the identifier of attribute IDs and that links the facts with iden-
tifiers of the base level members idS(lb) (Line 3 in Algorithm 1). The first
level member variable (base level member - ?lb) corresponds to o1, which
rolls-up to its parent level member o2 with skos:broader predicate p2. This

21All of the query generation algorithms for four main SOLAP operators can be found in detail
in Paper C.

30

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

Algorithm 2: SRUGenerator(G I
(C),f

S (L(ds)), agg(m)) : Q - Adapted
from [15]

Input: G I
(C), f

S (L(di)), agg(m)

Output: Q
1 begin
2 Q = ∅ ; GP = RUPath(GS

(C), lb, ls, aID,?as,?f)

3 GP = GP ∪ (?f idS(m) ?m)
4 for fS (L(ds)) do
5 GP′ = RUPath(GS

(C), lb, ls, aID,?as,?f);
Q′ = ∅

6 GP′ = GP′ ∪ (BIND fS (x) AS ?vx)
7 Q′ = SELECT ?x (AGG(?vx) AS ?vy) WHERE GP′ GROUP BY ?x
8 GP = GP ∪ Q′ ∪ (FILTER ?x = ?as && fS (x) = ?vy)
9 let ls = l′s

10 return Q = SELECT ?f ?l’s AGG(?m) WHERE GP GROUP BY ?f ?l’s

continues for each child-parent level member (Line 4 in Algorithm 1) until
the target level is reached ls, which is the last variable (?ls in Line 5) in the
path and corresponds to on in the triple pattern. Target level ls defines the
granularity of the results to be returned from the (spatial) OLAP operation.
Finally, the graph pattern GP is added and returned with the required spatial
attribute parameters in Line 622. The helper function RUPath is used in all
of the SOLAP generations algorithms to create the graph pattern retuned by
the SPARQL query.

S-Roll-up Generator. A high-level SOLAP expression is defined in Paper C
(Def. 19) with SOLAP semantics as: SRU (C)[fS (L(di)), agg(m)] . The pa-
rameter fS (L(di)) represents a spatial function on spatial level members of a
dimension level (L(di)) and agg(m) represents an aggregate function on mea-
sures. In order to illustrate the algorithm steps, we use the s-roll-up example
given in Ex. 4: “Total amount of sales to customers by city of the closest sup-
pliers”. The following text is adapted from [15], which sketches main steps
line by line from Algorithm 2.

Lines 2, 3 (Adapted from [15]). Build the roll-up path using helper function
RUPath. In addition to the variables given in the RUPath function, we

22In order to represent varying (changeable) parameters of the triple pattern at the instance
level such as fact/level members and parameter values given by the user from the other param-
eters in the algorithm, we represent those with questions marks before the variable name, e.g.,
?f, ?lx , ?as, etc.

31

also need to consider measures and measure value variables (Line 3)
since we aggregate the measures. A measure is specified in the follow-
ing listing of the running example as gnw:salesAmount. The following
lines are added to the graph pattern GP:

{?obs rdf:type qb:Observation ;

gnw:customerID ?cust ;

gnw:supplierID ?sup ;

gnw:salesAmount ?sales .

?cust qb4o:memberOf gnw:customer ;

gnw:customerGeo ?custGeo ;

skos:broader ?city .

?sup qb4o:memberOf gnw:supplier ;

gnw:supplierGeo ?supGeo ;

skos:broader ?city .

?city qb4o:memberOf gnw:city .

Line 4 (Adapted from [15]). Build inner select subquery to apply the spa-
tial function fS on the spatial level members L(di) (i.e., Customer, Sup-
plier). In the example, we will use this information to create a dynamic
spatial hierarchy from the Customer to the City level.

Line 5 (Adapted from [15]). Call RUPath for the inner select subquery to
link the geometry attributes of base level members with different vari-
ables and create a graph pattern GP′ for the inner select. The following
lines are added to the graph pattern GP′:

{?obs rdf:type qb:Observation ;

gnw:customerID ?cust1 ;

gnw:supplierID ?sup1 .

?sup1 gnw:supplierGeo ?sup1Geo .

?cust1 gnw:customerGeo ?cust1Geo .

Line 6 (Adapted from [15]). Build the bind statement in order to calculate
the spatial function fS (L(ds)) on spatial level members. For the running
example the spatial function is st_distance. The following lines are
added to the graph pattern GP′:

BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

AS ?distance)}

Line 7 (Adapted from [15]). Generate the inner select query Q′ using graph
pattern GP′ (Lines 5 and 6). Select the corresponding level members
(Customer level for the running example) and group them in a group
by statement on the selected level members. Note that this is where

32

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

the spatial function fS (L(di)) is called with a wrapper expression (e.g.,
MIN, MAX, etc.) to find the closest distance. The following lines illus-
trate the inner select query Q′:

Q` = {SELECT ?cust1 (MIN(?distance) AS

?minDistance) WHERE GP`

GROUP BY ?cust1}

Lines 8, 9 (Adapted from [15]). Build the filter statement for the whole query
based on the output of the spatial function, which is calculated in the
inner select subquery. Then, add the filter and inner select subquery
to the main graph pattern GP′ (Line 8). The filter statement for the
running example is :

FILTER (?cust = ?cust1 && bif:st_distance

(?custGeo, ?supGeo) = ?minDistance)}

Note that in Line 9, the spatial target level ls (City) is altered to a dy-
namic spatial level l′s since applying the spatial function creates a dy-
namic hierarchy.

Line 10 (Adapted from [15]). Generate query Q for computing the facts f ∈
FM′ based on graph pattern GP created in the previous steps. The
measures are also aggregated at the spatial target level (closest City,
which is dynamically selected). The group by statement is applied to
the fact members and target level members. In our running example,
we obtain the following case for the generated s-roll-up query Q.

Finally, the complete generated SPARQL query from the above steps is
given with the following listing in Ex. 6.

Example 6 (S-Roll-up in SPARQL - Adapted from [15])
Graph pattern GP′ (for the subquery in inner select) is created in Lines 15-
22, and the graph pattern GP (for the whole query) is created in Lines 3-24.

1 Q = SELECT ?obs ?city (SUM(?sales) AS

2 ?totalSales) WHERE

3 { ?obs rdf:type qb:Observation ;

4 gnw:customerID ?cust ;

5 gnw:supplierID ?sup ;

6 gnw:salesAmount ?sales .

7 ?cust qb4o:memberOf gnw:customer ;

8 gnw:customerGeo ?custGeo ;

9 gnw:customerName ?custName ;

10 skos:broader ?city .

33

11 ?city qb4o:memberOf gnw:city .

12 ?sup gnw:supplierGeo ?supGeo .

Inner Select for the distance function

13 { SELECT ?cust1 (MIN(?distance) AS

14 ?minDistance) WHERE

15 { ?obs rdf:type qb:Observation ;

16 gnw:customerID ?cust1 ;

17 gnw:supplierID ?sup1 .

18 ?sup1 gnw:supplierGeo ?sup1Geo .

19 ?cust1 gnw:customerGeo ?cust1Geo .

20 BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

21 AS ?distance)}

22 GROUP BY ?cust1 }

23 FILTER (?cust = ?cust1 && bif:st_distance

24 (?custGeo, ?supGeo) = ?minDistance)}

25 GROUP BY ?city ?obs

Nested SOLAP. It is very common among data warehouse users to query
data warehouses with nested (spatial) OLAP queries. Generally, a nested set
of SOLAP operators can be created as an expression with an s-dice on top of
several s-roll-ups that is on top of one or more s-slices on top of an s-dice,
e.g. [15], (s-dice2(s-roll-up1(. . . s-roll-upk(s-slice1(. . . s-slicen(s-dice1(C))))))).

In order to perform nested SOLAP operations in SPARQL by using the
SOLAP generation algorithms, we have defined a set of principles to be con-
sidered in Algorithm 3. These principles are simply necessary for two rea-
sons: 1) in order to follow the general order the SOLAP operators in a nested
SOLAP expression as explained in the previous paragraph and 2) in order to
address the syntactic details in SPARQL queries and graph patterns that are
generated from the SOLAP generator algorithms, i.e., ordering of SPARQL
clauses and functions (SELECT, FILTER, BIND, GROUP BY, etc.). The follow-
ing principles are adapted from [15].

Principle 1: Perform s-dice in the beginning or at the end.

Principle 2: If there are several s-roll-up or s-slice operations call their
generator algorithms repeatedly.

Principle 3: Always separate FILTER clauses when a SOLAP generator
algorithm is used. Enumerate separated FILTER clauses. If a SOLAP
operator is the final function added to the graph pattern, do not sepa-
rate the FILTER clause.

Principle 4: Build the final graph pattern with the separated and enu-
merated FILTER clauses with respect to Principle 3.

34

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

Principle 5: Drop the main SELECT clause from each SOLAP generator
algorithms and build only one SELECT that is added to the query at the
end.

Principle 6: Separate the GROUP BY clause and AGG functions from the
s-roll-up generator algorithms (and enumerate them), and build add
them to the main (outer) SELECT clause at the end.

As a starting point to write a nested SOLAP query we have formulated
a simple nested form, which is the most typical pattern: (s-roll-up (s-slice
(s-dice(C)))). By following the above principles, WriteSPARQL algorithm is
given as pseudo-code that takes the high-level SOLAP operator definitions
as input (Algorithm 3).

In Algorithm 3, Lines 4 and 6, separating and enumerating FILTER clauses
can be observed with respect to Principle 3. Accordingly with Princliple 4, the
final graph pattern is built by the union of separated and enumerated FILTER

clauses in Line 8. In Lines 4,6, and 9 SELECT statements are dropped from
the SOLAP operator algorithms (S-DiceGenerator, S-SliceGenerator, and SRU-
Generator) with respect to Principle 5, and a singleSELECT is built at the end
added to the query in Line 10. Similarly, GROUP BY clause and AGG functions
are dropped from SRUGenerator algorithm in Line 9 and added built in the
outer SELECT with the main query in Line 10 as suggested in Principle 6.

Algorithm 3: WriteSPARQL((SRU (C)[fS (L(di)), agg(m)](SS(C)[lb, ls, vas]
(SD(C)[φS])))) : Q - Adapted from [15]

Input: (SRU (C)[fS (L(ds)), agg(m)](SS(C)[lb, ls, vas](SD(C)[φS])))
Output: Q

1 begin
2 Q = ∅ ; GP = RUPath(GS

(C), lb, ls, aID,?as,?f)

3 GP = GP ∪ (?f idS(m) ?m)
4 GP1 = S-DiceGenerator(G I

(C), φS) \FILTER1 \ SELECT
5 GP = GP ∪ GP1

6 GP2 = S-SliceGenerator(G I
(C), vs, lb, ls)

\FILTER2 \ SELECT
7 GP = GP ∪ GP2

8 GP = GP ∪ FILTER1 ∪ FILTER2 ∪
9 SRUGenerator(G I

(C), f
S (L(ds)), agg(m)) \ SELECT \ GROUP BY1 \

AGG1

10 return Q = SELECT ?l’s AGG1(?m) WHERE GP GROUP BY1 ?l’s

Remark that in the algorithm, the main graph pattern GP is initiated with

35

the RUPath helper function in Line 2, and incremented with a triple pattern
for selected measures coming from the SRUGenerator algorithm in Line 3.
After dropping the FILTER, SELECT, etc. clauses from the SOLAP genera-
tor algorithms in each step, sub-graph patterns are created and enumerated
(GP1, GP2), which are incrementally added to the main graph pattern GP in
Lines 5 and 7. In the following an example is given from Paper C, show-
ing the output of WriteSPARQL algorithm for generating a nested SOLAP
query [15]. We use the running use examples for s-roll-up and s-dice given
earlier (Examples 4, 5, 2).

Example 7 (((3s-roll-up (2s-slice (1s-dice(C))))) - Adapted from [15])
1Get the subcube graph of customer that are located within a 5 km dis-
tance from their city center, 2slice on the customers of the largest country,
(which drops the dimension and leave out all the other countries) and 3get
the total amount of sales of customers by the city of their closest suppli-
ers (aggregates the measure Sales amount from Customer to Closest City
level). The query is written starting from the innermost operator s-dice to
the outermost operator s-roll-up.

1 SELECT ?city (SUM(?sales) AS ?totalSales)

2 WHERE {

3 ?obs rdf:type qb:Observation ;

4 gnw:customerID ?cust ;

5 gnw:supplierID ?sup ;

6 gnw:salesAmount ?sales .

7 ?cust qb4o:memberOf gnw:customer ;

8 gnw:customerGeo ?custGeo ;

9 skos:broader ?city .

10 ?sup qb4o:memberOf gnw:supplier ;

11 gnw:supplierGeo ?supGeo ;

12 skos:broader ?city .

13 ?city qb4o:memberOf gnw:city ;

14 gnw:cityGeo ?cityCentGeo ;

15 skos:broader ?country .

16 ?country qb4o:memberOf gnw:country ;

17 gnw:countryGeo ?countGeo .

18 ?city gnw:cityGeo ?cityGeo .

1.Inner select for (S-SLICE)

Find the largest country

19 {SELECT ?x (MAX(?area) as ?maxArea)

20 WHERE {

21 ?obs rdf:type qb:Observation ;

22 gnw:customerID ?cust .

23 ?cust qb4o:memberOf gnw:customer ;

24 skos:broader ?city .

36

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

25 ?city skos:broader ?country .

26 ?country gnw:countryGeo ?x .

27 BIND(bif:st_area(?x) as ?area)}}

2.Inner select for (S-ROLL-UP)

Find the closest suppliers to customers

28 { SELECT ?cust1 (MIN(?distance) AS

29 ?minDistance) WHERE {

30 ?obs rdf:type qb:Observation ;

31 gnw:customerID ?cust1 ;

32 gnw:supplierID ?sup1 .

33 ?sup1 gnw:supplierGeo ?sup1Geo .

34 ?cust1 gnw:customerGeo ?cust1Geo .

35 BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

AS ?distance)}

36 GROUP BY ?cust1 }

FILTER for S-DICE, to get a subcube

37 FILTER (bif:st_within (?custGeo, ?cityCentGeo, 5))

FILTER for S-SLICE, the 1st inner SELECT

38 FILTER (?countGeo = ?x)

FILTER for S-ROLL-UP, the 2nd inner SELECT

39 FILTER (?cust = ?cust1 && bif:st_distance

(?custGeo, ?supGeo) = ?minDistance)}

40 GROUP BY ?city

3.5 Conclusion and Discussion

In order to query with SOLAP operators, a well-defined spatial multi-dimen-
sional data model is required. We have introduced QB4SOLAP Vocabulary -
a spatial extension to the QB4OLAP multi-dimensional RDF Vocabulary. We
have explained the highlights of the MD concepts of QB4OLAP and the spa-
tial extensions introduced with QB4SOLAP. We have briefly mentioned our
journey of building up the QB4SOLAP vocabulary developed from the earlier
two versions. Describing the spatial extensions of a data warehouse model on
the Semantic Web requires good knowledge on MD concepts and their avail-
ability in prominent RDF vocabularies (i.e., RDF Data Cube Vocabulary and
QB4OLAP), and a good understanding of spatial functions, topological rela-
tion models23 and their standards for the Semantic Web (i.e., GeoSPARQL as
an OGC standard). We had to make design decisions for spatial extensions of
QB4SOLAP and definition of SOLAP operations, which are based on a classi-
fication of spatial operations in three groups: spatial aggregation, topological

23RCC8 - Region Connection Calculus [27] and DE-9DIM - Dimensionally Extended Nine-
Intersection [9] models describe possible Boolean relations of two geometries, in Euclidean space
and two-dimensional space, respectively.

37

relation, and numeric operation.
After introducing our definition of SOLAP, we explained the possible new

analyses perspectives with a running use case example. For writing simi-
lar SOLAP queries in SPARQL, the use case data should be annotated with
QB4SOLAP both at the schema level and the instance level, since OLAP query
structure uses explicit schema concepts of MD models (e.g., aggregate/roll-
up measures to a higher level along a hierarchy, slice/remove a dimension
from the fact cube, etc.). QB4SOLAP vocabulary allows users to annotate
and publish spatial multi-dimensional RDF data. Thus the users can query
spatial RDF endpoints with SOLAP operators in SPARQL.

Due to the complexity of the SPARQL query language for inexperienced
users, high-level SOLAP operators are required to be parsed and generated
in SPARQL. In order to achieve that, we have formalized the RDF semantics
of multi-dimensional cube concepts of QB4SOLAP schema and instance data
which is exemplified with a running use case. As an example, we have shown
the hierarchy steps QB4SOLAP terms in Ex. 1. We have also defined high-
level SOLAP semantics of four common SOLAP operators (s-slice, s-dice,
s-roll-up, and s-drill-down), which are given together with SPARQL example
queries from the running use case. An example of a SOLAP operator is given
with Def. 2 and Ex. 5 for s-dice operator. Finally, by re-using the semantics
of SOLAP operators and multi-dimensional RDF data cubes definitions in
QB4SOLAP, we have provided algorithms for generating spatially extended
SPARQL algorithms from single or nested SOLAP operators. The query run-
times (in seconds) tested against an instance of the running use case data set
(GeoNorthwind) is given in Table 8 below.

Table 8: Runtimes in seconds (Reproduced from [15])

Examples SOLAP Operators Query Runtime
Ex. 12 - Paper C (s-slice(C)) 0.07
Ex. 5 (1), Ex. 13.1 - Paper C (s-dice(C)) 0.09
Ex. 5 (2), Ex. 13.2 (s-dice(C)) 1.01
Ex. 6, Ex. 14 - Paper C (s-roll-up(C)) 2.03
Ex. 15 - Paper C (s-drill-down(C)) 1.86
Ex. 7, Ex. 16 - Paper C (s-roll-up (s-slice (s-dice(C)))) 3.04

GeoNorthwind dataset (conceptual schema is given in Fig. 10) is anno-
tated with QB4SOLAP and in total 48677 triples are produced and published
to an RDF endpoint24 [15]. Each SOLAP operator in Table 8 takes the de-
fined QB4SOLAP cube as a parameter C. This corresponds to the published

24RDF Endpoint: http://lod.cs.aau.dk:8890/sparql, Software set-up: Virtuoso Open
Source Edition (Column Store and multi threaded) Version 7.2.5 running on an Ubuntu 14.04
server with 2.30GHz CPU and 16 GB RAM SOLAP Queries in SPARQL: http://extbi.cs.
aau.dk/SOLAP4SW/queries

38

http://lod.cs.aau.dk:8890/sparql
http://extbi.cs.aau.dk/SOLAP4SW/queries
http://extbi.cs.aau.dk/SOLAP4SW/queries

3. Enabling SOLAP operations in SPARQL over Spatial Multidimensional Data
Cubes on the SW with QB4SOLAP Vocabulary

GeoNorhtwind RDF triples. As can be seen from the table above, s-slice took
0,07 seconds to execute, which is quite an efficient SOLAP operator since it
contains a FILTER statement at a specified spatial level. The queries given
in Ex. 5 for s-dice operator differs as 0.09 sec. for (1) and 1.01 for (2). The
first query of s-dice in SPARQL is more efficient than the second one, even
though the results are the same. The first s-dice is performed by filtering the
geometry instances (of customers) from a specified given point (city center
geometry), which are within a 5 km. buffer area. In this way of implementing
s-dice SOLAP operator, a topological relation Trel (st_within) is used. The
second s-dice is performed by calculating every customer instance distance
to the city center with a spatial numerical operation Nop (st_distance), and
then a filter applied to retrieve those, which has less than 5 km distance to
the city center. The second approach of s-dice is more expensive since we
have to measure all the distances between each customer and the city cen-
ter. The s-roll-up example given in Ex. 6 has a runtime of 2.03 seconds. The
reason why it has a longer response time than s-dice and s-slice operators
is due to its complexity, where both spatial functions (e.g. st_distance to
calculate the distance between customer and suppliers) and aggregate oper-
ators (e.g., SUM of sales) are used in the query. Next operator, s-drill-down
works in a very similar way as s-roll-up and have a close runtime measure-
ment as 1.86 seconds. The nested SOLAP query given in Ex. 7 has the longest
run time measured as 3.04, due to nesting of several SOLAP operators in the
query. Naturally, the number of triple patterns is much more than a single
SOLAP operator in a nested query, thus, the query run time has the highest
measurement.

Our future vision of SOLAP and its tools on the Semantic Web is de-
picted in Fig. 13. In conclusion, we built the conceptual and the architectural
groundwork for Geo-semantic (Spatial RDF) Data Warehouses by proposing
QB4SOLAP vocabulary, and demonstrating examples and high-level SOLAP
semantics on an applied spatial use case. We have also shown how the high-
level SOLAP operators can be translated into SPARQL by the SOLAP gener-
ator algorithms given in pseudo-code (Paper C).

Even though the QB4SOLAP vocabulary, defined SOLAP semantics, and
SPARQL query generator algorithms are important contributions towards
Geo-semantic Data Warehouses, they are not enough itself, since annotat-
ing and querying spatial data on the Semantic Web is limited to experts with
SPARQL and RDF knowledge. Tools such as GeoSemOLAP that can gen-
erate SPARQL queries from high-level SOLAP expressions interactively via
GUI are required to allow users to perform SOLAP on the SW without knowl-
edge of SPARQL. Another tool that is required is RDF2SOLAP to automate
the QB4SOLAP annotation from the existing RDF endpoints.

Thus, in the upcoming stages within the scope of this project, we develop
and offer solutions for the practical and technical implementation of Geo-

39

RDF2SOLAP
module

External
Geo-

vocabularies

SOLAP

User Spatial RDF Data Warehouses

GeoSemOLAP

SOLAP to SPARQL

QB4SOLAP

Spatial RDF
Endpoints

Fig. 13: Our future vision of SOLAP on the SW - Adapted from [15]

semantic Data Warehouses and SOLAP operations on the Semantic Web by
developing these tools.

4 The GeoSemOLAP Framework

This section gives an overview of (demo paper) Paper D [13], where we
demonstrate the implementation and workflow of SOLAP generator algo-
rithms from Section 3.

4.1 Motivation and Problem Statement

The increasing popularity of publishing Linked Open Data (LOD) on the SW
from the public sector, made data sets from spatial and governmental do-
mains available in RDF format. In order to enable querying such data sets
with spatial and analytical DW queries (a.k.a. SOLAP), users and decision-
makers need to have good knowledge of SPARQL query language and syn-
tax along with SOLAP semantics. We have shown in Section 3.3, translat-
ing SOLAP operator semantics to SPARQL queries requires good knowledge
in MD concepts and RDF parsing. Moreover, generated SOLAP operators
in SPARQL query syntax are not intuitive and easily readable. Potential
decision-makers and users are not often fully familiar with SPARQL syntax
to perform SOLAP operators (in SPARQL) through a spatial MD RDF data
endpoint. Mostly the users are well-aware about the MD concepts of the data

40

4. The GeoSemOLAP Framework

model and know how to query DWs with high-level spatial OLAP operators,
which are similar in principle to Multidimensional Data Expressions (MDX)
syntax25.

In order to achieve to our vision of tool oriented future for SOLAP on
the SW (depicted in Fig. 13), we have to develop and provide tools (such as
GeoSemOLAP) for end-users to lower the entry barrier for querying spatial
RDF endpoints with SOLAP operators.

In the following, we recap the SOLAP example (s-roll-up), which is very
similar to Ex. 4 except the city names. In addition, to show the complexity
of SOLAP on the SW, we present the s-roll-up query in SPARQL, highlighted
with facts and level members. The highlighted fact and level members from
the SPARQL query can be identified as MD concepts of a high-level SOLAP
expression for s-roll-up.

c1

c2

c3

c4

c5

s1

s2

s3

Holbæk

RingstedSorø 5km

4

5

30

3

8

10

7

3

5

Fig. 14: Example map of sales data (Reproduced from [13])

Example 8 (SOLAP example (s-roll-up) in SPARQL - Adapted from [13])
The example scenario is very similar to the previously given SOLAP exam-
ple (Ex. 4). Fig. 14 shows a map with amount of sales between customers
(c1, c2, . . . , c5) and suppliers (s1, s2, s3) in three Danish cities (Sorø, Holbæk,
Ringsted). In the background story of this scenario, an export company
records its sales data26 in a spatial data warehouse. The company decides
to publish the spatial data warehouse on the Semantic Web for further

25MDX is an industry-standard query and calculation language used to retrieve data from
OLAP databases [23].

41

analysis possibilities and providing transparent access to all of its branches
and customers.

An end-user/analyst would like to obtain: “The total sales to customers
grouped by cities of their closest supplier". The dataset contains the cor-
responding information for the event of each sale about the involved cus-
tomer and supplier, their city, location, and the number of sold goods.
However, the dataset does not contain information about the distances be-
tween customers and suppliers, hence, we have to find the distances be-
tween customer and supplier points using a spatial function (i.e., distance)
during query runtime. Based on the acquired information from the spa-
tial function (closest distances between customer-supplier points) we can
aggregate the total sales. Technically, this corresponds to the SOLAP oper-
ator: s-roll-up.

As can be seen from the following SPARQL query, performing this s-
roll-up operation on the SW, requires good knowledge of understanding
the SPARQL query syntax involving several triple patterns with many vari-
ables. Moreover, including and handling the spatial functions makes the
SPARQL query even more complicated, which can be easily overwhelming
for inexperienced users (on the SW).

1 SELECT ?obs ?supCity (SUM(?sales) AS ?totalSales)

2 WHERE {?obs rdf:type qb:Observation ;

3 gnw:customerID ?cust ;

4 gnw:supplierID ?sup ;

5 gnw:salesAmount ?sales .

6 ?cust qb4o:memberOf gnw:customer ;

7 gnw:customerGeo ?custGeo .

8 ?sup qb4o:memberOf gnw:supplier;

9 gnw:supplierGeo ?supGeo ;

10 skos:broader ?supCity .

11 ?supCity qb4o:memberOf gnw:city .

Inner select for the distance function

12 {SELECT ?cust1 (MIN(?distance) AS ?minDistance)

13 WHERE {?obs rdf:type qb:Observation ;

14 gnw:customerID ?cust1 ;

15 gnw:supplierID ?sup1 .

16 ?sup1 gnw:supplierGeo ?sup1Geo .

17 ?cust1 gnw:customerGeo ?cust1Geo .

18 BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

19 AS ?distance)}

20 GROUP BY ?cust1 }

21 FILTER (?cust = ?cust1 && bif:st_distance

22 (?custGeo, ?supGeo) = ?minDistance)}

23 GROUP BY ?supCity ?obs

42

4. The GeoSemOLAP Framework

Motivated by the need for an easy to use tool (for non-SW experts), in
order to query spatial semantic data warehouses via SOLAP operators, we
have developed GeoSemOLAP framework.

4.2 Understanding Spatial Semantic Data Warehouse Queries

GeoSemOLAP requires the semantic information about the schema of the
spatial multi-dimensional data set in order to generate the SPARQL queries in
an automated way. Therefore, GeoSemOLAP is developed using QB4SOLAP
semantics (Section 3.3). QB4SOLAP27 describes both multi-dimensional con-
cepts and spatial concepts, which is built on top of existing RDF Data Cube
(QB)28 and QB4OLAP29 vocabularies.

Sales

Customer Supplier

State

Country

All
Customers

 All
Suppliers



Country

State

City City

Amount (SUM)
Location (ConvexHull)

Name

(Intersects)

(Within)

H
ierarchy Step

sH
ie

ra
rc

h
y

St
ep

s

Name
Geometry

(Within)

Geometry

Fig. 15: Northwind spatial data cube members (symbols next to level names represent spa-
tial characteristics of level members, e.g., point, polygon, and multi-polygon.) - (Reproduced
from [13])

In Fig. 15, a sample schema of the running use case data is illustrated with

27QB4SOLAP: https://w3id.org/qb4solap#
28RDF Data Cube: https://w3.org/TR/vocab-data-cube/
29QB4OLAP: https://lorenae.github.io/qb4olap/

43

https://w3id.org/qb4solap#
https://w3.org/TR/vocab-data-cube/
https://lorenae.github.io/qb4olap/

spatial concepts and MD concepts focused on Ex. 8. This schema is derived
from the example given earlier in Fig. 10. Sales are the center of analysis
which are called observation (facts) and have some associated measures such
as Amount and Location. These measures are defined with corresponding
aggregate functions; SUM for Amount and ConvexHull for Location. Location
is a spatial measure, therefore the corresponding aggregate function is defined
as ConvexHull, where location points can be aggregated as a convex-shaped
envelope. These functions are used for aggregating measure values during
roll-up operations to an upper level in the dimension, e.g., City to State level.
(Fig. 15 captures only the spatial dimensions (Customer and Supplier) from
the full conceptual schema of Northwind spatial data warehouse that was
given in Fig. 10). Each roll-up relation between levels are defined as hierarchy
steps, where spatial hierarchy steps are defined with a topological relation
between its levels, e.g., City level is WITHIN State level, State level INTERSECTS
Country level, etc.

The high-level SOLAP representation of the running query (Ex. 8) “Total
sales to customer grouped by the city of their closest supplier" is S-ROLL-

UP (Sales, [DISTANCE(Customer, Supplier)]→ ClosestCity, SUM(SalesAmount)).
This way of formulating an s-roll-up query is very common and more intu-
itive among decision-makers, without tackling with the SPARQL triple pat-
terns, variables, and a complex syntax. The first line in the given query ex-
ample (Ex. 8) specifies the variables to be returned as output from the outer
SELECT: sales observations - ?obs and supplier city - ?supCity, and total
amount of sales given with the aggregate function SUM on measure ?sales.

The triple patterns between Lines 2-11 show a roll-up path as described
with Algorithm 1 as a path-shaped join of triples. The roll-up path links
the initial triple pattern, which is the center of analysis - sales observations
(?obs) in Line 2 to target levels customer and supplier (?cust, ?sup) in Lines 3
and 4. These levels are the base levels of the previously mentioned spatial
dimensions: customer and supplier. The sales amount measure is also linked
to the graph pattern30. The measure - sales amount is also linked to the
graph pattern (?sales) in Line 5. In order to find the closest supplier cities to
the customer, we will need the geometry attributes of spatial levels city and
supplier. Thus, we need to acquire them as well in the graph pattern (Lines 7,
and 9). Lines 6, 8, and 11 mediates spatial levels of the spatial hierarchy
(Fig. 15). The supplier city is the target level to roll-up (Line 10). In order
to find the closest supplier cities, the remaining of the query with the inner
SELECT calculates the distances between customer and supplier geometries
(Lines 18 and 19) to find the suppliers with the closest distance to customers
(Lines 21 and 22).

30Remark: a set of RDF triple(s) and triple patterns are called RDF graph and graph pattern
(Def. 4).

44

4. The GeoSemOLAP Framework

4.3 System Architecture and GeoSemOLAP Workflow

The system architecture of GeoSemOLAP is depicted in Fig. 16. The fron-
tend architectural component of GemSemOLAP is Graphical User Interface
(GUI), which is for end-users to interact with the tool. Metadata Manager uses
QB4SOLAP vocabulary and the use case data set schema in order to gen-
erate queries from high-level SOLAP concepts (spatial MD query elements)
entered by the end-user via GUI. Query Generator works in a well-integrated
manner with the metadata manager. The last two architectural components
of GeoSemOLAP at the back-end are Data Processor and SPARQL Endpoint.
GeoSemOLAP is developed with Javascript, HTML and CSS. To visualize the
spatial data and maps, Leaflet API31, and to store and query the RDF data
from an endpoint Virtuoso Triple Store (Open Source Edition 7.2) is used.

Metadata Manager Query Generator

Graphical User Interface (GUI)

Data Processor

SPARQL Endpoint

Fig. 16: GeoSemOLAP architecture (Reproduced from [13])

The following figure illustrates the workflow for users on how they can
interact with GemSemOLAP (Fig. 17). Initially, the user selects a SOLAP
operator. Based on the selected SOLAP operator, several options for spatial
and MD elements (e.g., spatial levels, attributes, spatial functions such as
distance, within) are displayed in the drop-down menus in order to complete
the operator. Once the SOLAP operator is completed, these steps can be
repeated for writing a nested SOLAP query. Hence, some SOLAP operators
have the option to input coordinates from a map (such as s-slice in Fig. 18b),
GeoSemOLAP displays a snippet of a map when the operator is selected.

Then, the user can click on the desired location on the map to indicate the
coordinates that the query should take as an input. The third step is entirely
operated by GeoSemOLAP automatically when the user finalizes selecting
the SOLAP query elements, where a SPARQL query is generated from the
formulated SOLAP operator(s) by the user. If the user has familiarity with
the SPARQL syntax, she can easily edit the query and parameters from the
generated query template (Fig. 18c) in the fourth step. When the user press
Run Query button the generated query is sent the SPARQL endpoint and ex-

31http://leafletjs.com

45

http://leafletjs.com

Select a
SOLAP

operator

Generate
SPARQL
Query

Select MD
elements

and spatial
operations

Execute the
Query

Edit the
Query

(Optional)

Show the
results

User

 Aggregate/Disaggregate

Fig. 17: Workflow diagram (Reproduced from [13])

ecuted. Finally, the results of the query are shown to the user (Fig. 18d).
From this final step backward, the user may aggregate and disaggregate re-
sults or edit the query from the template and re-run again. Overview of
GeoSemOLAP is given in Fig. 18. A screen-cast video on the actual use of
GeoSemOLAP is also available online via our project site32.

4.4 Demonstration and Discussion

Every MD element and spatial concept given at the high-level query “To-
tal sales to customer grouped by city of their closest supplier" is S-ROLL-UP

(Sales, [DISTANCE(Customer, Supplier)]→ ClosestCity, SUM(SalesAmount)) are
present in SPARQL terms as we highlighted and explained along in Sec-
tion 4.1. This is achieved by mapping and annotating the spatial and MD
elements explicitly with QB4SOLAP vocabulary in RDF terms. Once, the
meta-data is in place implementing the SOLAP query generator algorithms
to produce SPARQL queries for any given use case data is possible.

As a proof of concept, we have demonstrated GeoSemOLAP with the
running use case example Geo-Northwind data set. A graphical and easy to
understand representation of the use case data is given with GeoSemOLAP
for users to easily interact with the system (Fig. 18a). Since our primary focus
and contribution is around spatial concepts we have depicted only the spatial
dimensions, spatial hierarchy levels, and spatial attributes, which are neces-
sary for SOLAP operations. The center of the analysis is the Sales (fact cube)
given with measures in orange boxes in the figure. Supplier and Customer
dimensions are given in double-lined green ellipses, which also represent the
base levels of the dimensions. The dimension hierarchy rolls-up to levels as

32http://extbi.cs.aau.dk/GeoSemOLAP

46

http://extbi.cs.aau.dk/GeoSemOLAP

4. The GeoSemOLAP Framework

City, State, Region, Country, and Continent that are given in green single-line
ellipses. Every level has spatial attributes given in purple boxes in the figure.

The example demonstrates the running query example s-roll-up (Ex. 8)
on top of an s-slice as a nested query (s-roll-up(s-slice(DW))). S-slice operator
removes a dimension from a cube by choosing a single spatial level attribute.
In the GUI of GeoSemOLAP, the user can specify the slice level by choosing
the geometry of a level attribute through a map. Therefore, the operator
comes with an option to select the geometry from a map (Fig. 18b). Next,
the operator requires two spatial parameters: one parameter to specify the
spatial location and another one to define the slice level with respect to the
specified location. In the demo, we can see that the user clicked a location in
Germany and specified the slice level as a country to make a projection on
the sale observations in Germany (Fig. 18b).

After the s-slice operator, an s-roll-up is added to the query by the user
as seen in the bottom of Fig. 18b. Thus the user can aggregate the measures
(total sales) and derive new perspectives in the selected location. We have
chosen the same parameters and spatial functions to formulate the s-roll-up
operator from the running use case query (Ex. 8). The overall demo depicts
initially, an s-slice (at country level) on a location clicked on the map, which
is Germany. This can be formulated in an intuitive way as “Project the sales
(observations) at country level in Germany". Before adding an s-roll-up op-
erator, the user can aggregate the measures for the chosen country level to
see the general overview, which adds triple patterns to the SPARQL query to
get aggregated values of all the measures (price, quantity, amount, discount,
freight) as given in Fig. 19. After disaggregating and clearing the tables view
in the interface, the s-roll-up can be added on top of the s-slice, which can be
formulated as “Total sales to customers by the city of their closest suppliers
in Germany". A sample snapshot of the results is given at the bottom of the
figure (Fig. 18d).

By looking at the results in Fig. 18b, we can see that some customers
in Germany have closer suppliers from other cities than Germany, such as
Lyngby, which is in Denmark. This is a new pattern that SOLAP reveals dy-
namically by using spatial functions with OLAP operators interactively. With
the help of GeoSemOLAP, now this kind of SOLAP operators can be easily
formulated and mapped to SPARQL for querying the spatial RDF endpoints.
GeoSemOLAP considerably breaks the limits of advanced spatial analysis
on the SW for spatial data cubes. The only remaining limitation is that the
spatial data cubes should be annotated and published on the SW by using
QB4SOLAP vocabulary for GeoSemOLAP to be able to communicate with
the spatial RDF endpoints and extract their metadata for query generation.

We have depicted our future vision of SOLAP on the Semantic Web in Sec-
tion 3.5, Fig. 13, where an RDF2SOLAP module provisioned as a tool that can
semi-automatically annotate the MD spatial RDF endpoints with QB4SOLAP,

47

(a) Graphical representation of an example use-case schema

(b) SOLAP operator configuration (c) Generated SPARQL query for nested SOLAP

(d) Example result for a nested SOLAP query (S-Roll-up (S-Slice()))

Fig. 18: Screenshot of GeoSemOLAP (Reproduced from [13])

which would limit the remaining barriers for end-users and business intelli-
gence analysts to easily interact with semantic web data using SOLAP oper-
ations.

48

5. Use Case: Spatial OLAP over Environmental and Farming Data with QB4SOLAP

Fig. 19: Screenshot of s-slice projection and aggregation

5 Use Case: Spatial OLAP over Environmental and
Farming Data with QB4SOLAP

This section gives an overview of Paper E [11].

5.1 Motivation and Problem Statement

In Section 2, we have explained that governmental organizations and agen-
cies making huge amounts of data publicly accessible on the Semantic Web in
Linked Open Data (LOD) format [3]. The Danish government is among one of
those that releases its digital raw material as Open Data [5] starting from 2012.
As an initial effort, GovAgriBus was published to SW in 201433, which con-
tains governmental agricultural and business data sets with spatial informa-
tion in LOD format. Therefore, the users can formulate interesting SPARQL
queries across these domains including spatial functions and containment re-
lationships. Moreover, we have confirmed that advanced analytical queries
are also possible with the support of aggregate functions in SPARQL (Sec-
tion 2). However, lack of well established multi-dimensional (MD) and spatial
models had been an impediment to analyzing this kind of interesting LOD
data with spatial OLAP, which is the prominent query technique in spatial
data warehouses for business intelligence (BI) users and decision-makers.

33https://datahub.io/dataset/govagribus-denmark

49

https://datahub.io/dataset/govagribus-denmark

Responding to SOLAP queries on the SW requires well-defined vocabular-
ies and meta-models to facilitate spatial functions and OLAP operators in
SOLAP.

Motivated by this need, QB4SOLAP [12, 15] is developed to support spa-
tial MD analysis and SOLAP operations on the SW (Explained in Section 3).
QB4SOLAP is tested on a non-trivial MD dataset with spatial concepts (Geo-
Northwind, Fig. 10) to show how we can support interesting SPARQL queries
on the SW by providing multi-dimensional and spatial context to SOLAP op-
erators. However, QB4SOLAP has never been tested on complex real-world
data sets published by governmental and public organizations. Since, this
could lead to different challenges and problems, where corrupt data formats,
complex spatial data types, and noisy data sets, etc. might be present in
real-world data sets, we have decided to apply QB4SOLAP on a complex
real-world data set from various domains including livestock farming and
environmental data, where all domains contain spatial information of the
data.

5.2 Spatial Data Cube of Livestock Holdings in Danish Farms

In the following, initially, we summarize the data sources for different do-
mains. Raw data sets are retrieved in various formats from different govern-
mental agencies in Denmark. Next, we give an overview of the spatial MD
data cube, GeoFarmHerdState, which is modeled and created (in RDF format)
with QB4SOLAP vocabulary by using data from the source data sets.

Source Data Sets

In order to find an interesting set of data from different resources, which has
spatial information, we have investigated in the real-world problems in Dan-
ish farms. Danish Ministry of Environment regulates livestock units (LU or
LSU)34 per area in order to keep nitrate leaching under control in vulnera-
ble areas, such as areas that have close proximity to drinking water sources
and supply facilities or ammonia vulnerable areas [21]. Therefore, we find it
particularly interesting to build our use case around the following domains
listed in Table 9. Data source and approximate size of the data sets (as a
number of records) for each domain is given in the table. The data format
of the data sets from these three domains is Shape file, with geographical
coordinates.

34Livestock unit is a reference unit that facilitates the aggregation of livestock from vari-
ous species [11]. It is simply used to produce statistics describing the number of livestock
on farms. https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:

Livestock_unit_(LSU)

50

https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Livestock_unit_(LSU)
https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Livestock_unit_(LSU)

5. Use Case: Spatial OLAP over Environmental and Farming Data with QB4SOLAP

Table 9: Use case data domains and sources

Domain Source Size
Livestock Farming Data http://jordbruganalyser.dk 240,000 records
Environmental Data http://www.miljoeportal.dk 30,000 records
Spatial Data http://www.geodata-info.dk 2300 records

Livestock Farming (CHR) Data. The Ministry of Environment and Food of
Denmark is responsible for maintaining and publishing the livestock farming
central database. This database contains central husbandry (livestock) registry
(CHR) data. The database is updated yearly. We have downloaded the data
for around 40.000 farms, where the state of the farms recorded between the
years 2010-2015. Some interesting attributes in this data set are CHR number,
CVR number (Central Company Registry), LSU/LU (Livestock unit), address
of the farm, coordinates of the farm, types of the herd, number of animals
(per herd), animal usage code and purpose, etc.

Environmental Data. Denmark’s environment portal hosts public environ-
mental data about soil quality, vulnerable sites, nitrate catchment areas. We
have downloaded three different data sets containing information about ni-
trogen reduction potentials, phosphor, and nitrate classifications of the soil in the
whole of Denmark. The measurements of the soil contain data from 2008
to 2015. The most interesting attributes from there data set are Nitrogen
reduction potentials in the areas, nitrate classification type, and phosphor
classification type.

Spatial Data. In order to build a spatial data cube and enrich the analysis,
we have added geographical data sets to our use case, which contains parish
and drainage areas of Denmark. Some attributes from these data sets are the
Drainage area name and code, total area, parish name, and ID, etc.

GeoFarmHerdState Cube in RDF

By using the afro-mentioned use case data sets from spatial, environmental,
and livestock farming domains, we have created a spatial data cube of live-
stock holdings that we refer to as GeoFarmHerdState. The data cube is created
after thoroughly analyzing the interesting attribute columns (from the Shape
files) and joining them on referential integrity constraints or by using spatial
joins through the geographical coordinates. The highlights and challenges
of the transformation and conciliation process for generating GeoFarmHerd-
State spatial data cube in RDF are discussed in Section 5.4.

We have used QB4SOLAP [12, 15] vocabulary for defining the GeoFarm-
HerdState cube schema and data cube instance members in RDF. GeoFarmHerd-

51

http://jordbruganalyser.dk
http://www.miljoeportal.dk
http://www.geodata-info.dk

State schema contains the meta-data, which is used to describe spatial and
MD concepts such as spatial dimensions, spatial hierarchies, spatial attributes,
and measures. GeoFarmHerdState data cube instances are the members of
the cube schema, such as level and attribute members, fact members, and
measure values, which represent the actual data records. Fig. 20 depicts a
conceptual schema of GeoFarmHerdState data cube. In the following, we
give examples of the cube schema concepts in RDF terms with QB4SOLAP.

GeoFarmHerdState Cube schema concepts. A cube schema is described
with multi-dimensional concepts of data warehouses such as Dimensions,
Levels, Attributes, Hierarchies, Hierarchy steps, and Measures. A spatially
extended cube schema has spatial extensions for all these concepts. All
these concepts for spatially extended data warehouses can be annotated with
QB4SOLAP vocabulary. The examples for these concepts are given below,
reproduced from Paper E.

Herd

HerdCode
HerdName

Product

ProductCode
ProductName

O
w

n
e
rs

h
ip

T
yp

e

Address

Farm

CHRnr
FarmLocation
LivestockUnit

Company

CVRnr
CompanyName

NumberOfAnimals
Location
NitrogenReduction +!
NitrateClass +!
PhosphorClass +!

 GeoFarmHerdState Parish

ParishID
ParishName
ParishArea
ParishCenter

Geography

DrainageArea

WaterID
WaterName
WaterArea

Time

Year

Purpose

PurposeCode
PurposeName

Address

Commune

CommuneNr
CommuneName

Animal

AnimalCode
AnimalName

U
sa

g
e

ZIPCode

PostNr

T
im

e
D

im

FarmDim

H
e
rd

D
im

ParishDim

Fig. 20: GeoFarmHerdState – Conceptual MD schema of livestock holdings data (Adapted
from [11])

Example 9 ((Spatial) Dimensions - Adapted from [11])
The MD conceptual schema in Fig. 20 has four dimensions: Herd,Time,
Parish, and, Farm. Two of them (Farm and Parish) are spatial dimensions
and given in RDF terms as follows:

52

5. Use Case: Spatial OLAP over Environmental and Farming Data with QB4SOLAP

gfs:farmDim rdf:type qb:DimensionProperty ; qb4o:hasHierarchy gfs:ownership , gfs:address .
gfs:parishDim rdf:type qb:dimensionProperty ; qb4o:hasHierarchy gnw:geography .

A dimension is a spatial dimension, if it has at least one spatial level. Farm
(base) level is a spatial level in Farm dimension since farm has location
as coordinates, and Parish (base) level and DrainageArea level are spatial
levels (with polygon coordinates) in Parish dimension.

Example 10 ((Spatial) Hierarchies - Adapted from [11])
Hierarchies are found in dimensions as given in Ex. 9 with
qb4o:hasHierarchy property. Hierarchies are composed of levels, and a
hierarchy is spatial, if it has at least one spatial level. In the following we
give three hierarchies Geography, Usage, and, Address from GeoFarmHerd-
State cube, which are given in ellipses Fig. 20).

gfs:geogprahy rdf:type qb4o:Hierarchy ; qb4o:inDimension gfs:parishDim ;
qb4o:hasLevel gfs:drainageArea .

gfs:usage rdf:type qb4o:Hierarchy ; qb4o:inDimension gfs:herdDim ;
qb4o:hasLevel gfs:product , gfs:purpose .

gfs:address rdf:type qb4o:Hierarchy ; qb4o:inDimension gfs:farmDim ;
qb4o:hasLevel gfs:zipCode , gfs:commune .

The Geography hierarchy is a non-strict spatial hierarchy. A spatial
hiearchy is non-strict if it has at least one (n − n) relationship between
its levels. In the Geography hierarchy (Fig. 20) the (n− n) cardinality rep-
resents that a parish may belong to more than one drainage area. Usually,
non-strict spatial hierarchies arise when a partial containment relationship
exists, which is given as Intersects in our use case. Usage hierarchy is a
generalized hierarchy with non-exclusive paths to splitting levels (Product
and Purpose) and has no joining level but the top level All. Finally, the
Address and Ownership hierarchies are parallel dependent hierarchies. Par-
allel hierarchies arise when a dimension has several hierarchies sharing
some levels. Note that the Address hierarchy has different paths from the
Company and Farm levels (Fig. 20) [11].

Example 11 ((Spatial) Levels - Adapted from [11])
We present a spatial level (Parish) as an example with its attribute (name)s.
Attributes and spatial attributes of levels are given in Ex. 12. A level is
spatial, if it has an associated geometry. Parish spatial level has an associ-
ated geometry polygon given with geo:hasGeometry property. Some other
spatial characteristics of the levels can be recorded in the spatial attributes
of the level such as the center point of the parish (gfs:parishCenter) as
given in the next example (Ex. 12).

53

gfs:parish rdf:type qb4o:LevelProperty ; qb4o:hasAttribute gfs:parishID ;
qb4o:hasAttribute gfs:parishName ; qb4o:hasAttribute gfs:parishArea ;
qb4o:hasAttribute gfs:parishCenter ; geo:hasGeometry gfs:parishPolygon.

Example 12 (Spatial and non-spatial level attributes - Adapted from [11])
Attributes keep characteristics of the level as a value, i.e., in terms of string
or literals. Spatial attributes (and attribute values) are defined over a spatial
domain. For example, non-spatial attributes are defined as ranging over
XSD literals35 where spatial attributes must be ranging over spatial literals,
i.e., well-known text literals (WKT) from OGC schemas36. Spatial attributes
are a sub-property of the geo:Geometry class. Further, the domain of the
spatial attribute should be specified with rdfs:domain, which must be a
geometry. Finally, the spatial attribute must be specified as an instance
of geo:SpatialObject with the rdfs:subClassOf property. Examples of
attributes are given in the following. The example below shows the spatial
and non-spatial attributes of the Parish level.

gfs:parishID rdf:type qb4o:LevelAttribute ; qb4o:inLevel gfs:parish ;
rdfs:range xsd:positiveInteger .

gfs:parishName rdf:type qb4o:LevelAttribute ; qb4o:inLevel gfs:parish ;
rdfs:range xsd:string .

gfs:parishCenter rdf:type qb4o:LevelAttribute ; rdfs:subPropertyOf geo:Geometry ;
qb4o:inLevel gfs:parish ; rdfs:domain geo:Point; rdfs:subClassOf geo:SpatialObject;
rdfs:range geo:wktLiteral , virtrdf:Geometry .

In Ex. 11, it is mentioned that spatial levels are defined through their as-
sociated geometries, which are not given as a level attribute. For the Parish
level, we present the following example of the corresponding geometry.

gfs:parishPolygon rdf:type geo:Geometry; rdfs:domain geo:MultiSurface;
rdfs:subClassOf geo:SpatialObject; rdfs:range geo:wktLiteral , virtrdf:Geometry .

Example 13 (Spatial Hierarchy steps - Adapted from [11])
Hierarchy steps define the structure of the hierarchy in relation to its cor-
responding, levels. A hierarchy step entails a roll-up relation between a
lower (child) level and an upper (parent) level with a cardinality. The car-
dinality (n − n, 1 − n, n − 1, n − n) relationship describes the number of
members in one level that can be related to a member in the other level for
both child and parent levels. A hierarchy step is spatial if it relates a spatial
child level and a spatial parent level, in which case it entails a topological
relationship between these spatial levels. Both spatial and non-spatial hi-
erarchy steps are defined as a blank node with the qb4o:HierarchyStep

property and linked to their hierarchies with the qb4o:inHierarchy prop-
erty. The parent and child levels are linked to hierarchy steps with the

54

5. Use Case: Spatial OLAP over Environmental and Farming Data with QB4SOLAP

qb4o:childLevel property and the qb4o:parentLevel property. The car-
dinality of a hierarchy step is defined by the qb4o:pcCardinality property.
And finally, the topological relationship of a hierarchy step is defined by
the qb4so:pcTopoRel property.

The following illustrates the hierarchy steps of the spatial hierarchy
Geography and non-spatial hierarchy Address, which has different paths
from child levels Farm and Company.

Geography hierarchy structure
_:geography_hs1 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:geography ;

qb4o:childLevel gfs:parish ; qb4o:parentLevel gfs:drainageArea ;
qb4o:pcCardinality qb4o:ManyToMany; qb4so:pcTopoRel qb4so:Intersects, qb4so:Within .

Address hierarchy structure
_:farm_address_hs1 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:address ;

qb4o:childLevel gfs:farm ; qb4o:parentLevel gfs:zipCode ;
qb4o:pcCardinality qb4o:ManyToOne .

_:farm_address_hs2 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:address ;
qb4o:childLevel gfs:zipCode ; qb4o:parentLevel gfs:commune ;
qb4o:pcCardinality qb4o:ManyToOne .

_:company_address_hs1 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:address ;
qb4o:childLevel gfs:company ; qb4o:parentLevel gfs:zipCode ;
qb4o:pcCardinality qb4o:ManyToOne .

_:company_address_hs2 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:address ;
qb4o:childLevel gfs:zipCode ; qb4o:parentLevel gfs:commune ;
qb4o:pcCardinality qb4o:ManyToOne .

Example 14 (Spatial and non-spatial measures - Adapted from [11])
Measures record the values of a phenomenon being observed. Measures
and spatial measures are defined with qb:MeasureProperty. A measure is
spatial if it is defined over a spatial domain. Similarly to attributes (Ex. 12),
measures are defined ranging over XSD literals and spatial measures must
be ranging over spatial literals. The following shows an example of a spa-
tial measure (Location) and a non-spatial measure (NumberOfAnimals).

gfs:location rdf:type qb:MeasureProperty ; rdfs:subPropertyOf sdmx-measure:obsValue ;
rdfs:subClassOf geo:SpatialObject ; rdfs:domain geo:Point ;
rdfs:range geo:wktLiteral , virtrdf:Geometry .

gfs:numberOfAnimals rdf:type qb:MeasureProperty ;
rdfs:subPropertyOf sdmx-measure:obsValue ; rdfs:range xsd:decimal .

Example 15 (Fact schema - Adapted from [11])
In a fact schema, the data structure (DSD) of the cube is annotated with
qb:DataStructureDefinition. The dimensions are given as components
and defined with the qb4o:level property as the dimensions are linked
to the fact at the lowest granularity level. A fact is spatial if it relates two
or more spatial levels. Similarly, measures are given as components of the

55

fact and are defined with the qb:measure property. Aggregation func-
tions on measures and spatial aggregation functions on spatial measures
are also defined in the DSD with qb4o:aggregateFunction. Fact-level
cardinality relationships and topological relationships are defined with
qb4o:cardinality and qb4so:topologicalRelation in DSD. The follow-
ing shows the data structure definition of the cube GeoFarmHerdState,
which is defined with corresponding measures and dimensions.

� GeoFarmHerdState Cube De�nition of the Fact FarmHerdState
gfs:GeoFarmHerdState rdf:type qb:DataStructureDe�nition ;

Lowest level for each dimensions in the cube
qb:component [qb4o:level gfs:herd ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level gfs:time ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level gfs:farm ; qb4o:cardinality qb4o:ManyToOne ;

qb4so:topologicalRelation qb4so:Equals] ;
qb:component [qb4o:level gfs:parish ; qb4o:cardinality qb4o:ManyToMany ;

qb4so:topologicalRelation qb4so:Within] ;
Measures in the cube
qb:component [qb:measure gfs:numberOfAnimals ; qb4o:aggregateFunction qb4o:Sum] ;
qb:component [qb:measure gfs:location ; qb4o:aggregateFunction qb4so:ConvexHull] ;
qb:component [qb:measure gfs:nitrogenReduction ; qb4o:aggregateFunction qb4o:Avg] ;
qb:component [qb:measure gfs:nitrateClass ; qb4o:aggregateFunction qb4o:Avg] ;
qb:component [qb:measure gfs:phosphorClass ; qb4o:aggregateFunction qb4o:Avg] .

GeoFarmHerdState Cube instance members. Remark the definition from
Section 3, where we distinguished the MD data cube elements by two def-
initions levels for defining with QB4SOLAP at the schema level and an-
notating with QB4SOLAP at the instance level. GeoFarmHerdState Cube
schema concepts are defined with QB4SOLAP along with the Examples 9-
15 given above. Fact members (with measure values) and Level members
(with attribute values) are annotated with QB4SOLAP and exemplified as
GeoFarmHerdState cube instance members in the following.

Example 16 (Fact members - Adapted from [11])
Fact members (i.e., facts of GeoFarmHerdState) are instances of the
qb:Observation class. Each fact member is related to a set of dimension
base level members and has a set of measure values. Every fact member
has a unique identifier (IRI) which is prefixed with gfsi:.

The following shows an example of a single fact member, which repre-
sents the state of a farm with CHR no. 39679 in the year 2015 that has the
herd code 15.

gfsi:farm_39679_2015 rdf:type qb:Observation ;
Dimension levels and base level members associated with the fact member

gfs:herdCode gfsi:herd_15 ; gfs:year gfsi:year_2015 ;
gfs:chrNumber gfsi:farm_39679 ; gfs:parishID gfsi:parish_8311 ;

Measures associated with the fact member
gfs:numberOfAnimals "100.0"��xsd:decimal ; gfs:nitrateClass "3"��xsd:integer ;

56

5. Use Case: Spatial OLAP over Environmental and Farming Data with QB4SOLAP

gfs:nitrogenReduction "0.75"��xsd:decimal ; gfs:phosporClass "3"��xsd:integer ;
gfs:location "POINT(8.3713 56.7912)"��geo:wktLiteral .

Fig. 21: GeoFarmHerdState – Fact members and Level members of Ex. 17 marked (Adapted
from [11])

Example 17 (Level Members - Adapted from [11])
Level members are defined with qb4o:LevelMember. They are linked to
their corresponding levels from the schema with the qb4o:memberOf prop-
erty. For each level member there is a set of attribute values. Due to the
roll-up relations between levels of hierarchy steps (Ex 13),the skos:broader
property relates a child level member to its parent level member. For
spatial level members in QB4SOLAP, we extend skos:broader relations
with explicit topological relations, which describes precisely the nature
of spatial relation between two level members, e.g., qb4so:intersects or
qb4so:within.

The following shows an example of a child level member in the Parish
level and one of its parent level members in the DrainageArea level from
the Geography dimension. Fig. 21 presents a map snapshot for fact mem-
bers and level members. Parish level member “Astrup" is highlighted and
DrainageArea level member “Mariager Inderfjord" is marked with red bor-
ders. Note that Astrup intersects with another drainage area “Langerak",
therefore it links to two different parent level members with skos:broader

property. We have implicitly given the topological relation between the
level members with qb4so:intersects predicate for the parish level mem-
ber (1) and its parent level members in the blue line. Similarly, parish

57

level member (2) - Oue is given with an implicit topological relation
qb4so:within to its parent level member ‘Mariager Inderfjord in the blue
line of the listing.

Parish level member (1) Astrup
gfsi:parish_8460 rdf:type gfs:parish ;

qb4o:memberOf gfs:parish ; skos:broader gfsi:water_3710, gfsi:water_159 ;
qb4so:intersects gfsi:water_3710, gfsi:water_159 ;
gfs:parishID 8460 ; gfs:parishName "Astrup" ; gfs:parishArea "28857338.30518"��xsd:double ;
gfs:parishCenter "POINT(10.095657 57.476879)"��geo:wktLiteral ;
gfs:parishPolygon "POLYGON((10.4038 56.7963, 10.3984 56.7721, 10.3411 56.7372, 8.3078
56.7281, 10.2987 56.7601, 10.2563 56.7763, 10.3511 56.8137, 10.4038 56.7963))"��geo:wktLiteral .

Parish level member(2) Oue
gfsi:parish_8309 rdf:type gfs:parish ;

qb4o:memberOf gfs:parish ; skos:broader gfsi:water_159 ;
qb4so:within gfsi:water_159 ;
gfs:parishID 8309 ; gfs:parishName "Oue" ; gfs:parishArea "33297796.91284"��xsd:double ;
gfs:parishCenter "POINT(8.2552, 56.8176)"��geo:wktLiteral ;
gfs:parishPolygon "POLYGON((8.4038 56.7963, 8.3984 56.7721, 8.3411 56.7372, 8.3078
56.7281, 8.2987 56.7601, 8.2563 56.7763, 8.3511 56.8137, 8.4038 56.7963))"��geo:wktLiteral .

DrainageArea level member
gfsi:water_159 rdf:type gfs:drainageArea ;

qb4o:memberOf gfs:drainageArea ; gfs:waterID 159 ;
gfs:waterName "Mariager Inderfjord" ; gfs:waterArea 267,477 ;
gfs:drainageGeo "POLYGON((8.6048 56.9843, 8.5908 56.8969, 8.5707 56.8664,
8.5975 56.8519, 8.5215 56.8483, 8.3959 56.7625, 8.3938, 56.7340, 8.3613 56.6802,
8.2584 56.7764, 8.2475 56.7051, 8.2175 56.7232, 8.3121 56.8441, 8.2806 56.8659,
8.3602 56.9569, 8.4786 56.9713, 8.5474 56.9905, 8.6048 56.9843))"��geo:wktLiteral .

5.3 SOLAP examples over GeoFarmHerdState in SPARQL

Spatial OLAP - SOLAP can be applied to spatial data cubes and helps users
to query and analyze data with enhanced spatial capabilities of OLAP by
benefiting from the spatial information in the spatial data cube. Principally,
a SOLAP operation should include a spatial condition or a spatial function
(Sect. 3.3, SOLAP Operations). Spatial conditions are spatial Boolean pred-
icates that define spatial constraints on the geometries of spatial cube level
member attributes and measures. These can be interpreted as topological re-
lations where the relations between two spatial geometry objects are defined
topologically and the result of topological relation/spatial Boolean predicate
is binary (True/False). On the other hand, spatial functions can be spatial nu-
merical operations (e.g., distance, area) or spatial aggregate functions (e.g.,
spatial union, intersection) and return new data from the cube members.
These operations can be used to build dynamic spatial hierarchies in SOLAP
operations.

Finally, we present two common SOLAP operators (s-dice and s-roll-up)
in the following with non-trivial and interesting query examples on the Geo-
FarmHerdState cube.

58

5. Use Case: Spatial OLAP over Environmental and Farming Data with QB4SOLAP

Example 18 (S-Dice - Adapted from [11]))
S-dice operator keeps the cells of the cube that satisfy the spatial predicate
over dimension levels, attributes, or measures. It returns a subset of the
cube with filtered members of the cube.

The following items and listings show two different s-dice operator ex-
amples by filtering with a spatial predicate on levels and measures.
1. Filter the farms located within 5 km buffer from the center of a drainage
area.
2. Filter the farms located within 2 km distance from the center of their
parish, which is in the nitrate class I areas.

1 � s-dice on dimension levels

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gfs:farmID ?farm ;

gfs:parishID ?parish .

?farm gfs:farmLocation ?farmGeo .

?parish qb4o:memberOf gfs:parish ;

skos:broader ?drainageArea .

?drainageArea gfs:waterPolygon ?drainagePoly .

BIND (bif:st_centroid (?drainagePoly) as ?drainageCenter)

FILTER (bif:st_within(?drainageCenter, ?farmGeo, 5)) }

2 � s-dice on measures

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gfs:location ?farmLocation ;

gfs:nitrateClass ?nitClass ;

gfs:parishID ?parish.

?parish gfs:parishCenter ?parishCent .

BIND (bif:st_distance (?farmLocation, ?parishCent)

AS ?distance)

FILTER (?distance < 2 && ?nitClass = 1)}

The first s-dice operation uses a spatial function that is applied on level
members of the DrainageArea level to get the center of their polygon ge-
ometries. The level members of the Farm level are filtered with a spatial
Boolean predicate with respect to the farm locations that are within a 5 km
buffer area of the center of the drainage areas.

The second s-dice operation uses a spatial function that is applied to
the spatial measure - farm location, in order to get the distance of the farms
from the center of their parish, which is followed by two Boolean predi-
cates; 1) to filter the farms that are less than 2 km away from the center of
their parishes and 2) filter the farms that are on nitrate class I areas.

59

Example 19 (S-Roll-up - Adapted from [11]))
S-roll-up operator aggregates measures of a given cube by using an aggre-
gate function and a spatial function (or a spatial predicate) along a spatial
dimension’s hierarchy. It returns a cube with measures at a coarser granu-
larity for a given dimension.

In the following, we present two examples of the s-roll-up operator.
1. The total amount of animals on the farms, which are closest to their
parishes’ center.
2. The average percentage of nitrogen reduction potentials in the parishes
that are within and/or intersect the drainage area “Nibe-Bredning".

1 � s-roll-up

SELECT ?parish (SUM(?animalCount) AS ?totalAnimals)

WHERE { ?obs rdf:type qb:Observation ;

gfs:numberOfAnimals ?animalCount;

gfs:farmID ?farm ;

gfs:parishID ?parish .

?farm gfs:farmLocation ?farmGeo .

?parish gfs:parishCenter ?parishCent .

Inner select for finding the

closest farms to the parish centers

{SELECT ?farm1 (MIN(?distance) AS

?minDistance) WHERE

{ ?obs rdf:type ab:Observation ;

gfs:farmID ?farm1;

gfs:parishID ?parish1 .

?farm1 gfs:farmLocation ?farm1Geo .

?parish1 gfs:parishCenter ?parish1Cent.

BIND (bif:st_distance (?farm1Geo, parish1Cent)

AS ?distance) } GROUP BY ?farm1 }

FILTER (?farm = ?farm1 && bif:st_distance

(?farmGeo, ?parishCent) = ?minDistance)}

GROUP BY ?parish

2 � s-roll-up

SELECT ?drainageArea (AVG(?nitRed) AS ?avgNitRed)

WHERE { ?obs rdf:type qb:Observation ;

gfs:location ?farmLocation ;

gfs:nitrogenReduction ?nitRed ;

gfs:parishID ?parish.

?parish qb4o:memberOf gfs:parish ;

gfs:parishPolygon ?parishGeo ;

skos:broader ?drainageArea .

?drainageArea gfs:memberOf gfs:drainageArea ;

gfs:waterPolygon ?drainageGeo ;

gfs:waterName ?drainageName .

60

5. Use Case: Spatial OLAP over Environmental and Farming Data with QB4SOLAP

FILTER (bif:st_within(?parishGeo, ?drainageGeo)

|| bif:st_intersects(?parishGeo, ?drainageGeo)

&& ?drainageName = "Nibe-Bredning")}

GROUP BY ?drainageArea

In the first s-roll-up operator, measures are aggregated to the Parish
level after selecting the farms with respect to their proximity to the center of
the parish with a spatial function. This creates a dynamic spatial hierarchy
by defining the aggregation level members of the parent level (parish) by
the proximity of the child level members (farms) to the center of the parent
level’s geometry.

In the second s-roll-up operator, measures are aggregated to a speci-
fied drainage area (“Nibe-Bredning") at the DrainageArea level. We select
all the possible topological cases where a parish intersects or within the
drainage area.

5.4 Discussion and Perspectives

In order to demonstrate that QB4SOLAP can be applied to a complex real-
world use case, we have selected various interesting domains (i.e., geograph-
ical data, farming, and environmental data) to link, relate, conciliate and an-
notate cross-domains with QB4SOLAP. To achieve our goal we come across
several challenges that we discuss and give our perspectives in the following
steps.

Data specification, analysis, and modeling process

Initially, we had to find interesting and relatable domains and specify the data
scope of the data in these domains by analyzing the available data sources.
We have given the data sources and explained our use case domains of live-
stock farming (CHR) data, environmental data, and spatial data in Sect. 5.2.
To find correct environmental and spatial relations across these data sets re-
quire certain domain knowledge and expertise. Therefore, understanding the
domain interests, specifying the domain interests, and a comprehensive pre-
analysis was required steps before starting modeling our use case schema.
We pursued comprehensive research from domain resources ([22] and [21])
to shape our use case GeoFarmHerdState. For example, we have decided the
center of analysis as farms and the number of livestock in farms, together
with soil quality measurements of the farms. This decision is made with re-
spect to domain interest for the analysis of nitrate leaching to ground and
surface water from livestock farming [22].

61

In order to provide insight into these analyses, we have also decided to
include animal herd type and usage of animal products as non-spatial dimen-
sions and hierarchies. In our spatial data domain, we have selected parishes
and (groundwater) drainage areas as geographical areas to build our spatial
hierarchy. This means that farm measures and statistics can be aggregated
and analyzed along with parish and drainage area levels. We have not built
up a geographical hierarchy with farm cities, communes, and regions since
the domain interest is not to analyze livestock farming effects on soil quality
at the city level or region level but directly at the groundwater and drainage
area level. Parish (church regions) has been selected as the intermediary
level between farms and drainage areas, since administratively and histori-
cally farms are related to parishes but not directly to communes or cities.

After getting domain knowledge and specifying the scope of our data sets
and domain, we conceptually modeled a spatial data cube - GeoFarmHerd-
State by using the principals of spatially extended MultiDim models [32]. The
final conceptual MD schema of the use case is depicted in Fig. 20. QB4SOLAP
vocabulary allows us to annotate spatially extended MultiDim conceptual
models, and it supports state-of-the-art semantic spatial data cubes. By us-
ing QB4SOLAP, we can annotate all the spatial cube concepts such as spatial
measures, spatial hierarchies, topological relations at spatial hierarchy steps,
etc. Therefore, we decided to use QB4SOLAP for transforming the use case
data and generating in RDF format in order to publish on the Semantic Web,
in the following steps.

Data conciliation, transformation, and generation

The line of tasks in this step involves the technical process of RDF data gen-
eration. Since we use data sets from different domains in different formats,
our starting point was to relate and conciliate data sets by using the unique
identifiers (if they are available), in order to create a relational implementa-
tion of the GeoFarmHerdState spatial data cube. For example, CHR number,
CVR number, Postal number are unique identifiers that can be used to re-
late different tables. On occasions where there are no unique identifiers are
available, we utilized spatial joins by overlaying spatial coordinates of dif-
ferent datasets with a GIS tool, and joining attributes from one geometry
feature to other features, based on the containment relationships. For ex-
ample, we used spatial joins to get soil quality attributes of farmlands, by
intersecting the farm location data set point coordinates with environmental
data set polygon coordinates, where we derived soil quality measurements
for nitrogen reduction potentials, phosphor and nitrate classifications of each
farm. We have also used spatial joins for building up the spatial hierarchy
between Parishes and Drainage areas by overlaying parish and drainage area
polygons. This way we can find the exact parishes that are related to the

62

5. Use Case: Spatial OLAP over Environmental and Farming Data with QB4SOLAP

exact drainage areas as child-parent level members in a hierarchy step, and
annotate them accordingly. Moreover, we can as well find the exact rela-
tionship in topological terms i.e., intersects, within to explicitly annotate the
relation. Since, there is an (n− n) cardinality, between parishes and drainage
areas, where a parish may intersect with more than one drainage area and
vice-versa, it is important to know the exact relation between level members
of the hierarchy.

Relating the data sets via referential integrity keys are done after import-
ing raw data in an RDBMS. All of the spatial data conciliation steps are pur-
sued in a GIS tool. Once we have derived new spatial containment relation-
ships, we have also imported the spatial data into the RDBMS with spatial
support.

After conciliating the data sets from different domains with respect to the
conceptual model of the GeoFarmHerdState cube given in Figure 20, we ex-
ported 12 tables (in CSV format) as the relational representation of an MD
cube schema such as snowflake schema, which is the tabular cube form of Ge-
oFarmHerdState. The tables are composed of: one fact table (GeoFarmHerd-
State) with measure values and foreign keys of the dimensions base levels,
four dimension base level tables where two of them are spatial dimensions,
and seven tables for the remaining levels along the hierarchies of the four
dimensions. The (level) tables along the same hierarchy are also related to
each other with referential integrity constraints. The tables contain also level
attributes and attribute values describing the characteristics of the level mem-
bers. The final RDF files are generated with ad-hoc C# code mapping the CSV
files into RDF by using the relations and QB4SOLAP vocabulary annotations.

Data publication and exploitation process

The final prepared RDF files are published to a public endpoint by using a
triple store of our choice. We have chosen the Virtuoso Open Source Univer-
sal Server (Version 07.20.3217) as a triple store.

The main goal of this paper was to demonstrate how we can re-use open
spatial government data and enrich the data modeling with QB4SOLAP by
publishing a spatial multi-dimensional data set and querying with SOLAP
operators. In order to make it easier for the users and readers, we have given
the SPARQL endpoint and example queries on our project page37.

In our SOLAP query example (Ex. 19), there might be two possible is-
sues with the second SOLAP query38. The first one is, we use two built-
in functions for finding the topological relations (bif:st_instersects and

37http://extbi.cs.aau.dk/GeoFarmHerdState
38Remark Query: Average percentage of nitrogen reduction potentials (measure in farm fact

member) in the parishes (child level members in spatial hierarchy) that are within or intersect
(topological relations) the drainage area Nibe-Bredning (parent level member in spatial hierar-
chy).

63

http://extbi.cs.aau.dk/GeoFarmHerdState

bif:st_within) between parish and drainage area level members. The built-
in functions depend on the spatial capability of the chosen triple store. Even
though some of the triple stores support spatial geometries and functions
to an extent, it is not very efficient to process queries with spatial Boolean
predicates between each level members during query processing time due to
missing spatial indexes and complexity of spatial geometries such as poly-
gons and multi-polygons. In order to prevent this, the RDF data can be pub-
lished with explicit topological relations in QB4SOLAP using qb4so:within

and qb4so:intersects predicates, then the filter clause in the SOLAP query
can refer to these predicates for finding the topological cases.

The second issue is that the query selects all the possible topological cases,
where a parish intersects or within the drainage area (Nibe-Bredning) to ag-
gregate the measure (nitrogen reduction potentials), which is annotated at the
granularity of the fact members (farms). This means: when a parish mem-
ber intersects with the drainage area (Nibe-Bredning) measures for the farms
that are outside Nibe-Bredning are also aggregated to this drainage area. In
order to prevent this, the query should also include an s-drill-down operator
to farm fact members from parish members with the spatial Boolean predi-
cate within the drainage area (Nibe-Bredning), and aggregate the measures
for the cases satisfying the predicate. Or ideally, the relation between fact
members (farms) and drainage area (parent level members) can be annotated
with QB4SOLAP before publishing, where the predicate for the relationship
can be also included in the filter clause of the SOLAP query.

Since, it is very common to query data warehouses with nested (spa-
tial) OLAP queries, in order to fully exploit GeoFarmHerdState data cube an
elaborated nested SOLAP query can be created by selecting a sub-cube with
s-dice, which can be followed with an s-slice on top of an s-roll-up.

For example, the pattern (3s−roll−up(2s−slice(1s−dice(GeoFarmHerdState))))
represent a typical nested SOLAP operation that can be paraphrased for the
use case GeoFarmHerdstate as in the following: 1Filter the farm states located
within a 2 km distance from the center of their parish and 2slice on the parish
which has the most number of topological relations (intersects, within) with
a drainage area, 3average the nitrogen reduction potential of the drainage
areas intersecting with the parish (Adapted from [11]).

Final remarks on conclusion and future work

GeoFarmHerdState data cube as a QB4SOLAP vocabulary use case demon-
strates how interesting topical domains from governmental and spatial data
sets can come together, which are modeled in a multi-dimensional way, in
order to be published on the Semantic Web for enabling SOLAP queries (in
SPARQL) on the Semantic Web. GeoSemOLAP tool (Section 4) already pro-
vides a GUI for data warehouse users to perform high-level SOLAP opera-

64

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

tions that can be translated into SPARQL to query MD spatial Semantic Web
data.

The issues we come across during data conciliation and data exploitation
process inspired us with new challenges to handle within the scope of this
research. An automated enrichment module that can automatically detect
MD and spatial concepts on existing Semantic Web data and annotate these
concepts with QB4SOLAP can easily be a significant contribution to make the
existing RDF endpoints ready to query with SOLAP operators.

6 Spatial Enrichment of Semantic Web Cubes with
RDF2SOLAP Framework

This section gives an overview of Paper F [14]

6.1 Motivation and Problem Statement

The future vision of SOLAP was given in Section 3, which was depicted in
Fig. 13. In that line of work, we have built the foundation for Geo-semantic
(RDF) data warehouses with QB4SOLAP vocabulary and SOLAP operators
in SPARQL query language, and provided GeoSemOLAP [13] that can au-
tomatically generate complex SPARQL queries from non-trivial nested SO-
LAP operators. In order to utilize GeoSemOLAP, RDF data on the Semantic
Web is required to be annotated with QB4SOLAP. In the current state of
the Semantic Web, there are many multi-dimensional data sets with spatial
information that are published with RDF Data Cube (QB) Vocabulary [34].
QB4OLAP vocabulary addresses the MD modeling challenges of the QB Vo-
cabulary [10] and complies with tools like QB2OLAP enrichment module
(QB2OLAPem) [33], which can enrich and annotate the existing RDF QB
endpoints with QB4OLAP that allows users to query the RDF data with tra-
ditional OLAP operators. However, if a data warehouse user would like to
query the existing RDF data (containing natively spatial information) with
spatial OLAP (SOLAP) operators, it has until now required to migrate the
data into a traditional spatial data warehouse with spatial annotations on
the MD concepts. This migration process is labor-intensive and not a prefer-
able approach, as it removes the data from the Semantic Web and keeps
the data in a closed, proprietary format of the in-house (spatial) data ware-
house. (Semi-)Automatic Spatial enrichment of the existing Semantic Web
cubes (QB, QB4OLAP) with QB4SOLAP Vocabulary, can minimize the user
effort for querying the RDF data with SOLAP operators. Therefore, an es-
tablished way of QB4SOLAP annotation from the existing RDF endpoints
is required with consideration of existing SW technologies and tools. In

65

this line of work, enrichment algorithms for different scenarios and a tool
(RDF2SOLAP) to implement the algorithms are proposed.

6.2 Enrichment Approach

The spatial enrichment approach employs GeoFarmHerdState use-case (from
Section 5) as a proof of concept. We only focus on the spatial concepts of
the use case, which is given as a remark in Figure 22 without the non-spatial
dimensions from Figure 20. As can be seen on the figure, GeoFarmHerdState
cube has two spatial dimensions: Parish and Farm. Parish dimension has a
spatial hierarchy (Geography), which is composed of two spatial levels: Parish
level and DrainageArea level. Farm dimension does not have a spatial hierar-
chy and have a single spatial level: Farm. GeoFarmHerdState fact is the center
of analysis that represents the state of the farms for a certain time period
(via dimension Time) with measures such as: NumberOfAnimals on the farm,
NitrogenReductionPotentials of the farm land (soil), and FarmLocation (which is
a spatial measure).

Address

Farm

CHRnr
FarmLocation
LivestockUnit

NumberOfAnimals
FarmLocation
NitrogenReduction +!
NitrateClass +!
PhosphorClass +!

 GeoFarmHerdState Parish

ParishID
ParishName
ParishArea
ParishPolygon

Geography

DrainageArea

WaterID
WaterName
WaterArea
WaterPolygon

TimeDim

FarmDim

HerdDim

ParishDim

A B

O
w

n
e
rs

h
ip

Level attributes and measures

Legend of Symbols

Multipolygon (geometry data type)

Polygon (geometry data type)

Point (geometry data type)

+! Non-additive measure type

Intersects (topologica l re lation)

With in (topological re lation)

N:N (cardinality relation)

Level-Level (Hierarchy step) and Level-Fact relations

N:1 (cardinality relation)

Fig. 22: GeoFarmHerdState (spatial) MD schema of livestock holdings data (Adapted from [14])
Parish, Farm, and Drainage Area instances from the use case are depicted

on a map (Figure 21) and explained in Example 17 in Section 5. A hierarchy
example from the instances given in the map figure is depicted as a graph in
Figure 23. The graph shows the topological relations between level members
(parish-drainage area) and between fact members and level members (farms-

66

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

parish). SOLAP operators aggregate measures (from farm states) at different
granularity levels of the spatial hierarchy. In order to aggregate the measures
correctly during a s-roll-up operation, the topological relation between the
level members should be taken into consideration, where two relations are
available: within and intersects (black and red arrows in Figure 23).

DrainageArea: ”Mariager Ind.” DrainageArea: ”Langerak”

Parish: ”Oue” Parish: ”Astrup”

Farms: {f1,…, fn} Farms: {e1,…, en} Farms: {d1,…, dn}

within

within intersects intersects

within within

within

within

co
n
ta
in
s

co
n
ta
in
s

within

Fig. 23: Spatial Hierarchy Example for SOLAP (Adapted from [14])

For example, if we would like to aggregate the total number of animals
from parishes to drainage areas, there is a great chance that we aggregate the
measure values incorrectly from Astrup (parish) to drainage areas (Mariager
Inderfjord and Langerak) by counting twice, since parish Astrup intersects
with both of the drainage areas. Due to the polygon geometry of the level
members, roll-up relation encounters a many-to-many (cardinality) relation-
ship when a parish intersects with a drainage area. To prevent falsely ag-
gregating the measure values, a SOLAP operation with a spatial drill-down
from drainage area members to fact members, using the contains topological
relation is required (blue arrows in Figure 23). Another way to prevent this
issue can be achieved by de-normalizing the fact table with redundant links
from farm (fact) members to drainage area (level) members, where we create
those links explicitly with direct within relations.

QB4SOLAP vocabulary allows us to annotate such topological relations
between level members and between fact members and level members with
well-defined predicates, where QB4OLAP only supports skos:broader pred-
icate between level members of a hierarchy and referential integrity keys be-
tween fact members and level members.

In RDF2SOLAP spatial enrichment, we consider two approaches: 1) Hi-
erarchical enrichment: We enrich the annotation of hierarchy steps between
level members with direct topological relations from QB4SOLAP vocabulary
instead of using skos:broader predicate. 2) Factual enrichment: We de-
normalize the logical arrangement of spatial levels by directly annotating the
topological relations from fact members to a higher parent level member.

67

_:hs

gfs:parish gfsi:parish_8648

gfs:drainageArea

gfsi:parish_8517

gfsi:water_159gfsi:water_3710

skos:broader skos:broader

sk
os
:b
ro
ad
er

"Mariager
Inderfjord""Langerak"

gfs:waterName gfs:waterName

"POLYGON((8.4038 56.7963, 8.3984 56.7721, 8.3689 56.7410, 8.3411 56.7372, 8.3078 56.7281, 8.2987 56.7601,
8.2563 56.7763, 8.3112 56.8087, 8.3511 56.8137, 8.4038 56.7963))"^^:spatialLiteral

"Oue""Astrup"

gfs:parishNamegfs:parishName

qb4o:memberOf

qb4o:memberOf

qb4o:memberOf

qb4o:memberOf

qb4o:ManyToManyqb4o:pcCardinality

qb4o:parentLevel

"POLYGON((8.6048 56.9843, 8.5908 56.8969, 8.5707 56.8664, 8.5975 56.8519, 8.5215 56.8483, 8.3959 56.7625,
8.3938, 56.7340, 8.3613 56.6802, 8.2584 56.7764, 8.2475 56.7051, 8.2175 56.7232, 8.3121
56.8441, 8.2806 56.8659, 8.3602 56.9569, 8.4786 56.9713, 8.5474 56.9905, 8.6048 56.9843))"^^:spatialLiteral

gfs:parishP
olygon

gfs:w
aterP

olygon

qb4o:childLevel

Fig. 24: Hierarchy steps in QB4OLAP before MD enrichment(Adapted from [14])

In Figure 24, QB4OLAP annotation of the hierarchy step from gfs:parish

level to gfs:drainageArea level is given. We use similar conventions to prefix
the schema members (level, fact, etc.) with gfs: and instance members (level
members, fact members) with gfsi: as explained in Section 5. The relations
between the level members are given with skos:broader predicate, high-
lighted in red boxes. The geometry attribute values are highlighted in blue
boxes, which is an indicator that we can enrich the hierarchy steps between
the level members with well-defined topological relations by utilizing these
geometry attributes (in spatial Boolean functions).

Figure 25 depicts the QB4SOLAP annotation of the hierarchy step from
Fig. 24 after the enrichment with topological relations (highlighted in green
boxes) from the QB4SOLAP vocabulary. Note that, the enrichment process
also re-defines the fact schema, where we enrich the data structure definition
(DSD), with topological relations that are found between the level members
that can be seen on the left part of the figure with the elements highlighted
with a green border.

6.3 RDF2SOLAP Enrichment Algorithms

Spatial enrichment in RDF2SOLAP occurs in two phases, as briefly men-
tioned in our approach above (Section 6.2). The first one is the hierarchical
enrichment phase and the second one is the factual enrichment phase. Before
giving details on the enrichment phases and algorithms within, spatial helper
functions are briefly explained below.

68

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

_:shs

gfs:parish gfsi:parish_8648

gfs:drainageArea

gfsi:parish_8517

gfsi:water_159gfsi:water_3710

"Mariager
Inderfjord""Langerak"

gfs:waterName gfs:waterName

"POLYGON((8.4038 56.7963, 8.3984 56.7721, 8.3689 56.7410, 8.3411 56.7372, 8.3078 56.7281, 8.2987 56.7601,
8.2563 56.7763, 8.3112 56.8087, 8.3511 56.8137, 8.4038 56.7963))"^^:spatialLiteral

gfs:parishNamegfs:parishName

qb4o:memberOf

qb4o:memberOf

qb4o:memberOf

qb4o:memberOf

qb4o:ManyToManyqb4o:pcCardinality

qb4o:parentLevel

"POLYGON((8.6048 56.9843, 8.5908 56.8969, 8.5707 56.8664, 8.5975 56.8519, 8.5215 56.8483, 8.3959 56.7625,
8.3938, 56.7340, 8.3613 56.6802, 8.2584 56.7764, 8.2475 56.7051, 8.2175 56.7232, 8.3121
56.8441, 8.2806 56.8659, 8.3602 56.9569, 8.4786 56.9713, 8.5474 56.9905, 8.6048 56.9843))"^^:spatialLiteral

gfs:parishP
olygon

gfs:w
aterP

olygon

qb4o:childLevel

qb4so:Intersects

qb4so:Within

qb4so:intersects

qb
4s
o:
in
te
rs
ec
ts

qb4so:within

"Oue""Astrup"

qb
4s
o:
pc
To
po
R
el

Fig. 25: Spatial hierarchy steps in QB4SOLAP after MD enrichment(Adapted from [14])

Spatial Helper Functions

Spatial helper functions are utilized in both enrichment phases to identify the
spatial values of the geometries from the input data and use those values to
find a topological relation as an output. We have implemented two spatial
helper functions.

The first one is getSpatialValues(G I
A(lm)):Vs(a), which takes an RDF graph

of attributes of level members (or can be fact members) as an input, and sim-
ply scans the input data to find spatial geometry values and returns a set of
spatial values that are filtered in the attributes of level members (or measure
values of fact members). These spatial values are coordinates describing the
geographical location and shape of the level member or fact member as an
attribute or measure value correspondingly.

The second one is: relateSpatialValues(vac , vap):topoReli, which takes
a pair of spatial values (from child and parent level members) and returns the
topological relation between those values. In order to design and implement
the second helper function we have used Table 10. The table contains topolog-
ical relations from DE-9DIM - Dimensionally Extended Nine-Intersection [9]
model, which describes the possible Boolean relations of two geometries in
two-dimensional space.

We focus on three main simple geometry types: point, line, and polygon,
which can represent spatial attribute values of level members or spatial mea-
sure values of fact members. In a roll-up relation39, hierarchically and topo-

39A roll-up relation can occur from child level to parent level between level members, or from
fact to (base) level between fact members and level members.

69

Table 10: Topological relations (X: hierarchically and topologically applicable, ×: topologically
not applicable, –: hierarchically not applicable) - (Adapted from [14])

Roll-up
Relations

child level point (pt.) line (ln.) polygon (po.)

parent level pt. ln. po. pt. ln. po. pt. ln. po.

To
po

lo
gi

ca
lR

el
at

io
ns

within × X X – X X – – X
contains – – – – – – – – –
intersects X X X – X X – – X
touches × × × – X X – – X
overlaps × × × – X X – – X
crosses × × × – X X – – ×
coveredBy × × × – × X – – X
covers – – – – – – – – –
equals X × × – X × – – X

logically applicable relations are given with a checkmark (X) sign. Top-down
topological relations such as contains and covers are considered as hierarchi-
cally not applicable, since a lower level member (i.e., child-level) cannot con-
tain or cover a higher-level member (i.e., parent level), therefore the entire
row with contains and covers topological relations are given with dash (–)
sign. Another example case of hierarchically not applicable relations occurs
in between line-point, polygon-point, and polygon-line geometries, since a par-
ent level member needs to have geometry type of the same or higher dimen-
sionality of the child level member, where point geometry is 0-dimensional, a
line is 1-dimensional and a polygon is 2-dimensional, etc. [14]. Topologically
not applicable relations are inherited from DE-9DIM and marked with (×)
cross sign accordingly.

Figure 26 depicts the topologically and hierarchically applicable relations
with geometry pairs from Table 10. Topological relations are simplified in
the figure, where we generalize some of the relations when possible. For
example if a line crosses a polygon at two points or a line touches a poly-
gon at a single point, both cases are generalized as a line intersects polygon
(Figure 26(e)). These generalizations are used to design and implement the
algorithm relateSpatialValues(vac , vap):topoReli.

Hierarchical Enrichment

We create hierarchical enrichment algorithms by exploiting the existing non-
spatial QB4OLAP semantics. We distinguish two cases in our algorithms that
are explained along with the algorithms (Alg. 4 and Alg. 5).

The first case is to find explicit (spatial) hierarchy steps, where it is per-
ceived that there are direct roll-up relations between the level members that
are annotated with skos:broader predicate (as shown in Figure 24). So we

70

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

(a) point – point

intersects?

equals?

(b) point – line

within?

intersects?

within?

(c) point – polygon

intersects?

coveredBy?

(d) line – line

overlaps?

within? touches? crosses?

intersects?

 (e) line – polygon

coveredBy?

within?

overlaps?

crosses?

touches?

intersects?

intersects?

(f) polygon – polygon

within?

overlaps? touches?

Fig. 26: Simplifying topological relations (Adapted from [14])

can easily detect these explicit hierarchy steps, and use their geometry at-
tributes if there is any to find the topological relations between those level
members. The algorithm (Alg. 4) detectSpatialHS(G I

RU(hs),G
I
A(lm)) : G I

RU(shs)

takes the explicit roll-up relations of hierarchy steps (G I
RU(hs)) and attributes

of level members (G I
A(lm)) and returns the detected spatial hierarchy steps

(G I
RU(shs)) as a result.
In Line 4 of the algorithm in the foreach loop, explicit skos:broader rela-

tions are filtered and attribute values of the level members (for parent-child
levels) are retrieved. These attribute values (of level members) are given as an
input (in Lines 6 and 9) to the first helper function getSpatialValues to find
the geometry attributes. If there are geometry attributes for both child-level
members, pairs of these spatial values are given as an input to the second
helper function releateSpatialValues (Line 12). The result RDF graph of
roll-up relations with detected spatial hierarchy steps (G I

RU(shs)) is incremen-
tally added with the triple patterns of the identifier of the child level member,
topological relation, and the identifier of the parent level member (Line 14)
and returned as the result in Line 15.

The second case is to find implicit (spatial) hierarchy steps between the level
members, where there are not any direct roll-up relations that are annotated
between the level members. In order to handle this situation, where there

71

Algorithm 4: detectSpatialHS(G I
RU(hs),G

I
A(lm)) : G I

RU(shs) (Adapted
from [14])

Input: G I
A(lm), G

I
RU(hs)

Output: G I
RU(shs)

1 begin
2 G I

RU(shs) = ∅; /*initialize output graph as emptyset*/

3 G I
A(lmc)

= ∅; G I
A(lmp)

= ∅; Vs(ac) = ∅; Vs(ap) = ∅; topoReli = null;
/*temporary variable and sets*/

4 foreach ((idI(lmc) idS(ac) vac), (id
I(lmp) idS(ap) vap)) |

(idI(lmc) idS(ac) vac), (id
I(lmp) idS(ap) vap) ∈

G I
A(lm) ∧ (idI(lmc) skos:broader idI(lmp)) ∈ G I

RU(hs) ∧
lmc vac ∧ lmp vap ∧ lmc v lmp do

5 G I
A(lmc)

= {(idI(lmc) idS(ac) vac)};
6 Vs(ac) =getSpatialValues(G I

A(lmc)
);

7 if Vs(ac) 6= ∅ then
8 G I

A(lmp)
= {(idI(lmp) idS(ap) vap)};

9 Vs(ap) = getSpatialValues(G I
A(lmp)

);

10 if Vs(ap) 6= ∅ then
11 foreach (vac , vap) ∈ Vs(ac) ×Vs(ap) do
12 topoReli = relateSpatialValues(vac , vap);
13 if topoReli 6= null then
14 G I

RU(shs)∪ = {(idI(lmc) topoReli idI(lmp))};

15 return G I
RU(shs)

are not any explicit hierarchy steps between the level members, we benefit
from QB4OLAP schema graphs for dimensions, hierarchies, and levels. This
way we can classify dimensions and hierarchies and make sure that we are
extracting the level member pairs for the levels in the same hierarchy of the
same dimension and comparing only the attribute values of these level mem-
bers to find the topological relations of the spatial hierarchy steps. The algo-
rithm (Alg. 5) discoverSpatialHS(GS

D,GS
H(d),G

S
L(h),G

I
LM(l),G

I
A(lm)): G

I
RU(shs)

takes the dimensions (GS
D) and hierarchies in the dimension (GS

H(d)) and lev-

els in the hierarchy (GS
L(h)) from the schema graphs, and and level members

of the level (G I
LM(l)) and attributes of the level members (G I

A(lm)) from the
instance graphs as inputs and returns the discovered spatial hierarchy steps

72

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

(G I
RU(shs)) as a result.
In each foreach loop (in Lines 5, 6, and 7) of schema elements we iterate

through the dimensions, hierarchies, and levels in the hierarchy, to create
level pairs (in Line 8) and get level members of these level pairs by filtering
with qb4o:memberOf predicate (in Line 9). The algorithm iterates through
the level member pairs and their attributes of the level members, where we
can follow a similar logic to filter the spatial attribute values from the level
members’ attributes as in the previous algorithm by using getSpatialValues

helper function (in Line 13). If there are geometry attributes for both of the
level members (Line 14), pairs of these spatial values are given as an input
to the second helper function releateSpatialValues (Lines 15 and 16). The
result RDF graph of roll-up relations with discovered spatial hierarchy steps
(G I

RU(shs)) is incrementally added with the triple patterns of the identifier of
the level member n, topological relation, and the identifier of level member k
(Line 18) and returned as the result in Line 19.

Factual Enrichment

In principle, the factual enrichment phase is very similar to the hierarchical
enrichment phase, although, the roll-up path includes not only the roll-up
relations (hierarchy steps) between level members but also the roll-up rela-
tions between fact members and level members. In a multi-dimensional fact
schema, a roll-up path between fact members and level members are defined
through explicit (direct) relations with referential integrity keys between a
fact member and the base level member of the dimensions. Through the roll-
up paths between fact members and the base level member of the dimension,
we can derive new perspectives by aggregating measures in SOLAP opera-
tions. In spatial data warehouses, facts usually have spatial measures, where
we can detect topological relations through the explicit roll-up paths between
fact members and base level members of the dimension. QB4SOLAP allows
users to represent fact-level topological relations both at the schema level (in
the DSD) and the instance level. Examples of a (spatial) fact schema (DSD)
and fact members are given in Section 5 in Examples 15 and 16. In the fol-
lowing, we recap the examples with RDF2SOLAP spatial enrichment with
the highlighted lines before explaining the factual enrichment algorithms.

Example 20 (Fact Schema and Fact Members (Adapted from [14]))
Factual enrichment at the schema level occurs when the DSD is re-defined
with spatial concepts. QB4SOLAP represents the topological relations be-
tween fact and base level members in addition to the cardinality relations.
For example, the cardinality relation between fact farm-state and level
parish is many-to-one (Line 4), and the topological relations are defined
as an instance of qb4so:Within topological relation class (Line 5). This

73

Algorithm 5: discoverSpatialHS(GS
D,GS

H(d),G
S
L(h),G

I
LM(l),G

I
A(lm)): G

I
RU(shs)

(Adapted from [14])
Input: GS

D , GS
H(d), G

S
L(h), G

I
LM(l), G

I
A(lm)

Output: G I
RU(shs)

1 begin
2 G I

RU(shs) = ∅; topoReli = null /*initialize the output graph as an empty set and a
temporary variable as null*/

3 Vs(an) = ∅; Vs(ak)
= ∅; /*initialize temporary sets as empty sets for keeping spatial

attribute values*/
4 G I

A(lmn)
= ∅; G I

A(lmk)
= ∅; /*initialize empty sets to keep triple patterns for

attributes of level members*/
5 foreach (idS(d) qb4o:hasHierarchy idS(h)) ∈ GS

D /*iterate through the
dimensions*/ do

6 foreach (idS(h) qb4o:inDimension idS(d)) ∈ GS
H(d) /*iterate through the

hierarchies*/ do
7 foreach (idS(h) qb4o:hasLevel idS(l)) ∈ GS

H(d) /*while iterating through
the levels in the hiearchy, get level pairs next*/ do

8 foreach (idS(li), idS(lj)) ∈ GS
L(h) × G

S
L(h) | idS(li) 6= idS(lj)∧

9
⋃

lm∈LM(l)((idI(lm) qb4o:memberOf idS(li)), (idI(lm) qb4o:memberOf

idS(lj))) ∈ G I
LM(l) /*in each level pair, while iterating through their

level members, get a pair of level members (idI(lmn), idI(lmk),
where each level member comes from different levels*/ do

10 foreach (idI(lmn), idI(lmk)) ∈ G I
LM(l) × G

I
LM(l) | idI(lmn) 6=

idI(lmk) ∧ idI(lmn) ∈ G I
LM(li)

=⇒ idI(lmk) ∈ G I
LM(lj)

| G I
LM(li)

⊂
G I

LM(l) ∧ G
I
LM(lj)

⊂ G I
LM(l) ∧ G

I
LM(li)

6= G I
LM(lj)

/*iterate through

the pairs of level members*/ do
11 foreach ((idI(lmn) idS(ai) vai), ((id

I(lmk) idS(aj) vaj)) ∈
G I

A(lm) × G
I
A(lm) /*iterate through the pairs of level

members’ attributes*/ do
12 G I

A(lmn)
= {(idI(lmn) idS(ai) vai)}; G I

A(lmk)
= {(idI(lmk)

idS(aj) vaj)};
13 Vs(an) = getSpatialValues(G I

A(lmn)
);

Vs(ak)
= getSpatialValues(G I

A(lmk)
);

14 if Vs(an) 6= ∅ ∧Vs(ak)
6= ∅ /*make sure there are spatial

values in the temporary sets*/ then
15 foreach (vai , vaj) ∈ Vs(an) ×Vs(ak)

do
16 topoReli = relateSpatialValues(vai , vaj);
17 if topoReli 6= null /*make sure there is a

topological relation assigned to the variable*/
then

18 G I
RU(shs)∪ = {(idI(lmn) topoReli idI(lmk))};

19 return G I
RU(shs)

74

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

relation can be derived only if the fact members (at the instance level)
are enriched and annotated with explicit topological relations as given in
Line 12.

QB4SOLAP also extends the fact schema with spatial aggregate func-
tions that are defined over spatial measures (if there are any). An example
of aggregate function for farm location spatial measure (with point geom-
etry) can be defined as an instance of qb4so:ConvexHull class (Line 7).

##Spatial Fact Schema in QB4SOLAP##

1 gfs:GeoFarmHerdState a qb:DataStructureDefinition ;

#Lowest spatial level for each dimension in the cube#

2 qb:component [qb4o:level gfs:farm ; qb4o:cardinality qb4o:ManyToOne ;

3 qb4so:topologicalRelation qb4so:Equals] ;

4 qb:component [qb4o:level gfs:parish ; qb4o:cardinality qb4o:ManyToOne ;

5 qb4so:topologicalRelation qb4so:Within] ;

#Example of a spatial measure in the cube#

6 qb:component [qb:measure gfs:farmLocation ;

7 qb4o:aggregateFunction qb4so:ConvexHull] .

Factual enrichment at the instance level between fact members and level
members is exemplified in Line 12 for explicit relations (because there is a
direct reference in Line 9) and in Line 13 for implicit relations.

##GeoFarmHerdState cube: observation fact example##

8 gfsi:farmState_103850_12_2015 a qb:Observation ;

9 gfs:farm gfsi:farm_103850 ; gfs:parish gfsi:parish_8648 ;

10 gfs:livestockUnit "4.2699999999999996"^^xsd:double ;

11 gfs:farmLocation "POINT (8.31941 56.75822)"^^geo:spatialLiteral ;

12 qb4so:equals gfsi:farm_103850 ; qb4so:within gfsi:parish_8648 ;

13 qb4so:within gfsi:water_3770 .

Factual enrichment at the instance level has two similar cases as in hierar-
chical enrichment.

The first case is to find explicit fact-level relations, where there is a direct
link between the fact member and base level member via referential integrity
keys. Alg. 5 from Paper F - detectFactLevelRelations(G I

FM(F),G
I
A(lm)) :

G I
FM(Fs)

uses a similar approach as in Alg. 4 to detect hierarchy steps between
the level members. Instead of the explicit roll-up relation between parent-
child level members, we get the fact members where there is a direct relation
to the base level members from the fact member as given in the Listing above
in Ex. 20 (Line 9). By using this explicit relation we get pairs of fact-base level
members and detect the topological relations between the spatial measure of

75

the fact member and spatial attribute of the level members, which is added
to the existing fact members and returned as a result (Line 12).

The second case is to find implict fact-level relations, where there is not any
direct link between the fact member and base level member via referential in-
tegrity keys or to find an implicit topological relation between fact members
and higher granularity (parent) level members. The algorithm (Alg. 6 from
Paper F) discoverFactLevelRelations(G I

FM(F), G
I
LM(l), G

I
A(lm), G

S
D, GS

H(d),

GS
HS(h)) : G I

FM(Fs)
uses an approach similar to discovering implicit hierarchy

steps (Alg. 5) by utilizing QB4OLAP schema definitions of multi-dimensional
concepts such as dimensions (GS

D), hierarchies in the dimension (GS
H(d)) and

hierarchy steps in the hierarchy (GS
HS(h)). This way we can identify all the

base level members40 and find the missing roll-up relations between the fact
member and level members, and annotate those with topological relations
(Line 12). The other case that we would like to establish a direct link with
topological relations between a fact member and level member, which is not
a base level is when there are many-to-many relations between the levels in a
hierarchy. As explained in Section 6.2 along with Fig. 23, many-to-many re-
lations between levels we encounter the problem of aggregating measures in-
correctly. Therefore, fact-level de-normalization by creating redundant links
that define the direct relation between level members and fact members can
remedy the problem. By using the QB4OLAP annotations for hierarchy steps
we can as well reveal the levels that have many-to-many relations41. After
identifying the level members at a higher granularity (drainage area level in
this case) that can benefit from direct links to fact members, we use the same
approach to discover topological relations (as in the previous algorithms)
and enrich the fact members by annotating with the discovered topological
relations (Line 13 in Ex. 20).

Finally, factual enrichment at the schema level occurs by re-defining the
fact schema using the results from the factual enrichment at the instance
level. The algorithm (Alg. 6) defineSpatialFactDSD(G I

FM(Fs)
,GS

F) : GS
Fs

takes

the fact schema (GS
F) and spatially enriched fact members (G I

FM(Fs)
) as a result

of detectFactLevelRelations and discoverFactLevelRelations –the pre-
vious two algorithms– and returns the new fact schema (GS

Fs
) that is spatially

enriched.
An example of the (non-spatial) fact schema is given in Ex. 20 in the listing

lines 1-7 (please ignore the blue lines 3, 5, and 7 for now). In the first foreach
statement in Line 3 (Alg. 6) we get the spatially enriched fact members and
for every topological relation from the next foreach loop (Line 4), we annotate

40In QB4OLAP hierarchy steps, levels are annotated as parent level or child level (see Ex. 3), if
a level has never been annotated as a parent level, thus it is a base level and all the level members
in this level are base-level members.

41In QB4OLAP hierarchy steps, levels are annotated as well with cardinality relations (Ex. 3).

76

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

them in the fact schema (Line 5). Thus, the example Listing (Ex. 20) is added
with the blue lines 3 and 5. Next foreach statement for the fact members
(Line 6) finds the spatial measures and based on the geometry data type of
the spatial measures, an aggregate function42 is suggested to be added to
the enriched fact schema. As a result of this, the example Listing (Ex. 20) is
added with the blue annotation in line 7, showing that the aggregate function
over the spatial measure (farm location), which has a point geometry (Ex.20,
Line 11 in the instance data) is suggested as convex hull.

6.4 Implementation Details

In order to implement our approach (presented with the enrichment algo-
rithms), on top of triple stores using the semantic web technologies, we
have to make some implementation decisions. We stored the QB4OLAP
(instance and schema) data in native RDF format in a triple store (Virtuoso
version 07.20.3217). The triple store we chose to store RDF data (Virtuoso
Open Source) supports many geometry data types (i.e., POLYGON, MULTI-
POLYGON), although, it does not support all the spatial Boolean functions
from DE9DIM model given in Table 10. The open-source version of Virtuoso
only supports intersects, contains, and within with built-in database functions.
Therefore, We decided to implement RDF2SOLAP independently from the
spatial capabilities of the triple stores, by using a third-party web tool for
spatial analysis. We implemented RDF2SOLAP using the Node.js platform,
and as the third party web tool, we have used a Javascript library that is
called Turfjs. This way, we can ensure RDF2SOLAP can be used on top of
any triple store since the Javascript library provides us the spatial analysis
capabilities and a flexible development environment, independent from any
choice of the triple store.

The details of the implementation, SPARQL endpoints, and RDF data
sets can be found on our project page43. The code repository for the whole
implementation can be found on GitHub44.

6.5 Implementation Results

RDF2SOLAP implementation results for hierarchical enrichment algorithms
(detectSpatialHS and discoverSpatialHS) and for factual enrichment algo-
rithms (detectFactLevelRelations and discoverFactLevelRelations) over
the instance data are summarized in Table 11. For each algorithm, we have

42In QB4OLAP, qb4o:AggregateFunction class has only instances (e.g., qb4o:Avg, qb4o:Sum

functions) for numerical measures. QB4SOLAP extends this class with a subclass
qb4so:SpatialAggregateFunction, which has instances of spatial aggregate functions (e.g.,
qb4so:ConvexHull, qb4so:Union) for spatial measures [12, 15] (Adapted from [14]).

43Project Page: http://extbi.cs.aau.dk/RDF2SOLAP
44RDF2SOLAP Repository: https://github.com/lopno/rdf2solap

77

http://extbi.cs.aau.dk/RDF2SOLAP
https://github.com/lopno/rdf2solap

Algorithm 6: defineSpatialFactDSD(G I
FM(Fs)

,GS
F) : GS

Fs

(Adapted from [14])

Input: G I
FM(Fs)

,GS
F

Output: GS
Fs

1 begin
2 GS

Fs
= GS

F ; aggFunci = null; /*initalize the output graph and
temporary variable*/

3 foreach (idI(fi) rdf:type qb:Observation) ∈ G I
FM(Fs)

do

4 foreach (idI(fi) topoReli idI(lmj)) ∈ G I
FM(Fs)

|⋃
ln∈L(fi)

(idI(fi) idS(ln) idI(lmj)) ∈ G I
FM(Fs)

/*each topoReli in

the fact member triples goes into the DSD with its
corresponding level ln*/ do

5 GS
F(Fs)
∪ = {(idS(F) qb:component [qb4o:level idS(ln),

qb4so:topologicalRelation idS(topoReli)])};
6 foreach vmk ∈ (idI(fi) idS(mk) vmk) /*find the spatial measures

from the fact triples*/ do
7 if vmk is a geo:spatialLiteral then
8 switch (geoType(vmk)) /*geoType(va) function returns

the geometry type of a given attribute value*/ do
9 case (POINT) /*point geometry measures are

supported to be aggregated with ConvexHull
function*/ do

10 aggFunci = qb4so:ConvexHull

11 case (LINE) /*line geometry measures are supported
to be aggregated with Union function*/ do

12 aggFunci = qb4so:Union

13 case (POLYGON) /*polygon geometry measures are
supported to be aggregated with Union,
Centroid,*/ do

14 aggFunci =
qb4so:Union∨ qb4so:Centroid∨ qb4so:MBR
/*or MBR functions*/

15 GS
F(Fs)
∪ = {(idS(F) qb:component [qb:measure idS(mk),

qb4o:aggregateFunction idS(aggFunci)])};

16 return GS
Fs

78

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

Table 11: Implementation Results (f.s.= farm states, p.= parishes, d.a.= drainage areas) - Adapted
from [14]

INPUT OUTPUT
Child

Members#
Parent

Members#
Explicit

Relations#
TopoRel#

Run
times

detectSpatialHS p.: 2,180 d.a.: 134 2,683
intersects 636

29 s
within 2,046

detectFactLevelR. f.s.: 40,039 p.: 2,180 39,800 within 39,334 7 s

discoverSpatialHS p.: 2,180 d.a.: 134 NONE
intersects 1,088

2,622 s
within 3,392

discoverFactLevelR.
f.s.: 40,039 p.: 2,180 NONE within 39,998 1,920 s
f.s.: 40,039 d.a.: 134 NONE within 39,845 525 s

created test cases in RDF2SOLAP and queried the SPARQL endpoint of the
triple store, where we extracted the data in JSON format to Node.js.

As depicted in Figure 23, parishes, and drainage areas have a multi-
polygon data type. From a practical point of view, we have kept this multi-
polygon data in triple store as multi-part polygons, which implies that several
parishes or drainage areas with the same unique URI have different polygon
coordinates. When parishes or drainage areas are grouped by their unique
IDs (URIs), the different polygons can compose and represent the multi-
polygon geometry of the parish or the drainage area. We have implemented a
bounding box function on the multi-part polygon data, where we group them
by their unique URI and put in a bounding box, thus we can call the spatial
Boolean functions (i.e, within, intersects) between parish and drainage area
members in hierarchical enrichment algorithms.

The first two algorithms (prefixed with detect. . .) in Table 11 present
the results, for detecting explicit relations, where a direct relation between
the level members (via skos:broader predicate) or between the fact mem-
bers and base level members (via referential integrity keys) are provided
as an INPUT as well. The OUTPUT column presents the number of topo-
logical relations found and provides the run times (in seconds). The last
two algorithms (prefixed with discover. . .) present the results, for discover-
ing implicit relations, where there are NONE direct (explicit) relations pro-
vided as an INPUT, between child members and parent members. The input
datasets are summarized as 2, 180 parish members, 134 drainage area mem-
bers, and 40, 039 farm-state members. Between parish members (polygon)
and drainage area members (polygon), 2, 683 explicit relations are provided,
where 39, 800 explicit relations are provided between the farm-state members
(point) and parish members (polygon).

Next, we briefly mention the algorithm run-times. The evaluation of the
overall performance of RDF2SOLAP enrichment is given in the Quantitative
Evaluation in Section 6.6. By looking at the results in the table, we can notice
that the most expensive algorithm is discoverSpatialHS with run time 2, 622

79

seconds. Since, there are no explicit relations are provided the algorithm calls
the spatial Boolean functions 134× 2, 180 = 29, 2120 times for each function.
Note that, we also group the unique URIs of the polygon coordinates to cre-
ate bounding boxes, where, in this algorithm, both of the input data sets
(parish-drainage area) have polygon geometries. On the other hand, the al-
gorithm detectSpatialHS with explicit relations results in 29 seconds, since
the algorithm utilizes the given relations and checks for the spatial Boolean
functions only 2, 683 times. The algorithm detectFactLevelRelations (be-
tween fact level members/farm states and base level members/parishes) per-
forms the fastest - resulting in 7 seconds. Out of 39, 800 explicit relations
provided between fact states and parishes, 39, 334 topological relations are
detected as a result of the algorithm. On the other hand, the algorithm
discoverFactLevelRelations performs slower as expected (1, 920 seconds),
and discovers more topological relations between farm states and parishes,
where there might be missing links that were not provided with explicit re-
lations.

6.6 Evaluation and Discussion

For evaluating the performance of our approach, we measure and present the
total time to get similar results from the RDF data in two different non-SW
environments. The results are presented under quantitative evaluation. We
also compare the RDF2SOLAP enrichment results in terms of accuracy (num-
ber of topological relations found) and coverage in the qualitative evaluation
subsection against these two different environments. Finally, we discuss the
technical lessons and summarize our work.

Quantitative Evaluation

We compare the query run times of the algorithms in RDF2SOLAP with two
different query platforms: an RDBMS tool and a GIS tool. Since these tools
cannot process RDF data natively, we consider the data preparation and load
times as development costs (Table 12). Development cost is given in hours,
which involves, extracting the data, loading into these (non-SW) environ-
ments in their native format. We assume that the developer has a basic
knowledge of the domain, data set, the schema of the data set, and able to ex-
tract data with SPARQL queries, can perform SQL queries on RDBMS to get
similar results as in the algorithms, and also knows how to operate through
the interface of the GIS tool. The development cost excludes the preparation
(downloading and installing) of the environments. The development cost of
RDF2SOLAP is a configuration set-up, where the user should point to the
SPARQL endpoint where the instance triples are located and specify the RDF
cube schema of the use case data.

80

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

Table 12: Performance Evaluation Results (f.s.= farm states, p.= parishes, d.a.= drainage areas) -
Adapted from [14]

Query
Platform

Performance Results
Run times Development cost

detectSpatialHS

(p.– d.a.)
RDF2SOLAP 29 s 5 min.
RDBMS < 1 s 1-1.5 days

detectFactLevelR.

(f.s. – p.)
RDF2SOLAP 7 s 5 min.
RDBMS < 1 s 1-1.5 days

discoverSpatialHS

(p. – d.a.)

RDF2SOLAP 2,622 5 min.
RDBMS 43 s 1-1.5 days
GIS 45 s 2 days

discoverFactLevelR.

(f.s. – p.)

RDF2SOLAP 1,920 s 5 min.
RDBMS 95 s 1-1.5 days
GIS 72 s 2 days

discoverFactLevelR.

(f.s. - d.a.)

RDF2SOLAP 525 s 5 min.
RDBMS 48 s 1-1.5 days
GIS 41 s 2 days

In RDBMS, after the corresponding data sets are extracted from the triple
store and loaded into RDBMS in a relational format, and queries are prepared
for getting similar results as in algorithms, the query run times for detecting
explicit relations are less than 1 second. However, the preparation steps take
around 1-1.5 working days, while in RDF2SOLAP configuration is prepared
natively within 5 minutes for fetching the data sets from the endpoint. Note
that, the GIS tool is not involved in detecting explicit relation algorithms,
since, the tool employs spatial joins instead of joining through referential
integrity of explicit relations.

In the GIS tool, preparation times are a little bit longer than the RDBMS,
where we have converted the relational data into shape format and prepared
layers from the corresponding data sets to perform spatial joins. In total, we
spent around 2 working days to make the data ready for query processing.
When the data is ready, the GIS tool mostly outperformed in discovering
topological relations.

Query run times in RDF2SOLAP involve, parsing the RDF data in JSON,
calling the helper functions, returning bounding box objects for multi-part
polygon data. Therefore, RDF2SOLAP demonstrated adequate performance
at a very low development cost compared to the non-SW query platforms,
where the configuration of the RDF2SOLAP enrichment process can be done
within 5 minutes. The configuration requires only to point to the SPARQL
endpoint, where the RDF cube schema namespace URI is located, then, the
test cases for running the RDF2SOLAP enrichment process are created by
receiving the input parameters to the enrichment algorithms. RDF2SOLAP
provides a significant contribution to the users by cutting down the devel-

81

opment costs on data extraction and preparation times by 2 to 3 orders of
magnitude, where 1.5-2 days of development cost is reduced to 5 minutes.
Besides RDF2SOLAP can natively operate over a wide range of SPARQL end-
points, where the choice of a triple store at the back-end of the endpoint does
not have any implications for the enrichment process as we use a third-party
JavaScript library as a wrapper for the enrichment algorithms.

Qualitative Evaluation

In qualitative evaluation, we compare the number of topological relations
found as a result of running the algorithms and queries in three different
platforms: GIS, RDBMS, and RDF2SOLAP. Table 11 presented the results for
RDF2SOLAP. In Table 13 we repeat the results from RDF2SOLAP to present
together with two other non-SW tools.

As mentioned earlier, the GIS tool does not use explicit relations be-
tween the members but employs spatial joins. Therefore, results for de-
tecting explicit relation algorithms in GIS column are marked as N/A. Both
RDBMS and RDF2SOLAP detected same number of within relations (39,334),
between farm states and parishes (point-polygon). However, RDF2SOLAP
detected 47% more within relations (2,046) than RDBMS detected (785), be-
tween parishes and drainage areas (polygon-polygon).

Table 13: Comparisons of number of topological relations found in each tool (f.s. = farm states,
p. = parishes, d.a. = drainage areas) - Adapted from [14]

TOOLS
GIS RDBMS RDF2SOLAP

detectSpatialHS

(p. – d.a.)
intersects N/A 1,897 636
within N/A 785 2,046

detectFactLevelR.

(f.s.– p.)
within N/A 39,334 39,334

discoverSpatialHS

(p. – d.a.)
intersects 2,556 2,802 1,088
within 1,039 785 3,392

discoverFactLevelR.

(f.s. – p.)
within 39,805 39,984 39,998

discoverFactLevelR.

(f.s. – d.a.)
within 39,441 39,845 39,845

Similarly, for discovering spatial hierarchy steps between parishes and
drainage areas (polygon-polygon), RDF2SOLAP discovered 47% more within
relations than GIS tool and 54% more than RDBMS. This is due to the gen-
eralization of the polygon data in bounding boxes in RDF2SOLAP, where,
in native spatial RDBMS and GIS tool, multi-part polygon data is processed
in its original format. In this case, the GIS tool presents the most accurate

82

6. Spatial Enrichment of Semantic Web Cubes with RDF2SOLAP Framework

results (2,556 intersects relations) and RDBMS presents similar results (2,802
intersects relations) to the GIS tool with 8% difference.

For discovering fact level relations between farm states and parishes (point-
polygon), GIS tool discovered 39,805 within relations, RDBMS discovered
39,984 within relations, and RDF2SOLAP discovered 39,998 within relations,
which is only 0,03% more than RDBMS and 0,4% more than the GIS tool.
For the same algorithm between farm states and drainage areas, RDBMS and
RDF2SOLAP discovered the same number of within relations (39,845), and
GIS tool discovered 39,441 within relations, which is 1% less than RDF2SOLAP
and RDBMS, where all the tools present very similar results.

We summarize the topological relations between farm states, parishes and
drainage areas on the map given in Figure 27. The results for parish-drainage
area relations are grouped in the legend with the green scale from 1 to 5,
where 1 with white symbol shows the number of within relations (1st tile of
the figure), and the green symbols represent the intersects relations with 2, 3,
4, and 5 (number of) drainage areas (2nd tile of the figure). The pink symbol
represents the 15 parishes that cannot be related to a drainage area with a
topological relation (3rd tile of the figure).

10 0 10 20 30 40 km

FarmStates [40039]
Farms [41295]

Parishes [2180]
1 [1039]
2 [868]
3 [215]
4 [40]
5 [3]
 [15]
DrainageAreas [134]
WaterBodies

Legend

(1) Parishes_within_DrainageAreas (2) Parishes_intersect_DrainageAreas (3) Parishes_UNKNOWN_DrainageAreas

(4) Farms_within_Parishes (5) Farms_within_DrainageAreas

(1) Parishes_within_DrainageAreas (2) Parishes_intersect_DrainageAreas (3) Parishes_UNKNOWN_DrainageAreas

(4) Farms_within_Parishes (5) Farms_within_DrainageAreas

Fig. 27: Topological Relations summarized

83

Technical Lessons and Summary

In RDF2SOLAP, the implementation results for algorithms (detectSpatialHS
and discoverSpatialHS) that take inputs as polygon geometry type demon-
strated a little deviation compared to other two non-SW tools. This can be
prevented by using multi-polygon data in its original form instead of gen-
eralizing them with bounding-boxes. This can be achieved, either by using
the spatial capabilities of a triple store where multi-polygon data and spatial
Boolean operators are natively supported or by using a third-party library
that can operate with spatial Boolean operators over multi-polygon data na-
tively without generalizing them into bounding boxes.

On the other hand, RDF2SOLAP demonstrated accurate results with less
than 1% deviation in the resulting topological relations compared to RDBMS
and GIS tool for algorithms that take point-polygon data types as inputs
(detectFactLevelRelations and discoverFactLevelRelations).

In terms of productivity and performance, RDF2SOLAP significantly re-
duces the overhead work to operate with SW data compared to in-house non-
SW proprietary platforms (RDBMS and GIS) by 2 to 3 order of magnitude for
spending significantly less time than RDBMS and the GIS tool. Further spa-
tial improvements to the underlying semantic web technologies (triple stores
and javascript libraries) can facilitate an improved development environment
for RDF2SOLAP with better coverage and accuracy. Even though the spatial
support of triple stores is increasing, studies show that there still exist chal-
lenges and restrictions in supporting common standards (e.g., GeoSPARQL)
and full coverage of complex spatial data types in the current state of the most
common well-known triple stores [16, 17]. Improvements to the RDF2SOLAP
query processing times can be achieved as well by utilizing spatial indexes on
the RDF data in triple stores that support the spatial indexes or by building
R-tree in memory on Node.js.

7 Conclusion and Summary of Contributions

The thesis provides the latest state of the art methods for modeling, anno-
tating and querying spatial data warehouses on the Semantic Web. The the-
sis also provides algorithms for translating high-level SOLAP operators to
SPARQL queries and spatial multi-dimensional enrichment algorithms for
RDF data cubes on the Semantic Web. In the following, we first give the
conclusion of the thesis with the rationale of the papers given in Sections 2-6
and finally summarize the contributions.

In order to investigate the applicability of geo-semantic data warehouses,
Paper A presents a use case study (GovAgriBus) on spatial and governmental
data domains on the Semantic Web, which is published following common
RDF data principles, and queried with aggregate queries in SPARQL, which

84

7. Conclusion and Summary of Contributions

are essential query structure for data warehouses. Aggregate query templates
are evaluated with different strategies than the native RDF strategy, where na-
tive RDF is the most efficient strategy in answering aggregated queries. The
use case GovAgriBus was not modeled with multi-dimensional concepts, so
that cannot be considered as a basis to geo-semantic data warehouses, yet
proofs an important point on the applicability of aggregate queries and basic
spatial functions in SPARQL. Therefore, Paper B proposes QB4SOLAP vo-
cabulary (v1) for modeling geo-semantic data warehouses with spatial and
multi-dimensional concepts as snowflake schema and publish to the seman-
tic web. In Paper B, QB4SOLAP vocabulary is validated with a realistic use
case with spatial concepts. In order to strengthen our case and validation of
QB4SOLAP, Paper E presents a geo-semantic data warehouse from real-world
governmental, spatial, and environmental data domains, which is modeled
and published with QB4SOLAP (v2). Before QB4SOLAP, modeling and an-
notating the spatial MD concepts such as spatial level attributes, spatial mea-
sures with spatial aggregate functions, spatial hierarchies and spatial hier-
archy steps with topological relations, etc. were not possible with existing
semantic web ontologies and vocabularies. Explicit annotation of these spa-
tial multi-dimensional concepts is essential in a spatial data warehouse in
order to query with advanced spatial and analytical (a.k.a. SOLAP) queries.

Paper C improves the QB4SOLAP vocabulary to its latest stable version
(v2) and presents a foundation of spatial data warehouses on the semantic
web with SOLAP to SPARQL generator algorithms, which are designed us-
ing the formal semantics of spatial multi-dimensional RDF concepts from
QB4SOLAP. SOLAP to SPARQL generator algorithms are implemented with
the GeoSemOLAP tool in Paper D, and tested as individual and as a com-
plex nested set of SOLAP operations. Semantic Web is a new outlet for BI
and DW users who would like to query geo-semantic data warehouses with
spatial OLAP operations. Native RDF query language (SPARQL) has a com-
plicated syntax for new users. SOLAP to SPARQL generation algorithms and
GemSemOLAP lifts the entry barrier for decision-makers and BI users to uti-
lize geo-semantic data warehouses by providing an intuitive user interface,
where users can interactively build the SOLAP queries (e.g., s-slice, s-roll-up,
etc.) from drop-down menus and interactive maps. This has become possible
as a result of QB4SOLAP and its formal semantics, and SOLAP to SPARQL
query generation algorithms. The algorithms cover the most common SOLAP
operators; s-slice, s-dice, s-roll-up, and s-drill-down with a generic approach
where new algorithms can be introduced using the QB4SOLAP semantics
and helper functions such as roll-up-path (that finds the path-shaped join of
triples with relations from lowest granularity fact members to higher granu-
larity level members).

It is important to note that, to efficiently query geo-semantic data ware-
houses with SOLAP operators, modeling and annotating the spatial MD

85

concepts of RDF data with QB4SOLAP is necessary. SOLAP operators use
the explicit semantics of QB4SOLAP defined over a use case data, that has
a multi-dimensional model designed as snowflake schema. For example,
many-to-many (n-n) relations between spatial levels along a dimension im-
plicates each spatial level member should have direct relations defining the
nature of the relation, such as annotated with topological relations (e.g., in-
tersects, within, etc.). This way, we can ensure the roll-up paths are created
correctly in SOLAP operations.

Semantic Web accommodates many, multi-dimensional, statistical, and
spatial data sets that may not have been annotated with QB4SOLAP, thus
the SOLAP operators cannot be utilized over these data sets. Paper F pro-
poses an RDF2SOLAP enrichment framework to address this issue by an-
notating existing RDF data with QB4SOLAP, which is feasible for multi-
dimensional modeling and has spatial values that could benefit from SOLAP
operations. RDF2SOLAP enrichment framework is built with two phases: hi-
erarchical enrichment and factual enrichment. In each phase, there are two
algorithms that find explicit and implicit relations to annotate spatial multi-
dimensional concepts (i.e., hierarchy steps or fact-level relations), which are
composing a roll-up-path. Explicit relations are interpreted from the exist-
ing RDF data by referential integrity keys and join of triples between level
member URIs by explicit predicates. By utilizing the explicit links between
members, RDF2SOLAP enrichment algorithms detect the precise topological
relation between spatial members and annotate in the output (e.g., within,
intersects). Implicit relations are not defined, thus the enrichment algorithms
discover all possible topological relations between spatial members that can
be annotated within a dimension hierarchy and outputs the annotated re-
sults. Factual enrichment algorithms address both fact-base level spatial an-
notations and fact-parent level annotations if there is an n-n cardinality rela-
tion between a child level and parent level. This way, a drill-down from the
parent level member to the correct lowest member (fact member) becomes
possible through the explicitly annotated topological relation. Finally, factual
enrichment algorithms re-defines the fact schema from the spatial concepts
derived during enrichment, such as spatial measures and their aggregate
functions.

Quantitative evaluation of the enrichment algorithms demonstrates a sig-
nificant improvement for the BI users on the SW, since RDF2SOLAP handles
the data extract, query processing, and annotation at a reasonable time frame
at once, on the other hand, users would need to spend significant effort to
get similar results from operational RDBMS and GIS environments (as they
have to manually extract the RDF data set from endpoints, convert the data
to native formats of the systems, prepare and process the queries to derive
topological relations, and annotate enrichment results of the data). Qualita-
tive evaluation of the enrichment algorithms presents comparable results in

86

7. Conclusion and Summary of Contributions

terms of the number of detected/discovered topological relations against the
RDBMS and GIS systems, where there is a room for improvement in multi-
polygon data structures. Overall, RDF2SOLAP is built as an important key
to the Semantic Web for annotating geo-semantic data warehouses on the fly
directly over RDF data.

To sum up, the papers in the thesis make the following contributions.

• Paper A [3] presents the best practices for publishing Danish Agricul-
tural Open Data sets on the Semantic Web as an initial effort to publish
open governmental data sets in RDF format in Denmark. The use case
is selected from non-trivial open governmental data sets covering agri-
cultural, business, and geographical domains. The paper also delivers
different extract, transform, and load (ETL) strategies for preparing the
Semantic Web data in RDF format from the heterogeneous sources in
several file formats. Finally, the paper introduces different query tem-
plates for aggregate queries and standard queries to evaluate differ-
ent query processing scenarios with native RDF, relational, and virtual
strategies. The evaluation of the query processing suggests that the
query performance for aggregated query templates on native RDF is
significantly faster than the other strategies, which is a promising step
for semantic web data warehousing since aggregate queries are funda-
mental in multi-dimensional models and in data warehousing. There-
fore, this paper provides a motivation for the other papers.

• Paper B [12] proposes a multi-dimensional vocabulary - QB4SOLAP for
modeling and annotating spatial data warehouses on the Semantic Web.
In order to propose a state of the art vocabulary for spatial data ware-
houses (on the SW), the paper thoroughly presents the related work
and recent relevant vocabularies and semantic web technologies. As
a result, the paper introduces the QB4SOLAP vocabulary, as an exten-
sion of the most recent non-spatial multi-dimensional vocabulary for
modeling traditional data warehouses on the SW - QB4OLAP. The pro-
posed QB4SOLAP vocabulary is applied to a non-trivial realistic use
case, which has spatial data. Together with the use case, the notion of
Spatial OLAP (SOLAP) operators are introduced on the Semantic Web
and how to write SOLAP queries in SPARQL are given in detail with
examples.

• Paper C [15] extends Paper B [12] by giving full formal definitions of
the multi-dimensional spatial concepts from QB4SOLAP in RDF for-
mat. The key concepts of QB4SOLAP vocabulary such as spatial di-
mensions, spatial levels, spatial hierarchies and hierarchy steps, spatial
measures, spatial aggregate functions, topological relations, etc. and
moreover common SOLAP operators are defined formally in the paper,

87

which can easily be referenced and encapsulated in algorithms. The pa-
per provides, algorithms for generating individual and nested SOLAP
queries in SPARQL from high-level multi-dimensional expressions. The
(SPARQL query) generation algorithms allow data warehouse users to
query geo-semantic data warehouses without knowledge of RDF/S-
PARQL.

• Paper D [13] introduces the GeoSemOLAP tool, which is implemented
using the generation algorithms from Paper C [15]. GeoSemOLAP al-
lows users to query SW with individual or nested SOLAP operations,
without writing a single line of SPARQL query. GeoSemOLAP provides
end-users interactive maps, where DW users can click on a map to se-
lect spatial attributes or levels in a SOLAP operator in addition to the
possibility of creating the high-level SOLAP query (e.g., spatial slice,
dice, roll-up) from drop-down menus showing the multi-dimensional
schema elements.

• Paper E [11] applies QB4SOLAP on a non-trivial open governmental
and spatial data collection from Danish governmental organizations in-
cluding environmental, agricultural, geographical, and business data
sets. The paper also presents the challenges and best practices for pub-
lishing geo-semantic data warehouses with discussions and perspec-
tives. The published use-case as a geo-semantic data warehouse with
QB4SOLAP vocabulary is also validated in the paper with non-trivial
nested SOLAP queries in SPARQL.

• Paper F [14] addresses the issue on lacking spatial multi-dimensional
annotations on the Semantic Web and proposes an RDF2SOLAP en-
richment framework to enrich existing RDF data cubes. RDF2SOLAP
enrichment model introduces the enrichment process with hierarchical
enrichment algorithms and factual level enrichment algorithms. Hierar-
chical enrichment algorithms cover detecting explicit relations between
defined level members with non-spatial hierarchy steps and discovering
implicit relations without direct links between the level members. Both
implicit and explicit relations are annotated as topological relations and
enriched in the data set for providing essential analytical insight. Fac-
tual enrichment algorithms cover the previous two similar detecting
explicit relations and discovering implicit relations approach between
fact and level members. In addition to this, factual enrichment is ca-
pable of redefining the fact schema in an automated from the outcome
of the first two algorithms. The framework is applied to a non-trivial
use case and the experimental evaluation findings suggest that the pro-
posed framework demonstrates efficient handling and processing of the
enrichment and annotation algorithms directly on the RDF data, and it

88

8. Future Work

also presents competitive quality to get similar results from non-SW
spatial query tools and products.

In conclusion, QB4SOLAP is proven as the spatial multi-dimensional vo-
cabulary for modeling geo-semantic data warehouses, so that the advanced
analytical queries with spatial perspectives over Semantic Web data becomes
possible with SOLAP operators, which were not possible before. By using the
proposed SOLAP to SPARQL generation algorithms and formal QB4SOLAP
semantics, the GeoSemOLAP tool allows inexperienced semantic web users
to query geo-semantic data warehouses with SOLAP operations without writ-
ing a single line of SPARQL query. To derive spatial, multi-dimensional and
analytical perspectives from the existing RDF datasets, the RDF2SOLAP en-
richment framework with factual and hierarchical enrichment phase algo-
rithms provides a considerably easy way of annotating geo-semantic data
warehouses directly from existing RDF data sets.

8 Future Work

The rationale and result of the thesis is to research and present the best prac-
tices, tools, and algorithms for modeling, annotating, and, querying geo-
semantic data warehouses. The thesis also opens several interesting research
areas.

The research presented in Section 2 for publishing Danish governmental,
agricultural data sets as Linked Open Data can be automated by following
the best practices every year. Danish Ministry of Agriculture updates with
the most recent agricultural data yearly. Including a temporal basis of up-
dating the GovAgriBus Denmark data set would require as well linking and
annotating the use case data with the temporal vocabularies such as Time
Ontology of W3C. In this line of work, new concepts and standards can be
developed for easily and efficiently creating spatial and spatio-temporal re-
lationships to link and publish agricultural and spatial data that is changing
on a temporal basis.

In order to enable business intelligence analytics on the Semantic Web for
spatial data, QB4SOLAP is introduced in Section 3 with a set of common
SOLAP operators and we described how to query the SW by using these SO-
LAP operators, which can be translated into SW query language - SPARQL
by GeoSemOLAP tool (Section 4). Extending the scope of these analytical
operators with more complex ones such as spatial drill-across and spatial
aggregation over spatial measures would be a challenging and interesting re-
search direction by pushing the technical limitations of the Semantic Web on
representing and analytical querying of spatial data. Finally, it would be also
interesting to optimize and increase the efficiency of our SOLAP query tech-

89

References

niques such as materialization and optimizing the layout of query templates,
or by employing federated processing of spatial analytical queries.

By using QB4SOLAP, Section 5 demonstrates a proof of concept non-
trivial governmental data use case that is published on the Semantic Web.
A semantic ETL tool that can semi-automatically generate LOD data, which
is annotated with QB4SOLAP would be a handy tool to publish geo-semantic
cubes directly from governmental public open data portals. In Section 6, we
introduced RDF2SOLAP multi-dimensional enrichment process, which takes
non-spatial QB and QB4OLAP cubes as a basis on the SW. Developing meth-
ods and algorithms for a fully functional geo-semantic ETL process from
heterogeneous non-SW geo data portals can complement the RDF2SOLAP
enrichment process by extending the source basis to non-SW spatial data.
Moreover, semantic extensions can also be introduced on top of RDF2SOLAP
enrichment process by linking the base data with external geographical vo-
cabularies and data sets. External geographical data on the SW can bring new
dimensional perspectives over the existing data such as new spatial hierarchy
levels and new spatial level members.

Another line of interesting future work around RDF2SOLAP enrichment
algorithms can be creating a comprehensive benchmark test by employing the
algorithms to query SPARQL endpoints from different RDF stores employing
the spatial capabilities (e.g., spatial indexes) of the RDF stores. Moreover, it
is important to develop query optimization techniques for OLAP queries on
semantic DW RDF data, similar to the ones developed for cubes and XML
data [24, 25, 37]. Furthermore, to achieve scalable querying and runtime
optimization, new research directions can be taken with binary serialization
of the QB4SOLAP RDF data such as header dictionary triples (HDT), which
is a compact data structure that can be compressed and kept in-memory, thus
it enables high performance (and also concurrent) querying.

The contributions of the thesis can be employed to inspire spatio-temporal
data warehouses on the semantic web, where the temporal dimension of the
data warehouses and its challenges can be addressed in a similar way to the
spatial dimension and handling its challenges. The analogy to the spatial
Boolean algebra (with topological relations) in spatial data warehouses is cal-
culus for temporal reasoning (with Allen’s interval algebra [2]) in temporal data
warehouses. This would bring new modeling and annotation opportunities
on top of QB4SOLAP using the existing temporal ontologies. Furthermore, it
would be interesting to extend the coverage of our algorithms (query gener-
ator and enrichment) to handle highly dynamic spatio-temporal queries.

References

[1] “The Friend of a Friend (FOAF) Project,” http://www.foaf-project.org/.

90

http://www.foaf-project.org/

References

[2] J. Allen, “Maintaining Knowledge about Temporal Intervals,” 1983.

[3] A. B. Andersen, N. Gür, K. Hose, K. A. Jakobsen, and T. B. Pedersen, “Publishing
Danish Agricultural Government Data as Semantic Web Data,” in Semantic Tech-
nology: 4th Joint International Semantic Technology Conference (JIST’14), vol. 8943.
Springer, 2014, pp. 178–186, https://dx.doi.org/10.1007/978-3-319-15615-6_13.

[4] A. B. Andersen, N. Gur, K. Hose, K. A. Jakobsen, and T. B. Pedersen, “Publish-
ing Danish Agricultural Government Data as Semantic Web Data,” in DBTR-
35. Aalborg University, 2014, p. 16, http://dbtr.cs.aau.dk/DBPublications/
DBTR-35.pdf.

[5] J. B. Arendt, “Denmark releases its digital raw material,” http://uk.fm.dk/
news/, Ministry of Finance of Denmark, Denmark Ministry of Finance, Octo-
ber 2012.

[6] Y. Bédard, E. Bernier, S. Larrivée, M. Nadeau, M. Proulx, and S. Rivest, “Spatial
OLAP,” in Forum annuel sur la RD, Géomatique VI: Un monde accessible, 1997, pp.
13–14.

[7] W.-D. Brickley, “W3C Semantic Web Interest Group: Geo,” http://www.w3.org/
2003/01/geo/wgs84_pos, www.wgs84.com.

[8] E. Edoh-Alove, S. Bimonte, and F. Pinet, “An UML Profile and SOLAP Datacubes
Multidimensional Schemas Transformation Process for Datacubes Risk-Aware
Design,” International Journal of Data Warehousing and Mining (IJDWM), vol. 11,
no. 4, pp. 64–83, 2015, https://dx.doi.org/10.4018/ijdwm.2015100104.

[9] M. J. Egenhofer and J. Herring, “A mathematical framework for the definition
of topological relationships,” in Fourth international symposium on spatial data han-
dling. Zurich, Switzerland, 1990, pp. 803–813.

[10] L. Etcheverry, A. Vaisman, and E. Zimányi, “Modeling and Querying Data
Warehouses on the Semantic Web using QB4OLAP,” in Data Warehousing and
Knowledge Discovery (DaWaK’14), vol. 8646. Springer, 2014, pp. 45–56, https:
//dx.doi.org/10.1007/978-3-319-10160-6_5.

[11] N. Gür, K. Hose, T. B. Pedersen, and E. Zimányi, “Enabling Spatial OLAP over
Environmental and Farming Data with QB4SOLAP,” in Semantic Technology: 6th
Joint International Semantic Technology Conference (JIST’16), vol. 10055. Springer,
2016, pp. 287–304, https://dx.doi.org/10.1007/978-3-319-50112-3_22.

[12] N. Gür, K. Hose, E. Zimányi, and T. B. Pedersen, “Modeling and Querying Spa-
tial Data Warehouses on the Semantic Web,” in Semantic Technology: 5th Joint
International Semantic Technology Conference (JIST’15), vol. 9544. Springer, 2015,
pp. 1–20, https://dx.doi.org/10.1007/978-3-319-31676-5_1.

[13] N. Gür, J. Nielsen, K. Hose, and T. B. Pedersen, “GeoSemOLAP: SOLAP on
the Semantic Web Made Easy,” in Proceedings of the 26th International Conference
Companion on World Wide Web (WWW’17). ACM, 2017, https://dx.doi.org/10.
1145/3041021.3054731.

[14] N. Gür, T. B. Pedersen, and K. Hose, “Multidimensional Enrich-
ment of Spatial RDF Data for SOLAP,” Semantic Web Journal, vol. un-
der submission, 2019, http://www.semantic-web-journal.net/content/
multidimensional-enrichment-spatial-rdf-data-solap-0.

91

https://dx.doi.org/10.1007/978-3-319-15615-6_13
http://dbtr.cs.aau.dk/DBPublications/DBTR-35.pdf
http://dbtr.cs.aau.dk/DBPublications/DBTR-35.pdf
http://uk.fm.dk/news/
http://uk.fm.dk/news/
http://www.w3.org/2003/01/geo/wgs84_pos
http://www.w3.org/2003/01/geo/wgs84_pos
www.wgs84.com
https://dx.doi.org/10.4018/ijdwm.2015100104
https://dx.doi.org/10.1007/978-3-319-10160-6_5
https://dx.doi.org/10.1007/978-3-319-10160-6_5
https://dx.doi.org/10.1007/978-3-319-50112-3_22
https://dx.doi.org/10.1007/978-3-319-31676-5_1
https://dx.doi.org/10.1145/3041021.3054731
https://dx.doi.org/10.1145/3041021.3054731
http://www.semantic-web-journal.net/content/multidimensional-enrichment-spatial-rdf-data-solap-0
http://www.semantic-web-journal.net/content/multidimensional-enrichment-spatial-rdf-data-solap-0

References

[15] N. Gür, T. B. Pedersen, E. Zimányi, and K. Hose, “A Foundation for Spatial
Data Warehouses on the Semantic Web,” Semantic Web Journal, vol. 9, no. 5, pp.
557–587, 2018.

[16] W. Huang, S. A. Raza, O. Mirzov, and L. Harrie, “Assessment and benchmarking
of spatially enabled rdf stores for the next generation of spatial data infrastruc-
ture,” ISPRS International Journal of Geo-Information, vol. 8, no. 7, p. 310, 2019.

[17] T. Ioannidis, G. Garbis, K. Kyzirakos, K. Bereta, and M. Koubarakis, “Evalu-
ating geospatial rdf stores using the benchmark geographica 2,” arXiv preprint
arXiv:1906.01933, 2019.

[18] B. Kämpgen, S. O’Riain, and A. Harth, “Interacting with Statistical Linked Data
via OLAP Operations,” in The Semantic Web: ESWC 2012 Satellite Events, vol. 7540.
Springer, 2012, pp. 87–101, https://dx.doi.org/10.1007/978-3-662-46641-4_7.

[19] T. B. Lee, “Design issues,” W3C, July 2006, http://www.w3.org/DesignIssues/
LinkedData.html.

[20] I. V. Lopez, R. T. Snodgrass, and B. Moon, “Spatiotemporal aggregate compu-
tation: A survey,” IEEE Transactions on Knowledge and Data Engineering (TKDE),
vol. 17, no. 2, pp. 271–286, 2005, https://doi.org/10.1109/TKDE.2005.34.

[21] Danish Ministry of the Environment, “Consolidated Act on Livestock Farming
Environmental Approvals,” 2012, http://eng.mst.dk/media.

[22] Nitrates Directive, “Danish nitrate action programme 2008-2015 regarding the
nitrates directive; 91/676/eec,” http://eng.mst.dk/media/mst/Attachments/
DanishNitrateActionProgramme2008201507092012.pdf, Nitrates Directive, Tech.
Rep., 2012.

[23] Microsoft, “Multidimensional Data Expressions,” https://docs.microsoft.com/
en-us/sql/analysis-services/multidimensional-models/mdx.

[24] D. Pedersen, J. Pedersen, and T. B. Pedersen, “Integrating xml data in the targit
olap system,” in Proceedings. 20th International Conference on Data Engineering.
IEEE, 2004, pp. 778–781.

[25] D. Pedersen, K. Riis, and T. B. Pedersen, “Query optimization for OLAP-XML
federations,” in Proceedings of the 5th International Workshop on Data Warehousing
and OLAP (DOLAP’02). ACM, 2002, pp. 57–64.

[26] T. B. Pedersen and N. Tryfona, “Pre-aggregation in Spatial Data Warehouses,” in
Proceedings of the 7th International Symposium on Advances in Spatial and Temporal
Databases (SSTD’01). Springer, 2001, pp. 460–478, http://dx.doi.org/10.1007/
3-540-47724-1_24.

[27] D. A. Randell, Z. Cui, and A. G. Cohn, “A spatial logic based on regions and
connection,” in Principles of Knowledge Representation and Reasoning, vol. 92, 1992,
pp. 165–176.

[28] G. Rojas, G. Giannopoulos, and J. J. L. Daniel Hladky, “Managing Geospatial
Linked Data in the GeoKnow Project,” in The Semantic Web in Earth and Space
Science. Current Status and Future Directions, vol. 20. IOS Press, 2015, p. 51.

92

https://dx.doi.org/10.1007/978-3-662-46641-4_7
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1109/TKDE.2005.34
http://eng.mst.dk/media
http://eng.mst.dk/media/mst/Attachments/DanishNitrateActionProgramme2008201507092012.pdf
http://eng.mst.dk/media/mst/Attachments/DanishNitrateActionProgramme2008201507092012.pdf
https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-models/mdx
https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-models/mdx
http://dx.doi.org/10.1007/3-540-47724-1_24
http://dx.doi.org/10.1007/3-540-47724-1_24

References

[29] O. Software, “Virtuoso RDF Views – Getting Started Guide,” June 2007,
http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virtuoso_SQL_to_
RDF_Mapping.pdf.

[30] C. Stadler, J. Lehmann, K. Höffner, and S. Auer, “LinkedGeoData: A Core for a
Web of Spatial Open Data,” Semantic Web Journal (SWJ), vol. 3, pp. 333–354, 2012,
https://dx.doi.org/10.3233/SW-2011-0052.

[31] A. I. M. Standards, “AGROVOC Linked Open Data,” http://aims.fao.org/aos/
agrovoc/.

[32] A. Vaisman and E. Zimányi, “Spatial data warehouses,” in Data Warehouse Sys-
tems: Design and Implementation. Springer, 2014.

[33] J. Varga, L. Etcheverry, A. A. Vaisman, O. Romero, T. B. Pedersen, and C. Thom-
sen, “QB2OLAP: Enabling OLAP on Statistical Linked Open Data,” in 32nd IEEE
International Conference on Data Engineering, 2016, pp. 1346–1349.

[34] W3C, “Data Cube Implementations,” 2014, https://www.w3.org/2011/gld/
wiki/Data_Cube_Implementations.

[35] X. Wang, S. Staab, and T. Tiropanis, “ASPG: generating OLAP queries
for SPARQL benchmarking,” in Semantic Technology - 6th Joint International
Conference, JIST 2016, Singapore, Singapore, November 2-4, 2016, Revised Selected
Papers, 2016, pp. 171–185. [Online]. Available: https://doi.org/10.1007/
978-3-319-50112-3_13

[36] M. Wick, “GeoNames Ontology,” http://www.geonames.org/ontology/
documentation.html.

[37] X. Yin and T. B. Pedersen, “Evaluating xml-extended olap queries based on phys-
ical algebra,” Journal of Database Management (JDM), vol. 17, no. 2, pp. 85–116,
2006.

93

http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virtuoso_SQL_to_RDF_Mapping.pdf
http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virtuoso_SQL_to_RDF_Mapping.pdf
https://dx.doi.org/10.3233/SW-2011-0052
http://aims.fao.org/aos/agrovoc/
http://aims.fao.org/aos/agrovoc/
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
https://doi.org/10.1007/978-3-319-50112-3_13
https://doi.org/10.1007/978-3-319-50112-3_13
http://www.geonames.org/ontology/documentation.html
http://www.geonames.org/ontology/documentation.html

References

94

Part II

Papers

95

Paper A

Publishing Danish Agricultural Government Data as
Semantic Web Data

Alex B. Andersen, Nurefşan Gür, Katja Hose, Kim A. Jakobsen,
and Torben Bach Pedersen

The paper has been published in the
Proceedings of the 4th Joint International Semantic Technology Conference

Vol. 8943, pp. 178–186, 2014. DOI: 10.1007/978-3-319-15615-6_13

Abstract

Recent advances in Semantic Web technologies have led to a growing popularity of
the Linked Open Data movement. Only recently, the Danish government has joined
the movement and published several datasets as Open Data. These raw datasets are
difficult to process automatically and combine with other data sources on the Web.
Hence, our goal is to convert such data into RDF and make it available to a broader
range of users and applications as Linked Open Data. In this paper, we discuss
our experiences based on the particularly interesting use case of agricultural data as
agriculture is one of the most important industries in Denmark. We describe the pro-
cess of converting the data and discuss the particular problems that we encountered
with respect to the considered datasets. We additionally evaluate our result based on
several queries that could not be answered based on existing sources before.

c© 2014 Springer International Publishing AG. Reprinted, with permission
from Alex B. Andersen, Nurefşan Gür, Katja Hose, Kim A. Jakobsen, and
Torben Bach Pedersen. Publishing Danish Agricultural Government Data as
Semantic Web Data. In: Semantic Technology, JIST 2014. Lecture Notes in
Computer Science. https://doi.org/10.1007/978-3-319-15615-6_13
The layout has been revised.

https://doi.org/10.1007/978-3-319-15615-6_13

1. Introduction

1 Introduction

In recent years, more and more structured data has become available on
the Web, driven by the increasing popularity of both the Semantic Web and
Open Data movement, which aim at making data publicly available and free
of charge. Several governments have been driving forces of the Open Data
movement, most prominently data.gov.uk (UK) and data.gov (USA), which
publish Open Data from departments and agencies in the areas of agriculture,
health, education, employment, transport, etc.

The goal is to enable collaboration, advanced technologies, and applica-
tions that would otherwise be impossible or very expensive, thus inspiring
new services and companies. Especially for governments, it is important
to inspire novel applications, which will eventually increase the wealth and
prosperity of the country.

While publication of raw data is a substantial progress, the difficulty in
interpreting the data as well as the heterogeneity of publication formats, such
as spreadsheets, relational database dumps, and XML files, represent major
obstacles that need to be overcome [1–3] – especially because the schema is
rarely well documented and explained for non-experts. Furthermore, it is not
possible to evaluate queries over one or multiple of these datasets.

The Linked (Open) Data movement (http://linkeddata.org/) encour-
ages the publication of data following the Web standards along with links
to other data sources providing semantic context to enable easy access and
interpretation of structured data on the Web.

Hence, publishing data as Linked Data (LD) [4, 5] entails the usage of
certain standards such as HTTP, RDF, and SPARQL as well as HTTP URIs
as entity identifiers that can be dereferenced, making LD easily accessible on
the Web. RDF allows formulating statements about resources, each statement
consists of subject, predicate, and object – referred to as a triple. Extending
the dataset and adding new data is very convenient due to the self-describing
nature of RDF and its flexibility.

In late 2012, the Danish government joined the Open Data movement by
making several raw digital datasets [6] freely available. Among others, these
datasets cover transport, tourism, fishery, companies, forestry, and agricul-
ture. To the best of our knowledge, they are currently only available in their
raw formats and have not yet been converted to LD.

We choose agriculture as a use case, as it is one of the main sectors in
Denmark, with 66% of Denmark’s land surface being farmland1. Thus, there
is significant potential in providing free access to such data and enabling
efficient answering of sophisticated queries over it.

In this paper, we show how we made Danish governmental Open Data

1http://www.statistikbanken.dk/AREALAN1

99

http://linkeddata.org/
http://www.statistikbanken.dk/AREALAN1

Paper A.

available as LD and evaluate the challenges in doing so. Our approach is to
transform the agricultural datasets into RDF and add explicit relationships
among them using links. Furthermore, we integrate the agricultural data
with company information, thus enabling queries on new relationships not
contained in the original data.

This paper presents the process to transform and link the data as well as
the challenges encountered and how they were met. It further discusses how
these experiences can provide guidelines for similar projects. We developed
our own ontology while still making use of existing ontologies whenever
possible. A particular challenge is deriving spatial containment relationships
not encoded in the original datasets. For a detailed discussion about the
whole process, we refer the reader to the extended version of this paper [7].
The resulting LOD datasets are accessible via a SPARQL endpoint (http:
//extbi.lab.aau.dk/sparql) as well as for download (http://extbi.cs.
aau.dk/).

The remainder of this paper is structured as follows; Section 2 describes
our use case datasets and discusses the main challenges. Then, Section 3
describes the process and its application to the use case. Section 4 evaluates
alternative design choices, while Section 5 concludes and summarizes the
paper.

2 Use Case

We have found the agricultural domain to be particularly interesting as it
represents a non-trivial use case that covers spatial attributes and can be
extended with temporal information. By combining the agricultural data
with company data, we can process and answer queries that were not possible
before as the original data was neither linked nor in a queryable format.

Late 2012, the Ministry of Food, Agriculture, and Fisheries of Denmark
(FVM) (http://en.fvm.dk/) made geospatial data of all fields in Denmark
freely available – henceforth we refer to this collection of data as agricultural
data. This dataset combined with the Central Company Registry (CVR) data
(http://cvr.dk/) about all Danish companies allows for evaluating queries
about fields and the companies owning them. In total, we have converted 5
datasets provided by FVM and CVR into Linked Open Data. We downloaded
the data on October 1, 2013 from FVM [8] and from CVR.

Agricultural Data. The agricultural data collection is available in Shape for-
mat [9], this means that each Field, Field Block, and Organic Field is described
by several coordinate points forming a polygon.

Field. The Field dataset has 9 attributes and contains all registered fields
in Denmark. In total, this dataset contains information about 641,081 fields.

Organic Field. This dataset has 12 attributes and contains information

100

http://extbi.lab.aau.dk/sparql
http://extbi.lab.aau.dk/sparql
http://extbi.cs.aau.dk/
http://extbi.cs.aau.dk/
http://en.fvm.dk/
http://cvr.dk/

3. Data Annotation and Reconciliation

about 52,060 organic fields. The dataset has attributes that we can relate
to the company data, i.e., the CVR attribute is unique for the owner of the
field and references the CVR dataset that we explain below. The fieldBlockId
attribute describes to which “Field Block" a field belongs to.

Field Block. The Field Block dataset has 12 attributes for 314,648 field
blocks and contains a number of fields [10]. Field Blocks are used to calculate
the funds the farmers receive in EU area support scheme.

Central Company Registry (CVR) Data. The CVR is the central registry of
all Danish companies and provides its data in CSV format. There are two
datasets available that we refer to as Company and Participant.

Company. This dataset has 59 attributes [11] and contains information,
such as a company’s name, contact details, business format, and activity for
about more than 600,000 companies and 650,000 production units.

Participant. This dataset describes the relations that exist between a par-
ticipant and a legal unit. A participant is a person or legal unit that is respon-
sible for a legal unit in the company dataset, i.e., a participant is an owner of
a company. The Participant dataset describes more than 350,000 participants
with 7 attributes.

The use case data comes in different formats and contains only a few
foreign keys. Further, there is little cross-reference and links between the
datasets and no links to Web sources in general. Spatial relationships are
even more difficult to represent in the data and querying data based on the
available polygons is a complex problem. In particular, to enable queries
that have not been possible before, we cleanse and link the (Organic) Field
datasets to the Company dataset so that we can query fields and crops of
companies related to agriculture. The particular challenges that we address
are:

• Disparate data sources without common format

• Lack of unique identifiers to link different but related data sources

• Language (Danish)

• Lack of ontologies and their use

3 Data Annotation and Reconciliation

In this section, we outline the process that we followed to publish the datasets
described in Section 2. The complete procedure with its main activities is
depicted in Fig. A.1.

All data in the data repository undergoes an iterative integration process
consisting of several main activities:

101

Paper A.

Fig. A.1: Process overview

Import: Extract the data from the original sources

Analyze: Gain an understanding of the data and create an ontology

Refine: Refine the source data by cleansing it and converting it to RDF

Link: Link the data to internal and external data

Data that has been through the integration process at least once may be pub-
lished and thus become Linked Open Data that others can use and link to. In
the remainder of this section, we will discuss these steps in more detail.

Import. The raw data is extracted from its original source into the repository
and stored in a common format such that it is available for the later activities.
The concrete method used for importing a dataset depends on the format
of the raw data. The agriculture datasets and CVR datasets introduced in
Section 2 are available in Shape and CSV formats. Shape files are processed
in ArcGIS2 to compute the spatial joins of the fields and organic fields, thus
creating foreign keys between the datasets. As the common format we use a
relational database.

Analyze. The goal of this step is to acquire a deeper understanding of the
data and formalize it as an ontology. As a result of our analysis we con-
structed a URI scheme for our use case data based on Linked Data Prin-
ciples [4]. We strive to use existing ontologies as a base of our own on-
tologies. To do this, we make use of predicates such as rdfs:subClassOf,
rdfs:subPropertyOf, and owl:equivalentClass, which can link our classes
and properties to known ontologies. Fig. A.2 provides an overview of the on-
tology that we developed for our use case with all classes and properties. All

2http://www.esri.com/software/arcgis

102

http://www.esri.com/software/arcgis

3. Data Annotation and Reconciliation

Fig. A.2: Overview of the ontology for our use case

arrows are annotated with predicates. The arrows with black tips represent
relations between the data instances. The arrows with white tips represent
relations between the classes.

In short, we designed the ontology such that a Field is contained within
a Field Block, which is expressed with the property agri:contains and is
determined by a spatial join of the data. Organic Field is a subclass of
Field and therefore transitively connects Field to Company. Field is also de-
fined as being equivalent to the UN’s definition of European fields from the
AGROVOC [12] vocabulary. In addition we make use of other external on-
tologies and vocabularies, such as GeoNames [13], WGS84 [14], and FOAF
(Friend of a Friend) [15].

Refine. The Refine activity is based on the understanding gained in the Ana-
lyze activity and consists of data cleansing and conversion. Fig. A.1 illustrates
the data cleansing process where imported data and ontologies are used to
produce cleansed data.

In our use case, we implemented data cleansing by using views that filter
out inconsistent data as well as correct invalid attribute values, inconsistent
strings, and invalid coordinates. Then we use Virtuoso Opensource [16] map-
pings to generate RDF data.

Link. The Link activity consists of two steps: internal linking and external
linking, which converts the refined data into integrated data. The Link ac-

103

Paper A.

tivity materializes the relationships between concepts and classes identified
in the Analyze activity as triples. The example below shows our internal
linking of the Field and the Field Block classes using the geonames:contains

predicate.

@prefix agri:<http://extbi.lab.aau.dk/ontology/agriculture/>.

@prefix geonames:<http://www.geonames.org/ontology#>.

agri:contains rdf:type owl:ObjectProperty ;

rdfs:domain agri:FieldBlock ;

rdfs:range agri:Field ;

rdfs:subPropertyOf geonames:contains .

External linking involves linking to remote sources on instance and ontology
level. On the ontology level, this means inserting triples using predicates
such as rdfs:subClassOf, rdfs:subPropertyOf, and owl:equivalentClass

that link URIs from our local ontology to URIs from remote sources. On
instance level, we link places mentioned in the CVR data to equivalent places
in GeoNames [13] using triples with the owl:sameAs predicate as illustrated
in Fig. A.3.

Fig. A.3: External linking on instance level

The overall process has provided us with analyzed, refined, and linked
data; in total 32,457,657 triples were created. The result of completing this
process is published and registered on datahub.io3. In case we wish to
integrate additional sources, we simply have to reiterate through the process.

4 Experiments

In the following, we first describe three alternative design choices in the ma-
terialization of the data. They represent trade-offs between data load time
and query time. We then discuss the results of our experimental evaluation,
for which we ran an OpenLink Virtuoso 07.00.3203 server on a 3.4 GHz Intel
Core i7-2600 processor with 8 GB RAM operated by Ubuntu 13.10, Saucy.
The materialization strategies that we have considered are: Virtual, relational

3http://datahub.io/dataset/govagribus-denmark

104

http://datahub.io/dataset/govagribus-denmark

4. Experiments

materialization, and native. Fig. A.4 shows the different paths that data is trav-
eling on; starting as raw data and ending at the user who issued a query.
The solid lines represent data flow during the integration process whereas
dashed lines represent data flow at query time.

Fig. A.4: Data flow for the materialization strategies

Virtual. In the virtual strategy we perform data cleansing based on SQL
views in the relational database. RDF mappings are formulated on top of
these cleansing views to make the data accessible as RDF. To increase per-
formance, we create a number of indexes on primary keys, foreign keys, and
spatial attributes. In Fig. A.4, using this strategy data flows through the ar-
rows marked with 1, 2, and 3 at query time.

Relational Materialization. Here, we materialize the above mentioned SQL
views as relational tables. We create similar indexes as above but on the
obtained tables. In Fig. A.4, data flows through arrows 4, 5, and 3 – with 4
during load time and 3 and 5 during query time.

Native RDF. In this strategy, we extract all RDF triples from the materialized
views and mappings and load them into a triple store. In Fig. A.4, data flows
through arrows 4, 5, and 6 during load time and arrow 7 during query time.

To test our setup, we created a number of query templates that we can instan-
tiate with different entities and that are based on insights in agricultural con-
tracting gained from field experts. Some of them contained aggregation and
grouping (Aggregate Query Templates, AQT) others only standard SPARQL
1.0 constructs (Standard Query Templates, SQT). For the virtual and rela-
tional materialization strategies we measured the load times for each step
during loading – the results are shown in Table A.1. Table A.2 shows the ex-
ecution times for our query templates on the three materialization strategies.
Queries that run into a timeout are marked by a dash. As we can see, the
native RDF strategy is faster than the two others, and relational materialized
is generally faster than virtual. There is obviously a notable overhead when
using views and mappings. On the other hand, the virtual strategy has very

105

Paper A.

Step Virtual Materialized Native
Data Cleansing 74.92 603.35 603.35
Load Ontology 1.01 1.01 1.01
Load Mappings 8.76 12.35 12.35
Dump RDF 0.00 0.00 4684.82
Load RDF 0.00 0.00 840.04
Total 84.68 616.70 6141.56

Table A.1: Load times in seconds

Query Virtual Materialized Native
AQT 1 5.92 3.39 1.04
AQT 2 13.32 7.00 0.23
AQT 3 10.81 7.70 0.05
AQT 4 – – 0.14
AQT 5 – 20.37 0.86
SQT 1 – – 2.35
SQT 2 0.09 0.12 0.10
SQT 3 2188.85 1.81 0.40
SQT 4 6.57 2.35 1.63
SQT 5 – 23.79 3.29
Average 370.93 8.31 1.01

Table A.2: Runtimes in seconds

fast load time compared to the other strategies since no data has to be moved
or extracted – in fact, the cleansing is delayed until query time. The relational
materialized strategy is one order of magnitude faster in load time than the
native strategy as it has less overhead during loading.

We can therefore conclude that the virtual strategy is well suited for
rapidly changing data as it has minimum load time, the materialized strategy
represents a trade-off between load time and query time and is suitable for
data with low update rates, and the native strategy decouples RDF data from
the relational data and is very suitable for static data.

5 Conclusion

Motivated by the increasing popularity of both the Semantic Web and the
Open (Government) Data movement as well as the recent availability of in-
teresting open government data in Denmark, this paper investigated how to
make Danish agricultural data available as Linked Open Data. We chose the
most interesting agricultural datasets among a range of options, transformed

106

References

them into RDF format, and created explicit links between those datasets by
matching them on a spatial level. Furthermore, the agricultural data was inte-
grated with data from the central company registry. All these additional links
enable queries that were not possible directly on the original data. The paper
presents best practices and a process for transforming and linking the data.
It also discusses the challenges encountered and how they were met. As a re-
sult, we not only obtained an RDF dataset but also a new ontology that also
makes use of existing ontologies. A particularly interesting challenge was
how to derive spatial containment relationships not contained in the original
datasets because existing standards and tools do not provide sufficient sup-
port. The resulting LOD datasets were made available for download and as
a SPARQL endpoint.

References

[1] F. Maali, R. Cyganiak, and V. Peristeras, “A publishing pipeline for
linked government data,” in The Semantic Web: ESWC’12, 2012, pp. 778–
792. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-30284-8_
59

[2] B. Villazón-Terrazas, L. Vilches-Blázquez, O. Corcho, and A. Gómez-
Pérez, “Methodological Guidelines for Publishing Government Linked
Data,” in Linking Government Data. Springer New York, 2011, pp. 27–49.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4614-1767-5_2

[3] M. G. Skjæveland, E. H. Lian, and I. Horrocks, “Publishing the
Norwegian Petroleum Directorate’s FactPages as Semantic Web Data,”
in International Semantic Web Conference: ISWC’13, 2013, pp. 162–177.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-41338-4_11

[4] T. B. Lee, “Design issues,” W3C, July 2006, http://www.w3.org/
DesignIssues/LinkedData.html.

[5] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global Data
Space, ser. Synthesis Lectures on the Semantic Web. Morgan & Claypool
Publishers, 2011.

[6] J. B. Arendt, “Denmark releases its digital raw material,” http://uk.
fm.dk/news/, Ministry of Finance of Denmark, Denmark Ministry of
Finance, October 2012.

[7] A. B. Andersen, N. Gur, K. Hose, K. A. Jakobsen, and T. B. Ped-
ersen, “Publishing Danish Agricultural Government Data as Seman-
tic Web Data,” in DBTR-35. Aalborg University, 2014, p. 16, http:
//dbtr.cs.aau.dk/DBPublications/DBTR-35.pdf.

107

http://dx.doi.org/10.1007/978-3-642-30284-8_59
http://dx.doi.org/10.1007/978-3-642-30284-8_59
http://dx.doi.org/10.1007/978-1-4614-1767-5_2
http://dx.doi.org/10.1007/978-3-642-41338-4_11
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://uk.fm.dk/news/
http://uk.fm.dk/news/
http://dbtr.cs.aau.dk/DBPublications/DBTR-35.pdf
http://dbtr.cs.aau.dk/DBPublications/DBTR-35.pdf

References

[8] A. Ministry of Food and F. of Denmark, “FVM Geodata Download,”
https://kortdata.fvm.dk/download/index.html.

[9] ESRI, “Shapefile technical description,” An ESRI White Paper, 1998, http:
//www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

[10] D. M. of the Environment, “Markblokkort (datasæt),”
http://www.geodata-info.dk/Portal/ShowMetadata.aspx?id=
1eb89ebb-f674-4ad1-9e53-d1e252226596.

[11] Erhvervsstyrelsen, “Record layout: Juridiske enheder og P-
enheder,” http://www.cvr.dk/Site/Resources/Files/Media/
RecordlayoutABO110.pdf.

[12] A. I. M. Standards, “AGROVOC Linked Open Data,” http://aims.fao.
org/aos/agrovoc/.

[13] M. Wick, “GeoNames Ontology,” http://www.geonames.org/
ontology/documentation.html.

[14] W.-D. Brickley, “W3C Semantic Web Interest Group: Geo,” http://www.
w3.org/2003/01/geo/wgs84_pos, www.wgs84.com.

[15] “The Friend of a Friend (FOAF) Project,” http://www.foaf-project.org/.

[16] O. Software, “Virtuoso RDF Views – Getting Started Guide,”
June 2007, http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/
Virtuoso_SQL_to_RDF_Mapping.pdf.

108

https://kortdata.fvm.dk/download/index.html
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.geodata-info.dk/Portal/ShowMetadata.aspx?id=1eb89ebb-f674-4ad1-9e53-d1e252226596
http://www.geodata-info.dk/Portal/ShowMetadata.aspx?id=1eb89ebb-f674-4ad1-9e53-d1e252226596
http://www.cvr.dk/Site/Resources/Files/Media/Record layout ABO 110.pdf
http://www.cvr.dk/Site/Resources/Files/Media/Record layout ABO 110.pdf
http://aims.fao.org/aos/agrovoc/
http://aims.fao.org/aos/agrovoc/
http://www.geonames.org/ontology/documentation.html
http://www.geonames.org/ontology/documentation.html
http://www.w3.org/2003/01/geo/wgs84_pos
http://www.w3.org/2003/01/geo/wgs84_pos
www.wgs84.com
http://www.foaf-project.org/
http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virtuoso_SQL_to_RDF_Mapping.pdf
http://www.openlinksw.co.uk/virtuoso/Whitepapers/pdf/Virtuoso_SQL_to_RDF_Mapping.pdf

Paper B

Modeling and Querying Spatial Data Warehouses on
the Semantic Web

Nurefşan Gür, Katja Hose, Torben Bach Pedersen, and Esteban
Zimányi

The paper has been published in the
Proceedings of the 5th Joint International Semantic Technology Conference

Vol. 9544, pp. 3–22, 2015. DOI: 10.1007/978-3-319-31676-5_1

Abstract

The Semantic Web (SW) has drawn the attention of data enthusiasts, and also in-
spired the exploitation and design of multidimensional data warehouses, in an uncon-
ventional way. Traditional data warehouses (DW) operate over static data. However
multidimensional (MD) data modeling approach can be dynamically extended by
defining both the schema and instances of MD data as RDF graphs. The importance
and applicability of MD data warehouses over RDF is widely studied yet none of the
works support a spatially enhanced MD model on the SW. Spatial support in DWs is
a desirable feature for enhanced analysis, since adding encoded spatial information of
the data allows to query with spatial functions. In this paper we propose to empower
the spatial dimension of data warehouses by adding spatial data types and topological
relationships to the existing QB4OLAP vocabulary, which already supports the rep-
resentation of the constructs of the MD models in RDF. With QB4SOLAP, spatial
constructs of the MD models can be also published in RDF, which allows to imple-
ment spatial and metric analysis on spatial members along with OLAP operations.
In our contribution, we describe a set of spatial OLAP (SOLAP) operations, demon-
strate a spatially extended metamodel as, QB4SOLAP, and apply it on a use case
scenario. Finally, we show how these SOLAP queries can be expressed in SPARQL.

c© 2015 Springer International Publishing AG. Reprinted, with permission
from Nurefşan Gür, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi.
Modeling and Querying Spatial Data Warehouses on the Semantic Web. In:
Semantic Technology, JIST 2015. Lecture Notes in Computer Science. https:

//doi.org/10.1007/978-3-319-31676-5_1

The layout has been revised.

https://doi.org/10.1007/978-3-319-31676-5_1
https://doi.org/10.1007/978-3-319-31676-5_1

1. Introduction

1 Introduction

The evolution of the Semantic Web (SW) and its tools allow to employ com-
plex analysis over multidimensional (MD) data models via On-Line Analyti-
cal Processing (OLAP) style queries. OLAP emerges when executing complex
queries over data warehouses (DW) to support decision making. DWs store
large volumes of data which are designed with MD modeling approach and
usually perceived as data cubes. Cells of the cube represent the observation
facts for analysis with a set of attributes called measures (e.g. a sales fact cube
with measures of product quantity and prices). Facts are linked to dimensions
which give contextual information (e.g. sales date, product, and location).
Dimensions are perspectives which are used to analyze data, organized into
hierarchies and levels that allow users to analyze and aggregate measures at
different levels of detail. Levels have a set of attributes that describe the char-
acteristics of the level members.

In traditional DWs, the “location” dimension is widely used as a con-
ventional dimension which is represented in an alphanumeric manner with
only nominal reference to the place names. This neither allow manipulating
location-based data nor deriving topological relations among the hierarchy
levels of the location dimension. This issue yields a demand for truly spatial
DWs for better analysis purposes. Including encoded geometric information
of the location data significantly improves the analysis process (i.e. proxim-
ity analysis of the locations) with comprehensive perspectives by revealing
dynamic spatial hierarchy levels and new spatial members. The scope of
this work is first focuses on enhancing the spatial characteristics of the cube
members on the SW, and then describing and utilizing SOLAP operators for
advanced analysis and decision making.

In our approach we consider enabling SOLAP capabilities directly over
Resource Description Framework (RDF) data on the SW. Importance and ap-
plicability of performing OLAP operations directly over RDF data is studied
in [1, 2]. To perform SOLAP over the SW consistently, an explicit and pre-
cise vocabulary is needed for the modeling process. The key concepts of
spatial cube members need to be defined in advance to realize SOLAP opera-
tions since they employ spatial measures with spatial aggregate functions (e.g.
union, buffer, and, convex-hull) and topological relations among spatial di-
mension and hierarchy level members (e.g. within, intersects, and, overlaps).
Current state of the art RDF and OLAP technologies is limited to support
conventional dimension schema and analysis along it’s levels. Spatial dimen-
sion schema and SOLAP require an advanced specialized data model. As a
first effort to overcome the limitations of modeling and querying spatial data
warehouses on the Semantic Web we give our contributions in the following.

111

Paper B.

Contributions. We propose an extended metamodel solution that enables
representation and RDF implementation of spatial DWs. We base our meta-
model on the most recent QB4OLAP vocabulary and present an extension
to support the spatial functions and spatial elements of the MD cubes. We
discuss the notion of a SOLAP operator and observe it with examples, then
we give the semantics of each SOLAP operator formally and finally, show
how to implement them in SPARQL by using sub-queries and nested set of
operators.

In the remainder of the paper, we first present the state of the art, in Sect.
2. As a prerequisite for our contribution in Sect. 3, we give the preliminary
concepts and explain the structure of a SOLAP operator. Then, in Sect. 4 we
define the semantics of MD data cube elements in RDF, present QB4SOLAP
and formalize the SOLAP operators over MD data cube elements. We present
a QB4SOLAP use case in Sect. 5 and then, we show how to write the defined
SOLAP queries over this use case in SPARQL in Sect. 6. Finally, in Sect. 7,
we conclude and remark to the future work directions.

2 State of the Art

DW and OLAP technologies have been proven a successful approach for anal-
ysis purposes on large volumes of data [3]. Aligning DW/OLAP technologies
with RDF data makes external data sources available and brings up dynamic
scenarios for analysis. The following studies are found concerning DW/O-
LAP with the SW.

DW/OLAP and Semantic Web: The potential of OLAP to analyze SW data
is recognized in several approaches, thus MD modeling from ontologies is
studied in the works of [4, 5]. However these approaches do not support
standard querying of RDF data in SPARQL but require a MD or a relational
database query engine, which limits the access to frequently updated RDF
data. Kämpgen et al. propose an extended model [2] on top of RDF Data
Cube Vocabulary (QB) [6] for interacting with statistical linked data via OLAP
operations in SPARQL, but it has the limitations of the QB and thus cannot
support full OLAP dimension structure with aggregate functions. It also has
only limited support for complete MD data model members (e.g. hierarchies
and levels). Etcheverry et al. introduce QB4OLAP [1] as an extended vocab-
ulary of QB with a full MD metamodel, which supports OLAP operations
directly over RDF data with SPARQL queries. However, none of these vocab-
ularies and approaches support spatial DWs, unlike our proposal.

Spatial DW and OLAP: The constraint representation of spatial data has been
focus in many fields from databases to AI [7]. Extending OLAP with spatial
features has attracted the attention of data warehousing communities as well.
Several conceptual models are proposed for representing spatial data in data

112

2. State of the Art

warehouses. Stefanovic et al. [8] investigates on constructing and material-
izing the spatial cubes in their proposed model. The MultiDim conceptual
model is introduced by Malinowski and Zimányi [9] which copes with spatial
features and extended in [10], to include complex geometric features (i.e. con-
tinuous fields), with a set of operations and MD calculus supporting spatial
data types. Gómez et al. [11] propose an algebra and a very general frame-
work for OLAP cube analysis on discrete and continuous spatial data. Even
though spatial data warehousing is widely studied, it has not implemented
yet on the Semantic Web.

Geospatial Semantic Web: The Open Geospatial Consortium – OGC pur-
sue an important line of work for geospatial SW with GeoSPARQL [12] as
a vocabulary to represent and query spatial data in RDF with an extension
to SPARQL. Kyzirakos et al. presents a comprehensive survey in data mod-
els and query languages for linked geospatial data in [13], and propose a
semantic geospatial data store - Strabon with an extensive query language –
stSPARQL in [14], which is yet limited to a specific environment. Linked-
GeoData is a significant contribution on interactively transforming Open-
StreetMap1 data to RDF data [15]. GeoKnow [16] is a more recent project
with focus on linking geospatial data from heterogeneous sources.

The studies shows that, SW and RDF technologies evolve to give better
functionality and standards for spatial data representation and querying. It
is also argued above that spatial data is very much needed for DW/OLAP
applications. However modeling and querying of spatial DWs on the SW is
not addressed in any of the above papers. There are recent efforts on creat-
ing an Extract-Load-Transform (ETL) framework from semantic data ware-
houses [17] and publishing/converting open spatial data as Linked Open
Data [18], which motivates modeling and querying spatial data warehouses
on the Semantic Web. Spatial data requires specific treatment techniques,
particular encoding, special functions and different manipulation methods,
which should be considered during the design and modeling process. Cur-
rent state of the art geospatial Semantic Web focuses on techniques for pub-
lishing, linking and querying spatial data however does not elaborate on
analytical spatial queries for MD data. In order to address these issues we
propose a generic and extensible metamodel based on the best practices of
MD data publishing in RDF. Then we show how to create spatial analyti-
cal queries with SOLAP on MD data models. We base ourselves on existing
works by extending the most recent version of the QB4OLAP vocabulary with
spatial concepts. Furthermore, we introduce the new concept of SOLAP op-
erators that navigate along spatial dynamic hierarchy levels and implement
these analytical spatial queries in SPARQL.

1http://www.openstreetmap.org

113

http://www.openstreetmap.org

Paper B.

3 Spatial and OLAP Operations

In this section we give define the spatial and spatial OLAP (SOLAP) opera-
tions.

3.1 Spatial Operations

In order to understand spatial operations, it is important to understand what
is a spatial object. A spatial object is the data or information that identifies
a real-world entity of geographic features, boundaries, places etc. Spatial
objects can be represented in object/vector or image/raster mode. Database
applications that can store spatial objects need to specify the spatial charac-
teristics, encoded as specific information such as geometry data type which is
the most common and supports planar or Euclidean (flat-earth) data. Point,
Line, and, Polygon are the basic instantiable types of the geometry data type.

Geometries are associated with a spatial reference system (SRS) which de-
scribes the coordinate space in which the geometry is defined. There are
several SRSs and each of them are identified with a spatial reference system
identifier (SRID). The World Geodetic System (WGS) is the most well-known
SRS and the latest version is called WGS84, which is also used in our use
case.

Spatial data types have a set of operators that can function among appli-
cations. We grouped these operations into classes. Our classification is based
on the common functionality of the operators. These classes are defined as
follows:
Spatial Aggregation. The operators in the spatial aggregation, Sagg class
aggregate two or more spatial objects. The result of these operators returns a
new composite spatial object. Union, Intersection, Buffer, ConvexHull, and,
MBR - Minimum Bounding Rectangle are example operators of this class.
Topological Relation. The operators in the topological relation, Trel class
are commonly contained in the RCC82 and DE-9DIM3 models. Topological
relations are standardized by OGC as Boolean operators which specify how
two spatial objects are related to each other with a set of spatial predicates for
example: Intersects, Disjoint, Equals, Overlaps, Contains, Within, Touches,
Covers, CoveredBy, and, Crosses.
Numeric Operation. The operators in the class of numeric operation, Nop
take one or more spatial objects and return a numeric value. Perimeter, Area,
of Interior Rings, Distance, Haversine Distance, Nearest Neighbor (NN),
and # of Geometries are some of the example operators of this class.

2RCC8 – Region Connection Calculus describes regions in Euclidean space, or in a topological
space by their possible relations to each other.

3DE-9DIM – Dimensionally Extended Nine-Intersection Model is a topological model that
describes spatial relations of two geometries in two-dimensions.

114

3. Spatial and OLAP Operations

3.2 SOLAP Operations

OLAP operations emerge when executing complex queries over multidimen-
sional (MD) data models. OLAP operations let us interpret data from differ-
ent perspectives at different levels of detail. Spatially extended multidimensional
models incorporate spatial data during the analysis and decision making pro-
cess by revealing new patterns, which are difficult to discover otherwise. In
connection with our definition of MD models in the first paragraph of Sect.
1, hereafter we enhance and describe the spatially extended MD data cube
elements.

A spatially extended MD model contains both conventional and spatial
dimensions. A spatial dimension is a dimension which includes at least one
spatial hierarchy. Dimensions usually have more than one level which are
represented through hierarchies and there is always a unique top level All
with just one member. A hierarchy is a spatial hierarchy if it has at least one
spatial level in which the application should store the spatial characteristics of
the data, which is captured by it is geometry and can be recorded in the spatial
attributes of the level. A spatial fact is a fact that relates several dimensions in
which, two or more are spatial. For example, consider a “Sales" spatial fact
cube, which has “Customer" and “Supplier" (company) as spatial dimensions
with a spatial hierarchy as “Geography" that expands into (hierarchic) spatial
levels; “City→ State→ Country→ Continent→ All" from the customer and
supplier’s location. All these spatial levels record the spatial characteristics i.e.
with a spatial attribute of a city (center) as “point" coordinates. Measures in
the cube express additional and essential information for each MD data cell
which is not exhibited through the dimensions and level attributes. Typically,
spatially extended MD models have spatial measures which are represented by
a geometry i.e. point, polygon, etc.

Spatial OLAP operates on spatially extended MD models. SOLAP en-
hances the analytical capabilities of OLAP with the spatial information of the
cube members. The term SOLAP used in [19] and their similar works as a vi-
sual platform, which is designed to analyze huge volumes of geo-referenced
data by providing visualization of pivot tables, graphical displays and inter-
active maps. We define the term SOLAP concisely as a platform (and query
language) independent high-level concept, which is applicable on any spa-
tial multidimensional data. We explain and exemplify in the following how
SOLAP operators are interpreted.

Each operator in SOLAP should include at least one spatial condition by us-
ing the aforementioned operators from the spatial operation classes defined
in Sect. 3.1. Spatial operations in SOLAP create a dynamic interpretation
of the cube members as a dynamic spatial hierarchy or level. These interpreta-
tions allow new perspectives to analyze the spatial MD data which cannot be
accessed in a traditional MD model. For instance, the classical OLAP opera-

115

Paper B.

tor roll-up aggregates measures along a hierarchy to obtain data at a coarser
granularity. In the spatial dimension schema Fig. B.1, the (classical) roll-up
relation, Customer to City is shown with black straight arrows. On the other
hand, in SOLAP, a new “dynamic spatial hierarchy" is created on the fly to
roll-up among spatial levels by a spatial condition (closest distance), which is
given as Customer to Closest-City (of the Supplier), shown with curved arrows
in gray. The details of this operator in comparison with OLAP and SOLAP
are given in the following example.
Example: Roll-up. The user wants to sum the total amount of the sales to
customers up to the city level with the roll-up operator. The instance data
for Sales fact is given in Tab. B.1 and shown on the map in Fig. B.2. The
amount of the sales are shown in parentheses along with the quantities of the
sold parcels (from supplier to customer). The arrows on the map, between
the supplier and customer locations are used to represent the distance. The
summarized data for sale instances (Tab. B.1) does not originally contain
the records of the supplier – customer distance (as given in Tab. B.4) which
can lead to increase in the storage space. If there are no sales to customers
from the corresponding suppliers, a dash (–) is used in Tab. B.1. The syn-
tax of the traditional roll-up operator is ROLLUP(Sales, (Customer→ City),
SUM(SalesAmount)) which aggregates the “total sales to customers up to city
level” (results in Tab. B.2). Alternatively, the user may like to view the “total
sales to customers by city of the closest suppliers”, in which some customers can
be closer to their suppliers from other cities, as emphasized in Tab. B.4. This
query is possible with traditional OLAP, if only Tab. B.4 is recorded in the
base data which requires extra storage space. For a better support and flexi-
bility we define a spatial roll-up operator that aggregates the total sales along

All

Customer Supplier

City

Country

ClosestCity

Distance function

Fig. B.1: S-Dim.
Schema

Fig. B.2: Example Map of Sales (Instance) Data

116

3. Spatial and OLAP Operations

the dynamic spatial hierarchy, which is created based on a spatial condition
(in this example, distance between customer and supplier locations). The
syntax for s-roll-up is; S-ROLLUP(Sales,[CLOSEST(Customer,Supplier)]→
City’,SUM(SalesAmount)). The spatial condition transforms the customer→
city hierarchy as a dynamic spatial hierarchy, which depends on the prox-
imity of the suppliers that is calculated during runtime. The user has the
flexibility to make analyses with different spatial operations in SOLAP. Spa-
tial extensions of common OLAP operators (roll-up, drill-down, slice, and
dice) are formally defined in Sect. 4.3.

City Customer
Supplier Sales Total

Saless1 s2 s3

Düsseldorf
c1 8pcs. – 3pcs. 11pcs.

c2 10pcs. – – 10pcs.

Dortmund
c3 7pcs. 4pcs. – 11pcs.

c4 – 20pcs. 3pcs. 23pcs.

Münster c5 – – 30pcs. 30pcs.

Table B.1: Sample (Instance) Data for Sales

City Sales

Düsseldorf 21pcs.

Dortmund 34pcs.

Münster 30pcs.

Table B.2: Roll-up

City Sales

Düsseldorf 25pcs.

Dortmund 20pcs.

Münster 33pcs.

Table B.3: S-Roll-up

Sup. City Düsseldorf Dortmund Münster

Cust. City
PPPPPPPPCust.

Sup.
s1 s2 s3

Düsseldorf
c1 15 km.s 45km.s 30 km.s
c2 15 km.s 60 km.s 60 km.s

Dortmund
c3 15 km.s 30 km.s 45 km.s
c4 45 km.s 15 km.s 15 km.s

Münster c5 60 km.s 45 km.s 15 km.s

Table B.4: Customer to Supplier Distance (km.s)

117

Paper B.

4 Semantics of Spatial MD Data and OLAP Oper-
ations

In this section, we first present our approach on how to support spatial MD
data in RDF by using the QB4SOLAP vocabulary. Afterwards, we define the
general semantics of each SOLAP operator to be implemented in SPARQL as
a proof of concept to the QB4SOLAP metamodel. The concepts introduced in
this metamodel are an extension to the most recent QB4OLAP vocabulary [1].

Figure B.3 shows the proposed and extended QB4OLAP vocabulary for
the cube schema RDF triples. Capitalized terms in the figure represent RDF
classes and non-capitalized terms represent RDF properties. Classes in exter-
nal vocabularies are depicted in light gray background and font. RDF Cube
(QB), QB4OLAP, QB4SOLAP classes are shown with white, light gray, dark
gray backgrounds, respectively. Original QB terms are prefixed with qb:.
QB4OLAP and QB4SOLAP classes and properties are prefixed with qb4o:

and qb4so:. In order to represent spatial classes and properties an exter-
nal prefix from OGC, geo: is used in the metamodel. Since QB4OLAP and
QB4SOLAP are RDF-based multidimensional model schemas, we first define
formally what an RDF triple is, and then discuss the basics of describing MD
data using QB4OLAP and spatially enhanced MD data in QB4SOLAP.

An RDF triple t consists of three components; s is the subject, p is the pred-
icate, and o is the object, which is defined as: triple (s,p,o) ∈ t = (I ∪ B)×
I × (I ∪ B ∪ Li) where the set of IRIs is I , the set of blank nodes is B, and
the set of literals is Li. Given an MD element x of the cube schema CS ,
CS(x) ∈ (I ∪ B ∪ Li) returns a set of triples T , with IRIs, blank nodes and
literals. The notation of the triples in the following definitions is given as
(x rdf:type ex:SomeProperty). If the concepts are defined with a set of
triples, after the first triple, we use a semicolon “;" to link predicates (p) and
objects (o) with the subject (s) concept x. The blank nodes B are expressed
as _: and nesting unlabeled blank nodes are abbreviated in square brackets
“[]".

4.1 Defining MD Data in QB4OLAP

In order to explain the spatially enhanced MD models we first describe MD
elements described in Sect. 1 with the RDF formalization in QB4OLAP vo-
cabulary.

Cube Schema. A data structure definition (DSD) specifies the schema of a
data set (i.e., a cube, which is an instance of the class qb:DataSet). The DSD
can be shared among different data sets. The DSD of a data set represents
dimensions, levels, measures, and attributes with component properties. The
DSD is defined through a conceptual MD cube schema CS , which has a

118

4. Semantics of Spatial MD Data and OLAP Operations

qb:DimensionProperty

qb:AttributeProperty

qb:MeasureProperty

skos:ConceptScheme

qb:codeList

qb4o:AggregateFunction

qb4o:LevelMember

skos:broader

qb4o:Hierarchy

sdmx:Collection

qb:HierarchicalCodeList

<<union>>

qb:CodedProperty

qb4o:hasLevel

qb4o:inDimension

qb4o:hasHierarchy

skos:Concept

qb:concept

qb:DataStructureDefinitionqb:ComponentSpecification

qb:componentRequired : boolean
qb:componentAttachment : rdf:Class
qb:order : xsd:int

qb:dimension
qb:attribute
qb:measure
qb4o:level

qb4o:cardinality
qb4o:aggregateFunction

qb:component

qb:componentProperty

qb:structure
qb:sliceKey

qb:observation

qb:DataSet

qb:Slice qb:Observation

qb:SliceKey

qb:subSlice

qb:dataSetqb:sliceqb:sliceStructure

qb4o:inHierarchy

qb4o:parentLevel

qb4o:childLevel

qb4so:SpatialAggregateFunction

qb4so:Union

qb4so:Intersectionqb4so:ConvexHull

qb4so:MBR

qb4so:Centroid

qb4o:Sum

qb4o:Avg

qb4o:Min

qb4o:Max

qb4o:Count

qb4so:TopologicalRelation

qb4so:Intersects

qb4so:Disjoint

qb4so:Equals

qb4so:Overlaps

qb4so:Within

qb4so:Touches

qb4so:Covers

qb4so:CoveredBy

qb4so:Contains qb4so:Crosses

qb4so:topologicalRelation

qb4o:cardinality

qb4o:OneToOne

qb4o:OneToMany

qb4o:ManyToOne

qb4o:ManyToMany

qb4o:Cardinality

geo:Geometry
qb4so:topologicalRelation

qb4o:memberOf qb4o:LevelAttribute

qb4o:hasAttribute

qb4o:inLevel

qb:ComponentProperty

qb:componentProperty

qb4o:LevelProperty

qb4o:HierarchyStep

g
e
o
:h

a
sG

e
o
m

e
tr

y

Fig. B.3: QB4SOLAP Vocabulary Meta-Model

set of dimension types D, a set of measures M and, with a fact type F as
CS = (D,M,F). For example, a cube schema CS can be used to define a
physical structure of a company’s sales data to be represented as a MD data
cube. We define the cube schema elements in the following definitions.

Attributes. An attribute a ∈ A = {a1, a2, . . . , an} has a domain 〈a : dom〉
in the cube schema CS with a set of triples ta ∈ T where ta is encoded as
(a rdf:type qb:AttributeProperty; rdfs:domain xsd:Schema)

119

Paper B.

The domain of the attribute is given with the property rdfs:domain4 from
the corresponding schema and rdfs:range defines what values the property
can take i.e.; integer, decimal, etc. from the given, xsd : Schema elements5.
Attributes are the finest granular elements of the cube, which exists in levels
to describe the characteristics of level members e.g., customer level attributes
could be as; name, id, address, etc.

Levels. A level l ∈ L = {l1, l2, . . . , ln} consists of a set of attributes Al , which
is defined by a schema l(a1 : dom1, . . . , an : domn), where l is the level and
each attribute a is defined over the domain dom. For each level l ∈ L in
the cube schema CS , there is a set of triples tl ∈ T which is encoded as (l
rdf:type qb4o:LevelProperty; qb4o:hasAttribute a). Relevant levels for
customer data include; customer level, city level, country level, etc.

Hierarchies. A hierarchy h ∈ H = {h1, h2, . . . , hn} in the cube schema
CS , is defined with a set of triples th ∈ T , and encoded as (h rdf:type

qb4o:HierarchyProperty; qb4o:hasLevel l; qb4o:inDimension D).
Each hierarchy h ∈ H is defined as h = (Lh,Rh); with a set of Lh (hierar-

chy) levels, which is a subset of the set Ld levels of the dimension D where
Lh ⊆ Ld ∈ D. Ld contains the initial base level of the dimension in addition
to hierarchy levels Lh. For example, customer–location hierarchy can be de-
fined by the levels; customer, city, country, etc. where customer is the base
level and contained only in Ld.

Due to the nature of the hierarchies, a hierarchy entails a roll-up relation
Rh between its levels, Rh = (Lc,Lp, card) where Lc and Lp are respectively
child and parent levels, where the lower level is called child and higher level
is called parent. Cardinality card ∈ {1− 1, 1− n, n− 1, n− n} describes the
minimum and maximum number of members in one level that can be re-
lated to a member in another level, e.g., Rh = (city, country, many− to− one)
shows that the roll-up relation between the child level city to parent level
country is many-to-one, which means that each country can have many cities.
In order to represent cardinalities between the child and the parent levels,
blank nodes are created as hierarchy steps, :_hhs ∈ B. Hierarchy steps relate
the levels of the hierarchy from a bottom (child) level to an upper (parent)
level, which is defined with a set of triples ths ∈ T and encoded as (:_hhs
rdf:type qb4o:HierarchyStep; qb4o:childLevel lhc; qb4o:parentLevel
lhp; qb4o:cardinality card) where lhc ∈ Lc, lhp ∈ Lp and card ∈ {1− 1, 1−
n, n− 1, n− n}.
Dimensions. An n-dimensional cube schema has a set of dimensions D =
{d1, d2, . . . , dn}. And each d ∈ D is defined as a tuple d = (L,H); with a set of
Ld levels, organized into Hd hierarchies. Dimensions, inherently have all the
levels from the hierarchies they have, and an initial base level. For each di-

4RDF Schema http://www.w3.org/TR/rdf-schema/
5XML Schema http://www.w3.org/TR/xmlschema11-1/

120

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/xmlschema11-1/

4. Semantics of Spatial MD Data and OLAP Operations

mension d ∈ D, in the cube schema CS , there is a set of triples td ∈ T , which
is encoded as (d rdf:type qb:DimensionProperty; qb4o:hasHierarchy h).
For example, customerDim is a dimension with a location and a customer
type hierarchy where location expands to levels of customer’s location (e.g.,
city, country, etc.) and customer type expands to levels of customer’s type
(e.g.,profession, branch, etc.)

Measures. A measure m ∈ M = {m1, m2, . . . , mn}, is a property, which is
associated to the facts. Measures are given in the cube schema CS with a set
of triples tm ∈ T , which is encoded as (m rdf:type qb:MeasureProperty;

rdfs:subPropertyOf sdmx-measure:obsValue; rdfs:domain xsd:Schema).
Measures are defined with a sub-property from the Statistical Data and

Metadata Exchange - (sdmx) definitions, sdmx-measure:obsValue which is
the value of a particular variable for a particular observation6. Similarly
to the attributes rdfs:domain specifies the schema of the measure property
and, rdfs:range defines what values the property can take i.e.; integer, dec-
imal, etc. in the instances. For example, quantity and price are measures of
a fact (e.g., sales) where the instance values can be given respectively, in the
form: “13"^^xsd:positiveInteger and “42.40"^^xsd:decimal. Measures are as-
sociated with observations (facts) and related to dimension levels in the DSD
as explained in the following.

Facts. A fact f ∈ F = { f1, f2, . . . , fn} is related to values of dimensions
and measures. The relation is described in components in the schema level of
the facts cube definition, by a set of triples t f ∈ T , which is encoded as (F
rdf:type qb:DataStructureDefinition; qb:component[qb4o:level l;
qb4o:cardinality card]; qb:component[qb:measure m; qb4o:aggregate�

Function BIF]). Cardinality, card ∈ {1− 1, 1− n, n − 1, n − n} represents
the cardinality of the relationship between facts and level members. The
specification of the aggregate functions for measures is required in the def-
inition of the cube schema. Standard way of representing typical aggre-
gate functions is defined by QB4OLAP namely built-in functions such as;
BIF ∈ {Sum, Avg, Count, Min, Max}. For example, a fact schema F can be
sales of a company which has associated dimensions and measures defined
as components respectively e.g. product and price.

Finally, the facts F = { f1, f2, . . . , fn} are given on the instance level where
each fact f has a unique IRI I , which are observations. This is encoded as
(f rdf:type qb:Observation). An example of a fact instance f with it’s rela-
tion to measure values and dimension levels is a “sale" transacted to customer
“John" (value of the dimension level), for a product “chocalate"(value of an-
other dimension level), which has a unit price of “29.99" (value of a measure)
euros, and quantity of “20" (value of another measure) boxes. Cardinality of
the dimension level customer and fact member is many–to–one where several

6http://sdmx.org/

121

http://sdmx.org/

Paper B.

sales can be transacted to the same customer (i.e. John). Specification of the
aggregate function for measure unit price is “average" while quantity can be
specified as “sum".

We gave the cube schema CS = (D,M,F) members above where dimen-
sions d ∈ D are defined as a tuple of dimension levels Ld and hierarchies
H, d = (Ld,H), and a hierarchy h ∈ H is defined with hierarchy levels Lh
such that h = (Lh), where Lh ⊆ Ld, and a level l contains attributes Al as
l = (Al).

4.2 Defining Spatially Enhanced MD Data in QB4SOLAP

QB4SOLAP adds a new concept to the metamodel, which is geo:Geometry

class from OGC schemas7. We define the QB4SOLAP extension to the cube
schema in the description of the following spatial MD data elements, which
are explained in Sect. 3.2.

Spatial Attributes. Each attribute is defined over a domain (Sect. 4.1).
Every attribute with geometry domain (a : domg ∈ A) is a member of
geo:Geometry class and they are called spatial attributes as, which are de-
fined in the cube schema CS by a set of triples tag ∈ T and encoded as (as
rdf:type qb:AttributeProperty; rdfs:domain geo:Geometry). The type
(point, polygon, line, etc.) of the each spatial attribute is assigned with
rdfs:range predicate in the instances. For example, a spatial attribute can be
the “capital city" of a country which is represented through a point geometry.

Spatial Levels. Each spatial level ls ∈ L is defined with a set of triples tls ∈ T
in the cube schema CS , and encoded as (ls rdf:type qb4o:LevelProperty;

qb4o:hasAttribute a, as; geo:hasGeometry geo:Geometry). Spatial levels
must be a member of geo:Geometry class and might have spatial attributes.
For example country level is a spatial level which has a polygon geometry
and might also record geometry of the capital city in the level attributes as a
point type.

Spatial Hierarchies. Each hierarchy hs ∈ H is spatial , if it relates two or
more spatial levels ls. Spatial hierarchy step defines the relation between the
spatial levels with a roll-up relation as in conventional hierarchy steps (Sect.
4.1). QB4SOLAP introduces topological relations, Trel (Sect. 3.1) besides car-
dinalities in the roll-up relation which is encoded as R = (Lc,Lp, card, Trel)
for the spatial hierarchy steps.

Let tshs ∈ T a set of triples to represent a hierarchy step for spatial
levels in hierarchies, which is given with a blank node : _shhs ∈ B and
encoded as (:_shhs rdf:type qb4o:HierarchyStep; qb4o:childLevel slhci;
qb4o:parentLevel slhpi; qb4o:cardinality card; qb4so:hasTopologicalRe�
lation Trel) where slhci ∈ Lc, slhpi ∈ Lp. For example, a spatial hierarchy

7OGC Schemas http://schemas.opengis.net/

122

http://schemas.opengis.net/

4. Semantics of Spatial MD Data and OLAP Operations

is “geography" which should have spatial levels (e.g. customer, city, coun-
try, and continent) with the roll-up relation Rh = (city, country, many− to−
one, within), which also specifies that child level city is “within" the parent
level country, in addition to the hierarchy steps from Sect. 4.1.

Spatial Dimensions. Dimensions are identified as spatial if only they have at
least one spatial hierarchy. More than one dimension can share the same
spatial hierarchy and the spatial levels, which belongs to that hierarchy.
QB4SOLAP uses the same schema definitions of the dimensions as in Sect.
4.1. For example, a spatial dimension is customer dimension, which has a
spatial hierarchy geography.

Spatial Measures. Each spatial measure ms ∈ M is defined in the cube
schema CS by a set of triples tms ∈ T and encoded as (ms rdf:type

qb:MeasureProperty; rdfs:subPropertyOf sdmx-measure:obsValue;

rdfs:domain geo:Geometry). The class of the numeric value is given with
the property rdfs:domain and rdfs:range assigns the values from the class
geo:Geometry, i.e., point, polygon, etc. at the instance level.

Spatial measures are represented by a geometry thus they use a differ-
ent schema than conventional (numeric) measures. The schemas for spatial
measures have common geometry serialization standards8 that are used in
OGC schemas. For example a spatial measure is coordinates of an accident
location, which is given as a point geometry type and associated to an obser-
vation fact of accidents.

Spatial Facts. Spatial facts Fs relates several dimensions of which two or
more are spatial. If there are several spatial dimension levels (ls), related to
the fact, topological relations Trel (Sect. 3.1) between the spatial members
of the fact instance may be required which is not necessarily imposed for
all the spatial fact cubes. Ideally a spatial fact cube has spatial measures
(ms), as its members which makes it possible to aggregate along spatial mea-
sures with the spatial aggregation functions Sagg (Sect. 3.1). Representation
of a complete spatial fact cube at the schema level in RDF is given by a
set of triples t f s ∈ T , and encoded as (Fs a qb:DataStructureDefinition;

qb:component [qb4o:level ls; rdfs:subPropertyOf sdmx-dimension:ref�

Area; qb4o:cardinality card; qb4so:TopologicalRelation Trel]; qb:

component [qb:measure ms, sdmx-measure:obsValue; qb4o:aggregate-

Function BIF′]). QB4SOLAP extends the built-in functions of QB4OLAP
with spatial aggregation functions as BIF′ = BIF∪Sagg, which is added with
a class qb4so:Spatial AggregateFunction to the metamodel in Fig. B.3. An
example of a spatial fact instance fs with it’s relation to measure values and
dimension levels is a traffic “accident" incident occurred on a highway “E–45"

8The Well Known Text (WKT) serialization aligns the geometry types with ISO 19125 Simple
Features [ISO 19125-1], and the GML serialization aligns the geometry types with [ISO 19107]
Spatial Schema.

123

Paper B.

(value of the highway spatial dimension level) with coordinate points of the
location “57.013, 9.939" (value of the location spatial measure). Cardinality of
the dimension level highway and fact member is many–to–one where several
accidents might take place in the same highway. Specification of the spatial
aggregate function for spatial measure location (coordinate points) can be
specified as “convex hull" area of the accident locations.

4.3 SOLAP Operators
The proposed vocabulary QB4SOLAP allows publishing spatially enhanced
multidimensional RDF data which allows us to query with SOLAP opera-
tions. Subqueries and aggregation functions in SPARQL 1.19 make it eas-
ily possible to operate with OLAP queries on multidimensional RDF data.
Moreover, spatially enhanced RDF stores, provide functions to an extent for
querying with topological relations and spatial numeric operations. In the
following, we define common OLAP operators with spatial conditions in or-
der to formalize spatial OLAP query classes. Spatial conditions can be se-
lected from a range of operation classes that can be applied on spatial data
types (Sect. 3.1). Let S be any spatial operation where S = (Sagg ∪Trel ∪Nop)
to represent a spatial condition in a SOLAP operation. The following OLAP
operators are given with a spatial extension to the well-known OLAP opera-
tors defined over cubes based in Cube Algebra operators [20].

S–Roll–up. Given a cube C, a dimension d ∈ C, and an upper dimension level
lu ∈ d, such that l

〈
a : domg

〉
→∗ lu, where l

〈
a : domg

〉
represents the level in

dimension d with attributes (as) whose domain is a geometry type. Let Rs be
the spatial roll-up relation which comprises S and traditional roll-up relation
R such that Rs = S(d, l

〈
a : domg

〉
) ∪ R(C, d, lu)→ C ′.

Initially, in the semantics of S–Roll–up above, spatial constraint S is ap-
plied over a dimension d on the spatial attributes as along levels l. As a
result of the roll–up relation R, the measures are aggregated up to level lu
along d which returns a new cube C ′. Note that applying S , on spatial level
attributes as of dimension D, operates on the hierarchy step l → lu with a
dynamic spatial hierarchy (Ref. Sect. 3.2). For example, the query “total sales
to customers by city of the closest suppliers" implies a S-Roll-up operator.

S–Drill–down. Analogously, S–Drill–down is an inverse operation of S–Roll–
up, which disaggregates previously summarized data down to a child level.
For example, the query “average sales of the employees from the biggest city
in its country" implies a S-Drill-down operator by disaggregating data from
(parent) country level to (child) city level by imposing also a spatial condition
(area from Nop to choose the biggest city) .

S–Slice. Given a cube C with n dimensions D = {d1, d2, . . . , dn} ∈ C, let S ′

9http://www.w3.org/TR/sparql11-query/

124

http://www.w3.org/TR/sparql11-query/

5. Use Case Scenario: GeoNorthwind Data Warehouse

be the traditional slice operator which removes a dimension d from the cube
C. And let Ss be the spatial slice operator, which comprises S , the spatial
function to fix a single value in the level L = {l1, l2, . . . , ln} ∈ d defined as
follows; Ss = S ′(C, d) ∪ S(d, l

〈
a : domg

〉
)→ C ′.

Note that the spatial function is applied on the spatial attributes of the se-
lected level, measures are aggregated along dimension d up to level All. The
result returns a new cube C ′ with n− 1 dimensions D′ = {d1, d2, . . . , dn−1} ∈
C ′. For example, the query “total sales to the customers located in the city
within a 10 km. buffer area from a given point" implies a S-Slice operator,
which dynamically defines the city level by (fixing) a specified buffer area
around a given custom point in the city.

S–Dice. Dice operation is analogous to relational algebra - R selection; σφ(R),
instead the argument is a cube C; σφ(C). In SOLAP dice is not a select
operation rather a nested “select” and a “spatial filter” operation. S-Dice
Ds keeps the cells of a cube C that satisfy a spatial Boolean S(φ) condition
over spatial dimension levels, attributes and measures which is defined as;
Ds = (C,S(φ)) → C ′ where S(φ) = S(σaφb(C)) ∨ S(σaφv(C)) and a, b are
spatial levels (ls), geometry attributes (a : domg) or measures (m, ms) while
v is a constant value and the result returns a sub-cube C ′ ⊂ C. For example,
the query “total sales to the customers which are located less than 5 km from
their city" implies a S-Dice operator.

In this paper, we focus on direct querying of single data cubes. The inte-
gration of several cubes through S-Drill-across or set-oriented operations such
as Union, Intersection, and Difference [20] is out of scope and remained as fu-
ture work. The actual use of these query classes in SPARQL with the instance
data is given in Section 6.

5 Use Case Scenario: GeoNorthwind Data Ware-
house

Figure B.4 consists of the conceptual schema of the The GeoNorthwind DW
use case. GeoNorthwind DW has synthetic data about companies and their
sales, however it is well suited for representing MD data modeling concepts
due to its rich dimensions and hierarchies. It is a good proof of concept
use case to show how to implement spatial data cube concepts on the SW.
We show next how to express the conceptual schema of GeoNorthwind in
QB4SOLAP.

In the use case, measures are given in the Sales cube. All measures are
conventional. The members of the GeoNorthwind DW are given with gnw:

125

Paper B.

Product

ProductID

ProductName

QuantityPerUnit

UnitPrice

Discontinued

Supplier

SupplierID

CompanyName

Address

PostalCode

Category

CategoryID

CategoryName

Description

Customer

CustomerID

CompanyName

Address

PostalCode

Employee

EmployeeID

FirstName

LastName

Title

BirthDate

HireDate

City

CityName

C
a

te
g

o
ri
e

s

G
e

o
g

ra
p

h
y

Country

CountryName

CountryCode

CountryCapital

CapitalGeo

Population

Elevation f(ü)

Subdivision

State

StateName

EnglishStateName

StateType

StateCode

StateCapital

CapitalGeo

Time

Date

DayNbWeek

DayNameWeek

DayNbMonth

DayNbYear

WeekNbYear

Calendar

Month

MonthNumber

MonthName

Quarter

Quarter

Year

Year

DueDate

Order
Date

G
e

o
g

ra
p

h
y

Quantity

UnitPrice: Avg +!

Discount: Avg +!

SalesAmount

Freight

/NetAmount

Sales

Fig. B.4: Conceptual MD Schema of the GeoNorthwind DW

prefix. The underlying syntax for RDF representation is given in Turtle10

syntax in the boxes. An example of a measure in the cube schema is given in
the following as defined in Sect. 4.1.

gnw:quantity a rdf:Property , qb:MeasureProperty;

rdfs:subPropertyOf sdmx -measure:obsValue;rdfs:range xsd:integer.

In the following, a spatial attribute of a spatial level gnw:state is given
along with the level and attribute properties. Spatial level has a geometry as
gnw:statePolygon independently having a spatial attribute gnw:capitalGeo.
Each spatial attribute in the schema is defined separately by using common
RDF and standard spatial schemas11 to represent their domain and data type
as described in Sect. 4.2.

gnw:state a qb4o:LevelProperty; qb4o:hasAttribute gnw:stateName ,

gnw:stateType , gnw:stateCapital , gnw:capitalGeo;

10http://www.w3.org/TR/turtle/
11For our tests we used Virtuoso Universal Server and virtrdf:Geometry is a special RDF

typed literal which is used for geometry objects in Virtuoso. Normally, WGS84 (EPSG:4326) is
the SRID of any such geometry.

126

http://www.w3.org/TR/turtle/

5. Use Case Scenario: GeoNorthwind Data Warehouse

geo:hasGeometry gnw:statePolygon.

gnw:captialGeo a qb:AttributeProperty;

rdfs:domain geo:Geometry; rdfs:range geo:Point , geo:wktLiteral ,

virtrdf:Geometry.

In the next listing, an example of a spatial dimension from the use case data
is gnw:customerDim, which is given with its spatial hiearchy gnw:geography

(Sect. 4.1, 4.2). The spatial hierarchy is organized into levels (i.e. city,
state, country etc.) where qb4o:hasLevel predicate indicates the levels that
compose the hierarchy. Each hierarchy in dimensions is represented with
qb4o:inDimension predicate, referring to the dimension(s) it belongs to. The
levels given in the dimension hierarchy are all spatial, and the sample repre-
sentation of a spatial level is given above.

gnw:customerDim a rdf:Property , qb:DimensionProperty;

qb4o:hasHierarchy gnw:geography.

gnw:geography a qb4o:HierarchyProperty; qb4o:hasLevel gnw:city ,

gnw:state , gnw:region , gnw:country , gnw:continent;

qb4o:inDimension gnw:customerDim , gnw:supplierDim.

Each hierarchy step is added to the schema as a blank node (_:hsi) by
qb4o:HierarchyStep property, in which the cardinality and topological re-
lationships are represented in between the child and parent levels as follows;

_:hs1 a qb4o:HierarchyStep; qb4o:inHierarchy gnw:geography;

qb4o:childLevel gnw:customer , gnw:supplier;

qb4o:parentLevel gnw:city; qb4o:cardinality qb4o:ManyToOne;

qb4so:hasTopologicalRelation qb4so:Within.

The components of the facts are described at the schema level in the cube def-
inition. The dimension level for gnw:customer is given with sdmx-dimenson:

refArea property, which indicates the spatial characteristic of the dimension.
Measures require the specification of the aggregate functions in the cube def-
inition. As there are only numeric measures in the use case data, aggregate
function for the sample measure gnw:quantity is given as qb4o:sum. The
general overview of the cube schema CS which is given with the related
components as follows:

Cube definition

gnw:GeoNorthwind rdf:type qb:DataStructureDefinition;

Lowest level for each dimension in the cube

qb:component [qb4o:level gnw:customer , sdmx -dimension:refArea;

qb4o:cardinality qb4o:ManyToOne].

Measures in the Cube

qb:component [qb:measure gnw:quantity; qb4o:aggregateFunction qb4o:sum].

A spatial fact cube may contain spatial measure components besides spatial
dimension according to QB4SOLAP. The implementation scope of this work

127

Paper B.

covers only spatial facts, with spatial dimension and numerical measure com-
ponents.

6 Querying the GeoNorthwind DW in SPARQL

We show next how some of the spatial OLAP queries from Sect. 4.3 can be
expressed in SPARQL12.

Query 1 (S-Roll-Up): Total sales to customers by city of the closest suppliers.

SELECT ?city (SUM(? sales) AS ?totalSales)

WHERE {?o a qb:Observation; gnw:customerID ?cust;

gnw:supplierID ?sup; gnw:salesAmount ?sales.

?cust qb4o:inLevel gnw:customer;gnw:customerGeo ?custGeo;

gnw:customerName ?custName; skos:broader ?city .

?city qb4o:inLevel gnw:city.?sup gnw:supplierGeo ?supGeo.

#Inner Select:Distance to the closest supplier of the customer

{SELECT ?cust1 (MIN(? distance) AS ?minDistance)

WHERE {?o a qb:Observation; gnw:customerID ?cust1;

gnw:supplierID ?sup1. ?sup1 gnw:supplierGeo ?sup1Geo.

?cust1 gnw:customerGeo ?cust1Geo .

BIND (bif:st_distance(?cust1Geo , ?sup1Geo) AS ?distance)}

GROUP BY ?cust1 }

FILTER (?cust = ?cust1 && bif:st_distance (?custGeo , ?supGeo)=

?minDistance)} GROUP BY ?city ORDER BY ?totalSales

The query above shows the spatial roll-up operation example from Sect. 3.2
with the actual use case data. We have explained the semantics of s-roll-up
operator in Def. 11. The inner select verifies the spatial condition in order
to find the closest distance to suppliers from the customers. The outer select
prepares the traditional roll up of the total sales from customer (child) level
to the city (parent) level. Filter on customer and supplier distance creates
the aforementioned dynamic spatial hierarchy based on the proximity of the
suppliers.

Query 2 (S-Slice): Total sales to the customers located in the city within a 10
km. buffer area from a given point.

SELECT ?custName ?cityName (SUM(?sales) AS ?totalSales)

WHERE {?o rdf:type qb:Observation; gnw:customerID ?cust;

gnw:salesAmount ?sales. ?cust gnw:customerName ?custName;

skos:broader ?city. ?city gnw:cityGeo ?cityGeo;

gnw:cityName ?cityName.

FILTER(bif:st_within (?cityGeo , bif:st_point (2.3522 ,48.856) ,10))}

GROUP BY ?custName ?cityName ORDER BY ?custName

The semantics of the above (s-slice) operator is given in Def. 13. Tradi-
tional slice operator removes a dimension, by fixing a single value in a level
of dimension with a given fixed value (i.e. CityName = “Paris"). On the

12SPARQL endpoint is available at: http://extbi.ulb.ac.be:8890/sparql.

128

http://extbi.ulb.ac.be:8890/sparql

7. Conclusion and Future Work

other hand, s-slice dynamically defines the city level, by a specified buffer
area around a given custom point in the city. Thus, s-slice removes the di-
mension customer and its instance in city Paris, but only the customer in-
stances within 10 km. buffer area of the desired location. The project con-
tent with corresponding data sets and full query examples are available at:
http://extbi.cs.aau.dk/QB4SOLAP/index.php.

7 Conclusion and Future Work

In this paper, we studied the modeling issues of spatially enhanced MD data
cubes in RDF, defined the concept of SOLAP operators and implemented
them in SPARQL. We showed that in order to model spatial DWs on the SW,
an extended representation of MD cube elements was required. We based
our representation on the most recent QB4OLAP vocabulary and make it
viable for spatially enhanced MD data models through the new QB4SOLAP
metamodel. This allows users to publish spatial MD data in RDF format.
Then, we define well-known OLAP operations on data cubes with spatial
conditions, in order to introduce spatial OLAP query classes and formally
define their semantics. Subsequently, we present a use case and implement
real-world SOLAP queries in SPARQL, to validate our approach.

Future work will be conducted in two areas: 1) defining complete formal
techniques and algorithms for generating SOLAP queries in SPARQL based
on a high-level MD Cube Algebra as in [20], and extending the coverage of
SOLAP operations over multiple RDF cubes in SPARQL, i.e., to support S-
Drill-Across; 2) implement our QB4SOLAP approach on a more complex case
study with spatial measures and facts which can support spatial aggregation
(S-Aggregation) operator over measures with geometries. In order to support
this S-Aggregation operator in SPARQL we will also investigate on creating
user-defined SPARQL functions.

References

[1] L. Etcheverry, A. Vaisman, and E. Zimányi, “Modeling and Querying
Data Warehouses on the Semantic Web using QB4OLAP,” in Data Ware-
housing and Knowledge Discovery (DaWaK’14), vol. 8646. Springer, 2014,
pp. 45–56, https://dx.doi.org/10.1007/978-3-319-10160-6_5.

[2] B. Kämpgen, S. O’Riain, and A. Harth, “Interacting with Statistical
Linked Data via OLAP Operations,” in The Semantic Web: ESWC 2012
Satellite Events, vol. 7540. Springer, 2012, pp. 87–101, https://dx.doi.
org/10.1007/978-3-662-46641-4_7.

129

http://extbi.cs.aau.dk/QB4SOLAP/index.php
https://dx.doi.org/10.1007/978-3-319-10160-6_5
https://dx.doi.org/10.1007/978-3-662-46641-4_7
https://dx.doi.org/10.1007/978-3-662-46641-4_7

References

[3] A. Abelló, O. Romero, T. Pedersen, R. Berlanga Llavori, V. Nebot,
M. Aramburu, and A. Simitsis, “Using Semantic Web Technologies for
Exploratory OLAP: A Survey,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 27, no. 2, pp. 571–588, 2014, https://doi.org/
10.1109/TKDE.2014.2330822.

[4] C. Diamantini and D. Potena, “Semantic Enrichment of Strategic Dat-
acubes,” in Proceedings of the 11th International Workshop on Datawarehous-
ing and OLAP. ACM, 2008, pp. 81–88.

[5] V. Nebot, R. Berlanga, J. M. Pérez, M. J. Aramburu, and T. B. Pedersen,
“Multidimensional Integrated Ontologies: A Framework for Designing
Semantic Data Warehouses,” in Journal on Data Semantics XIII. Springer,
2009, pp. 1–36.

[6] R. Cyganiak, D. Reynolds, and J. Tennison, “The RDF Data Cube Vocab-
ulary,” 2014.

[7] P. Revesz, Introduction to Databases: From Biological to Spatio-Temporal.
Springer, 2009.

[8] J. Han, N. Stefanovic, and K. Koperski, “Selective Materialization: An Ef-
ficient Method for Spatial Data Cube Construction,” in Research and De-
velopment in Knowledge Discovery and Data Mining (PAKDD’98). Springer,
1998, pp. 144–158, https://dx.doi.org/10.1007/3-540-64383-4_13.

[9] E. Malinowski and E. Zimányi, Advanced Data Warehouse Design:
From Conventional to Spatial and Temporal Applications. Data-Centric Sys-
tems and Applications. Springer, 2008, https://dx.doi.org/10.1007/
978-3-540-74405-4.

[10] A. Vaisman and E. Zimányi, “A Multidimensional Model Represent-
ing Continuous Fields in Spatial Data Warehouses,” in Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (GIS’09). ACM, 2009, pp. 168–177, https:
//doi.acm.org/10.1145/1653771.1653797.

[11] L. I. Gómez, S. A. Gómez, and A. A. Vaisman, “A Generic Data Model
and Query Language for Spatiotemporal OLAP Cube Analysis,” in Pro-
ceedings of the 15th International Conference on Extending Database Technol-
ogy (EDBT’12). ACM, 2012, pp. 300–311, https://doi.acm.org/10.1145/
2247596.2247632.

[12] R. Battle and D. Kolas, “Enabling the Geospatial Semantic Web with
Parliament and GeoSPARQL,” Semantic Web Journal (SWJ), vol. 3, no. 4,
pp. 355–370, 2012, https://dx.doi.org/10.3233/SW-2012-0065.

130

https://doi.org/10.1109/TKDE.2014.2330822
https://doi.org/10.1109/TKDE.2014.2330822
https://dx.doi.org/10.1007/3-540-64383-4_13
https://dx.doi.org/10.1007/978-3-540-74405-4
https://dx.doi.org/10.1007/978-3-540-74405-4
https://doi.acm.org/10.1145/1653771.1653797
https://doi.acm.org/10.1145/1653771.1653797
https://doi.acm.org/10.1145/2247596.2247632
https://doi.acm.org/10.1145/2247596.2247632
https://dx.doi.org/10.3233/SW-2012-0065

References

[13] K. Kyzirakos, M. Karpathiotakis, and M. Koubarakis, “Strabon: A Se-
mantic Geospatial DBMS,” in The Semantic Web: 11th International Se-
mantic Web Conference (ISWC’12). Springer, 2012, pp. 295–311, https:
//dx.doi.org/10.1007/978-3-642-35176-1_19.

[14] M. Koubarakis, M. Karpathiotakis, K. Kyzirakos, C. Nikolaou, and
M. Sioutis, “Data Models and Query Languages for Linked Geospa-
tial Data,” in Reasoning Web. Semantic Technologies for Advanced Query
Answering. Springer, 2012, pp. 290–328, https://dx.doi.org/10.1007/
978-3-642-33158-9_8.

[15] C. Stadler, J. Lehmann, K. Höffner, and S. Auer, “LinkedGeoData: A
Core for a Web of Spatial Open Data,” Semantic Web Journal (SWJ), vol. 3,
pp. 333–354, 2012, https://dx.doi.org/10.3233/SW-2011-0052.

[16] G. Rojas, G. Giannopoulos, and J. J. L. Daniel Hladky, “Managing
Geospatial Linked Data in the GeoKnow Project,” in The Semantic Web in
Earth and Space Science. Current Status and Future Directions, vol. 20. IOS
Press, 2015, p. 51.

[17] R. P. Deb Nath, K. Hose, and T. B. Pedersen, “Towards a Programmable
Semantic Extract-Transform-Load Framework for Semantic Data Ware-
houses,” in Proceedings of the 18th International Workshop on Data Ware-
housing and OLAP (DOLAP’15). ACM, 2015, pp. 15–24, https://doi.
org/10.1145/2811222.2811229.

[18] A. B. Andersen, N. Gür, K. Hose, K. A. Jakobsen, and T. B. Ped-
ersen, “Publishing Danish Agricultural Government Data as Seman-
tic Web Data,” in Semantic Technology: 4th Joint International Semantic
Technology Conference (JIST’14), vol. 8943. Springer, 2014, pp. 178–186,
https://dx.doi.org/10.1007/978-3-319-15615-6_13.

[19] S. Bimonte, F. Johany, and S. Lardon, “A First Framework for Mutually
Enhancing Chorem and Spatial OLAP Systems,” in DATA, 2015.

[20] C. Ciferri, L. Gómez, M. Schneider, A. Vaisman, and E. Zimányi,
“Cube algebra: A Generic User-centric Model and Query Language
for OLAP Cubes,” International Journal of Data Warehousing and Min-
ing (IJDWM), vol. 9, no. 2, pp. 39–65, 2013, http://dx.doi.org/10.4018/
jdwm.2013040103.

131

https://dx.doi.org/10.1007/978-3-642-35176-1_19
https://dx.doi.org/10.1007/978-3-642-35176-1_19
https://dx.doi.org/10.1007/978-3-642-33158-9_8
https://dx.doi.org/10.1007/978-3-642-33158-9_8
https://dx.doi.org/10.3233/SW-2011-0052
https://doi.org/10.1145/2811222.2811229
https://doi.org/10.1145/2811222.2811229
https://dx.doi.org/10.1007/978-3-319-15615-6_13
http://dx.doi.org/10.4018/jdwm.2013040103
http://dx.doi.org/10.4018/jdwm.2013040103

References

132

Paper C

A Foundation for Spatial Data Warehouses on the
Semantic Web

Nurefşan Gür, Torben Bach Pedersen, Esteban Zimányi, and
Katja Hose

The paper is an extended version of Paper B. It has been published in the
Semantic Web Journal

Vol. 9, no 5, pp. 557–587, 2018. DOI: 10.3233/SW-170281

Abstract

Large volumes of geospatial data is being published on the Semantic Web (SW),
yielding a need for advanced analysis of such data. However, existing SW technolo-
gies only support advanced analytical concepts such as multidimensional (MD) data
warehouses and Online Analytical Processing (OLAP) over non-spatial SW data.
To remedy this need, this paper presents the QB4SOLAP vocabulary which supports
spatially enhanced MD data cubes over RDF data. The paper also defines a number of
Spatial OLAP (SOLAP) operators over QB4SOLAP cubes and provides algorithms
for generating spatially extended SPARQL queries from the SOLAP operators. The
proposals are validated by applying them to a realistic use case.

c© 2018 IOS Press and the authors. All rights reserved. Reprinted, with
permission from Nurefşan Gür, Torben Bach Pedersen, Esteban Zimányi, and
Katja Hose. A Foundation for Spatial Data Warehouses on the Semantic Web.
In: Semantic Web Journal, 2018. https://doi.org/10.3233/SW-170281
The layout has been revised.

https://doi.org/10.3233/SW-170281

1. Introduction

1 Introduction

The Semantic Web (SW) has evolved, from focusing mostly on data publish-
ing to also support increasingly complex queries such as interactive analytical
queries. Simultaneously, the data available on the SW has evolved from being
simple, most alphanumeric data, to also include complex data such as spa-
tial data. Indeed, geospatial data is now common on the SW, but it remains
difficult to analyze it.

In a non-SW context, the main tools for interactive data analyses have been
Data Warehouses (DWs) and Online Analytical Processing (OLAP) tools and
queries. DWs store large volumes of data and are designed with a multidi-
mensional (MD) modeling approach, which has shown itself to be intuitive
for interactive data analytics. Concretely, DWs consist of MD data cubes. The
cells of the cube represent the topic of analysis, and associate observation
facts with numerical measures that can be aggregated. For example, a sales
fact cube has measures such as QuantitySold and SalesPrice. Facts are linked
to dimensions, which provide contextual information, e.g., sales date, product,
and location. Dimensions are perspectives, which are used to analyze data,
and are organized into hierarchies with levels, e.g., Store, City, and Region,
that allow users to analyze and aggregate measures at different levels of de-
tail. Levels have a set of attributes that describe the characteristics of the level
members.

In traditional DWs, the location dimension is widely used, but as a con-
ventional dimension with alphanumeric data and thus only nominal refer-
ence to spatial concepts such as areas and places. This does not allow manip-
ulating through spatial location data or deriving topological relations among
the hierarchy levels of the location dimension. This yields a demand for
truly spatial DWs for better analysis purposes. Including the geometric in-
formation of the location data, significantly improves the analysis process
(i.e., proximity analysis of the locations) with additional perspectives by re-
vealing dynamic spatial hierarchy levels and new spatial members.

Similarly, providing deep spatial analytics support for spatial SW data is
very valuable. Spatial data requires specific treatment techniques, in partic-
ular encoding, special functions and different manipulation methods, which
should be considered in the modeling process and querying. The current
state of the art for the geospatial Semantic Web focuses on techniques for
publishing, linking and querying spatial data, but supports only “plain” spa-
tial SW data (without support for spatial DW concepts such as spatial hier-
archies, levels, and measures) and does not consider analytical queries over
spatial RDF data (see Section 2 for details).

Problem Definition. The proliferation of open geospatial data on the SW
creates possibilities for advanced analysis of such data. Many examples exist

135

Paper C.

of spatial Linked Open Data (LOD) published on the SW as RDF1,2,3,4. These
datasets have observations and measures that are well suited for analytical
queries (e.g., water/air quality measurements, immigration rates, EU subsi-
dies in agriculture, crop revenue, etc.). However, such datasets are typically
not modeled with spatial dimension levels and hierarchies. Thus, they can-
not be queried with interactive spatial analytical queries (a.k.a. SOLAP) on
the SW. In the current state of the SW, if a (spatial) DW user would like to
query the existing spatial RDF data from the SW with SOLAP operations, the
user needs to download the RDF data, map it to a relational data model (i.e.,
with a snowflake schema), and then import it into a traditional spatial data
warehouse in order to query with SOLAP, which is slow, labor-intensive, and
stores the data in a non-open format.

Spatial RDF
Endpoints

SOLAP

User Spatial RDF Data Warehouses

SOLAP to SPARQL

QB4SOLAP

Fig. C.1: QB4SOLAP approach to SOLAP on the SW

Our Approach. On the contrary, annotating spatial RDF datasets with QB4SOLAP
allows users to define spatial multidimensional concepts on top of existing
RDF data [1, 2]. Hence, the user can create and publish spatial data ware-
houses on the Semantic Web, which can be easily queried with SOLAP op-
erations. Fig. C.1 depicts the general workflow scenario, where the spatial
RDF datasets from endpoints can be annotated with QB4SOLAP. This makes
it possible for end users to use SOLAP queries. However, writing a SO-
LAP query in SPARQL can be very complicated for users inexperienced with
SPARQL (e.g., traditional DW users). Due to the lack of MD semantics of spa-
tial RDF data and the lack of translation techniques from high-level SOLAP
expressions to SPARQL, there is a considerable entry barrier for advanced
spatial data analysis on the SW for data warehouse users.

1EuroStat: http://ec.europa.eu/eurostat
2UK Environmental Data: http://environment.data.gov.uk
3Danish Agricultural Data: https://datahub.io/dataset/govagribus-denmark
4Australian Climate Observations: https://datahub.io/dataset/acorn-sat

136

http://ec.europa.eu/eurostat
http://environment.data.gov.uk
https://datahub.io/dataset/govagribus-denmark
https://datahub.io/dataset/acorn-sat

2. Related work

Contributions. In order to address these issues, this paper makes a num-
ber of contributions. First, we propose QB4SOLAP, a generic and extensible
vocabulary (metamodel) for spatial DWs on the SW. QB4SOLAP extends the
most recent stable version of the QB4OLAP vocabulary with spatial concepts.
We provide a full formalization of QB4SOLAP. The key concepts of spatial
cube members, spatial hierarchies and levels, spatial measures, spatial aggre-
gate functions (e.g., union, buffer, and convex–hull) and topological relations
among spatial dimension and hierarchy level members (e.g., within, inter-
sects, and overlaps), are defined. Second, we define a number of analytical
Spatial OLAP (SOLAP) operators over the model including giving formal se-
mantics of the operators. The operators support advanced analytical queries
over MD geospatial SW data. Third, we provide algorithms for generating
spatially extended SPARQL queries for individual and nested SOLAP oper-
ators, which allows writing SOLAP queries without knowledge of RDF/S-
PARQL. Fourth, we validate the vocabulary, operators, and query generation
algorithms by applying them to a realistic use case.

Paper structure. The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 defines preliminary spatial and OLAP
concepts. Section 4 defines the QB4SOLAP vocabulary, while Section 5 de-
fines the SOLAP operators. Section 6 provides the SPARQL query generation
algorithms. Finally, Section 7 concludes the paper and points to future re-
search.

2 Related work

DW and OLAP technologies have been successful for analyzing large vol-
umes of data [3]. Combining DW/OLAP technologies with RDF data makes
RDF data sources more easily available for interactive analysis. The following
work concerns the integration of DW/OLAP with the SW.

DW/OLAP and Semantic Web. Using OLAP to analyze SW data is consid-
ered in several approaches. Kämpgen et al. propose an extended model [4]
on top of the RDF Data Cube Vocabulary (QB) [5] for interacting with statisti-
cal linked data via OLAP operations directly in SPARQL. However, it has the
inherent limitations of QB and thus cannot support OLAP dimensions with
hierarchies and levels, and built-in aggregate functions. Etcheverry et al. in-
troduce QB4OLAP [6] as an extended vocabulary based on QB, with a full
MD metamodel, supporting OLAP operations directly over RDF data with
SPARQL queries. Nath et al. considers creating an Extract–Transform–Load
(ETL) framework for semantic data warehouses [7]. Varga et al. presents a
comprehensive methodology for dimensional enrichment of statistical LOD
by using QB4OLAP and provide a SW-based OLAP engine for traditional

137

Paper C.

DW users [8]. However, these approaches and vocabularies support neither
spatial DWs nor provide SOLAP operators for the SW.

Spatial DW and OLAP. The constraint representation of spatial data has been
the focus in many fields from databases to AI [9]. Extending OLAP with spa-
tial features has also attracted the attention of the data warehousing commu-
nity. Bédard et al. first introduced the term SOLAP [10] in 1997. SOLAP sys-
tems [11, 12] since then, have significantly been improved. Respectively, vari-
ous papers improve the spatial aggregation functions and techniques [13–16].

Several conceptual models are proposed for representing spatial data in
data warehouses. Stefanovic et al. [17] considers constructing and materi-
alizing spatial cubes in their proposed model. The MultiDim conceptual
model, introduced by Malinowski and Zimányi [18], copes with spatial fea-
tures and is extended in [19], to include complex geometric features (contin-
uous fields), with a set of operations and an MD calculus supporting spatial
data types. Gómez et al. [20] propose an algebra and a general framework for
OLAP cube analysis on discrete and continuous spatial data. Even though
spatial data warehousing is thus widely studied, those studies are limited
to traditional non-semantic spatial data warehouses and SOLAP techniques.
The work above neither considered semantic web data nor spatial analytical
querying in SPARQL.

Geospatial Semantic Web. The Open Geospatial Consortium (OGC) has pro-
posed GeoSPARQL [21] as a vocabulary to represent and query spatial data
in RDF using an extension to SPARQL. Kyzirakos et al. present a comprehen-
sive survey of data models and query languages for linked geospatial data
in [22], and propose a semantic geospatial data store called Strabon in [23].
Strabon has an extensive query language called stSPARQL , which is however
limited to the specific environment. LinkedGeoData is a significant contribu-
tion on interactive transformation of OpenStreetMap5 data to RDF data [24].
GeoKnow [25] is a more recent project with focus on linking geospatial data
from heterogeneous sources. Andersen et al. considers publishing/convert-
ing open spatial data as Linked Open Data [26]. However, none of these
works consider the MD aspects of geospatial data or allow querying with SO-
LAP on the SW, unlike QB4SOLAP. The QB4SOLAP vocabulary is validated
with both the running example use case, the GeoNorthwind data cube, as
well as a substantial real-world use case, the GeoFarmHerdState data cube [2].
GeoFarmHerdState is a spatial data cube about livestock holdings in Den-
mark, which integrates environmental and geographical open data from sev-
eral sources, thus enabling a range of interesting SOLAP queries.

In summary, none of the related work, which is surveyed in the fields
of “DW/OLAP and the SW", “Spatial DW and OLAP", and “Geospatial Se-
mantic Web" provides a substantial foundation for modeling and querying

5http://www.openstreetmap.org

138

http://www.openstreetmap.org

3. Preliminary concepts

spatial data warehouses on the Semantic Web, unlike the QB4SOLAP vocab-
ulary, SOLAP operators, and SPARQL generation algorithms presented in
this paper.

3 Preliminary concepts

In this section, we describe the spatial objects and the spatial operations that
manipulate them. Then, we introduce the data cubes and spatial enhance-
ment on them as spatial data cubes. Finally, we show the traditional OLAP
operations, which manipulate data cubes, and explain the Spatial OLAP (SO-
LAP) operators, which manipulate spatial data cubes.

21 10 18 35

27 14 11 30

26 12 35 32

14 20 47 31

24 18 28 14
33 25 23 25
12 20 24 33
21 10 18 35

35
33
25
14

30
14
23
18

32
12
20
17

31
10
33
18

Q1

Q2

Q3

Q4

Bremen

Aarhus
Hamburg

Odense

Beverages
SeafoodCereals

Condiments
Product (Category)

T
im

e
 (

Q
u

a
rt

e
r)

Cu
st

om
er

 (
Ci

ty
)

dimensions

measure
values

Fig. C.2: A three-dimensional cube for Sales data

33 30 42 68

39 26 41 44

30 22 46 44

25 29 49 41

57 43 51 39
33 30 42 68

68
39

44
41

44
37

41
51T

im
e
 (

Q
u

a
rt

e
r)

Q1

Q2

Q3

Q4

Germany
DenmarkCu

st
om

er

(C
ou

nt
ry

)

Beverages
Cereals Seafood

Condiments
Product (Category)

Fig. C.3: Roll-up to the Country
level

3.1 Spatial objects

A spatial object represents a real-world object whose geographic features are
important for an application. These geographic features are encoded using
the geometry data type. Point, Line, and Polygon are the basic instantiable
types of the geometry data type. Coordinates for geometry data type are
generally given in 2-dimensions with X, Y values. Geometries are associated
with a spatial reference system (SRS), which describes the coordinate space in
which the geometry is defined. There are several SRSs and each of them are
identified with a spatial reference system identifier (SRID). The World Geodetic
System (WGS) is the most well-known SRS and the latest version is called
WGS84, which is also used in our use case.

3.2 Spatial operations

There is a set of spatial operations that can be applied on spatial data. We
grouped these operations into classes, based on the common functionality of

139

Paper C.

the operators. These classes are defined next.

Definition 1. (Spatial aggregation) The operators in the spatial aggregation
class Sagg aggregate two or more spatial objects and return a new spatial
object. Union, Intersection, ConvexHull, and MinimumBoundingRectangle
(MBR) are example operators of this class. Some spatial functions such as
ConvexHull or MBR can also be interpreted as unary spatial functions with
a single parameter, but here we only consider the aggregate versions of the
functions. In order to make this clear, the aggregate versions of those func-
tions are given with a prefix “Aggr" in the QB4SOLAP vocabulary (Fig. C.6).
For our purpose, it is enough to group all spatial aggregate functions into a
single group, although more fine-grained classification proposals for spatial
aggregate functions exist [15].

Definition 2. (Topological relations) The operators in the topological rela-
tion class Trel are commonly expressed in the RCC86 and DE-9DIM7 mod-
els [27, 28]. Topological relations are Boolean predicates that specify how
two spatial objects are related to each other. Examples of topological rela-
tions are Intersects, Disjoint, Equals, Overlaps, Contains, Within, Touches,
Covers, CoveredBy, and Crosses.

Definition 3. (Numeric operations) The operators in the numeric operation
classNop take one or more spatial objects and return a numeric value. Perime-
ter, Area, NoOfInteriorRings, Distance, HaversineDistance, and NoOfGeome-
tries are example operators of this class.

3.3 Data cubes

Data warehouses store large volumes of data for decision support. They are
based on the multidimensional model, which views data in an n-dimensional
space, usually called a data cube. The cells of the cube represent the observa-
tion facts for analysis with a set of attributes called measures (e.g., a sales fact
cube with measures product quantity and price). Facts are linked to dimen-
sions, which provide perspectives to analyze data (e.g., sales date, product,
and customer location). Dimensions are organized into hierarchies, which al-
low users to aggregate measures at various levels of detail. Hierarchies are
composed of levels and there is always a unique top level All with just one
member all. Levels have a set of attributes that describe the characteristics of
the level members.

6RCC8 (Region Connection Calculus) describes regions in Euclidean space or in a topological
space by their possible relations to each other.

7DE-9DIM (Dimensionally Extended Nine-Intersection Model) is a topological model that
describes spatial relations of two geometries in two dimensions.

140

3. Preliminary concepts

Product

Category

All

(a) Categories hierarchy in
the Product dimension

Time

Month

Quarter

Year

All

(b) Calendar hierarchy in the
Time dimension

Customer

State

Country

All

Supplier



City

(c) Spatial Geography hierarchies in the
Customer and Supplier dimensions

Customer

CityClosest
Supplier

State

Country

All 

(d) Dynamic spatial Geography hier-
archy in the Customer dimension

Fig. C.4: Dimension hierarchies

An example of a data cube with three dimensions (Customer, Time, and
Product) and one measure (Quantity) is given in Fig. C.2. Each cell in the
cube is an observation fact, which is characterized by dimension and measure
values. The hierarchies of this cube are given in Fig. C.4(a)–(c). Thus, in the
cube shown in Fig. C.2, the Product dimension is given at the Category level,
the Time dimension at the Quarter level, and the Customer dimension at
the City level. Measure values represent the measure Quantity of the sold
products.

141

Paper C.

3.4 Spatial data cubes

A spatial data cube contains both conventional and spatial dimensions. A
spatial dimension is a dimension, which includes at least one spatial level in
which the application should store the spatial characteristics of the members.
Similarly, a hierarchy is a spatial hierarchy if it has at least one spatial level.
Spatial characteristics of the levels are captured by their geometries and can
be recorded in the spatial attributes of the level. A spatial fact is a fact that
relates several dimensions in which, two or more are spatial.

For example, consider a Sales spatial fact, which has spatial dimensions Cus-
tomer and Supplier, each with a spatial hierarchy Geography composed of spa-
tial levels City → State → Country → All (Fig. C.4(c)). These spatial levels
record the spatial characteristics of its members with spatial attributes: Cus-
tomer, Supplier, and City using a point spatial data type, whereas State and
Country with a multi-polygon spatial data type.

Following the rules of spatially extended MultiDim conceptual model [19],
MD concepts such as levels are considered to be spatial, only if they record
the spatial characteristics of the concepts as geometries. For instance, “conti-
nent" might be considered as a spatial object, in theory or in other vocabular-
ies. However, if there is no information about the geometry of the continents
in the schema and in the instance data, continent does not become a spatial
level (Ext. 7), although continent might still be a traditional level (Def. 7) of
the spatial hierarchy Geography with alphanumeric attributes (i.e., continent
name, code, and etc.).

Spatial data cubes typically have spatial measures, which are also repre-
sented by a spatial data type. An example is a SalesPoint measure that stores
the location of sales. Fig. C.7 shows the multidimensional schema of the
GeoNorthwind data warehouse, which is used as running example in the
paper.

3.5 OLAP operators

OLAP operators are used for expressing queries over data cubes. The tradi-
tional OLAP operators are given next.

The slice operator removes a dimension from a cube by selecting one in-
stance in a dimension level. An example is “slice on City is equal to Odense”.

The dice operator selects the cells in a cube that satisfy a Boolean condi-
tion. An example is “dice on the first and last quarter of the year”.

The roll-up operator aggregates measures along a hierarchy to obtain data
at a coarser granularity. An example is “roll-up to the Country level” (Fig. C.3).

Finally, the drill-down operator disaggregates measures along a hierarchy
to obtain data at a finer granularity. It is the inverse operation of roll-up.
Starting from the cube in Fig. C.3, an example is “drill-down to the City

142

3. Preliminary concepts

level”.

3.6 Spatial OLAP operators

Spatial OLAP (SOLAP) operates on spatial data cubes. SOLAP increases the
analytical capabilities of OLAP by taking into account the spatial information
in the cube. SOLAP operators involve spatial conditions or spatial functions by
using the spatial operators defined in Sect. 3.1. Spatial conditions specify
constraints on the geometries associated to cube members or measures, while
spatial functions derive new data from the cube, which can be used, e.g., to
derive dynamic spatial hierarchies or levels, as explained in the following
example. Spatial extensions of the common OLAP operators are formally
defined in Sect. 5.

Table C.1: Sample (instance) data for the Sales cube

Customer City Supplier Total
SalesCustomer s1 s2 s3

Düsseldorf
c1 8 – 3 11
c2 10 – – 10

Dortmund
c3 7 4 – 11
c4 – 20 3 23

Münster c5 – – 30 30

Table C.2: Roll-up of the Sales cube

Customer
City Sales

Düsseldorf 21
Dortmund 34
Münster 30

Table C.3: S-Roll-up of the Sales cube

CityClosest
Supplier Sales

Düsseldorf 25
Dortmund 20
Münster 33

Table C.4: Customer to Supplier distance

Supplier City
Supplier

Customer City Düsseldorf Dortmund Münster
Customer s1 s2 s3

Düsseldorf
c1 15 km 45 km 30 km
c2 15 km 60 km 60 km

Dortmund
c3 15 km 30 km 45 km
c4 45 km 15 km 15 km

Münster c5 60 km 45 km 15 km

143

Paper C.

Fig. C.5: Example map of Sales (instance) data

Example 1. Consider the summarized data for the Sales cube given in Ta-
ble C.1, where a ‘–’ is used if there are no sales to customers from the corre-
sponding suppliers. The data in Table C.1 is shown on the map in Fig. C.5,
where the arrows on the map between the supplier and customer locations
represent the distance. The quantities of sold products are shown along these
arrows.

The hierarchies in Fig. C.4(a)–(c) can be used to perform classical roll-up
operations, where measures are aggregated from a child to a parent level. An
example of such a roll-up operator is expressed by the query “total sales to
customers by city”, whose results is given in Table C.2.

On the other hand, as shown in Table C.4 and Fig. C.5, some customers
may be closer to suppliers from other cities. For example, customer c3 is re-
lated to its city Dortmund by using traditional Geography hierarchy, but the
customer is closer to the city Düsseldorf of supplier s1. Similarly, customer
c4 in city Dortmund is closer to the city Münster of supplier s3. Fig. C.4(d)
shows a new dynamic spatial hierarchy that can be obtained with a spatial
roll-up (s-roll-up) operator that expresses the query “total sales to customers
by city of the closest supplier”. Such queries are not possible to express on
conventional hierarchies with traditional OLAP.

The hierarchy in Fig. C.4(d) is created on the fly with the help of a spatial
function computing the distance between customer and supplier locations.
Therefore, using the s-roll-up operator, sales to customers are aggregated by
city of the closest suppliers, where Dortmund has a significant drop off in

144

4. The QB4SOLAP vocabulary

the quantity of the sales from 34 (Table C.2) to 20 (Table C.3).

4 The QB4SOLAP vocabulary

In this section, we formally define how to represent (spatial) data cubes in
RDF. We use as running example the GeoNorthwind data warehouse whose
conceptual schema is given in Fig. C.7.

Fig. C.6: The QB4SOLAP vocabulary

The QB4OLAP [6] vocabulary allows to define cube schemas and cube in-
stances as RDF triples. QB4OLAP is an extension of the RDF Data Cube
Vocabulary (QB) [5] with multidimensional concepts in order to be able to
support OLAP operations directly over RDF data with SPARQL queries. We
extended QB4OLAP (v1.2)8 with spatial concepts to give QB4SOLAP [1]. We
based our extension on GeoSPARQL [29], a standard from the Open Geospa-
tial Consortium (OGC) for representing and querying geospatial linked data
for the Semantic Web. Since our base vocabulary QB4OLAP uses the Mul-
tiDim conceptual model to describe the multidimensional concepts, we base
our definitions on a spatially extended version of MultiDim model [19] for

8QB4OLAP v1.2: https://github.com/lorenae/qb4olap/blob/master/rdf/qb4olap.1.2.
ttl

145

https://github.com/lorenae/qb4olap/blob/master/rdf/qb4olap.1.2.ttl
https://github.com/lorenae/qb4olap/blob/master/rdf/qb4olap.1.2.ttl

Paper C.

spatial extension of the MD concepts. Fig. C.6 shows the QB4SOLAP vocab-
ulary for representing a spatial cube schema and spatial cube members as
RDF triples. A cube schema defines the structure of the cube in terms of di-
mension levels, measures, aggregation functions (e.g., SUM, AVG, COUNT)
on measures, spatial aggregation functions (Sagg in Def. 1) on spatial mea-
sures, dimensions hierarchies, and parent–child relationships between levels
(including their cardinality and topological relationships for spatial levels).
These schema level metadata are used to define multidimensional datasets in
RDF. Cube members are the instances of a cube schema that represent level
members, facts, and measure values. As we will show in Sect. 6, we use the
schema level metadata to produce SPARQL queries that implement SOLAP
operators on cube members.

Terms with capitalized initials and non-italic font in Fig. C.6 represent
RDF classes, terms with capitalized initials and italic font represent RDF in-
stances, and terms with non-capitalized initials represent RDF properties.
Classes in external vocabularies are depicted in light gray background and
font. RDF Cube (QB), QB4OLAP, and QB4SOLAP classes are shown, respec-
tively, with white, light gray, dark gray backgrounds. Original QB terms are
prefixed with qb:9. QB4OLAP and QB4SOLAP terms are prefixed, respec-
tively, with qb4o:10 and qb4so:11. Spatial classes and properties are prefixed
with geo:12.

In what follows, we first define formally RDF triples, and then discuss
how to describe (spatial) multidimensional data using the QB4OLAP Vocab-
ulary and QB4SOLAP Vocabulary.

Definition 4. (RDF triple) An RDF triple t = (s, p, o) consists of three compo-
nents: s is the subject, p is the predicate, and o is the object. RDF triples are
defined over

T = (I ∪ B)× I × (I ∪ B ∪ L)

where I is the set of IRIs, B is the set of blank nodes, and L is the set of literals.

A set of RDF triples is referred to as a graph. We denote a QB4SOLAP
graph by G, where G ⊂ T .The cube schema and cube instances are subsets
of this graph and are denoted, respectively, by GS and G I , where GS ⊂ G and
G I ⊂ G.

Given an MD element x ∈ (I ∪B) in a schema graph or instance graph G,
we define by Gx the subgraph of G for x, where Gx ⊂ G. We define the func-
tion id(x) : G → I , that given a MD element x returns its identifier I from
the graph G. We use superscript notation to indicate the type of the identifier

9RDF cube: http://purl.org/linked-data/cube#
10QB4OLAP: http://purl.org/qb4olap/cubes#
11QB4SOLAP: http://w3id.org/qb4solap#
12GeoSPARQL:http://www.opengis.net/ont/geosparql#

146

http://purl.org/linked-data/cube#
http://purl.org/qb4olap/cubes#
http://w3id.org/qb4solap#
http://www.opengis.net/ont/geosparql#

4. The QB4SOLAP vocabulary

from the cube schema graph (GS) and cube instance graph (G I), e.g., idS(x)
for a cube schema identifier and idI(x) for a cube instance identifier.

4.1 Defining spatial data cube schemas with QB4SOLAP

An n-dimensional cube schema CS is a tuple CS = (D, M, F), with a set of
dimensions D, a set of measures M, and a fact F. A dimension d ∈ D has a
set of hierarchies H(d). Each hierarchy h ∈ H(d) is organized into a set of
levels L(h). Each level l ∈ L(h) has a set of attributes A(l). Each attribute
a ∈ A(l) is defined over a domain. Each measure m ∈ M is also defined over
a domain.

We define next how to represent a cube schema CS in RDF by using
the QB4SOLAP Vocabulary. We denote the RDF graph of the cube schema
GS. In the examples we prefix the elements of GS with gnw:. We follow a
similar naming convention for schema elements as in QB4OLAP. If there is a
possibility of confusion for different MD concepts with same schema name,
i.e., customer dimension and customer level, we suffix the dimensions with
Dim (e.g., gnw:customerDim for dimension, and gnw:customer for level). The
subgraph of GS that refers to a specific schema element x is denoted by GS

x
and the unique identifier of x is denoted by idS(x).

Definition 5. (Dimensions) An n-dimensional cube schema CS has a set of
dimensions D = {d1, . . . , dn} and each dimension di has a set of hierarchies
H(di) (Def. 6). Each dimension di ∈ D is defined in the cube schema graph
GS with qb:DimensionProperty. Each hierarchy h ∈ H(di) is linked to its
dimension di with the qb4o:hasHierarchy property. The RDF graph formu-
lation of the dimensions D is represented as

GS
D =

n⋃
i=1
GS

di

where

GS
di
=

{(idS(di) rdf:type qb:DimensionProperty)}∪⋃
h∈H(di)

{(idS(di) qb4o:hasHierarchy idS(h))}

Extension 5. (Spatial dimensions) A dimension is spatial if it has at least one
spatial level. A spatial dimension dis belongs to the set of spatial dimensions
Ds, which is a subset of the set of dimensions D, such that dis ∈ Ds ⊆ D.

147

Paper C.

Product

ProductID

ProductName

QuantityPerUnit

UnitPrice

Discontinued

Supplier

SupplierID

SupplierName

Address

PostalCode

Category

CategoryID

CategoryName

Description

Customer

CustomerID

CustomerName

Address

PostalCode

Employee

EmployeeID

FirstName

LastName

Title

BirthDate

HireDate

City

CityName

C
a

te
g

o
ri
e

s

G
e

o
g

ra
p

h
y

Country

CountryName

CountryCode

CountryCapital

CapitalGeo

Population

Subdivision

State

StateName

EnglishStateName

StateType

StateCode

StateCapital

CapitalGeo

Time

Date

DayNoWeek

DayNameWeek

DayNoMonth

DayNoYear

WeekNoYear

Calendar

Month

MonthNo

MonthName

Quarter

QuarterNo

Year

YearNo

DueDate

Order
Date

G
e

o
g

ra
p

h
y

Quantity

UnitPrice: Avg +!

Discount: Avg +!

SalesAmount

Freight

SalesPoint

Sales

Fig. C.7: Conceptual multidimensional schema of the GeoNorthwind data warehouse

Example 2. The triples below show how some of the dimensions of the Geo-
Northwind DW (Fig. C.7) are represented in RDF using Def. 5 and Ext. 5. As
we will see below, the Customer and Supplier dimensions are spatial as they
both have a spatial hierarchy Geography.

Dimensions

gnw:customerDim rdf:type qb:DimensionProperty ;

qb4o:hasHierarchy gnw:customerGeography .

gnw:supplierDim rdf:type qb:DimensionProperty ;

qb4o:hasHierarchy gnw:supplierGeography .

gnw:productDim rdf:type qb:DimensionProperty ;

qb4o:hasHierarchy gnw:categories .

gnw:employeeDim rdf:type qb:DimensionProperty .

Definition 6. (Hierarchies) A dimension d has a set of hierarchies H(d) =
{h1, . . . , hm}, where each hierarchy hi has a set of levels L(hi) (Def. 7). Each hi-

148

4. The QB4SOLAP vocabulary

erarchy hi ∈ H(d) is defined in the cube schema graph GS with the qb4o:Hier�
archy predicate and is linked with its dimension d by the qb4o:inDimension

property. Each level l ∈ L(hi) that belongs to a hierarchy hi is defined with
the qb4o:hasLevel property. The RDF graph formulation of the hierarchies
H(d) is represented as

GS
H(d) =

m⋃
i=1
GS

hi

where

GS
hi
= {(idS(hi) rdf:type qb4o:Hierarchy)} ∪

{(idS(hi)qb4o:inDimension idS(d))}∪⋃
l∈L(hi)

{(idS(hi) qb4o:hasLevel idS(l))}

Extension 6. (Spatial hierarchies) A hierarchy is spatial if it contains at least
one spatial level. A spatial hierarchy his belongs to the set of spatial hierar-
chies Hs(d), which is a subset of the set of hierarchies H(d), such that his ∈
Hs(d) ⊆ H(d).

Example 3. The triples below show how some of the hierarchies from the
GeoNorthwind DW (Fig. C.7) are represented in RDF using Def. 6 and Ext. 6.
As we will see below, the Geography hierarchies in the Customer and Sup-
plier dimensions are spatial since they have spatial levels (City, State, etc.)

Hierarchies

gnw:customerGeography rdf:type qb4o:Hierarchy ;

qb4o:inDimension gnw:customerDim ;

qb4o:hasLevel gnw:customer, gnw:city,

gnw:state, gnw:country .

gnw:supplierGeography rdf:type qb4o:Hierarchy ;

qb4o:inDimension gnw:supplierDim ;

qb4o:hasLevel gnw:supplier, gnw:city,

gnw:state, gnw:country .

gnw:categories rdf:type qb4o:Hierarchy ;

qb4o:inDimension gnw:productDim ;

qb4o:hasLevel gnw:product, gnw:category .

Definition 7. (Levels) A hierarchy h has a set of levels L(h) = {l1, . . . , lk} and
each level li has a set of attributes A(li) (Def. 8). Each level li ∈ L(h) is de-
fined in the cube schema graph GS with the qb4o:LevelProperty predicate.
Each attribute a ∈ A(li) is linked to its level li with the qb4o:hasAttribute
property. The RDF graph formulation of the levels L(h) is represented as

GS
L(h) =

k⋃
i=1
GS

li

149

Paper C.

where

GS
li
= {(idS(li) rdf:type qb4o:LevelProperty)} ∪⋃
a∈A(li)

{(idS(li) qb4o:hasAttribute idS(a))}

Extension 7. (Spatial levels) A level is spatial if it has an associated geometry.
A spatial level lis belongs to the set of spatial levels Ls(h), which is a subset
of the set of levels L(h), such that lis ∈ Ls(h) ⊆ L(h). The geometry of a spa-
tial level is defined in the cube schema graph GS with the geo:hasGeometry

property The RDF graph formulation of the spatial levels Ls(h) is represented
as

GS
Ls(h)

=
k⋃

i=1
GS

lis

where

GS
lis

= {(idS(lis) rdf:type qb4o:LevelProperty)} ∪

{(idS(lis) geo:hasGeometry geo:Geometry)} ∪⋃
a∈A(lis)

{(idS(lis) qb4o:hasAttribute idS(a))}

Example 4. The triples below show how some of the levels of the GeoNorth-
wind DW (Fig. C.7) are represented in RDF using Def. 7 and Ext. 7. Note
that the Customer and City levels are spatial as they have a geometry that is
specified at the level definition.

Levels

gnw:customer rdf:type qb4o:LevelProperty ;

qb4o:hasAttribute gnw:customerID ;

qb4o:hasAttribute gnw:customerName ;

qb4o:hasAttribute gnw:address ;

qb4o:hasAttribute gnw:postalCode ;

geo:hasGeometry gnw:customerGeometry .

gnw:city rdf:type qb4o:LevelProperty ;

qb4o:hasAttribute gnw:cityName ;

geo:hasGeometry gnw:cityGeometry .

Definition 8. (Attributes) A level l has a set of attributes A(l) = {a1, . . . , ap},
which defines the characteristics of the level members. One among these
attribute, denoted as aID, specifies a surrogate key for the level, i.e., the
value of aID uniquely identifies the members of the level. For simplicity,
we assume that it is the first attribute in the set of attributes A(l), i.e.,

150

4. The QB4SOLAP vocabulary

a1 = aID. Each attribute ai ∈ A(l) is defined in the cube schema graph
GS with the qb4o:LevelAttribute predicate and is linked to its level l with
the qb4o:inLevel property. Each attribute ai is defined as ranging over XSD
literals L using the rdfs:range property. The RDF graph formulation of the
attributes A(l) is represented as

GS
A(l) =

p⋃
i=1
GS

ai

where

GS
ai
=

{(idS(ai) rdf:type qb4o:LevelAttribute)}∪

{(idS(ai) qb4o:inLevel idS(l))} ∪

{(idS(ai) rdfs:range L)}

Extension 8. (Spatial attributes) An attribute is spatial if it is defined over a
spatial domain. A spatial attribute ais belongs to the set of spatial attributes
As(l), which is a subset of the set of attributes A(l), such that ais ∈ As(l) ⊆
A(l). The RDF graph formulation of the spatial attributes is similar as in
Def. 8. However, the attribute must range over spatial literals Ls i.e., a well-
known text literal (WKT) from OGC schemas. Further, the domain of the
attribute should be specified with the rdfs:domain property, which must be
a geometry. Finally, the attribute must be specified as spatial object with
the rdfs:subclassOf property. The RDF graph formulation of the spatial
attributes As(l) is represented as

GS
As(l)

=
p⋃

i=1
GS

ais

where

GS
ais

=

{(idS(ais) rdf:type qb4o:LevelAttribute)}∪

{(idS(ais) qb4o:inLevel idS(l))} ∪

{(idS(ais) rdfs:range Ls)} ∪

{(idS(ais) rdfs:subPropertyOf geo:Geometry)}∪

{(idS(ais) rdfs:subClassOf geo:SpatialObject)}

Example 5. The triples below show how some of the attributes of the GeoNorth-
wind DW (Fig. C.7) are represented in RDF using Def. 8 and Ext. 8. Note that

151

Paper C.

the Customer level has a spatial attribute (Customer geometry). It is repre-
sented as a WKT literal that defines a Point type from the Geometry class,
which is a subclass of Spatial Object.

Attributes

gnw:customerID rdf:type qb4o:LevelAttribute ;

qb4o:inLevel gnw:customer;

rdfs:range xsd:Integer .

gnw:customerName rdf:type qb4o:LevelAttribute ;

qb4o:inLevel gnw:customer;

rdfs:range xsd:String .

gnw:address rdf:type qb4o:LevelAttribute ;

qb4o:inLevel gnw:customer;

rdfs:range xsd:String .

gnw:postalCode rdf:type qb4o:LevelAttribute ;

qb4o:inLevel gnw:customer;

rdfs:range xsd:String .

gnw:customerGeometry rdf:type

qb4o:LevelAttribute ;

rdfs:subPropertyOf geo:Geometry ;

qb4o:inLevel gnw:customer ;

rdfs:range geo:wktLiteral;

rdfs:domain geo:Point ;

rdfs:subClassOf geo:SpatialObject .

Definition 9. (Hierarchy steps) A hierarchy h has a set of hierarchy steps
HS(h) = {hs1, . . . , hsq}, which define the structure of the hierarchy in relation
with its corresponding levels. A hierarchy step hsi = (lc, lp, card) ∈ HS(h)
entails a roll-up relation between a lower (child) level lc to an upper (parent)
level lp with a cardinality card. The cardinality card ∈ {1-1, 1-n, n-1, n-n}
describes the number of members in one level that can be related to a member
in the other level for both the child and the parent levels.

Each hierarchy step hsi is defined in the cube schema graph GS as a blank
node _:hsi ∈ B with the qb4o:HierarchyStep predicate. Each hierarchy
step is linked to its hierarchy with the qb4o:inHierarchy property. The child
and parent levels are linked in a hierarchy step with the qb4o:childLevel

and qb4o:parentLevel properties, respectively. The cardinality card of a
hierarchy step is defined by the qb4o:pcCardinality property. The RDF
graph formulation of the hierarchy steps HS(h) is represented as

GS
HS(h) =

q⋃
i=1
GS

hsi

152

4. The QB4SOLAP vocabulary

where

GS
hsi

=

{(_:hsi rdf:type qb4o:HierarchyStep)} ∪

{(_:hsi qb4o:inHierarchy idS(h))} ∪

{(_:hsi qb4o:parentLevel idS(lp))} ∪

{(_:hsi qb4o:childLevel idS(lc))} ∪

{(_:hsi qb4o:pcCardinality idS(card))}

Extension 9. (Spatial hierarchy steps) A hierarchy step is spatial if it relates
a spatial child level lcs and a spatial parent level lps , in which case it en-
tails a topological relationships between these spatial levels. A spatial hier-
archy step is then a tuple hsis = (lcs , lps , card, topoRel) where the topolog-
ical relation topoRel belongs to the Trel class (Def. 2). The topological re-
lation between parent-child levels of a spatial hierarchy step is defined by
the qb4so:pcTopoRel property. The RDF graph formulation of the spatial
hierarchy steps HSs(h) (w.r.t. Def. 9) is represented as

GS
HSs(h)

=
q⋃

i=1
GS

hsis

where

GS
hsis

= GS
hsi
∪

{(_:hsi qb4so:pcTopoRel idS(topoRel))}

Example 6. The triples below show how the hierarchy steps of the Geogra-
phy spatial hierarchy in the Customer dimension of the GeoNorthwind DW
(Fig. C.7) are represented in RDF using Def. 9 and Ext. 9. Note that all hier-
archy steps are spatial and have an associated topological relation.

Hierarchy steps

_:customerGeography_hs1 a qb4o:HierarchyStep ;

qb4o:inHierarchy gnw:customerGeography ;

qb4o:childLevel gnw:customer ;

qb4o:parentLevel gnw:city ;

qb4o:pcCardinality qb4o:ManyToOne ;

qb4so:pcTopoRel qb4so:Within .

_:customerGeography_hs2 a qb4o:HierarchyStep ;

qb4o:inHierarchy gnw:customerGeography ;

qb4o:childLevel gnw:city ;

qb4o:parentLevel gnw:state ;

qb4o:pcCardinality qb4o:ManyToOne ;

153

Paper C.

qb4so:pcTopoRel qb4so:Within .

_:customerGeography_hs3 a qb4o:HierarchyStep ;

qb4o:inHierarchy gnw:customerGeography ;

qb4o:childLevel gnw:state ;

qb4o:parentLevel gnw:country ;

qb4o:pcCardinality qb4o:ManyToOne ;

qb4so:pcTopoRel qb4so:Within .

Definition 10. (Partial order on levels) The hierarchy steps HS(h) of a hierar-
chy h define a partial order on the levels l ∈ L(h). The reflexive and transitive
closure of the partial order is denoted as v, with a unique base level (lb) and
a unique top level (All), where all levels l are such that lb v l, and l v All.

Definition 11. (Measures) An n-dimensional cube schema has a set of mea-
sures M = {m1, . . . , mr}, which record the values of a phenomena being ob-
served. Each measure mi ∈ M is defined in the cube schema graph GS with
the qb:MeasureProperty predicate. Similarly to attributes, each measure mi
is defined as ranging over XSD literals L with the rdfs:range property. The
RDF graph formulation of the measures M is represented as

GS
M =

r⋃
i=1
GS

mi

where
GS

mi
=

{(idS(mi) rdf:type qb:MeasureProperty)}∪

{(idS(mi) rdfs:range L)}

Extension 11. (Spatial measures) A measure is spatial if it is defined over a
spatial domain as in spatial attributes (Ext. 8). A spatial measure mis belongs
to the set of spatial measures Ms, which is a subset of the set of measures
M, such that mis ∈ Ms ⊆ M. The RDF formulation of the spatial measures is
similar as in Def. 11. However, the domain should range over spatial literals
Ls. The RDF graph formulation of the spatial measures Ms (w.r.t. Def. 11) is
represented as

GS
Ms

=
r⋃

i=1
GS

mis

where
GS

mis
=

{(idS(mis) rdf:type qb:MeasureProperty)}∪

{(idS(mis) rdfs:range Ls)} ∪ {(idS(mis)

rdfs:subClassOf geo:SpatialObject)}

154

4. The QB4SOLAP vocabulary

Example 7. The triples below show how the measures of the GeoNorthwind
DW (Fig. C.7) are represented in RDF using Def. 11 and Ext. 11. Note that
SalesPoint is a spatial measure, which records the location of the stores in
which the sales occurred. It is defined over Geometry domain as a Point type
with WKT literal.

Measures

gnw:quantity rdf:type qb:MeasureProperty ;

rdfs:range xsd:integer .

gnw:unitPrice rdf:type qb:MeasureProperty ;

rdfs:range xsd:decimal .

gnw:discount rdf:type qb:MeasureProperty ;

rdfs:range xsd:decimal .

gnw:salesAmount rdf:type qb:MeasureProperty ;

rdfs:range xsd:decimal .

gnw:freight rdf:type qb:MeasureProperty ;

rdfs:range xsd:decimal .

gnw:salesPoint rdf:type qb:MeasureProperty ;

rdfs:domain geo:Point;

rdfs:range geo:wktLiteral ;

rdfs:subClassOf geo:SpatialObject .

Definition 12. (Fact) In an n-dimensional cube schema CS = (D, M, F), the
fact F defines the structure of a cube with the qb:DataStructureDefinition

property. The dimensions are given as components of the fact and are de-
fined with the qb4o:level property. We assume that the fact F links the
dimensions at the lowest granularity level, therefore qb4o:level links the
lowest (base) level lb of each dimension di, which is denoted as lb(di). The
cardinality card of the relationship between a dimension level and a fact is
represented with the qb4o:cardinality property. Similarly, the measures are
given as components of the fact and are defined with the qb:measure prop-
erty. The aggregate function aggr associated to each measure is represented
with the qb4o:aggregateFunction property. The RDF graph formulation of
the fact F is given in the following equation.

GS
F = {(idS(F)

rdf:type qb:DataStructureDefinition)}∪⋃
di∈D
{(idS(F) qb:component

[qb4o:level idS(lb(di));

qb4o:cardinality idS(card)])}∪⋃
mi∈M

{(idS(F) qb:component

[qb:measure idS(mi);

qb4o:aggregateFunction idS(aggr)])}

155

Paper C.

Extension 12. (Spatial fact) A fact is spatial if it relates several levels, where
two or more are spatial. A spatial fact may also have a topological relation
topoRel that must be satisfied by the related spatial levels, which is repre-
sented with qb4so:topologi�

calRelation. This object property allows to specify a topological relation in
fact-level relationship of spatial facts. The RDF graph formulation of such a
fact is simply by adding the property of fact-level topological relation con-
secutively to the cardinality property as given in the following equation.

GS
Fs
= {(idS(Fs)

rdf:type qb:DataStructureDefinition)}∪⋃
di∈D
{(idS(Fs) qb:component

[qb4o:level idS(lb(di));

qb4o:cardinality idS(card);

qb4so:topologicalRelation idS(topoRel)]}∪⋃
mi∈M

{(idS(F) qb:component

[qb:measure idS(mi);

qb4o:aggregateFunction idS(aggr)])}

Example 8. The triples below show how the fact of the GeoNorthwind DW
(Fig. C.7) is represented in RDF using Def. 12. Sales fact does not impose any
topological relation between its spatial dimensions Supplier and Customer.
SalesPoint is a spatial measure, which has a spatial aggregate function (Ag-
grConvexHull).

Cube definition

gnw:GeoNorthwind rdf:type

qb:DataStructureDefinition ;

Lowest level for each dimension

qb:component [qb4o:level gnw:customer ;

qb4o:cardinality qb4o:ManyToOne] ;

qb:component [qb4o:level gnw:supplier ;

qb4o:cardinality qb4o:ManyToOne] ;

qb:component [qb4o:level gnw:product ;

qb4o:cardinality qb4o:ManyToOne] ;

...

Cube measures

qb:component [qb:measure gnw:quantity ;

qb4o:aggregateFunction qb4o:Sum] ;

qb:component [qb:measure gnw:unitPrice ;

156

4. The QB4SOLAP vocabulary

qb4o:aggregateFunction qb4o:Avg] ;

qb:component [qb:measure gnw:discount ;

qb4o:aggregateFunction qb4o:Avg] ;

...

qb:component [qb:measure gnw:salesPoint ;

qb4o:aggregateFunction qb4so:AggrConvexHull] .

4.2 Defining spatial data cube members with QB4SOLAP

We have explained in Sect. 4.1 how a data cube schema can be represented
in RDF with QB4SOLAP. We show next how to use this schema to represent
the instances of the GeoNorthwind DW (Fig. C.7) in RDF. We denote by G I

the RDF graph of the data cube instances. In the examples, we prefix the
elements of G I with gnwi:. The subgraph of G I that refers to a specific cube
instance x is denoted by G I

x and the unique identifier of x is denoted by idI(x).

Definition 13. (Level members) A level l has a set of level members LM(l) =
{lm1, . . . , lmy}. Each level member lmi has a unique IRI idI(lmi) ∈ I , which is
linked in the cube instance graph G I with the qb4o:LevelMember predicate.
A level member is related to its level by the qb4o:memberOf property. The
RDF graph formulation of the level members LM(l) is represented as

G I
LM(l) =

y⋃
i=1
G I

lmi

where

G I
lmi

=

{(idI(lmi) rdf:type qb4o:LevelMember)}∪

{(idI(lmi) qb4o:memberOf idS(l))}

Definition 14. (Attributes of level members) A level member lm has a set of
attributes A(lm) = {a1, . . . , ap}, which are used to describe the character-
istics of the level member (Def. 8). Each attribute ai is linked to the level
member with the identifier idS(ai). We denote by lm vai the value vai that
a level member lm associates to attribute ai. This value is given as a literal
L such that vai ∈ L. The RDF graph formulation of the attributes A(lm) is
represented as

G I
A(lm) =

p⋃
i=1
G I

ai

where

G I
ai
= {(idI(lm) idS(ai) vai) | lm vai}

157

Paper C.

Definition 15. (Partial order on level members) A hierarchy step hs = (lc, lp,
card) between a child level lc and a parent level lp defines a set of roll-up
relations RU(hs) = {r1, . . . , rk} where each ri = lmci v lmpi relates a child
level member lmci ∈ LM(lc) to a parent level member lmpi ∈ LM(lp). These
roll-up relations define a partial order between level members with regard to
Def. 10 and are expressed using the property skos:broader. The RDF graph
formulation of the roll-up relations RU(hs) is represented as

G I
RU(hs) =

k⋃
i=1
G I

ri

where

G I
ri
= {(idI(lmc) skos:broader idI(lmp)) |

ri = lmci v lmpi}

Example 9. The triples below show how some level members of the GeoNorth-
wind DW (Fig. C.7) are represented in RDF using Defs. 13–14.

gnwi:customer_1 rdf:type qb4o:LevelMember ;

qb4o:memberOf gnw:customer ;

gnw:customerID 1 ;

gnw:customerName "Alfreds Futterkiste" ;

gnw:address "Obere Str. 57" ;

gnw:postalCode "12209" ;

gnw:customerGeo

"POINT(13.099 52.401)"��geo:wktLiteral ;

skos:broader gnwi:city_6 .

gnwi:city_6 rdf:type qb4o:LevelMember ;

qb4o:memberOf gnw:city ;

gnw:cityName "Berlin" ;

gnw:cityGeo

"POINT(13.4060 52.519)"��geo:wktLiteral ;

skos:broader gnwi:state_224 .

Definition 16. (Fact members) A fact F has a set of fact members FM(F) =
{ f1, . . . , ft}, which are the instances of the data cube. Each fact fi ∈ FM has
a unique IRI idI(fi) ∈ I , which is linked in the cube instance graph G I with
the qb:Observation predicate.

A fact member fi is related to a set of dimension levels L(fi) = {l1, . . . , lr}
and has a set of measures M(fi) = {m1, . . . , ms}. Each dimension level lj

is linked to the level member with the identifier idS(lj) and each measure
mk is linked to the level member with the identifier idS(mk). We denote
by f vlj

and f vmk , respectively, the dimension values and measure
values associated with a fact f . The value vlj

∈ I is the identifier of a level

158

5. Semantics of SOLAP operators

member in LM(lj). Further, the value vmk for every measure mk is a literal
such that vmk ∈ L. The RDF graph formulation of the fact members FM(F)
is represented as

G I
FM(F) =

t⋃
i=1
G I

fi

where

G I
fi
= {(idI(fi) rdf:type qb:Observation)}∪⋃
lj∈L(fi)

{(idI(fi) idS(lj) idI(vlj
) | fi vlj

)}∪

⋃
mk∈M(fi)

{(idI(fi) idS(mk) idI(vmk) | fi vmk)}

Example 10. The triples below show how a fact member of the GeoNorth-
wind DW (Fig. C.7) is represented in RDF using Defs. 12–16. Note that the
fact member and corresponding level members relating to dimensions are
given with the prefix gnwi:. idS(aID) is the surrogate key (Def. 8) that links
the fact member to the corresponding dimensions’ base level members.

gnwi:sale_10613_1 rdf:type qb:Observation ;

gnw:customer gnwi:customer_1 ;

gnw:supplier gnwi:supplier_6 ;

gnw:product gnwi:product_13 ;

...

gnw:quantity 8 ;

gnw:unitPrice "6,00"��xsd:decimal ;

gnw:discount "0,10"��xsd:decimal ;

gnw:salesPoint

"POINT(23.08 42.34)"��geo:wktLiteral.

5 Semantics of SOLAP operators

This section defines a formal algebra for SOLAP operators. Examples of the
operators are provided after their definitions. The complete SPARQL query
examples are given at our website13 and can be tested at our public end-
point14. The query runtimes for each SOLAP operator are given in Appendix
A1, Table C.5 for the use case dataset GeoNorthwind (Sect. 4.1, Fig. C.7).
These operators can be applied on spatially enhanced multidimensional data

13http://extbi.cs.aau.dk/SOLAP4SW/queries
14http://extbi.lab.aau.dk/sparql

159

http://extbi.cs.aau.dk/SOLAP4SW/queries
http://extbi.lab.aau.dk/sparql

Paper C.

cubes (Sect. 3.3). The presentation defines the semantics of a SOLAP operator
by logically specifying the typical OLAP operators with spatial functions and
conditions. Spatial functions and conditions can be selected from a range of
operation classes, which can be applied on spatial data types (Sect. 3.1). Let
S be the set of any spatial operators where S = (Sagg ∪ Trel ∪ Nop), used
to represent a spatial predicate φS ∈ S or a spatial function fS ∈ S , which is
in a SOLAP operator. The following SOLAP operators are defined with a
spatial extension to the well-known OLAP operators, which are given in the
remarks.

Remark 17. (Slice) The slice operator removes a dimension from a cube C by
selecting one instance in a dimension level. For example, the query “slice
on customers in the city of Odense” is a slice operation. (Cube is the sales,
dimension is the customer, level in dimension is the city and the value is
Odense, which is sliced out from the cube).

Definition 17. (S-Slice) The s-slice operator removes a dimension from a cube
C by choosing a single spatial attribute value vs ∈ Ls (Ext. 8) in a spatial level
ls (Ext. 7).

As for the semantics, s-slice takes an n-dimensional cube C as an argu-
ment. We assume that the cube has the cube schema CS = (D, M, F), with
the fact members f ∈ FM as given in Def. 16. As parameters, s-slice takes
a spatial literal value vs, the base level lb and the target (spatial) level ls of
a dimension di. The base level lb specifies the dimension di (Def. 16). The
target spatial level ls is the level, that the spatial literal value vs is related.

The operator is defined as: SS(C)[lb, ls, vs] = C ′, which returns a cube
C ′ with n − 1 dimensions and the schema CS = (D′, M′, F′), where D′ =
D \ {di} , M′ = M, and F′ = F. The measures M and the fact type F remains
the same though the new cube C ′ has one dimension less.

The s-slice operator selects a subset FM′ from the set of fact members
FM (FM′ ⊆ FM), with respect to the given parameter vs. Assuming that
the granularity of the fact members are at the (lowest) base level of the di-
mension lb ∈ L(di) in the given cube, a partial order exists among the levels,
from bottom level to the target spatial level ls such that lb v ls. The given
parameter vs is related to a level member of the level ls. We say that the fact
members are characterized by dimension values, which is written as f vdi
where vdi

≡ vlb(di)
(Def. 16). In other words, dimensions are associated to

the fact members by the values of the dimensions’ base level members vlb(di)
.

When the dimension di is clear in the context, we will use base level vlb for
simplicity reasons.

To sum up, the subset FM′ of facts is selected with regards to the partial
order on levels from base level lb to the target level ls. The value vls in
the target level ls is specified with respect to the given spatial literal value

160

5. Semantics of SOLAP operators

vs. The value of vs might be equal to a spatial attribute value in the target
level ls, thus vls is characterized by the attribute value vs and written as
vls vs (Ex. 11). Or, vs is an arbitrary spatial literal that entails a topological
relation Trel (i.e., within) in a value of the target spatial level vls , which is
written as ∃vls : φS (vs) where φS is a spatial Boolean predicate that represents
a topological relation (Ex. 12). After applying the s-slice operator on cube
C, the new (sub)set of fact members is defined for both cases respectively as
follows; FM′ = { f ∈ FM | ∃ vlb ∈ LM(lb), vls ∈ LM(ls) : f vlb ∧ vlb v
vls ∧ vls vs}, FM′ = { f ∈ FM | ∃ vlb ∈ LM(lb), vls ∈ LM(ls) : f
vlb ∧ vlb v vls : φS (vs)}.

Example 11. With regards to the traditional slice query “slice on customers
in the city of Odense”, in s-slice, the user could specify a geometry extent
(e.g., polygon coordinates of the city of Odense) as spatial literal for slicing
instead of giving a text literal (e.g., “Odense”). So the s-slice query would be;
“slice on customers of the city, which has the geometry "POLYGON((10.43951

55.47006, 10.439472 55.470036, 10.439240(...))"”. More intuitively, in-
stead of the specified spatial literal vs ∈ Ls, the user can pass a function call
as parameter to s-slice, e.g., by querying “slice on customers in the largest
city of (southern) Denmark by land area”. The function call should calculate
the area of the cities by their geometries where the largest city is selected as
a requirement of the s-slice operator. Both cases are given in the following.

Example 11.1. The following SPARQL query shows an s-slice operator, which
filters with the given spatial literal by the user.

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .

?city gnw:cityGeo ?cityGeo .

FILTER (?cityGeo = "POLYGON((10.439517 55.470064,

10.4394729 55.4700361, 10.4392403 (...))") }

Example 11.2. The following SPARQL query shows the s-slice operator, which
filters with the function call (largest city) returned from inner select. Given
the current limitations of SPARQL, there is not an area calculation function
from the geometries of the spatial objects during query run time, however we
give the query with a notional built-in bif:st_area function.

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

161

Paper C.

skos:broader ?city .

?city gnw:cityGeo ?cityGeo .

Inner select for finding the largest city

{SELECT ?x (MAX(?area) as ?maxArea)

WHERE {

?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .

?city gnw:cityGeo ?x .

BIND(bif:st_area(?x) as ?area)}

FILTER (?cityGeo = ?x) }

Example 12. With regards to the traditional slice query “slice on customers in
the city of Odense”, in this example of s-slice, the user gives a point geometry
(i.e., X, Y coordinates of a point as spatial literal) and filter at the given level
(i.e., City level) that the given point is within. So the s-slice query would
be; “slice on customers of the city, in which the given "POINT(10.43951

55.47006)" is within”.
The following SPARQL query shows an s-slice operator, which filters at

the specified level with the given spatial literal by the user.

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .

?city gnw:cityGeo ?cityGeo .

FILTER (bif:st_within("POINT(10.43951 55.47006)",

?cityGeo)) }

Note that the s-slice can be operated in different ways based on the ge-
ometry given to the query. In both Ex.s 11 and 12, slice level is given as City,
however in Ex. 12 a random X, Y point is given that is falling into the tar-
get city. Therefore we need to use within from topological relationships (Trel)
class in order to verify and filter that city.

Remark 18. (Dice) The traditional dice operator takes a cube and a Boolean
condition φ, which returns a new cube containing only the cells that satisfy
the Boolean condition φ. Dice operation is analogous to relational algebra,
R selection; σφ(R), but the argument is a cube not a relation. For example,
the query “sales to customers of type LLC (Limited Liability Company)” is
a dice operation. (Cube is the sales, dimension is the customer, and Boolean
condition is the customer type if they are LLC).

162

5. Semantics of SOLAP operators

Definition 18. (S-Dice) Similarly, the s-dice operator takes an n-dimensional
cube C as an argument, which has the cube schema CS = (D, M, F) with
the fact members f ∈ FM as given in Def. 16. As a parameter s-dice takes
a spatial Boolean predicate, which is denoted by φS . The s-dice operator
keeps the cells of the cube C that satisfies the spatial predicate over spatial
dimension levels ls, attributes as, and measures m.

The semantics of the operator is defined as:
SD(C)[φS] = C ′ where spatial predicate φS can be applied on spatial level
member values φS (vls), spatial attribute values φS (vas), and measure values
φS (vm) or a combination of these.
SD operator returns a sub cube C ′ ⊆ C, which has the schema CS =

(D′, M′, F′) where D′ = D , M′ = M, and F′ = F. Unlike the s-slice operator,
s-dice keeps all the dimensions D in the output cube C ′. The set of measures
M and the fact type F also remains the same, though the new cube C ′ is a
subset of the original cube C with filtered fact members f ∈ FM′, which is
explained in the following.

The s-dice operator selects a subset FM′ of the fact members’ set FM′ ⊆
FM with respect to the spatial predicate φS on level members as follows;

1. Spatial predicate on level values: FM′ = { f ∈ FM | ∃ vlb ∈ LM(lb), vls ∈
LM(ls) : f vlb ∧ vlb v vls ∧ φS (vls)}.

2. Spatial predicate on level attribute values:
FM′ = { f ∈ FM | ∃ vlb ∈ LM(lb), vls ∈ LM(ls) ∧ vls vas : f vlb ∧ vlb v
vls ∧ vls vas ∧ φS (vas)}.
Note that the filtering the facts through level members can be done by vls
(level values) or attribute values vas by applying the spatial predicate φS .
Finally filtering of the facts is on associated measure values is defined in the
following;

3. Spatial predicate on measure values of ms: FM′ = { f ∈ FM | ∃ vms ∈
Codomain(ms) : f vms ∧ φS (vms)}.
For complex cases, i.e., combining these three types; the result set is also
followed by combining the basic result sets.

Example 13. The s-dice operator can be implemented on level and attribute
values by filtering level members in the cube or on measures by filtering the
facts in the cube. In both cases the spatial predicate φS is used.

The query for the s-dice operator could be “sales to customers, which are
located within 5 km distance from their city center” where the s-dice is on
level members by filtering the customer level. The spatial predicate φS can be
interpreted in two different ways (See Appendix A1 for comparison of their
query run times).

Example 13.1. First method is assuming a buffer area of 5 km from the co-
ordinates of city center and checking customers’ locations by within operator

163

Paper C.

from topological relations φS ∈ Trel if it meets the condition. The following
SPARQL query shows the implementation of this method on level members.

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city ;

gnw:customerGeo ?custGeo .

?city gnw:cityGeo ?cityCentGeo .

FILTER (bif:st_within (?custGeo, ?cityCentGeo,

5))}

Example 13.2. Second method is checking if the distance from a customer
location to the corresponding city center is less than 5 km, by using distance
function from numeric operations fS ∈ Nop. In this case the spatial predicate
φS is a combination of a spatial function fS and a regular Boolean predicate
φ. Spatial function is distance from numeric operations and the predicate is
less than (<). The following SPARQL query shows the implementation of this
method for s-dice on level members.

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city ;

gnw:customerGeo ?custGeo .

?city gnw:cityGeo ?cityCentGeo .

BIND (bif:st_distance (?custGeo, ?cityCentGeo)

AS ?distance) FILTER (?distance < 5) }

Remark 19. (Roll-up) The traditional roll-up operator aggregates measures
according to a dimension hierarchy (by using an aggregate function), in or-
der to obtain measures at a coarser granularity for a given dimension. For
example, the query “total amount of sales to customers by city” is a clas-
sical roll-up operation. (Cube is the sales, dimension is the customer, level
in dimension to roll-up is the city such that customer v city, measure is the
sales amount and aggregate function is the sum in order to calculate the total
sales.)

Definition 19. (S-Roll-up) Similarly to roll-up operator, s-roll-up aggregates
measures m ∈ M of a given cube C, by using an aggregate function and a
spatial function fS ∈ S (Sect. 3.1) along a spatial dimension’s hierarchy hs
(Ext. 6), which should have spatial levels ls (Ext. 7). However, in s-roll-up the
dimension hierarchy is created dynamically on levels by the spatial function
fS . We call this hierarchy a dynamic spatial hierarchy, conceptually from a

164

5. Semantics of SOLAP operators

base level lb to the dynamically created target level l′s such that lb vd l′s. The
instances of the target level l′s are obtained by the spatial function fS (ls) that
is applied on spatial dimension levels.

As for the semantics, s-roll-up takes an n-dimensional cube C as an ar-
gument, which has the cube schema CS = (D, M, F) with the fact mem-
bers f ∈ FM as given in Def. 16. As a parameter s-roll-up takes a spatial
function fS ∈ S to operate on levels L(di) and an aggregate function agg
to calculate a measure m at the higher target level. For simplicity of ex-
planation and without loss of generality, we initially assume that there is
only one measure m. The extension of the operator on several measures
m ∈ M is explained in the last paragraph. S-Roll-up operator is formu-
lated as; SRU (C)[fS (L(di)), agg(m)] = C ′, which returns a cube C ′ with
n-dimensions and has the schema CS = (D′, M′, F′) where F′ = F, M′ = M,
and D′ = {di ∈ D | {d1, . . . , d′i, . . . , dn} ∧ L′(d′i) = L(di) \ (lb vd . . . @d
ls) ∪ {l′s}}. After the s-roll-up operation, number of dimensions in D re-
mains the same, although the base levels and levels below the target level
(lb vd . . . @d ls) of the corresponding dimension di are left out and a new
target level l′s is added to the set of dimension levels L′(d′i) of d′i.

The set of level members of the level l′s is selected with respect to the
spatial function on base level members of a spatial dimension such that
LM(l′s) = {fS (vlb) | vlb ∈ LM(lb)} where lb vd l′s ⇐⇒ fS (vlb) = vl′s , which
means that the base level lb rolls up along the spatial dynamic hierarchy (vd)
to the target new spatial level l′s if and only if spatial function on base level
fS (vlb) = vl′s produces the new spatial level members vl′s . Even though the
set of measures M remains the same, the s-roll-up operator obtains the mea-
sure values associated with fact members f ′ at a coarser granularity l′s, which
alters the set of facts FM′ * FM. In order to create the new set of facts FM′ at
the new granularity level l′s, the Group operator [30] is used to group the facts
characterized by the same level members vl′s ∈ LM(l′s) such that Group(vl′s) =
{ f ∈ FM | ∃ vlb ∈ LM(lb) : f vlb ∧ vlb vd vl′s}. The output of the Group
operator on level members is a new fact instance f ′. In order to aggregate
the measure values vm, which are associated with the fact members f we use
an aggregate function agg such that agg({ f1, . . . , fk}) = agg(vm1 , . . . , vmk)
where fi vmi , i = 1, . . . , k. Finally, the set of the new facts f ′ ∈ FM′ is
constructed, that is given with the associated new level members and aggre-
gated measure values as; FM′ = { f ′ = Group(vl′s) | ∃ vl′s ∈ LM(l′s) : f ′
vl′s ∧ f ′ agg(Group(vl′s))}.

The extension to multiple measures is similar, which is done by providing
and using a separate aggregate function for each measure m ∈ M.

Example 14. The following SPARQL query shows the s-roll-up operator, which
is exemplified in Sect. 3.6. The query is “total amount of sales to customers by
city of the closest suppliers”. Note that the measures are aggregated up to a

165

Paper C.

new city from customer level of the customer dimension, which is specified as
the Closest City. The hierarchy step from customer to city is defined dynam-
ically by a spatial function fS (distance from numeric operations Nop ⊂ S),
which is then used in a wrapper function to find the closest distance of the
suppliers and customers. The levels and level members (of customer), which
are below the newly defined level (Closest City) are left out in the result.

SELECT ?city (SUM(?sales) AS ?totalSales)

WHERE { ?obs rdf:type qb:Observation ;

gnw:customerID ?cust ;

gnw:supplierID ?sup;gnw:salesAmount ?sales .

?cust qb4o:memberOf gnw:customer ;

gnw:customerGeo ?custGeo ;

gnw:customerName ?custName ;

skos:broader ?city .

?city qb4o:memberOf gnw:city .

?sup gnw:supplierGeo ?supGeo .

Inner Select for the total sales to

the closest supplier of the customer

{ SELECT ?cust1 (MIN(?distance) AS

?minDistance) WHERE

{ ?obs rdf:type qb:Observation ;

gnw:customerID ?cust1 ;

gnw:supplierID ?sup1 .

?sup1 gnw:supplierGeo ?sup1Geo .

?cust1 gnw:customerGeo ?cust1Geo .

BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

AS ?distance)}

GROUP BY ?cust1 }

FILTER (?cust = ?cust1 && bif:st_distance

(?custGeo, ?supGeo) = ?minDistance)}

GROUP BY ?city

Remark 20. (Drill-down) Drill-down is the inverse operator of roll-up, which
disaggregates previously summarized data to a child level in order to obtain
measures at a finer granularity of a given dimension. For example, the roll-
up query given in Remark 19 (“total amount of sales to customers by city”)
aggregates sales by summing up the sales amount, from customer level to
city level along a hierarchy. As drill-down operator performs the operation
opposite to the roll-up an example would be; “average amount of sales of
each supplier, drilled down from the city level to the supplier level”. (Cube
is the same as sales, and the hierarchy is the same but the dimension is
the supplier, so child level in dimension to drill-down from city level is the
supplier such that City w Supplier). Conceptually, a drill-down to level li on
a cube C corresponds to a roll-up to the same level li on the base cube of C,
that is denoted as BaseCube(C).

166

5. Semantics of SOLAP operators

Definition 20. (S-Drill-down) Analogously to drill-down operator, s-drill-down
disaggregates measures m ∈ M of a given cube C, by using an aggregate func-
tion and a spatial function fS (Sect. 3.1) along a spatial dimension’s hierarchy
hs (Ext. 6), which should have spatial levels (i.e., ls) (Ext. 7).

Conceptually, in s-drill-down, the dimension hierarchy is created dynam-
ically on levels by the spatial function fS as in s-roll-up. This is similar to
the dynamic spatial hierarchy defined in Def. 19, that is from a spatial parent
level lps to a dynamically created spatial child level l′cs such that lps wd l′cs .
The target spatial child level l′cs is the output of the spatial function fS on
spatial levels lis ∈ L(di) of the spatial dimension. Applying s-drill-down
to child level l′cs from a parent level lps on a cube C corresponds to apply-
ing s-roll-up to the same level l′cs from the base level lb on the base cube
of C. Therefore, the semantics of the s-drill-down is described same as
s-roll-up and the operator is formulated as SDD(C)[fS (L(di)), agg(m)] =
SRU(BaseCube(C))[fS (L(di)), agg(m)].

Example 15. In order to exemplify an s-drill-down, starting from the result
cube graph of Ex. 14 (“total amount of sales to customers by city of the closest
supplier”), which is at the granularity of City level, we drill down to child
level Supplier with the query “average amount of sales of furthest suppliers
to their city center, drilled down the from City level to Supplier level”. The
following SPARQL query shows the given example.

SELECT ?sup (AVG(?sales) AS ?averageSales)

(MAX(?distance) AS ?maxDistance)

WHERE { ?obs rdf:type qb:Observation ;

gnw:supplierID ?sup ;

gnw:salesAmount ?sales .

?sup qb4o:memberOf gnw:supplier ;

gnw:supplierGeo ?supGeo ;

gnw:supplierName ?supName ;

skos:broader ?city .

?city qb4o:memberOf gnw:city ;

gnw:cityGeo ?cityCentGeo .

BIND (bif:st_distance(?supGeo, ?cityCentGeo)

AS ?distance)}

FILTER (?distance = ?maxDistance)}

GROUP BY ?sup

In this paper, we focus on direct querying of single data cubes with main
SOLAP operators in SPARQL. The integration of several cubes through s-drill-
across or set-oriented operations such as union, intersection, and difference [31]
is out of scope and remained as future work.

167

Paper C.

6 Generating SOLAP queries in SPARQL via
QB4SOLAP

After having defined the high-level SOLAP operators in Sect. 5, this section
first describes how to generate SPARQL queries for each of these operators by
using the QB4SOLAP metamodel (Sect. 4). Afterwards, this section describes
how to create more complex SPARQL queries for nested SOLAP operations.

6.1 Generation algorithms

The generated SPARQL queries Q are of the form “Q = SELECT R WHERE GP",
where GP is a graph pattern containing triple patterns and R is the (set of)
variable(s) that are returned in the result of the query. Triple patterns are
based on triples of the form (s, p, o) (Def. 4), where triple components are
replaced by variables. A set of triple patterns defines a graph pattern GP.
Given an RDF graph G, a graph pattern GP is used to search for subgraphs
G(R) ⊆ G matching the pattern. In our algorithm, the graph pattern is initially
empty, GP = ∅, and the triple patterns are added incrementally to the body
of the WHERE clause: GP = GP ∪ (s p o).

RDF datasets published with the QB4SOLAP vocabulary use the predicate
skos:broader, to define the roll-up relation from child level to parent level
(Defs. 13 and 15). As this is the case for all hierarchy levels in a dimension,
every OLAP query contains such roll-up paths that we need to consider as
part of GP in the WHERE clause.

Thus, we define a helper function RUPath (Algorithm 1) that we can use
in the SOLAP query generation algorithms.

Algorithm 1: RUPath(GS
(C), lb, ls, aID, ?as, ?f) :GP

Input: GS
(C), lb, ls, aID,?as, ?f

Output: GP
1 begin
2 GP = (?f rdf:type qb:Observation)
3 GP = GP ∪ (?f idS(aID) ?lb ∧ ?lb qb4o:memberOf idS(lb))
4 foreach (idS(lc), idS(lp)) ∈ GS

(C) | lp v ls do
5 GP = GP ∪ (?lb skos:broader ?lp ∧ ?lp skos:broader ?ls)

6 let GP = GP ∪ (?ls idS(as) ?as)

7 return GP

Build roll-up path (RUPath). The helper function RUPath returns a graph
pattern that we can use in the body of the WHERE clause. The roll-up path

168

6. Generating SOLAP queries in SPARQL via QB4SOLAP

pattern is created as a path-shaped join of triples with partial order (v ,
skos:broader) (Def.s 10 and 15). The triple pattern is of the form {(s1 p1 o1),
(o1 p2 o2), (o2 p2 o3), . . . (on−1 p2 on)} where s1 is the root of the graph
pattern and corresponds to fact members f from the QB4SOLAP schema
(Def. 16), p1 is the predicate idS(aID) that associates facts with level mem-
bers vli (f vli , Def. 16), o1 is the variable for the first level member that
rolls up to its parent level o2 such that o1 v o2 and so on, and the p2 predi-
cate corresponds to the skos:broader property. The last variable in the path
on corresponds to the target level ls in order to represent the level member
variables at the target level. The roll-up path starts at the fact instances f
(Def. 16). Afterwards, the partial order on level members (Def. 15) from base
level lb to target level ls is applied. Algorithm 1 sketches the helper function
for building the roll-up path for dimensions; from facts to dimension levels
with predicates and cube member IRIs defined in the cube schema.

In order to represent such varying parameters at the instance level such
as fact members, level members, or parameter values given by the user, and
to distinguish these parameters from other parameters in the algorithm, we
represent such parameters using variable names with question marks.

We use a FILTER expression to restrict the output data by using a (spatial)
Boolean predicate φS . A FILTER expression is part of the WHERE clause in a
SPARQL query. Therefore, it is added to the body of the WHERE clause in the
graph pattern GP as GP = GP ∪ (FILTER φS). In the cases where there is a
spatial function fS (x) in the SOLAP operator, it is given in the BIND clause,
which is technically a part of the WHERE clause and therefore added to the
body of the WHERE clause in a graph pattern GP as GP = GP ∪ (BIND fS (x)).
SPARQL 1.1 defines aggregate expressions15, such as SUM, MIN, MAX, AVG,
etc.

We apply them on measure values or use them as wrappers in spatial
functions. In the following, we often write AGG to represent them.

In the following, we present the SPARQL query generation algorithms
for the SOLAP operators defined in Sect. 5. The algorithms take the input
parameters and arguments of the SOLAP operator and return the a SPARQL
query Q that can be executed.

S-Slice generator. To generate a SPARQL query for the s-slice operator
SS(C)[lb, ls, vs] (Def. 17), we use Algorithm 2. Parameter vs is a spatial lit-
eral value vs ∈ Ls (i.e., POINT or POLYGON) that should be related to a spatial
level ls (Ext. 7). This means that vs is defined as a polygon geometry that
corresponds to a spatial attribute value in the target level ls (Ex. 11) or vs is
defined as a point geometry that is spatially contained in a spatial attribute
value of the target level ls (Ex. 12). Note that in Ex. 11.1, the given spatial

15https://www.w3.org/TR/sparql11-query/#aggregates

169

Paper C.

literal has the geometry data type polygon, which corresponds to a spatial
level attribute as (Ext. 8) at a spatial level ls. Similarly, the spatial function
call fS (x) in Ex. 11.2 returns a polygon that corresponds to a spatial level
attribute as.

Algorithm 2: S−SliceGenerator (G I
(C), vs, lb, ls) : Q

Input: G I
(C), vs, lb, ls

Output: Q
1 begin
2 Q = ∅; GP = RUPath(GS

(C), lb, ls, aID,?as,?f)

3 if vs is a POINT then
4 GP = GP∪ (FILTER(st_within vs, ?as))

5 else if vs = fS (x) then
6 Q′=∅; GP′=RUPath(GS

(C), lb, ls, aID,?as,?f)

7 GP′ = GP′∪ (BIND fS (x) AS ?vx)
8 Q′ = SELECT ?x AGG(?vx) WHERE GP′

9 GP = GP ∪Q′ ∪ (FILTER ?x = ?as)

10 else
11 GP = GP ∪ (FILTER vs = ?as)

12 return Q = SELECT ?f WHERE GP

On the other hand the given spatial literal in Ex. 12 has the geometry data
type point, which corresponds to the spatial level ls via topological relations
(Trel). We consider all these possibilities in the s-slice generator algorithm.
We explained these in the following, where the steps are referencing the line
numbers in Algorithm 2.

Line 2. Get the path for dimension ds (e.g., Customer) from the observation
facts f to the base level lb, and build path-shaped triple pattern paths
from the dimension’s base level lb to the target spatial level ls (e.g., City
level). Finally, get level attribute IRIs and variables for the spatial at-
tributes as (e.g., City geometry). All this is done by the RUPath function
(Algorithm 1) that is used by the s-slice generator. The following shows
an example result of this step that is added to GP:

{?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .

?city gnw:cityGeo ?cityGeo .

170

6. Generating SOLAP queries in SPARQL via QB4SOLAP

Line 3. Check if the spatial literal vs is a point geometry type. If true, create
a FILTER statement with a spatial Boolean predicate (Line 4) and go to
the result (Line 12).

Line 4. Build the FILTER statement based on the spatial literal vs and the
spatial attribute as (Ex. 12). As a result the following lines might be
added to the GP:

FILTER (bif:st_within("POINT(10.43951

55.47006)", ?cityGeo))}

Line 5. Check if vs is a function call fS (x). If true (Ex. 11.2), construct an
inner select query to compute the spatial function fS (x), then go to the
result (Line 12).

Line 6. Call the RUPath function in order to link as variables with the fact
instances (this time for inner select query Q′). This step creates a graph
pattern GP′ for inner select query Q′, for example:

{?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .

?city gnw:cityGeo ?x .

Line 7. Build a bind statement on as variables for calculating spatial func-
tions (e.g., compute areas). For example, the following lines might be
added to graph pattern GP′:

BIND (bif:st_area(?x) as ?area) }

Line 8. Generate the inner select query Q′ based on GP′ generated in Lines
6 and 7. For example (Q′ finds the geometry of the largest city):

Q‘ = {SELECT ?x (MAX(?area) as ?maxArea)

WHERE {?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city .

?city gnw:cityGeo ?x .

BIND (bif:st_area(?x) as ?area) }

Line 9. Build the filter statement with the output of the spatial function
fS (x), construct GP (includes Q′) for the outer query, and go to the
result (Line 12). At this stage GP is constructed in Lines 2 and 8. The
following for the filter statement is added to the GP:

171

Paper C.

FILTER (?cityGeo = ?x) }

Line 11. If a spatial literal vs ∈ L is given as the parameter instead, build
a filter statement that checks if vs is equal to the spatial attribute as
values, and go to the result (Line 12). For example, the following filter
condition might be added to graph pattern GP:

FILTER (?cityGeo = "POLYGON((10.43951

55.47006, 10.439472 55.470036,

10.439240 (...))")}

Line 12. Finally, the algorithm generates query Q, which can be executed
over the fact members FM′. In our running examples we obtain the
following cases for the generated s-slice query Q.

S-Slice operator with a given spatial value as point data type: The following listing
corresponds to the SPARQL output of the running example where the spatial
value is given as POINT data type (Ex. 12) and filters the level attributes with
a spatial predicate within a given level. The graph pattern GP for the query
is created in Lines 2 to 7.

1 Q = SELECT ?obs WHERE

2 {?obs rdf:type qb:Observation ;

3 gnw:customerID ?cust .

4 ?cust qb4o:memberOf gnw:customer ;

5 skos:broader ?city .

6 ?city gnw:cityGeo ?cityGeo .

7 FILTER (bif:st_within("POINT(10.43951

55.47006)", ?cityGeo)) }

S-Slice operator with a spatial function call: The following listing corresponds
to the SPARQL output of the running example where the spatial value is
returned from a function call (Ex. 11.2). The graph pattern GP′ for the spatial
function call is created in Lines 8 to 13. The graph pattern GP for the whole
query is created in Lines 2 to 12.

1 Q = SELECT ?obs WHERE

2 { ?obs rdf:type qb:Observation ;

3 gnw:customerID ?cust .

4 ?cust qb4o:memberOf gnw:customer ;

5 skos:broader ?city .

6 ?city gnw:cityGeo ?cityGeo .

When there is spatial function call we apply

inner select for finding the largest city

7 {SELECT ?x (MAX(?area) as ?maxArea) WHERE

8 { ?obs rdf:type qb:Observation ;

172

6. Generating SOLAP queries in SPARQL via QB4SOLAP

9 gnw:customerID ?cust .

10 ?cust qb4o:memberOf gnw:customer ;

11 skos:broader ?city .

12 ?city gnw:cityGeo ?x .

13 BIND(bif:st_area(?x) as ?area)}

Then we apply the filter on the output

coming from the spatial function

14 FILTER (?cityGeo = ?x) }

S-Slice operator with a given spatial value as polygon data type: The following
listing corresponds to the SPARQL output of the running example where the
spatial value is given as a POLYGON data type (Ex. 11.1) corresponding to a
level attribute. The graph pattern GP for the query is created in Lines 2 to 7.

1 Q = SELECT ?obs WHERE

2 {?obs rdf:type qb:Observation ;

3 gnw:customerID ?cust .

4 ?cust qb4o:memberOf gnw:customer ;

5 skos:broader ?city .

6 ?city gnw:cityGeo ?cityGeo .

7 FILTER (?cityGeo = "POLYGON((10.43951

55.47006, 10.43947 55.47003, 10.43924 (...))")}

S-Dice generator. To generate a SPARQL query for the s-dice operator,
SD(C)[φS] (Def. 18 – parameter φS represents a spatial predicate), we fol-
low the steps sketched in Algorithm 3. The algorithm takes parameter φS as
input, which corresponds to a spatial predicate that could represent a topo-
logical relation from the Trel set or a combination of a spatial function (a
numeric operation from the Nop set) and a regular predicate φ. For illustra-
tion, we use the example query that we have introduced in Sect. 5 for s-dice
(Ex. 13):

“sales to customers, which are located 5 km distance from their city cen-
ter". In the following, we discuss the main steps of Algorithm 3 with the
running example, where the steps are referencing the line numbers in Algo-
rithm 3.

Line 3. The algorithm runs through the levels from base level lb to the target
spatial level ls, which are both given in the spatial Boolean predicate φS

Line 4. Build the roll-up path for those levels using the helper function
RUPath. Note that, when we apply the roll-up path to the target level,
we can also link the level attributes for the target (spatial) level – as, for
example, in the last line of the following listing. The output of function
RUPath is added to graph pattern GP:

173

Paper C.

{?obs rdf:type qb:Observation ;

gnw:customerID ?cust .

?cust qb4o:memberOf gnw:customer ;

skos:broader ?city ;

gnw:customerGeo ?custGeo .

?city gnw:cityGeo ?cityCentGeo .

Line 5. Check if φS is to be implemented as a spatial predicate from topo-
logical relations Trel as interpreted in Ex. 13.1.

Line 6. Create a filter statement with a spatial predicate and the spatial level
attribute as, which is referenced in the roll-up path (Line 4). For our
running example, the filter statement is applied on customers that are
located within a buffer area of 5 km from their city centers. The spatial
predicate st_within is used from the topological relations. The follow-
ing lines are added to graph pattern GP:

FILTER (bif:st_within(?custGeo,

?cityCentGeo, 5))}

Line 7. Check if φS is to be implemented as a combination of a spatial func-
tion fS (x) and a regular predicate φ as interpreted in Ex. 13.2.

Algorithm 3: S−DiceGenerator (G I
(C), φS) : Q

Input: G I
(C), φS

Output: Q
1 begin
2 Q = ∅ ; GP = ∅
3 for lb, ls ∈ φS do
4 GP = GP ∪ RUPath(GS

(C), lb, ls, aID,?as,?f)

5 if φS is a spatial predicate then
6 GP = GP ∪ (FILTER φS (?as))

7 else if φS uses a spatial function fS (x) and a regular Boolean predicate
φ then

8 GP = GP ∪ (BIND fS (x) AS ?vx)9 GP = GP ∪ (FILTER φ(?vx))

10 return Q = SELECT ?f WHERE GP

Lines 8, 9. Create a bind statement based on a spatial function (i.e., calculate
st_distance between customers and city center) and a filter statement
based on the assigned values with a regular predicate (i.e., less than 5
km). The following lines are added to graph pattern GP:

174

6. Generating SOLAP queries in SPARQL via QB4SOLAP

BIND (bif:st_distance (?custGeo, ?cityCentGeo)

AS ?distance) FILTER (?distance < 5)}

Line 10. Generate query Q for selecting the facts f ∈ FM′ matching the in-
crementally created graph pattern GP in the previous steps. In our
running examples we obtain the following cases for the generated s-
dice query Q.

S-Dice operator with φS : The following listing is the SPARQL query generated
for the running example (Ex. 13.1), where the spatial predicate is interpreted
as a topological relation. The graph pattern GP for the query is created in
Lines 2 to 8.

1 Q = SELECT ?obs WHERE

2 { ?obs rdf:type qb:Observation ;

3 gnw:customerID ?cust .

4 ?cust qb4o:memberOf gnw:customer ;

5 skos:broader ?city ;

6 gnw:customerGeo ?custGeo .

7 ?city gnw:cityGeo ?cityCentGeo .

8 FILTER (bif:st_within (?cityCentGeo, ?custGeo, 5))}

S-Dice operator with fS (x) and a regular Boolean predicate φ: The following list-
ing is the SPARQL query generated for the running example (Ex. 13.2), where
the spatial predicate is interpreted as a combination of a spatial function and
a regular predicate. The graph pattern GP for the query is created in Lines 2
to 9.

1 Q = SELECT ?obs WHERE

2 { ?obs rdf:type qb:Observation ;

3 gnw:customerID ?cust .

4 ?cust qb4o:memberOf gnw:customer ;

5 skos:broader ?city ;

6 gnw:customerGeo ?custGeo .

7 ?city gnw:cityGeo ?cityCentGeo .

8 BIND (bif:st_distance (?custGeo, ?cityCentGeo) AS

9 ?distance) FILTER (?distance < 5) }

S-Roll-up Generator. To generate a SPARQL query for the s-roll-up operator
from a high-level SOLAP expression, SRU (C)[fS (L(di)), agg(m)] (Def. 19),
where parameter fS (L(di)) denotes a spatial function on spatial level mem-
bers and agg(m) is an aggregate function on measures. For illustration, we
use the query example for s-roll-up given in Sect. 5 for s-roll-up (Ex. 14): “to-
tal amount of sales to customers by city of the closest suppliers". We follow
the main steps sketched in Algorithm 4 in the following.

175

Paper C.

Lines 2, 3. Build the roll-up path using helper function RUPath. In addition
to the variables given in the RUPath function, we also need to consider
measures and measure value variables (Line 3) since we aggregate the
measures. A measure is specified in the following listing of the running
example as gnw:salesAmount. The following lines are added to the
graph pattern GP:

{?obs rdf:type qb:Observation ;

gnw:customerID ?cust ;

gnw:supplierID ?sup ;

gnw:salesAmount ?sales .

?cust qb4o:memberOf gnw:customer ;

gnw:customerGeo ?custGeo ;

skos:broader ?city .

?sup qb4o:memberOf gnw:supplier ;

gnw:supplierGeo ?supGeo ;

skos:broader ?city .

?city qb4o:memberOf gnw:city .

Line 4. Build inner select subquery to apply the spatial function fS on the
spatial level members L(di) (i.e., Customer, Supplier). In the example,
we will use this information to create a dynamic spatial hierarchy from
the Customer to the City level.

Algorithm 4: SRUGenerator(G I
(C),f

S (L(ds)), agg(m)) : Q

Input: G I
(C), f

S (L(di)), agg(m)

Output: Q
1 begin
2 Q = ∅ ; GP = RUPath(GS

(C), lb, ls, aID,?as,?f)

3 GP = GP ∪ (?f idS(m) ?m)
4 for fS (L(ds)) do
5 GP′ = RUPath(GS

(C), lb, ls, aID,?as,?f);
Q′ = ∅

6 GP′ = GP′ ∪ (BIND fS (x) AS ?vx)
7 Q′ = SELECT ?x (AGG(?vx) AS ?vy) WHERE GP′ GROUP BY ?x
8 GP = GP ∪ Q′ ∪ (FILTER ?x = ?as && fS (x) = ?vy)
9 let ls = l′s

10 return Q = SELECT ?f ?l’s AGG(?m) WHERE GP GROUP BY ?f ?l’s

Line 5. Call RUPath for the inner select subquery to link the geometry at-
tributes of base level members with different variables and create a

176

6. Generating SOLAP queries in SPARQL via QB4SOLAP

graph pattern GP′ for the inner select. The following lines are added to
the graph pattern GP′:

{?obs rdf:type qb:Observation ;

gnw:customerID ?cust1 ;

gnw:supplierID ?sup1 .

?sup1 gnw:supplierGeo ?sup1Geo .

?cust1 gnw:customerGeo ?cust1Geo .

Line 6. Build the bind statement in order to calculate the spatial function
fS (L(ds)) on spatial level members. For the running example the spa-
tial function is st_distance. The following lines are added to the graph
pattern GP′:

BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

AS ?distance)}

Line 7. Generate the inner select query Q′ using graph pattern GP′ (Lines
5 and 6). Select the corresponding level members (Customer level for
the running example) and group them in a group by statement on the
selected level members. Note that this is where the spatial function
fS (L(di)) is called with a wrapper expression (e.g., MIN, MAX, etc.) to
find the closest distance. The following lines illustrate the inner select
query Q′:

Q` = {SELECT ?cust1 (MIN(?distance) AS

?minDistance) WHERE GP`

GROUP BY ?cust1}

Lines 8, 9. Build the filter statement for the whole query based on the output
of the spatial function, which is calculated in the inner select subquery.
Then, add the filter and inner select subquery to the main graph pattern
GP′ (Line 8). The filter statement for the running example is :

FILTER (?cust = ?cust1 && bif:st_distance

(?custGeo, ?supGeo) = ?minDistance)}

Note that in Line 9, the spatial target level ls (City) is altered to a dy-
namic spatial level l′s since applying the spatial function creates a dy-
namic hierarchy.

Line 10. Generate query Q for computing the facts f ∈ FM′ based on graph
pattern GP created in the previous steps. The measures are also ag-
gregated at the spatial target level (closest City, which is dynamically

177

Paper C.

selected). The group by statement is applied on the fact members and
target level members. In our running example we obtain the following
case for the generated s-roll-up query Q.

S-Roll-up operator: The following listing shows the generated SPARQL query.
Graph pattern GP′ for the inner select subquery is created in Lines 15 to 22
and the graph pattern GP for the whole query is created in Lines 3 to 24.

1 Q = SELECT ?obs ?city (SUM(?sales) AS

2 ?totalSales) WHERE

3 { ?obs rdf:type qb:Observation ;

4 gnw:customerID ?cust ;

5 gnw:supplierID ?sup ;

6 gnw:salesAmount ?sales .

7 ?cust qb4o:memberOf gnw:customer ;

8 gnw:customerGeo ?custGeo ;

9 gnw:customerName ?custName ;

10 skos:broader ?city .

11 ?city qb4o:memberOf gnw:city .

12 ?sup gnw:supplierGeo ?supGeo .

Inner Select for the distance function

13 { SELECT ?cust1 (MIN(?distance) AS

14 ?minDistance) WHERE

15 { ?obs rdf:type qb:Observation ;

16 gnw:customerID ?cust1 ;

17 gnw:supplierID ?sup1 .

18 ?sup1 gnw:supplierGeo ?sup1Geo .

19 ?cust1 gnw:customerGeo ?cust1Geo .

20 BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

21 AS ?distance)}

22 GROUP BY ?cust1 }

23 FILTER (?cust = ?cust1 && bif:st_distance

24 (?custGeo, ?supGeo) = ?minDistance)}

25 GROUP BY ?city ?obs

S-Drill-down Generator. The semantics of the s-drill-down operator are de-
fined in the same way as for the s-roll-up operator with the condition that
the input cube C for s-roll-up is obtained using a function BaseCube such that
SDD(C)[fS (L(di)), agg(m)] = SRU(BaseCube(C))[fS (L(di)), agg(m)] (Def. 20).
Therefore, no generator algorithm and steps are specified since an s-drill-
down operator corresponds to a rewriting of an s-roll-up operator, which is
obtained with a Base function that calls the base cube graph in SRUGenerator

as; SDDGenerator = SRUGenerator (Base(G I
(C)), f

S (L(di)), agg(m)).

178

6. Generating SOLAP queries in SPARQL via QB4SOLAP

6.2 Nested SOLAP operations to SPARQL

We now show how a SPARQL query can be generated for a nested SOLAP
expression. In general, a nested set of SOLAP operators can be rewritten into
an expression with an additional s-dice, on top of a series of s-roll-ups, on
top of one or more s-slices, on top of an s-dice, i.e., (s-dice2(s-roll-up1(. . . s-roll-
upk(s-slice1(. . . s-slicen(s-dice1(C))))))).

Let us begin with a simpler nested form that shows the most typical pat-
tern, namely (s-roll-up (s-slice (s-dice(C)))), where initially a subcube graph is
selected by s-dice. Afterwards, an s-slice is performed on a higher level of a
dimension. Then, an s-roll-up is applied, which aggregates the measures in
the sliced cube from a lower level to a higher level. Finally, we could also per-
form another s-dice for filtering the measures. There may be several s-slices
and s-roll-ups in between.

We formulate the nested SOLAP query as 3(s-roll-up 2(s-slice 1(s-dice(C))))
and apply our running examples such that the enumeration of operators can
be interpreted as follows: 1Get the subcube graph of customers that are lo-
cated within a 5 km distance from their city center, 2slice on the customers of
the largest country, (which drops the dimension and leaves out all the other
countries) and 3get the total amount of sales for customers by the city of their
closest suppliers (aggregates the measure Sales amount from Customer to
Closest City level). Finally, we may also perform another (s-)dice on mea-
sures, e.g., filtering the total amount of sales greater than 10500. To perform
nested SOLAP operators, we identify a set of principles to be considered by
the algorithm.

Principle 1: Perform s-dice in the beginning or at the end.

Principle 2: If there are several s-roll-up or s-slice operations call their
generator algorithms repeatedly.

Principle 3: Always separate FILTER clauses when a SOLAP generator
algorithm is used. Enumerate separated FILTER clauses. If a SOLAP
operator is the final function added to the graph pattern, do not sepa-
rate the FILTER clause.

Principle 4: Build the final graph pattern with the separated and enu-
merated FILTER clauses with respect to Principle 3.

Principle 5: Drop the main SELECT clause from each SOLAP generator
algorithms and build only one SELECT that is added to the query at the
end.

Principle 6: Separate the GROUP BY clause and AGG functions from the
s-roll-up generator algorithms (and enumerate them), and build add
them to the main (outer) SELECT clause at the end.

179

Paper C.

Algorithm 5: WriteSPARQL((SRU (C)[fS (L(di)),agg(m)](SS(C)[lb, ls, vas](
SD(C)[φS])))) : Q

Input: (SRU (C)[fS (L(ds)), agg(m)](SS(C)[lb, ls, vas](SD(C)[φS])))
Output: Q

1 begin
2 Q = ∅ ; GP = RUPath(GS

(C), lb, ls, aID,?as,?f)

3 GP = GP ∪ (?f idS(m) ?m)
4 GP1 = S-DiceGenerator(G I

(C), φS) \FILTER1 \ SELECT
5 GP = GP ∪ GP1

6 GP2 = S-SliceGenerator(G I
(C), vs, lb, ls)

\FILTER2 \ SELECT
7 GP = GP ∪ GP2

8 GP = GP ∪ FILTER1 ∪ FILTER2 ∪
9 SRUGenerator(G I

(C), f
S (L(ds)), agg(m)) \ SELECT \ GROUP BY1 \

AGG1

10 return Q = SELECT ?l’s AGG1(?m) WHERE GP GROUP BY1 ?l’s

To separate the FILTER clauses, we call SOLAP generator algorithms with-
out their FILTER clause and enumerate each FILTER clause for each SOLAP
generator algorithm that is used, i.e., S-SliceGenerator (G I

(C), φS) \ FILTER1

(Algorithm 5, Line 4). Then, we build the final graph pattern with these sep-
arated FILTER clauses i.e., GP = GP ∪ FILTER1 ∪ FILTER2 (Line 8). When the
last SOLAP generator algorithm is called, the output is directly added to the
graph pattern without separating its FILTER clause (Line 9). Throughout the
algorithm, all the SELECT clauses are omitted and combined into one SELECT

in the output on Line 10. According to Principle 6, if there are any GROUP BY

clauses and AGG functions (on measures) in inner selects, we eliminate them
with " \ " from the inner selects (Line 9) and finally build the main (outer)
select query with (Line 10). Note that in the algorithm, the general graph pat-
tern GP is initially created by the RUPath function (Line 2) and incremented
with triple patterns for selected measures (Line 3).

Example 16. ((3s-roll-up (2s-slice (1s-dice(C))))):
1Get the subcube graph of customer that are located within a 5 km distance
from their city center, 2slice on the customers of the largest country, (which
drops the dimension and leave out all the other countries) and 3get the total
amount of sales of customers by the city of their closest suppliers (aggregates
the measure Sales amount from Customer to Closest City level). The query is
written starting from the innermost operator s-dice to the outermost operator
s-roll-up.

180

6. Generating SOLAP queries in SPARQL via QB4SOLAP

1 SELECT ?city (SUM(?sales) AS ?totalSales)

2 WHERE {

3 ?obs rdf:type qb:Observation ;

4 gnw:customerID ?cust ;

5 gnw:supplierID ?sup ;

6 gnw:salesAmount ?sales .

7 ?cust qb4o:memberOf gnw:customer ;

8 gnw:customerGeo ?custGeo ;

9 skos:broader ?city .

10 ?sup qb4o:memberOf gnw:supplier ;

11 gnw:supplierGeo ?supGeo ;

12 skos:broader ?city .

13 ?city qb4o:memberOf gnw:city ;

14 gnw:cityGeo ?cityCentGeo ;

15 skos:broader ?country .

16 ?country qb4o:memberOf gnw:country ;

17 gnw:countryGeo ?countGeo .

18 ?city gnw:cityGeo ?cityGeo .

1.Inner select for (S-SLICE)

Find the largest country

19 {SELECT ?x (MAX(?area) as ?maxArea)

20 WHERE {

21 ?obs rdf:type qb:Observation ;

22 gnw:customerID ?cust .

23 ?cust qb4o:memberOf gnw:customer ;

24 skos:broader ?city .

25 ?city skos:broader ?country .

26 ?country gnw:countryGeo ?x .

27 BIND(bif:st_area(?x) as ?area)}}

2.Inner select for (S-ROLL-UP)

Find the closest suppliers to customers

28 { SELECT ?cust1 (MIN(?distance) AS

29 ?minDistance) WHERE {

30 ?obs rdf:type qb:Observation ;

31 gnw:customerID ?cust1 ;

32 gnw:supplierID ?sup1 .

33 ?sup1 gnw:supplierGeo ?sup1Geo .

34 ?cust1 gnw:customerGeo ?cust1Geo .

35 BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

AS ?distance)}

36 GROUP BY ?cust1 }

FILTER for S-DICE, to get a subcube

37 FILTER (bif:st_within (?custGeo, ?cityCentGeo, 5))

FILTER for S-SLICE, the 1st inner SELECT

38 FILTER (?countGeo = ?x)

FILTER for S-ROLL-UP, the 2nd inner SELECT

181

Paper C.

39 FILTER (?cust = ?cust1 && bif:st_distance

(?custGeo, ?supGeo) = ?minDistance)}

40 GROUP BY ?city

The graph pattern GP is initially created with the RUPath function for
the corresponding levels and level attributes (Lines 3 to 18 of the gener-
ated SPARQL query in the listing above). The first operator is called by
function S-DiceGenerator, where the first FILTER clause of the outer se-
lected is added to the query (Line 37). The second operator is called by
the S-SliceGenerator function excluding its FILTER clause (Lines 19 to 27),
which is followed by the SRUGenerator function without GROUP BY and AGG

statements (Lines 28 to 36). Note that in Line 36, GROUP BY is applied on the
lower level Customer, and the actual GROUP BY for the target City level is ap-
plied in the last line (Line 40). Separated FILTER clauses for the S-DiceGene�

rator and S-SliceGenerator functions are later added to the graph pattern
(Algorithm 5, Line 8) corresponding to Lines 37 and 38 in the above example.
The main outer select query is defined in the first line by specifying the target
level (City) and aggregate function on measures (sum of the total Sales).

7 Conclusions and future work

Motivated by the need for a formal foundation for spatial data warehouses
on the Semantic Web, this paper made a number of contributions. First, it
proposed the QB4SOLAP vocabulary (metamodel), which supports spatially
enhanced multidimensional (MD) data cubes over RDF data. This allows
users to publish MD spatial data in RDF format. Second, the paper defines
a number of spatial OLAP (SOLAP) operators over the defined QB4SOLAP
cubes, allowing spatial analytical queries over RDF data, and gives their for-
mal semantics. Third, the paper provides algorithms for generating spatially
extended SPARQL queries from individual and nested SOLAP operators, al-
lowing users to write their spatial analytical queries in our high-level SOLAP
language instead of the lower-level and more complex SPARQL. Fourth, the
vocabulary, operators, and query generation algorithms are validated by ap-
plying them to a realistic use case.

Fig. C.8 presents our future vision of SOLAP on the Semantic Web with
regards to the current state of the art and ongoing work. In order to verify the
algorithms, which are defined in this paper, we developed GeoSemOLAP [32],
a SPARQL query generation tool. GeoSemOLAP allows users to perform SO-
LAP operations and generate SPARQL queries interactively through a GUI.
We refer to our screencast16 for a detailed demonstration of GeoSemOLAP.

16https://youtu.be/Pc3RBPPgBhA

182

https://youtu.be/Pc3RBPPgBhA

7. Conclusions and future work

RDF2SOLAP
module

External
Geo-

vocabularies

SOLAP

User Spatial RDF Data Warehouses

GeoSemOLAP

SOLAP to SPARQL

QB4SOLAP

Spatial RDF
Endpoints

Fig. C.8: Our future vision of SOLAP on the SW

Publishing spatial DWs on the SW allows users to also exploit the ex-
isting external geo-vocabularies (e.g., GeoNames, etc.)17 by defining spatial
levels and hierarchies from external open data sources. Our main ongoing
work thus focuses on developing an RDF2SOLAP enrichment module that
performs the multidimensional annotation of existing spatial RDF datasets
with QB4SOLAP in a (semi-)automatic fashion.

Additional interesting aspects of future work would be, for instance, ex-
tending the formal techniques and algorithms for generating SOLAP queries
in SPARQL to work over multiple RDF cubes, i.e., to support s-drill-across,
and supporting spatial aggregation (s-aggregation) with user-defined func-
tions over spatial measures. It would be also interesting to increase efficiency
by extending our spatial data warehouse with techniques that been devel-
oped in the context of RDF data cubes and SPARQL analytical queries in
general, e.g., materialization and optimizing the physical layout [33–35], and
to enable efficient support of a broad range of external sources by consider-
ing aspects such as federated processing of analytical queries [36] and schema
heterogeneity [37]. We will also consider more efficient representations of the
data, e.g., by removing redundancies. Furthermore, it would be interesting to
extend QB4SOLAP and GeoSemOLAP [32] to handle highly dynamic spatio-
temporal data and queries, as for instance, found in large-scale transport

17GeoNames: http://www.geonames.org/
Global Administrative Areas: http://gadm.geovocab.org/
NUTS – EU’s Nomenclature of Territorial Units for Statistics: http://nuts.geovocab.org/

183

http://www.geonames.org/
http://gadm.geovocab.org/
http://nuts.geovocab.org/

Paper C.

analytics [38].

A Appendix

A.1 Query Run Times

Table C.5 presents the query runtimes for the SOLAP operator examples
(Ex. 12, Ex. 13.1, Ex. 13.2, Ex. 14, and Ex. 15) given in Sect. 5 and a nested
SOLAP operator example (Ex. 16) given in Sect. 6.2. The SOLAP queries
are tested against an instance of the use case dataset (GeoNorthwind) that
we have discussed in Sect. 4. In total, 48677 triples are obtained from the
GeoNorthwind dataset. The published RDF graph instance is denoted as
C in Table C.5. We used Virtuoso Open Source Edition (Column Store and
multi threaded) Version 7.2.5 on an Ubuntu 14.04 server with 2.30GHz CPU
and 16 GB RAM to publish the triples at the SPARQL endpoint http://lod.
cs.aau.dk:8890/sparql. The actual queries used in the paper are available
at http://extbi.cs.aau.dk/SOLAP4SW/queries.

Table C.5: Runtimes in seconds

SOLAP Operators Query Runtime
Ex. 12 (s-slice(C)) 0.07
Ex. 13.1 (s-dice(C)) 0.09
Ex. 13.2 (s-dice(C)) 1.01
Ex. 14 (s-roll-up(C)) 2.03
Ex. 15 (s-drill-down(C)) 1.86
Ex. 16 (s-roll-up (s-slice (s-dice(C)))) 3.04

The query runtime of the s-slice query in Ex 12 is measured as 0.07 sec-
onds, which is an efficient SOLAP operator to execute, since filtering the
given spatial literal is done only for the records of the specified level in-
stances.

The query runtimes of the s-dice queries in Ex. 13.1 and Ex. 13.2 are mea-
sured as 0.09 and 1.01 seconds respectively, for the two alternative ways of
implementing s-dice in SPARQL. It is clear that the first use of the s-dice
operator is more efficient compared to the second, even though both return
the same results. The first one performs s-dice by filtering the instances of
the customers through their geometries that are within a buffer area of a cir-
cle with 5 km radius and the city center geometry as the center point of the
circle. The second one performs s-dice by measuring the distances between
each customer’s location and their city center, and then applies a filter of
those measurements to find the ones that are less than 5 km. This is a more

184

http://lod.cs.aau.dk:8890/sparql
http://lod.cs.aau.dk:8890/sparql
http://extbi.cs.aau.dk/SOLAP4SW/queries

References

expensive approach due to measuring the distances between each customer
and city instances with a spatial distance function.

The query runtime of the s-roll-up query in Ex. 14 is measured as 2.03
seconds. The s-roll-up operator has a longer response time than the other
operators as it combines a spatial distance function with aggregate opera-
tors. Due to its complexity, s-roll-up requires an inner select where it binds
the distances of specified spatial level attributes (e.g., customer and supplier
geometry), which is calculated with a spatial distance function. Those dis-
tance measurements are then filtered in the outer select with respect to the
aggregate function.

The query runtime of the s-drill-down query in Ex. 15 is measured as
1.86 seconds. S-drill-down operates in a very similar manner as s-roll-up.
Theoretically, s-drill-down operates on an already spatially rolled up data
cube, whilst it is implemented in practice as an s-roll-up on the base cube.
The RDF data is at the lowest granularity, which is equal to the definition of
the base cube. The SPARQL query of the s-drill-down operator is very similar
the s-roll-up operator. The difference of the query runtime between Ex. 14
and Ex. 15 is directly related to the number of instances of the specified levels
and the complexity of the spatial functions.

The query runtime for the nested SOLAP query in Ex. 16 is measured
as 3.04 seconds. The nesting in the query is the main reason why it has a
longer response time. Moreover, the nested query has more triple patterns
and clauses that need to be evaluated during query execution. Hence, it takes
longer than evaluating a single SOLAP operator.

A.2 Table of Contents

Table C.6 summarizes a list of all the definitions, extensions, remarks, and
algorithms. Definitions are enumerated starting from "1". Extensions are enu-
merated starting from "5" to be consistent with the base definition of the ex-
tension, e.g., Def. 5 (Dimensions) is followed by Ext. 5 (Spatial dimensions).
Remarks are enumerated starting from "17" for OLAP operators, which are
given before the definitions of the corresponding SOLAP operator, e.g., Re-
mark 17 (Slice) is followed by Def. 17 (S-Slice). Algorithms are enumerated
starting from "1".

References

[1] N. Gür, K. Hose, E. Zimányi, and T. B. Pedersen, “Modeling and Query-
ing Spatial Data Warehouses on the Semantic Web,” in Semantic Tech-
nology: 5th Joint International Semantic Technology Conference (JIST’15),

185

References

vol. 9544. Springer, 2015, pp. 1–20, https://dx.doi.org/10.1007/
978-3-319-31676-5_1.

[2] N. Gür, K. Hose, T. B. Pedersen, and E. Zimányi, “Enabling Spatial
OLAP over Environmental and Farming Data with QB4SOLAP,” in Se-
mantic Technology: 6th Joint International Semantic Technology Conference
(JIST’16), vol. 10055. Springer, 2016, pp. 287–304, https://dx.doi.org/
10.1007/978-3-319-50112-3_22.

[3] A. Abelló, O. Romero, T. Pedersen, R. Berlanga Llavori, V. Nebot,
M. Aramburu, and A. Simitsis, “Using Semantic Web Technologies for
Exploratory OLAP: A Survey,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 27, no. 2, pp. 571–588, 2014, https://doi.org/
10.1109/TKDE.2014.2330822.

[4] B. Kämpgen, S. O’Riain, and A. Harth, “Interacting with Statistical
Linked Data via OLAP Operations,” in The Semantic Web: ESWC 2012
Satellite Events, vol. 7540. Springer, 2012, pp. 87–101, https://dx.doi.
org/10.1007/978-3-662-46641-4_7.

[5] R. Cyganiak, D. Reynolds, and J. Tennison, “The RDF Data Cube Vocab-
ulary,” 2014.

[6] L. Etcheverry, A. Vaisman, and E. Zimányi, “Modeling and Querying
Data Warehouses on the Semantic Web using QB4OLAP,” in Data Ware-
housing and Knowledge Discovery (DaWaK’14), vol. 8646. Springer, 2014,
pp. 45–56, https://dx.doi.org/10.1007/978-3-319-10160-6_5.

[7] R. P. Deb Nath, K. Hose, and T. B. Pedersen, “Towards a Programmable
Semantic Extract-Transform-Load Framework for Semantic Data Ware-
houses,” in Proceedings of the 18th International Workshop on Data Ware-
housing and OLAP (DOLAP’15). ACM, 2015, pp. 15–24, https://doi.
org/10.1145/2811222.2811229.

[8] J. Varga, A. A. Vaisman, O. Romero, L. Etcheverry, T. B. Pedersen, and
C. Thomsen, “Dimensional enrichment of statistical linked open data,”
Web Semantics: Science, Services and Agents on the World Wide Web, vol. 40,
pp. 22–51, 2016, https://dx.doi.org/10.1016/j.websem.2016.07.003.

[9] P. Revesz, Introduction to Databases: From Biological to Spatio-Temporal.
Springer, 2009.

[10] Y. Bédard, E. Bernier, S. Larrivée, M. Nadeau, M. Proulx, and S. Rivest,
“Spatial OLAP,” in Forum annuel sur la RD, Géomatique VI: Un monde
accessible, 1997, pp. 13–14.

186

https://dx.doi.org/10.1007/978-3-319-31676-5_1
https://dx.doi.org/10.1007/978-3-319-31676-5_1
https://dx.doi.org/10.1007/978-3-319-50112-3_22
https://dx.doi.org/10.1007/978-3-319-50112-3_22
https://doi.org/10.1109/TKDE.2014.2330822
https://doi.org/10.1109/TKDE.2014.2330822
https://dx.doi.org/10.1007/978-3-662-46641-4_7
https://dx.doi.org/10.1007/978-3-662-46641-4_7
https://dx.doi.org/10.1007/978-3-319-10160-6_5
https://doi.org/10.1145/2811222.2811229
https://doi.org/10.1145/2811222.2811229
https://dx.doi.org/10.1016/j.websem.2016.07.003

References

[11] S. Rivest, Y. Bédard, and P. Marchand, “Toward better support for spatial
decision making: defining the characteristics of spatial on-line analytical
processing (SOLAP),” GEOMATICA, vol. 55, no. 4, pp. 539–555, 2001,
canadian Institute of Geomatics.

[12] E. Edoh-Alove, S. Bimonte, and F. Pinet, “An UML Profile and SOLAP
Datacubes Multidimensional Schemas Transformation Process for Dat-
acubes Risk-Aware Design,” International Journal of Data Warehousing and
Mining (IJDWM), vol. 11, no. 4, pp. 64–83, 2015, https://dx.doi.org/10.
4018/ijdwm.2015100104.

[13] T. B. Pedersen and N. Tryfona, “Pre-aggregation in Spatial Data Ware-
houses,” in Proceedings of the 7th International Symposium on Advances in
Spatial and Temporal Databases (SSTD’01). Springer, 2001, pp. 460–478,
http://dx.doi.org/10.1007/3-540-47724-1_24.

[14] I. V. Lopez, R. T. Snodgrass, and B. Moon, “Spatiotemporal aggregate
computation: A survey,” IEEE Transactions on Knowledge and Data En-
gineering (TKDE), vol. 17, no. 2, pp. 271–286, 2005, https://doi.org/10.
1109/TKDE.2005.34.

[15] J. da Silva, V. C. Times, A. C. Salgado, C. Souza, R. d. N. Fidalgo, and
A. G. de Oliveira, “A set of aggregation functions for spatial measures,”
in Proceedings of the 11th International Workshop on Data Warehousing and
OLAP (DOLAP’08). ACM, 2008, pp. 25–32, https://doi.acm.org/10.
1145/1458432.1458438.

[16] L. I. Gómez, S. Haesevoets, B. Kuijpers, and A. A. Vaisman, “Spatial
aggregation: Data model and implementation,” Information Systems (IS),
vol. 34, no. 6, pp. 551–576, 2009, https://dx.doi.org/10.1016/j.is.2009.03.
002.

[17] J. Han, N. Stefanovic, and K. Koperski, “Selective Materialization: An Ef-
ficient Method for Spatial Data Cube Construction,” in Research and De-
velopment in Knowledge Discovery and Data Mining (PAKDD’98). Springer,
1998, pp. 144–158, https://dx.doi.org/10.1007/3-540-64383-4_13.

[18] E. Malinowski and E. Zimányi, Advanced Data Warehouse Design:
From Conventional to Spatial and Temporal Applications. Data-Centric Sys-
tems and Applications. Springer, 2008, https://dx.doi.org/10.1007/
978-3-540-74405-4.

[19] A. Vaisman and E. Zimányi, “A Multidimensional Model Represent-
ing Continuous Fields in Spatial Data Warehouses,” in Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (GIS’09). ACM, 2009, pp. 168–177, https:
//doi.acm.org/10.1145/1653771.1653797.

187

https://dx.doi.org/10.4018/ijdwm.2015100104
https://dx.doi.org/10.4018/ijdwm.2015100104
http://dx.doi.org/10.1007/3-540-47724-1_24
https://doi.org/10.1109/TKDE.2005.34
https://doi.org/10.1109/TKDE.2005.34
https://doi.acm.org/10.1145/1458432.1458438
https://doi.acm.org/10.1145/1458432.1458438
https://dx.doi.org/10.1016/j.is.2009.03.002
https://dx.doi.org/10.1016/j.is.2009.03.002
https://dx.doi.org/10.1007/3-540-64383-4_13
https://dx.doi.org/10.1007/978-3-540-74405-4
https://dx.doi.org/10.1007/978-3-540-74405-4
https://doi.acm.org/10.1145/1653771.1653797
https://doi.acm.org/10.1145/1653771.1653797

References

[20] L. I. Gómez, S. A. Gómez, and A. A. Vaisman, “A Generic Data Model
and Query Language for Spatiotemporal OLAP Cube Analysis,” in Pro-
ceedings of the 15th International Conference on Extending Database Technol-
ogy (EDBT’12). ACM, 2012, pp. 300–311, https://doi.acm.org/10.1145/
2247596.2247632.

[21] R. Battle and D. Kolas, “Enabling the Geospatial Semantic Web with
Parliament and GeoSPARQL,” Semantic Web Journal (SWJ), vol. 3, no. 4,
pp. 355–370, 2012, https://dx.doi.org/10.3233/SW-2012-0065.

[22] K. Kyzirakos, M. Karpathiotakis, and M. Koubarakis, “Strabon: A Se-
mantic Geospatial DBMS,” in The Semantic Web: 11th International Se-
mantic Web Conference (ISWC’12). Springer, 2012, pp. 295–311, https:
//dx.doi.org/10.1007/978-3-642-35176-1_19.

[23] M. Koubarakis, M. Karpathiotakis, K. Kyzirakos, C. Nikolaou, and
M. Sioutis, “Data Models and Query Languages for Linked Geospa-
tial Data,” in Reasoning Web. Semantic Technologies for Advanced Query
Answering. Springer, 2012, pp. 290–328, https://dx.doi.org/10.1007/
978-3-642-33158-9_8.

[24] C. Stadler, J. Lehmann, K. Höffner, and S. Auer, “LinkedGeoData: A
Core for a Web of Spatial Open Data,” Semantic Web Journal (SWJ), vol. 3,
pp. 333–354, 2012, https://dx.doi.org/10.3233/SW-2011-0052.

[25] G. Rojas, G. Giannopoulos, and J. J. L. Daniel Hladky, “Managing
Geospatial Linked Data in the GeoKnow Project,” in The Semantic Web in
Earth and Space Science. Current Status and Future Directions, vol. 20. IOS
Press, 2015, p. 51.

[26] A. B. Andersen, N. Gür, K. Hose, K. A. Jakobsen, and T. B. Ped-
ersen, “Publishing Danish Agricultural Government Data as Seman-
tic Web Data,” in Semantic Technology: 4th Joint International Semantic
Technology Conference (JIST’14), vol. 8943. Springer, 2014, pp. 178–186,
https://dx.doi.org/10.1007/978-3-319-15615-6_13.

[27] D. A. Randell, Z. Cui, and A. G. Cohn, “A spatial logic based on regions
and connection,” in Principles of Knowledge Representation and Reasoning,
vol. 92, 1992, pp. 165–176.

[28] M. J. Egenhofer and J. Herring, “A mathematical framework for the def-
inition of topological relationships,” in Fourth international symposium on
spatial data handling. Zurich, Switzerland, 1990, pp. 803–813.

[29] M. Perry and J. Herring, “GeoSPARQL: A Geographic Query Language
for RDF Data,” OGC Implementation Standard, 2012.

188

https://doi.acm.org/10.1145/2247596.2247632
https://doi.acm.org/10.1145/2247596.2247632
https://dx.doi.org/10.3233/SW-2012-0065
https://dx.doi.org/10.1007/978-3-642-35176-1_19
https://dx.doi.org/10.1007/978-3-642-35176-1_19
https://dx.doi.org/10.1007/978-3-642-33158-9_8
https://dx.doi.org/10.1007/978-3-642-33158-9_8
https://dx.doi.org/10.3233/SW-2011-0052
https://dx.doi.org/10.1007/978-3-319-15615-6_13

References

[30] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “A Foundation for Cap-
turing and Querying Complex Multidimensional Data,” Information Sys-
tems (IS), vol. 26, no. 5, pp. 383–423, 2001, http://dx.doi.org/10.1016/
S0306-4379(01)00023-0.

[31] C. Ciferri, L. Gómez, M. Schneider, A. Vaisman, and E. Zimányi,
“Cube algebra: A Generic User-centric Model and Query Language
for OLAP Cubes,” International Journal of Data Warehousing and Min-
ing (IJDWM), vol. 9, no. 2, pp. 39–65, 2013, http://dx.doi.org/10.4018/
jdwm.2013040103.

[32] N. Gür, J. Nielsen, K. Hose, and T. B. Pedersen, “GeoSemOLAP: SOLAP
on the Semantic Web Made Easy,” in Proceedings of the 26th International
Conference Companion on World Wide Web (WWW’17). ACM, 2017, https:
//dx.doi.org/10.1145/3041021.3054731.

[33] F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu, “View Selection
in Semantic Web Databases,” VLDB Endowment, vol. 5, no. 2, pp. 97–108,
2011, https://dx.doi.org/10.14778/2078324.2078326.

[34] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi, “Optimizing Ag-
gregate SPARQL Queries Using Materialized RDF Views,” in The Seman-
tic Web: 15th International Semantic Web Conference (ISWC’16). Springer,
2016, pp. 341–359, https://dx.doi.org/10.1007/978-3-319-46523-4_21.

[35] K. A. Jakobsen, A. B. Andersen, K. Hose, and T. B. Pedersen, “Opti-
mizing RDF Data Cubes for Efficient Processing of Analytical Queries,”
in Proceedings of the 6th International Workshop on Consuming Linked Data
(COLD’15), 2015, http://ceur-ws.org/Vol-1426/paper-02.pdf.

[36] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi, “Processing Ag-
gregate Queries in a Federation of SPARQL Endpoints,” in The Semantic
Web: 12th European Semantic Web Conference (ESWC’15). Springer, 2015,
pp. 269–285, https://dx.doi.org/10.1007/978-3-319-18818-8_17.

[37] J. Rouces, G. de Melo, and K. Hose, “FrameBase: Representing N-Ary
Relations Using Semantic Frames,” in The Semantic Web: 12th European
Semantic Web Conference (ESWC’15). Springer, 2015, pp. 505–521, https:
//dx.doi.org/10.1007/978-3-319-18818-8_31.

[38] G. Gidofalvi, T. B. Pedersen, T. Risch, and E. Zeitler, “Highly scalable
trip grouping for large-scale collective transportation systems,” in Pro-
ceedings of the 11th International Conference on Extending Database Technol-
ogy (EDBT’08). ACM, 2008, pp. 678–689, https://doi.acm.org/10.1145/
1353343.1353425.

189

http://dx.doi.org/10.1016/S0306-4379(01)00023-0
http://dx.doi.org/10.1016/S0306-4379(01)00023-0
http://dx.doi.org/10.4018/jdwm.2013040103
http://dx.doi.org/10.4018/jdwm.2013040103
https://dx.doi.org/10.1145/3041021.3054731
https://dx.doi.org/10.1145/3041021.3054731
https://dx.doi.org/10.14778/2078324.2078326
https://dx.doi.org/10.1007/978-3-319-46523-4_21
http://ceur-ws.org/Vol-1426/paper-02.pdf
https://dx.doi.org/10.1007/978-3-319-18818-8_17
https://dx.doi.org/10.1007/978-3-319-18818-8_31
https://dx.doi.org/10.1007/978-3-319-18818-8_31
https://doi.acm.org/10.1145/1353343.1353425
https://doi.acm.org/10.1145/1353343.1353425

References

Table C.6: Table of Contents

Type No. Topic Sect. Page
Definition 1 Spatial aggregation 3.2 140
Definition 2 Topological relations 3.2 140
Definition 3 Numeric operations 3.2 140
Definition 4 RDF triple 4 146
Definition 5 Dimensions 4.1 147
Extension 5 Spatial dimensions 4.1 147
Definition 6 Hierarchies 4.1 148-149
Extension 6 Spatial hierarchies 4.1 149
Definition 7 Levels 4.1 149-150
Extension 7 Spatial levels 4.1 150
Definition 8 Attributes 4.1 150-151
Extension 8 Spatial attributes 4.1 151
Definition 9 Hierarchy steps 4.1 152-153
Extension 9 Spatial hierarchy steps 4.1 153
Definition 10 Partial order on levels 4.1 154
Definition 11 Measures 4.1 154
Extension 11 Spatial measures 4.1 154
Definition 12 Fact 4.1 155
Extension 12 Spatial fact 4.1 156
Definition 13 Level members 4.2 157
Definition 14 Attributes of level members 4.2 157
Definition 15 Partial order on level members 4.2 158
Definition 16 Fact members 4.2 158-159
Remark 17 Slice 5 160
Definition 17 S-Slice 5 160
Remark 18 Dice 5 162
Definition 18 S-Dice 5 163
Remark 19 Roll-up 5 164
Definition 19 S-Roll-up 5 164-165
Remark 20 Drill-down 5 166
Definition 20 S-Drill-down 5 167
Algorithm 1 RUPath 6.1 168
Algorithm 2 S-SliceGenerator 6.1 170
Algorithm 3 S-DiceGenerator 6.1 174
Algorithm 4 SRUGenerator 6.1 176
Algorithm 5 WriteSPARQL 6.2 180

190

Paper D

GeoSemOLAP: Geospatial OLAP on the Semantic
Web Made Easy

Nurefşan Gür, Jacob Nielsen, Katja Hose, and Torben Bach
Pedersen

The (demo) paper has been published in the
Proceedings of the 26th International Conference on World Wide Web and

awarded as Best Demo by Reviewer’s Choice.
ACM ID: 3054731, pp. 213–217, 2017. DOI: 10.1145/3041021.3054731

Abstract

The proliferation of spatial data and the publication of multidimensional (MD) data
on the Semantic Web (SW) has led to new opportunities for On-Line Analytical
Processing (SOLAP) over spatial data using SPARQL. However, formulating such
queries results in verbose statements and can easily become very difficult for inex-
perienced users. Hence, we have developed GeoSemOLAP to enable users without
detailed knowledge of RDF and SPARQL to query the SW with SOLAP. GeoSemO-
LAP generates SPARQL queries based on high-level SOLAP operators and allows
the user to interactively formulate queries using a graphical interface with interac-
tive maps.

c© 2017 International World Wide Web Conference Committee (IW3C2), pub-
lished under Creative Commons CC BY 4.0 License. Reprinted, with permis-
sion from Nurefşan Gür, Jacob Nielsen, Katja Hose, and Torben Bach Peder-
sen. GeoSemOLAP: Geospatial OLAP on the Semantic Web Made Easy. In:
WWW’17 Companion, ACM 978-1-4503-4913-0/17/04.
The layout has been revised.

1. Introduction

1 Introduction

The data that is currently available on the Semantic Web (SW) has evolved
from being simple, mostly alphanumeric, to also include more complex data
such as spatial data [1]. Although spatial data is common on the SW, it
remains difficult to utilize and analyze because spatial data requires special
techniques for encoding it in RDF and evaluating spatial functions, which are
often not supported by standard triple stores. On the other hand, the sup-
port of spatial data is more common in the area of relational databases, where
spatial data warehouses are typically based on a multidimensional (MD) rela-
tional model involving spatial dimensions. Efficiently processing spatial data
in this context is typically realized by Online Analytical Processing (OLAP)
extended to support spatial analyses (SOLAP) [2].

However, with the growing popularity of the Linked Open Data (LOD)
movement in the public sector, more and more spatial datasets from govern-
mental domains [3] are becoming available on the SW. The availability of such
datasets has led to novel opportunities for decision makers to analyze the
growing public data with analytical data warehouse queries on SW data [4].
However, these potential users are only in very rare cases sufficiently familiar
with the underlying technologies that are necessary to actually perform the
desired analyses.

c1

c2

c3

c4

c5

s1

s2

s3

Holbæk

RingstedSorø 5km

4

5

30

3

8

10

7

3

5

Fig. D.1: Example map of sales data

Let us consider an example scenario: Fig. D.1 shows a map highlighting
the amount of sales between customers (c1, c2, . . . , c5) and suppliers (s1,
s2, s3) in three Danish cities (Sorø, Holbæk, Ringsted). Let us assume that

193

Paper D.

an analyst wants to obtain the total sales of customers grouped by cities of
their closest supplier – Query E.1 shows the corresponding example query
formulated in SPARQL. This means that, first, for each customer we need to
determine the closest supplier and the city in which the supplier is located.
Then, we create one group for each of these cities and compute the total sales
per city.

For each sales event, the dataset contains information about the involved
customer and supplier; and for each customer and supplier the dataset con-
tains the city they are located in. As the dataset does not contain any infor-
mation about the distances between customers and suppliers, we have to use
a spatial function (distance in this example) and evaluate it during runtime.

Based on the obtained information, we can aggregate the results as de-
scribed above. Technically, this corresponds to a SOLAP operator: s-roll-
up [2, 5].

As we can see in Query E.1, formulating a roll-up to a higher level, e.g.,
from sales by supplier to sales by city, in a SPARQL query involves several
triple patterns. Extending such a query with spatial aspects (as necessary for
s-roll-up) requires even more triple patterns and spatial functions (such as
distance), which can easily become overwhelming for inexperienced users.

1 SELECT ?obs ?supCity (SUM(?sales) AS ?totalSales)

2 WHERE {?obs rdf:type qb:Observation ;

3 gnw:customerID ?cust ;

4 gnw:supplierID ?sup ;

5 gnw:salesAmount ?sales .

6 ?cust qb4o:memberOf gnw:customer ;

7 gnw:customerGeo ?custGeo .

8 ?sup qb4o:memberOf gnw:supplier;

9 gnw:supplierGeo ?supGeo ;

10 skos:broader ?supCity .

11 ?supCity qb4o:memberOf gnw:city .

Inner select for the distance function

12 {SELECT ?cust1 (MIN(?distance) AS ?minDistance)

13 WHERE {?obs rdf:type qb:Observation ;

14 gnw:customerID ?cust1 ;

15 gnw:supplierID ?sup1 .

16 ?sup1 gnw:supplierGeo ?sup1Geo .

17 ?cust1 gnw:customerGeo ?cust1Geo .

18 BIND (bif:st_distance(?cust1Geo, ?sup1Geo)

19 AS ?distance)}

20 GROUP BY ?cust1 }

21 FILTER (?cust = ?cust1 && bif:st_distance

22 (?custGeo, ?supGeo) = ?minDistance)}

23 GROUP BY ?supCity ?obs

Query D.1: Query with s-roll-up formulated in SPARQL

194

2. Queries for Spatial Semantic Data Warehouses

The fact that data warehouse (DW) queries typically involve nesting of
(S)OLAP operators, for example (s-roll-up(s-slice(s-dice(DW)))), makes it al-
most impossible for non-experts to formulate such queries with SPARQL.

Hence, we have developed GeoSemOLAP, a framework with an easy-to-
use graphical interface that allows non-experts to query spatial semantic data
warehouses using high-level SOLAP operators [5].

2 Queries for Spatial Semantic Data Warehouses

To formulate SPARQL queries automatically, GeoSemOLAP needs some in-
formation about what data is contained in the spatial data warehouse. Our
current implementation uses metadata using the QB4SOLAP vocabulary1 [4,
5] for this purpose. In addition to MD data elements, QB4SOLAP also
describes spatial concepts and builds upon existing vocabularies: QB2 and
QB4OLAP3.

A QB4SOLAP data cube contains a set of observations. Its structure is
defined through a data structure definition (DSD) describing standard con-
cepts, such as dimensions, measures, hierarchies, hierarchy steps, levels, and level
attributes, as well as spatial concepts, such as spatial aggregate functions,
topological relations, spatial attributes, and spatial measures.

Let us consider an example of a company (Northwind) that exports a
number of goods. The company records its sales data4 in a spatial data ware-
house, which is based on an MD model enabling analyses of sales according
to their geographical distribution. The company decides to share the data
warehouse on the Semantic Web for further analysis of its sales (e.g., involv-
ing economic and demographic data published as Open Data on the Web)
and to provide access to all branches as well as customers and suppliers.
Fig. D.2 illustrates an example schema of the company’s spatial data ware-
house.

The example query from Section 1 (Query E.1: “Total sales to customers
grouped by city of their closest supplier") can on a high level be repre-
sented as: S-ROLL-UP (Sales, [DISTANCE(Customer, Supplier)] → ClosestCity,

SUM(SalesAmount)). The query’s s-roll-up operator takes the sales observa-
tions as input. Each sale observation has a set of associated measures rep-
resenting quantitative descriptions, e.g., Sales Amount and Sales Location –
the latter corresponds to a spatial measure. Measures have aggregation func-
tions (e.g., SUM for Sales Amount and Convex Hull for Sales Location) that

1QB4SOLAP: https://w3id.org/qb4solap#
Vocabulary Structure: http://extbi.cs.aau.dk/QB4SOLAP

2RDF Data Cube: https://w3.org/TR/vocab-data-cube/
3QB4OLAP: https://lorenae.github.io/qb4olap/
4http://northwinddatabase.codeplex.com/

195

https://w3id.org/qb4solap#
http://extbi.cs.aau.dk/QB4SOLAP
https://w3.org/TR/vocab-data-cube/
https://lorenae.github.io/qb4olap/
http://northwinddatabase.codeplex.com/

Paper D.

Sales

Customer Supplier

State

Country

All
Customers

 All
Suppliers



Country

State

City City

Amount (SUM)
Location (ConvexHull)

Name

(Intersects)

(Within)

H
iera

rch
y Step

sH
ie

ra
rc

h
y

 S
te

p
s

Name
Geometry

(Within)

Geometry

Fig. D.2: Northwind spatial data cube members (symbols next to level names represent spatial
characteristics of level members, e.g., point, polygon, and multi-polygon.)

can be used to combine several measure values when rolling-up to a higher
level, such as from City level to Country level. In Fig. D.2 both Customer and
Supplier are spatial dimensions.

The graph pattern in Lines 2–11 of Query E.1 describes the roll-up path as
a path-shaped join of triple patterns connecting observations to target levels
but also to the corresponding measures and attributes.

Line 1 in Query E.1 selects the sales observations (?obs) and the spatial
level (?supCity) as output. It also specifies to use aggregation function SUM on
the measure (?sales). Lines 2–5 describe a star-shaped join of triple patterns
connecting sales observations (?obs) to the Sales Amount measure (?sales)
as well as to the base level members of two spatial dimensions: Customer
(?cust) and Supplier (?sup).

City→State→Country→ All in Fig. D.2 depicts spatial hierarchies for the
Customer and Supplier dimensions. In Query E.1, Lines 6, 8, and 11 query in-
termediate spatial levels of these hierarchies. For each spatial level we query
the spatial attributes (Lines 7 and 9), e.g., Customer and Supplier have points.
Line 10 describes the roll-up from the lowest level in dimension Supplier to

196

3. System Overview

a higher level City. Each roll-up between levels is defined as a hierarchy
step. Spatial hierarchy steps have a topological relation between the levels
(e.g, Customer→(Within)City or State→(Intersects)Country, Fig. D.2), which is
annotated with QB4SOLAP in the DSD schema.

The rest of Query E.1 (Lines 12-23) represents an inner select operation for
calculating the distances between Customer and Supplier locations, which is
necessary to find the closest Supplier cities for the SOLAP operation. The
inner select binds the calculated distances to the existing schema members
from the outer select. Thus, it is very similar in structure to the first part of
the query besides the spatial function (st_distance).

3 System Overview
3.1 GeoSemOLAP Workflow

The workflow of querying spatial semantic data warehouses with GeoSemO-
LAP consists of six main steps, as illustrated in Fig. D.3. First, the user selects
a SOLAP operator. In dependence on which SOLAP operator was selected,
the user can choose several items from a drop-down menu to complete the
definition of the operator, e.g., schema elements (spatial levels, attributes,
etc.) and spatial operations (distance, within, etc.).

Select a
SOLAP

operator

Generate
SPARQL
Query

Select MD
elements

and spatial
operations

Execute the
Query

Edit the
Query

(Optional)

Show the
results

User

 Aggregate/Disaggregate

Fig. D.3: Workflow diagram

As some operators (e.g., s-slice, Fig. D.5b) require spatial coordinates as
input, GeoSemOLAP displays snippets of geographic maps so that the user
can click on a position to indicate spatial coordinates that the query should
operate on.

Afterwards, the user can decide to select another SOLAP operator that
shall be applied on the results of the previous operator (nesting) and set its
parameters.

197

Paper D.

Then, the SPARQL query is automatically generated by GeoSemOLAP.
The query can optionally be edited by the user before GeoSemOLAP sends
the query to a SPARQL endpoint (local or remote) for execution.

Finally, the result of the query is displayed to the user. The user may
aggregate the results or decide to continue editing the query by for exam-
ple adding additional SOLAP operators and repeating the steps above men-
tioned.

3.2 GeoSemOLAP Architecture

GeoSemOLAP consists of five architectural components: GUI, Metadata Man-
ager, Query Generator, Data Processor, and SPARQL Endpoint. The system archi-
tecture is illustrated in Fig. D.4. GeoSemOLAP is implemented in Javascript,
HTML, and CSS. It uses Leaflet5 for visualizing maps and Virtuoso Open
Source Edition (7.2) for running the endpoint.

Metadata Manager Query Generator

Graphical User Interface (GUI)

Data Processor

SPARQL Endpoint

Fig. D.4: GeoSemOLAP architecture

4 Demonstration Scenario

We will demonstrate GeoSemOLAP using two datasets (GeoFarmHerdState [4]
and Geo-Northwind), which are both also available at our public endpoint6.
The Geo-Northwind data cube has already been explained in Sect. 2. Ge-
oFarmHerdState [4] is a spatial data cube about livestock holdings in Den-
mark. To enable interesting analyses, we have integrated data about livestock
holdings with environmental and geographical data.

At the conference, we will demonstrate GeoSemOLAP by allowing atten-
dees to interact with the system and formulate queries. To make it easier for
the audience to understand the data and the cube structure, the graphical
interface displays a high-level graphical representation at the top of the page
– as illustrated in Fig. D.5a.

5http://leafletjs.com
6http://lod.cs.aau.dk:8890/sparql

198

http://leafletjs.com
http://lod.cs.aau.dk:8890/sparql

4. Demonstration Scenario

(a) Graphical representation of an example use-case schema

(b) SOLAP operator configuration (c) Generated SPARQL query for nested SOLAP

(d) Example result for a nested SOLAP query (S-Roll-up (S-Slice()))

Fig. D.5: Screenshot of GeoSemOLAP

Hence, conference attendees will be able to directly interact with the sys-
tem, which during the demonstration will run on a laptop connected to an
external screen. Although GeoSemOLAP can use a remote endpoint to ex-
ecute the formulated queries, the demonstration will use a local endpoint
(running on the same laptop as the graphical interface) to avoid problems

199

Paper D.

with an unstable Internet connection.
Fig. D.5 shows a compact screenshot of GeoSemOLAP. At the top, we see a

graphical representation of the used data cube. As mentioned above, it shows
the most important concepts that are necessary to formulate a SOLAP query,
e.g., dimensions, hierarchies, measures, spatial levels, and level attributes.

In this example (Fig. D.5), the user has first selected the operator s-slice.
The menu on the left-hand side (Fig. D.5b) allows the user to set the pa-
rameters so that the s-slice operator selects geometries from a map or spatial
levels from the schema. S-slice requires two spatial parameters; the first one
to define a spatial location and the second one to define the slice level with
respect to the given location. Hence, to help the user better select coordinates
to define a location, a map is displayed so that the user can simply click on
a point, which is then automatically extracted. In Fig. D.5b, we can see that
the user clicked on a point in Germany and then selected Country from the
spatial levels to make a projection on the observations in this country.

In addition, to an s-slice operator, the user has added an s-roll-up operator
to aggregate measures and discover new perspectives on sales with respect to
their spatial location – the s-roll-up operator with its parameters is displayed
under s-slice in Fig. D.5b. The obtained result (from s-roll-up) is similar to
our running example introduced in Sect. 1 (Query 1).

Based on the provided operators and parameters, GeoSemOLAP will au-
tomatically create and display the corresponding SPARQL query (Fig. D.5c).
The user can then decide to run the query and view the results. The results
for the example query are displayed at the bottom of the page (Fig. D.5d).
We refer to our screencast7 for a more detailed explanation of GeoSemOLAP.

5 Perspectives and Future Work

Fig. D.6 sketches our vision of a tool-oriented future for SOLAP on the SW
based on the models and algorithms proposed in [5].

As mentioned in Sect. 1, there is a growing popularity of spatial LOD
datasets from various governmental domains8,9,10,11. These datasets contain
observations and measures that are well-suited for analytical queries (e.g.,
water/air quality measurements, immigration rates, EU subsidies in agri-
culture, crop revenue, etc.). However, as observed in [5] such datasets are
typically not modeled with spatial dimension levels and hierarchies. Thus,
they cannot directly be queried with SOLAP on the SW.

7https://youtu.be/Pc3RBPPgBhA
8https://ec.europa.eu/eurostat
9https://environment.data.gov.uk

10https://datahub.io/dataset/govagribus-denmark
11https://datahub.io/dataset/acorn-sat

200

https://youtu.be/Pc3RBPPgBhA
https://ec.europa.eu/eurostat
https://environment.data.gov.uk
https://datahub.io/dataset/govagribus-denmark
https://datahub.io/dataset/acorn-sat

References

RDF2SOLAP
module

External
Geo-

vocabularies

SOLAP

User Spatial RDF Data Warehouses

GeoSemOLAP

SOLAP to SPARQL

QB4SOLAP

Spatial RDF
Endpoints

Fig. D.6: Vision of SOLAP on the Semantic Web [5]

With currently available SW technologies, a user, who would like to query
available spatial RDF data with SOLAP, needs to download the datasets, map
them to a relational data model, and then import the result into a traditional
spatial data warehouse. Obviously, this workflow is not only slow but it is
also time-consuming and requires storing the data in a non-open format on
a local system.

GeoSemOLAP considerably lowers the entry barrier for advanced spatial
analysis on the SW by providing a user-friendly interface to formulate SO-
LAP queries in SPARQL. Our future work strives at lowering the entry bar-
rier even further by developing (semi-)automatic techniques for annotating
existing spatial RDF data on the SW with QB4SOLAP and defining spatial
levels and hierarchies using available datasets, such as GeoNames12. Fur-
thermore, it would be interesting to extend the model proposed in [5] and
GeoSemOLAP to handle highly dynamic spatio-temporal data and queries
as, for instance, found in large-scale transport analytics [6].

References

[1] M. Koubarakis, M. Karpathiotakis, K. Kyzirakos, C. Nikolaou, and
M. Sioutis, “Data Models and Query Languages for Linked Geospa-
tial Data,” in Reasoning Web. Semantic Technologies for Advanced Query

12http://www.geonames.org/

201

http://www.geonames.org/

References

Answering. Springer, 2012, pp. 290–328, https://dx.doi.org/10.1007/
978-3-642-33158-9_8.

[2] S. Bimonte, A. Tchounikine, M. Miquel, and F. Pinet, “When spatial anal-
ysis meets OLAP: Multidimensional model and operators,” IJDWM, 2011.

[3] A. B. Andersen, N. Gür, K. Hose, K. A. Jakobsen, and T. B. Peder-
sen, “Publishing Danish Agricultural Government Data as Semantic Web
Data,” in Semantic Technology: 4th Joint International Semantic Technol-
ogy Conference (JIST’14), vol. 8943. Springer, 2014, pp. 178–186, https:
//dx.doi.org/10.1007/978-3-319-15615-6_13.

[4] N. Gür, K. Hose, T. B. Pedersen, and E. Zimányi, “Enabling Spatial OLAP
over Environmental and Farming Data with QB4SOLAP,” in Semantic
Technology: 6th Joint International Semantic Technology Conference (JIST’16),
vol. 10055. Springer, 2016, pp. 287–304, https://dx.doi.org/10.1007/
978-3-319-50112-3_22.

[5] N. Gür, T. B. Pedersen, E. Zimányi, and K. Hose, “A Foundation for
Spatial Data Warehouses on the Semantic Web,” Semantic Web Journal,
vol. 9, no. 5, pp. 557–587, 2018.

[6] G. Gidofalvi, T. B. Pedersen, T. Risch, and E. Zeitler, “Highly scalable
trip grouping for large-scale collective transportation systems,” in EDBT,
2008.

Acknowledgements

This research is partially funded by the European Commission through the Erasmus
Mundus Joint Doctorate Information Technologies for Business Intelligence (EM
IT4BI-DC) and the Danish Council for Independent Research (DFF) under grant
agreement no. DFF-4093-00301.

202

https://dx.doi.org/10.1007/978-3-642-33158-9_8
https://dx.doi.org/10.1007/978-3-642-33158-9_8
https://dx.doi.org/10.1007/978-3-319-15615-6_13
https://dx.doi.org/10.1007/978-3-319-15615-6_13
https://dx.doi.org/10.1007/978-3-319-50112-3_22
https://dx.doi.org/10.1007/978-3-319-50112-3_22

Paper E

Enabling Spatial OLAP over Environmental and
Farming Data with QB4SOLAP

Nurefşan Gür, Katja Hose, Torben Bach Pedersen, and Esteban
Zimányi

The paper has been published in the
Proceedings of the 6th Joint International Semantic Technology Conference
Vol. 10055, pp. 287–304, 2016. DOI: 10.1007/978-3-319-50112-3_22

Abstract

Governmental organizations and agencies have been making large amounts of spa-
tial data available on the Semantic Web (SW). However, we still lack efficient tech-
niques for analyzing such large amounts of data as we know them from relational
database systems, e.g., multidimensional (MD) data warehouses and On-line Ana-
lytical Processing (OLAP). A basic prerequisite to enable such advanced analytics is
a well-defined schema, which can be defined using the QB4SOLAP vocabulary that
provides sufficient context for spatial OLAP (SOLAP). In this paper, we address the
challenging problem of MD querying with SOLAP operations on the SW by applying
QB4SOLAP to a non-trivial spatial use case based on real-world open governmen-
tal data sets across various spatial domains. We describe the process of combining,
interpreting, and publishing disparate spatial data sets as a spatial data cube on the
SW and show how to query it with SOLAP operators.

c© 2016 Springer International Publishing AG. Reprinted, with permission
from Nurefşan Gür, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi.
Enabling Spatial OLAP over Environmental and Farming Data with QB4SO-
LAP. In: Semantic Technology, JIST 2016. Lecture Notes in Computer Science.
https://doi.org/10.1007/978-3-319-50112-3_22

The layout has been revised.

https://doi.org/10.1007/978-3-319-50112-3_22

1. Introduction

1 Introduction

In late 2012, the Danish government joined the Open Data movement by
making several raw digital data sets [1] freely available at no charge. These
data sets span domains such as environmental data, geospatial data, business
data from transport to tourism, fishery, forestry, and agriculture. GovAgriBus
Denmark1 was an initial effort in 2014 to make Danish government Open
Data from various domains available as Linked Open Data (LOD) [2] on the
Semantic Web in order to pose queries across domains. If the correspond-
ing domains can be related through space and location, spatial attributes of
these data sets become particularly interesting as we can derive spatial joins
and containment relationships that were not encoded in the original data
sets. Danish government organizations and agencies continue publishing
data sets for new domains and update the corresponding data sets regularly
on a yearly basis, which brings opportunities in querying the expanding spa-
tial data with analytical perspectives on the Semantic Web. Responding to
such queries is a complex task, which requires well-defined schemas to facil-
itate OLAP operations on the Semantic Web. QB4SOLAP [3] aims to support
intelligent multidimensional querying in SPARQL by providing context to
SOLAP and its elements on the SW. However, QB4SOLAP has not been ap-
plied on complex real-world data yet. This could bring particular challenges
with the use of real-world spatial data. In this paper, we address the chal-
lenging problem of multidimensional querying with SOLAP operations on
the SW by applying QB4SOLAP on real-world open governmental data sets
from various domains. These domains span from livestock farming to envi-
ronment, where many of them have spatial information.

In this paper, we design a spatial data cube schema with data from live-
stock farming, environment, and geographical domains. Every data set is
downloaded from different governmental sources in various formats. The
downloaded data is prepared and conciliated with a spatial data cube schema
in order to publish it on the SW with QB4SOLAP. We use the common SOLAP
operators [4] on the spatial data cube for advanced analytical queries. These
analytical queries give perspective on the use case data sets that are linked
and published with QB4SOLAP as a unified spatial data cube. Having the
use case data sets with spatial attributes also allows us to reveal patterns
across the use case domains that were not possible before. We share our
experiences with the best practices and methods together with the lessons
learned. Finally, we show how to formulate and execute SPARQL queries
with individual and nested SOLAP operations.

The remainder of this paper is structured as follows. Section 2 presents
the background and motivation, Section 3 discusses related work and presents

1https://datahub.io/dataset/govagribus-denmark

205

https://datahub.io/dataset/govagribus-denmark

Paper E.

the state-of-the-art spatial data cubes on the SW. Section 4 presents the data
sources for the use case while Section 5 describes how to annotate and pub-
lish the use case data as a spatial data cube on the SW. Section 6 presents
SOLAP operators and their SPARQL implementation. Section 7 presents a
brief overview of the process and reflects on the problems and improvements.
Finally, Section 8 concludes the paper with an outlook to future work.

2 Background and Motivation

The Semantic Web supports intelligent querying via SPARQL with active
inference and reasoning on the data in addition to capturing its seman-
tics. Linked Open Data on the Semantic Web is an important source to
support Business Intelligence (BI). Multidimensional data warehouses and
OLAP are advanced analytical tools in analyzing complex BI data. State-of-
the-art SW technologies support advanced analytics over non-spatial SW data.
QB4SOLAP supports intelligent multidimensional querying in SPARQL by
providing context to spatial data warehouses and its concepts. Variety of the
data is an intriguing concept on both the Semantic Web and in complex BI
systems. The variety of the data and heterogeneous representation formats
(e.g., CSV, JSON, PDF, XML, and SHP) require underlying conceptualiza-
tions and data models with well-defined spatial (and temporal) dependen-
cies, which can be modeled with QB4SOLAP in order to answer complex
analytical queries. Complex queries cannot be answered from within one do-
main alone but span over multiple disciplines and various data sources. As a
result, this paper is driven by the motivation of using QB4SOLAP as a proof
of concept for spatial data warehouses on the Semantic Web by using open
(government) data of various domains from different sources, which creates
a non-trivial spatial use case.

3 State of the Art

Data warehouses and OLAP technologies have been successful for analyzing
large volumes of data [5], including integrating with external data such as
XML [6]. Combining DW/OLAP technologies with RDF data makes RDF
data sources more available for interactive analysis. Kämpgen et al. propose
an extended model [7] on top of the RDF Data Cube Vocabulary (QB) [8]
for interacting with statistical linked data via OLAP operations directly in
SPARQL. In OLAP4LD [9], Kämpgen et al. suggest enhancing query perfor-
mance of OLAP operations expressed as SPARQL queries by using RDF ag-
gregate views. The W3C published a list of RDF cube implementations [10].
However, they all have inherent limitations of QB and thus cannot support

206

3. State of the Art

OLAP dimensions with hierarchies and levels, and built-in aggregate func-
tions.

Etcheverry et al. [11] introduce QB4OLAP as an extended vocabulary
based on QB, with a full MD metamodel, supporting OLAP operations di-
rectly over RDF data with SPARQL queries. Matei et al. [12] use QB and
QB4OLAP as a basis to support OLAP queries in Graph Cube [13] with the
IGOLAP vocabulary. Jakobsen et al. [14] study OLAP query optimization
techniques over QB4OLAP data cubes. However, none of these approaches
and vocabularies support spatial DWs.

QB4SOLAP(v1) [3] is the first attempt to model and query spatial DWs on
the SW, and QB4SOLAP(v2) [4] is a foundation for spatial data warehouses
and SOLAP operators on the SW, which is currently under submission with
completely revised formal semantics of SOLAP operators and SPARQL query
generations algorithms. QB4SOLAP is an extension of QB4OLAP with spatial
concepts. The QB4OLAP vocabulary is compatible with the QB vocabulary.
Therefore QB4SOLAP provides backward compatibility with other statistical
or MD data cube vocabularies in addition to providing spatial context for
querying with SOLAP. Fig. E.1 depicts the QB4SOLAP(v2) vocabulary. Cap-
italized terms with non-italic font represent RDF classes, capitalized terms
with italic font represent RDF instances, and non-capitalized terms represent
RDF properties. Classes in external vocabularies are depicted in light gray
background and font. QB, QB4OLAP, and QB4SOLAP classes are shown with
white, light gray, and dark gray backgrounds. Original QB terms are pre-
fixed with qb:2. QB4OLAP and QB4SOLAP terms are prefixed with qb4o:3

and qb4so:4 . Spatial classes are prefixed with geo:5, where the spatial ex-
tension to QB4SOLAP is based on the GeoSPARQL [15] standard from the
Open Geospatial Consortium (OGC) for representing and querying geospa-
tial linked data on the SW.

QB4SOLAP is a promising approach for modeling, publishing, and query-
ing spatial data warehouses on the SW. However, it has only been validated
with a synthetic use case. Andersen et al. [2] consider publishing/converting
open Danish governmental spatial data as Linked Open Data without consid-
ering the MD aspects of geospatial data. In this paper, however, we validate
QB4SOLAP with a non-trivial use case, which is created as a spatial data cube
from open Danish government spatial data. Furthermore, we show how to
exploit multidimensional spatial linked data on the SW, which is not solely
about adding semantics and linking disparate data sets on the SW, but also
about enabling analytical queries by modeling them as spatial data cubes.

2RDF Cube: http://purl.org/linked-data/cube#
3QB4OLAP: http://purl.org/qb4olap/cubes#
4QB4SOLAP: http://w3id.org/qb4solap#
5GeoSPARQL: http://www.opengis.net/ont/geosparql#

207

http://purl.org/linked-data/cube#
http://purl.org/qb4olap/cubes#
http://w3id.org/qb4solap#
http://www.opengis.net/ont/geosparql#

Paper E.

Fig. E.1: QB4SOLAP Vocabulary

4 Source Data

In order to create a spatial data cube of livestock holdings in Danish farms,
we have gathered data that is published by different agencies in Denmark.
We have found these domains to be particularly interesting as they represent
a non-trivial use case that covers spatial attributes and measures, which can
be modeled in a spatial data cube for multidimensional analysis. In the fol-
lowing we first give a brief overview of the flat data and their sources, and
then represent the whole use case data set as a spatial data cube in Section 5.

The environmental protection agency under the Ministry of Environment
and Food of Denmark regulates the livestock units (DE)6 per area in order
to keep nitrate leaching under control in vulnerable areas. Prohibition rules
against the establishment of livestock farms and the siting of animal housing
are determined with respect to livestock units and distance to specific natural
habitats (e.g., ammonia vulnerable areas, water courses, and water supply
facilities etc.) [16].

6Livestock units are used to produce statistics describing the number of livestocks in farms.

208

4. Source Data

Livestock Farming (CHR) Data.

The Ministry of Environment and Food of Denmark (http://en.mfvm.dk)
publishes the central husbandry (livestock) registry (CHR) data, which is the
central database used for registration of holdings and animals. We refer to
this set of data as CHR data. We have downloaded several relevant data sets
from http://jordbrugsanalyser.dk in livestock farming domain. The CHR
data collection is downloaded in SHP format as 6 data sets, where each data
set represents the state of the farms for a year between the years 2010 to 2015.
SHP format is used for shapefiles, which store geometry information of the
spatial features in a data set. In each shapefile, there is information about
more than 40,000 farms. In total, the CHR data collection contains around
240,000 records. Farm locations are given as (X,Y) point coordinates. Each
data set has 24 attributes in which the important ones are: CHR - Central
Husbandry (animal) Registry (holding) number, CVR - Central Company Registry
number (owner company of the holding), DE (Livestock unit), Address of the holding
(Postnr and Commune), Geographical position of the holding (X and Y coordinates),
Different type of normalized herds, Number of animals for each herd, Animal code
and label, Animal usage code and purpose.

Environmental Data.

Public environmental data is published on Denmark’s environment portal
http://www.miljoeportal.dk/, where we can find information about nitrate
catchment areas and vulnerable sites. The soil measurements contain data
from 2008 to 2015 [17]. We downloaded the data sets in SHP format, which
have recently become available on the portal. The files record measurements
of the soil quality across Denmark. The environmental data collection con-
tains 3 data sets about nitrogen reduction potentials and phosphor and nitrate
classifications of the soil. Temporal validity of the soil measurement data is
recorded in the attributes with timestamps. Each data set keeps records of
polygon areas. In total, the environmental data collection contains around
30,000 records. Datasets have attribute fields about the area of the polygons,
CVR number of the data provider agency or company, responsible person
name, etc. The important attributes, which record the soil measurement data
are: Nitrate class type, Nitrogen reduction potentials, Phosphor class type.

Geographical (Regions) Data.

The primary use case data is built around livestock farming (CHR) and
environmental data as mentioned above. In order to pursue richer anal-
ysis upon this use case we enrich the spatiality of the use case data by
adding two geographical data sets; parishes and drainage areas of Den-
mark. These data sets are spatially and topically relevant since we have

209

Paper E.

found pre-aggregated maps created by the Ministry of Environment and
Food of Denmark at parish and drainage area levels for livestock farming
data. We downloaded parishes and drainage areas of Denmark as SHP files
from http://www.geodata-info.dk/. The total number of records of the ge-
ographical data collection are 2,300. These data sets have attribute fields such
as: Drainage area name, Parish name, Total area, etc.

Central Company Registry (CVR) data.

Danish companies, agencies and industries are registered in the Central Com-
pany Register (CVR). Every livestock holding is owned by a company and has
a CVR number. Environmental data also records the CVR number of the cor-
responding data provider agencies. Through this CVR number, we can access
detailed information of the companies and contact details of the responsible
people. This collection allows evaluating interesting queries with the selected
domains given above. The CVR data is published at http://cvr.dk and can
be accessed via a web service with a Danish social security number log-in.
We accessed and downloaded only the data in CSV format that are accredited
for publishing. This data includes attributes such as: Company name, Phone
number, and Address etc.

5 Publishing Spatial Data Cubes with QB4SOLAP

The QB4SOLAP vocabulary allows to define cube schemas and cube instances.
A cube schema defines the structure of a cube as an instance of the class
qb:DataStructureDefinition in terms of dimension levels, measures, ag-
gregation functions (e.g., SUM, AVG, and COUNT) on measures, spatial ag-
gregation functions7 on spatial measures, fact-level cardinality relationships,
and topological relationships. The properties used to express these relation-
ships are: qb4o:level, qb:measure, qb4o:aggregateFunction8, qb4o:cardi�
nality, and qb4so:topologicalRelation respectively (Fig. E.1). These schema
level metadata are used to define MD data sets in RDF. Cube instances are the
members of a cube schema that represent level members, facts and measure
values. We describe the cube schema elements in Section 5.1 and the cube
instances in Section 5.2 with their examples.

7Spatial aggregation functions aggregate two or more spatial objects and return a new spatial
object, e.g., union, buffer, and convexHull etc.

8SpatialAggregateFunction is a subclass of AggregateFunction. Thus, measures and spatial
measures use the same property qb4o:aggregateFunction.

210

5. Publishing Spatial Data Cubes with QB4SOLAP

5.1 GeoFarmHerdState Cube Schema in RDF

As our use case we create a spatial data cube of livestock holdings that we
refer to as GeoFarmHerdState. The use case data cube is created from the flat
data sets of the livestock farming (CHR) data, the environmental data, the ge-
ographical (regions) data, and the company registry (CVR) data collections,
which are explained in Section 4. We create this data cube by thoroughly an-
alyzing the attributes of the flat data sets from the collected relevant domains
and conciliating them by foreign keys or by overlaying the SHP files of the
spatial data sets and deriving new attributes from the intersected areas. After
deriving useful spatial information across use case domains, we generalize
the tabular data of the several use case data sets into the GeoFarmHerdState
data cube. Fig. E.2 shows the multidimensional conceptual schema of the
GeoFarmHerdState spatial cube. The multidimensional elements of the cube
are explained in Remarks 1 – 7 followed by their examples in RDF. The un-
derlying syntax for RDF examples is given in Turtle. We prefix the schema
elements of the GeoFarmHerdState cube with gfs:.

Herd

HerdCode
HerdName

Product

ProductCode
ProductName

O
w

n
e
rs

h
ip

T
yp

e

Address

Farm

CHRnr
FarmLocation
LivestockUnit

Company

CVRnr
CompanyName

NumberOfAnimals
Location
NitrogenReduction +!
NitrateClass +!
PhosphorClass +!

 GeoFarmHerdState Parish

ParishID
ParishName
ParishArea
ParishCenter

Geography

DrainageArea

WaterID
WaterName
WaterArea

Time

Year

Purpose

PurposeCode
PurposeName

Address

Commune

CommuneNr
CommuneName

Animal

AnimalCode
AnimalName

U
sa

g
e

ZIPCode

PostNr

T
im

e
D

im

FarmDim

H
e
rd

D
im

ParishDim

Fig. E.2: GeoFarmHerdState – Conceptual MD schema of livestock holdings data

Remark 1. (Dimensions) Dimensions provide perspectives to analyze the data.
The GeoFarmHerdState cube has four dimensions, in which the two of them
are spatial (FarmDim, ParishDim). All dimensions in the cube are defined
with qb:DimensionProperty. A dimension is spatial if it has at least one spa-
tial level (See Remark 3). Dimension hierarchies are defined with qb4o:hasHi�

erarchy property. Hierarchies and their types are explained later in Remark

211

Paper E.

2.

Example 1 (Dimensions)
We give two spatial dimensions as an example.

gfs:farmDim rdf:type qb:DimensionProperty ; qb4o:hasHierarchy gfs:ownership , gfs:address .
gfs:parishDim rdf:type qb:dimensionProperty ; qb4o:hasHierarchy gnw:geography .

Remark 2. (Hierarchies) Hierarchies allow users to aggregate measures at var-
ious levels of detail. Hierarchies are composed of levels. A hierarchy is
spatial if it has at least one spatial level (See Remark 3). Hierarchies of
the GeoFarmHerdState cube are given in ellipses (Fig. E.2). Each hierar-
chy is defined with qb4o:Hierarchy and linked to its dimension with the
qb4o:inDimension property. Levels that belong to the hierarchy are defined
with the qb4o:hasLevel property.

Example 2 (Hierarchies)
We present the most interesting hierarchies from the GeoFarmHerdState
cube as an example.

gfs:geogprahy rdf:type qb4o:Hierarchy ; qb4o:inDimension gfs:parishDim ;
qb4o:hasLevel gfs:drainageArea .

gfs:usage rdf:type qb4o:Hierarchy ; qb4o:inDimension gfs:animalDim ;
qb4o:hasLevel gfs:product , gfs:purpose .

gfs:address rdf:type qb4o:Hierarchy ; qb4o:inDimension gfs:farmDim ;
qb4o:hasLevel gfs:zipCode , gfs:commune .

The Geography hierarchy is a non-strict spatial hierarchy. A spatial hiearchy
is non-strict if it has at least one (n − n) relationship between its levels. In
the Geography hierarchy (Fig. E.2) the (n − n) cardinality represents that
a parish may belong to more than one drainage area. Usually, non-strict
spatial hierarchies arise when a partial containment relationship exists, which
is given as Intersects in our use case. Usage hierarchy is a generalized hierarchy
with non-exclusive paths to splitting levels (Product and Purpose) and has
no joining level but the top level All. Finally, the Address and Ownership
hierarchies are parallel dependent hierarchies. Parallel hierarchies arise when a
dimension has several hierarchies sharing some levels. Note that the Address
hierarchy has different paths from the Company and Farm levels (Fig. E.2).

Remark 3. (Levels) Levels have a set of attributes (See Remark 4) that de-
scribes the characteristics of the level members (See Remark 9). Levels are
defined with the qb4o:LevelProperty and their attributes are linked with

212

5. Publishing Spatial Data Cubes with QB4SOLAP

the qb4o:hasAttribute property. A level is spatial if it has an associated ge-
ometry. Therefore, spatial levels have the property geo:hasGeometry, which
defines the geometry of the spatial level in QB4SOLAP.

Example 3 (Levels and Level attributes)
We present a spatial level (Parish) as an example with its attributes. At-
tributes and spatial attributes of levels are further described in Remark 4.

gfs:parish rdf:type qb4o:LevelProperty ; qb4o:hasAttribute gfs:parishID ;
qb4o:hasAttribute gfs:parishName ; qb4o:hasAttribute gfs:parishArea ;
qb4o:hasAttribute gfs:parishCenter ; geo:hasGeometry gfs:parishPolygon.

Note that the Parish level is defined as a spatial level because it has an asso-
ciated polygon geometry (gfs:parishPolygon), which is specified with the
geo:hasGeometry property. Some other spatial characteristics of the levels
can be recorded in the spatial attributes of the level such as the center point
of the parish (gfs:parishCenter).

Remark 4. (Attributes) Attributes and spatial attributes are defined with the
qb4o:LevelAttribute property and linked to their levels with the qb4o:inLe�
vel property. An attribute is spatial if it is defined over a spatial domain.
Attributes are defined as ranging over XSD literals9 and spatial attributes
must be ranging over spatial literals, i.e., well-known text literals (WKT) from
OGC schemas10. Spatial attributes are a sub-property of the geo:Geometry

class. Further, the domain of the spatial attribute should be specified with
rdfs:domain, which must be a geometry. Finally, the spatial attribute must
be specified as an instance of geo:SpatialObject with the rdfs:subClassOf

property. Examples of attributes are given in the following.

Example 4 (Spatial and non-spatial attributes)
We present spatial and some non-spatial attributes of the Parish level.

gfs:parishID rdf:type qb4o:LevelAttribute ; qb4o:inLevel gfs:parish ;
rdfs:range xsd:positiveInteger .

gfs:parishName rdf:type qb4o:LevelAttribute ; qb4o:inLevel gfs:parish ;
rdfs:range xsd:string .

gfs:parishCenter rdf:type qb4o:LevelAttribute ; rdfs:subPropertyOf geo:Geometry ;
qb4o:inLevel gfs:parish ; rdfs:domain geo:Point; rdfs:subClassOf geo:SpatialObject;
rdfs:range geo:wktLiteral , virtrdf:Geometry .

We have mentioned in Remark 3 that spatial levels are defined through
their associated geometries, which are not given as a level attribute. For
the Parish level we present the following example of the corresponding
geometry.
9XML Schema Definition: http://www.w3.org/TR/xmlschema11-1/

10OGC Schemas: http://schemas.opengis.net/

213

http://www.w3.org/TR/xmlschema11-1/
http://schemas.opengis.net/

Paper E.

gfs:parishPolygon rdf:type geo:Geometry; rdfs:domain geo:MultiSurface;
rdfs:subClassOf geo:SpatialObject; rdfs:range geo:wktLiteral , virtrdf:Geometry .

Remark 5. (Hierarchy Steps) Hierarchy steps define the structure of the hier-
archy in relation to its corresponding, levels. A hierarchy step entails a roll-up
relation between a lower (child) level and an upper (parent) level with a car-
dinality. The cardinality (n− n, 1− n, n− 1, n− n) relationship describes the
number of members in one level that can be related to a member in the other
level for both child and parent levels. A hierarchy step is spatial if it relates
a spatial child level and a spatial parent level, in which case it entails a topo-
logical relationship between these spatial levels. Both spatial and non-spatial
hierarchy steps are defined as a blank node with the qb4o:HierarchyStep

property and linked to their hierarchies with the qb4o:inHierarchy prop-
erty. The parent and child levels are linked to hierarchy steps with the
qb4o:childLevel property and the qb4o:parentLevel property. The car-
dinality of a hierarchy step is defined by the qb4o:pcCardinality property.
And finally, the topological relationship11 of a hierarchy step is defined by
the qb4so:pcTopoRel property.

Example 5 (Spatial Hierarchy steps)
The following illustrates the hierarchy steps of the spatial hierarchy Ge-
ography and non-spatial hierarchy Address as it has different paths from
child levels Farm and Company.

Geography hierarchy structure
_:geography_hs1 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:geography ;

qb4o:childLevel gfs:parish ; qb4o:parentLevel gfs:drainageArea ;
qb4o:pcCardinality qb4o:ManyToMany; qb4so:pcTopoRel qb4so:Intersects, qb4so:Within .

Address hierarchy structure
_:farm_address_hs1 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:address ;

qb4o:childLevel gfs:farm ; qb4o:parentLevel gfs:zipCode ;
qb4o:pcCardinality qb4o:ManyToOne .

_:farm_address_hs2 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:address ;
qb4o:childLevel gfs:zipCode ; qb4o:parentLevel gfs:commune ;
qb4o:pcCardinality qb4o:ManyToOne .

_:company_address_hs1 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:address ;
qb4o:childLevel gfs:company ; qb4o:parentLevel gfs:zipCode ;
qb4o:pcCardinality qb4o:ManyToOne .

_:company_address_hs2 rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:address ;
qb4o:childLevel gfs:zipCode ; qb4o:parentLevel gfs:commune ;
qb4o:pcCardinality qb4o:ManyToOne .

Remark 6. (Measures) Measures record the values of a phenomena being ob-
served. Measures and spatial measures are defined with qb:MeasureProperty.

11Topological relations are Boolean predicates that specify how two spatial objects are related
to each other, e.g., within, intersects, touches, and crosses etc.

214

5. Publishing Spatial Data Cubes with QB4SOLAP

A measure is spatial if it is defined over a spatial domain. Similarly to at-
tributes (Remark 4), measures are defined ranging over XSD literals and spa-
tial measures must be ranging over spatial literals.

Example 6 (Spatial and non-spatial measures)
The following shows an example of a spatial measure (Location) and a
non-spatial measure (NumberOfAnimals).

gfs:location rdf:type qb:MeasureProperty ; rdfs:subPropertyOf sdmx-measure:obsValue ;
rdfs:subClassOf geo:SpatialObject ; rdfs:domain geo:Point ;
rdfs:range geo:wktLiteral , virtrdf:Geometry .

gfs:numberOfAnimals rdf:type qb:MeasureProperty ;
rdfs:subPropertyOf sdmx-measure:obsValue ; rdfs:range xsd:decimal .

Remark 7. (Fact) Fact defines the data structure (DSD) of the cube with
qb:DataStructureDefinition. The dimensions are given as components and
defined with the qb4o:level property as the dimensions are linked to the
fact at the lowest granularity level. A fact is spatial if it relates two ore more
spatial levels. Similarly, measures are given as components of the fact and
are defined with the qb:measure property. Aggregation functions on mea-
sures and spatial aggregation functions on spatial measures are also defined
in the DSD with qb4o:aggregateFunction. Fact-level cardinality relation-
ships and topological relationships are defined with qb4o:cardinality and
qb4so:topologicalRelation in DSD, respectively (Fig. E.1).

Example 7 (Fact schema)
The following shows the data structure definition of the cube Geo-
FarmHerdState, which is defined with corresponding measures and di-
mensions.

� GeoFarmHerdState Cube De�nition of the Fact FarmHerdState
gfs:GeoFarmHerdState rdf:type qb:DataStructureDe�nition ;

Lowest level for each dimensions in the cube
qb:component [qb4o:level gfs:herd ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level gfs:time ; qb4o:cardinality qb4o:ManyToOne] ;
qb:component [qb4o:level gfs:farm ; qb4o:cardinality qb4o:ManyToOne ;

qb4so:topologicalRelation qb4so:Equals] ;
qb:component [qb4o:level gfs:parish ; qb4o:cardinality qb4o:ManyToMany ;

qb4so:topologicalRelation qb4so:Within] ;
Measures in the cube
qb:component [qb:measure gfs:numberOfAnimals ; qb4o:aggregateFunction qb4o:Sum] ;
qb:component [qb:measure gfs:location ; qb4o:aggregateFunction qb4so:ConvexHull] ;
qb:component [qb:measure gfs:nitrogenReduction ; qb4o:aggregateFunction qb4o:Avg] ;
qb:component [qb:measure gfs:nitrateClass ; qb4o:aggregateFunction qb4o:Avg] ;
qb:component [qb:measure gfs:phosphorClass ; qb4o:aggregateFunction qb4o:Avg] .

215

Paper E.

5.2 GeoFarmHerdState Cube Instances in RDF

Cube instances are the members of a cube schema that represent level mem-
bers and facts (members), which are explained in Remarks 8 and 9 below. We
prefix the instances of the GeoFarmHerdState cube with gfsi:.

Remark 8. (Fact members) Fact members (i.e., facts of FarmHerdState) are
instances of the qb:Observation class. Each fact member is related to a set
of dimension base level members and has a set of measure values. Every fact
member has a unique identifier (IRI) which is prefixed with gfsi:.

Example 8 (Fact members)
The following shows an example of a single fact member, which represents
the state of a farm with CHR no. 39679 in the year 2015 that has the herd
code 15.

gfsi:farm_39679_2015 rdf:type qb:Observation ;
Dimension levels and base level members associated with the fact member

gfs:herdCode gfsi:herd_15 ; gfs:year gfsi:year_2015 ;
gfs:chrNumber gfsi:farm_39679 ; gfs:parishID gfsi:parish_8311 ;

Measures associated with the fact member
gfs:numberOfAnimals "100.0"��xsd:decimal ; gfs:nitrateClass "3"��xsd:integer ;
gfs:nitrogenReduction "0.75"��xsd:decimal ; gfs:phosporClass "3"��xsd:integer ;
gfs:location "POINT(8.3713 56.7912)"��geo:wktLiteral .

Remark 9. (Level Members) Level members are defined in qb4o:LevelMember

class. They are linked to their corresponding levels from the schema with the
qb4o:memberOf property. For each level member there is a set of attribute
values. Due to the roll-up relations between levels of hierarchy steps (Re-
mark 5),the skos:broader property relates a child level member to its parent
level member.

Example 9 (Level Members)
The following shows an example of a child level member in the Parish
level and one of its parent level members in the DrainageArea level from
the Geography dimension. Fig. E.3 presents a map snapshot for fact mem-
bers and level members. Parish level member “Astrup" is highlighted and
DrainageArea level member “Mariager Inderfjord" is marked with red bor-
ders. Note that Astrup intersects another drainage area “Langerak", there-
fore it links to two parent level members via skos:broader.

Parish level member
gfsi:parish_8648 rdf:type gfs:parish ;

qb4o:memberOf gfs:parish ; skos:broader gfsi:water_3710, gfsi:water_159 ;
gfs:parishID 8311 ; gfs:parishName "Astrup" ; gfs:parishArea 46,118 ;
gfs:parishCenter "POINT(8.2552, 56.8176)"��geo:wktLiteral ;
gfs:parishPolygon "POLYGON((8.4038 56.7963, 8.3984 56.7721, 8.3411 56.7372, 8.3078

216

6. SOLAP Operators over GeoFarmHerdState cube

56.7281, 8.2987 56.7601, 8.2563 56.7763, 8.3511 56.8137, 8.4038 56.7963))"��geo:wktLiteral .
DrainageArea level member
gfsi:water_159 rdf:type gfs:drainageArea ;

qb4o:memberOf gfs:drainageArea ; gfs:waterID 159 ;
gfs:waterName "Mariager Inderfjord" ; gfs:waterArea 267,477 ;
gfs:drainageGeo "POLYGON((8.6048 56.9843, 8.5908 56.8969, 8.5707 56.8664,
8.5975 56.8519, 8.5215 56.8483, 8.3959 56.7625, 8.3938, 56.7340, 8.3613 56.6802,
8.2584 56.7764, 8.2475 56.7051, 8.2175 56.7232, 8.3121 56.8441, 8.2806 56.8659,
8.3602 56.9569, 8.4786 56.9713, 8.5474 56.9905, 8.6048 56.9843))"��geo:wktLiteral .

Fig. E.3: GeoFarmHerdState – Fact members and Level members of Ex. 9 marked

6 SOLAP Operators over GeoFarmHerdState cube

Spatial OLAP (SOLAP) operates on spatial data cubes. SOLAP increases the
analytical capabilities of OLAP by taking into account the spatial information
in the cube. SOLAP operators involve spatial conditions or spatial functions.
Spatial conditions specify constraints (i.e., spatial Boolean predicates) on the
geometries associated to cube members or measures, while spatial functions
derive new data from the cube, which can be used, e.g., to derive dynamic
spatial hierarchies.

6.1 SOLAP operators

In what follows we present common SOLAP operators and examples of these
operators on GeoFarmHerdState cube.

217

Paper E.

Remark 10. (S-Slice) The s-slice operator removes a dimension from a cube
by choosing a single spatial value in a spatial level. It returns a cube with
one dimension less.

Example 10 (S-Slice)
We can perform an s-slice operation in different ways.
1. Slice on farms (state of the farms) of the largest parish.
2. Slice on farms (state of the farms) of the drainage area containing
"POINT(10.43951 55.47006)".

The first one applies a spatial function call (for finding the largest parish
by area) on a spatial level Parish and performs the slice. The second one
applies a spatial predicate (for finding where a given point is within a par-
ticular drainage area) in a spatial level DrainageArea and performs the
operation. The corresponding SPARQL queries are:

1 � s-slice with spatial function

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gfs:parishID ?parish .

?parish gfs:parishPolygon ?parishGeo .

Inner select for finding the largest parish

{ SELECT ?x (MAX(?area) as ?maxArea) WHERE{

?obs rdf:type qb:Observation ;

gfs:parishID ?parish .

?parish gfs:parishPolygon ?x .

BIND (bif:st_area(?x) as ?area)}}

FILTER ?parishGeo = ?x) }

2 � s-slice with spatial predicate

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gfs:parishID ?parish .

?parish qb4o:memberOf gfs:parish ;

skos:broader ?drainageArea .

?drainageArea gfs:drainageGeo ?drainageGeo .

FILTER (bif:st_within("POINT(10.43951 55.47006)",

?drainageGeo)) }

Remark 11. (S-Dice) The s-dice operator keeps the cells of the cube that sat-
isfy the spatial predicate over dimension levels, attributes, or measures. It
returns a subset of the cube with filtered members of the cube.

218

6. SOLAP Operators over GeoFarmHerdState cube

Example 11 (S-Dice)
In the following we show two examples of the s-dice operator.
1. Filter the farms located within 5 km buffer from the center of a drainage
area.
2. Filter the farms located within 2 km distance from the center of their
parish, which are in the nitrate class I areas.

In the first s-dice operation, initially, a spatial function is applied on
level members of the DrainageArea level to get the center of their polygon
geometries. Then, the level members of the Farm level are filtered with a
spatial Boolean predicate with respect to the farm locations that are within
a 5 km buffer area of the center of the drainage areas. In the second s-
dice operation, a spatial function is applied to the spatial measure farm
location to get the distance of the farms from the center of their parish,
which is followed by Boolean predicates; to filter the farms that are less
than 2 km away from the center of their parishes and are on nitrate class I
areas.

1 � s-dice on dimension levels

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gfs:farmID ?farm ;

gfs:parishID ?parish .

?farm gfs:farmLocation ?farmGeo .

?parish qb4o:memberOf gfs:parish ;

skos:broader ?drainageArea .

?drainageArea gfs:waterPolygon ?drainagePoly .

BIND (bif:st_centroid (?drainagePoly) as ?drainageCenter)

FILTER (bif:st_within(?drainageCenter, ?farmGeo, 5)) }

2 � s-dice on measures

SELECT ?obs WHERE {

?obs rdf:type qb:Observation ;

gfs:location ?farmLocation ;

gfs:nitrateClass ?nitClass ;

gfs:parishID ?parish.

?parish gfs:parishCenter ?parishCent .

BIND (bif:st_distance (?farmLocation, ?parishCent)

AS ?distance)

FILTER (?distance < 2 && ?nitClass = 1)}

Remark 12. (S-Roll-up) The s-roll-up operator aggregates measures of a given
cube by using an aggregate function and a spatial function along a spatial di-

219

Paper E.

mension’s hierarchy. It returns a cube with measures at a coarser granularity
for a given dimension.

Example 12 (S-Roll-up)
In the following, we present two examples of the s-roll-up operator.
1. Total amount of animals in the farms, which are closest to their parishes’
center.
2. Average percentage of nitrogen reduction potentials in the parishes that
are within and/or intersect the drainage area “Nibe-Bredning".

In the first s-roll-up operator, measures are aggregated to the Parish
level after selecting the farms with respect to their proximity to the center
of the parish with a spatial function. In the second s-roll-up operator,
measures are aggregated to a specified drainage area (“Nibe-Bredning") at
the DrainageArea level. We select all the possible topological cases where a
parish intersects or within the drainage area, which means measures from
the farms that are outside Nibe-Bredning are also aggregated to the level
of this drainage area. In order to prevent this, the query needs to include
an s-drill-down operator (Remark 13) to farms from Parish level and apply
a spatial Boolean predicate to select the farms within the drainage area and
then aggregate.

1 � s-roll-up

SELECT ?parish (SUM(?animalCount) AS ?totalAnimals)

WHERE { ?obs rdf:type qb:Observation ;

gfs:numberOfAnimals ?animalCount;

gfs:farmID ?farm ;

gfs:parishID ?parish .

?farm gfs:farmLocation ?farmGeo .

?parish gfs:parishCenter ?parishCent .

Inner select for finding the

closest farms to the parish centers

{SELECT ?farm1 (MIN(?distance) AS

?minDistance) WHERE

{ ?obs rdf:type ab:Observation ;

gfs:farmID ?farm1;

gfs:parishID ?parish1 .

?farm1 gfs:farmLocation ?farm1Geo .

?parish1 gfs:parishCenter ?parish1Cent.

BIND (bif:st_distance (?farm1Geo, parish1Cent)

AS ?distance) } GROUP BY ?farm1 }

FILTER (?farm = ?farm1 && bif:st_distance

(?farmGeo, ?parishCent) = ?minDistance)}

GROUP BY ?parish

220

6. SOLAP Operators over GeoFarmHerdState cube

2 � s-roll-up

SELECT ?drainageArea (AVG(?nitRed) AS ?avgNitRed)

WHERE { ?obs rdf:type qb:Observation ;

gfs:location ?farmLocation ;

gfs:nitrogenReduction ?nitRed ;

gfs:parishID ?parish.

?parish qb4o:memberOf gfs:parish ;

gfs:parishPolygon ?parishGeo ;

skos:broader ?drainageArea .

?drainageArea gfs:memberOf gfs:drainageArea ;

gfs:waterPolygon ?drainageGeo ;

gfs:waterName ?drainageName .

FILTER (bif:st_within(?parishGeo, ?drainageGeo)

|| bif:st_intersects(?parishGeo, ?drainageGeo)

&& ?drainageName = "Nibe-Bredning")}

GROUP BY ?drainageArea

Remark 13. (S-Drill-down) The s-drill-down operator disaggregates measures
of a given cube by using an aggregate function and a spatial function along a
spatial dimension’s hierarchy. It is the inverse operator of s-roll-up, therefore
s-drill-down disaggregates the previously summarized data to a child level
in order to obtain measures at a finer granularity.

6.2 Nested SOLAP Operations

A nested set of SOLAP operators can be designed with the pattern (s−dice2(s−
roll−up1(. . . s−roll−upk(s−slice1(. . . s−slicen(s−dice1(DataCube))))))). Initially
a sub-cube is selected from the (spatial) data cube with the first s-dice. After-
wards, a number of s-slices can be applied, which is followed by a series of
s-roll-ups. Finally, the expression ends with another s-dice for getting the fi-
nal sub-cube at a coarser granularity by filtering the aggregated measures. In
the following, we present a nested SOLAP operation example for the running
case GeoFarmHerdState spatial data cube.

Example 13 ((3s−roll−up(2s−slice(1s−dice(GeoFarmHerdState)))))
This pattern represents a typical nested SOLAP operation that can be para-
phrased for the running use case as follows: 1Filter the farm states lo-
cated within a 2 km distance from the center of their parish and 2slice on
the parish which has the most number of topological relations (intersects,
within) with a drainage area, 3average the nitrogen reduction potential of
the drainage areas intersecting with the parish.

221

Paper E.

7 Discussion and Perspectives

In the following, we give and evaluate the steps of our process with respect to
the guidelines for publishing governmental linked data [18]. We discuss the
particular challenges that we encountered and possible future improvements.

1) Specification. The first step is to specify the scope of the data by iden-
tifying and analyzing the data sources. We identified the data sources for
the domains of CHR data, Environmental data, Geographical data, and CVR
data as described in Section 4. In order to find the correct relations between
these domains we had to search documentations (i.e., [17] and [16]) and ac-
quire knowledge about the domains’ interests. As the purpose is to publish
open data, the definition of an Open Data license is also required at this level.
2) Modeling. We used the spatially extended MultiDim model [19] for de-
signing the MD conceptual schema of the use case spatial data cube (Fig. E.2)
from the collected flat data sets. This process requires good knowledge of
spatial data warehouses and its concepts. In order to model the spatial data
cube in RDF, QB4SOLAP provides the state-of-the-art semantic spatial data
cubes. Therefore, we annotate the designed use case conceptual schema with
QB4SOLAP.

Modeling the RDF data with QB4SOLAP provides all the core concepts
of spatial data warehouses (i.e., spatial dimensions, spatial levels, and spatial
hierarchies) for spatial data on the SW. Therefore, QB4SOLAP conveniently
handles the conceptual modeling process of DWs on the SW and clearly de-
scribes the certain relations that should be considered during the logical mod-
eling process (e.g., cardinality and topological relationships to create integrity
constraints for ER models).
3) Generation. This step of the overall process involves the most complex
tasks. In order to fully generate a spatial data cube in RDF the following
sub-processes are performed: transformation and data conciliation.

3.1) Transformation. The RDF triples were generated with ad-hoc C# code
for mapping from relational CSV files to RDF. In total, 12 CSV files were or-
ganized based on the relational representation (snowflake schema) of an MD
conceptual model such that: We obtained one fact table with foreign keys
of the related dimension (base) levels and measures, four tables with each
dimensions’ base level, and seven tables for the remaining levels along the
hierarchies. These 12 tables are related by referential integrity constraints.
Every level table also records the level attributes and attribute values. In
order to create this relational CSV files, we pursued a number of data concil-
iation activities as described in the following item.

3.2) Data Conciliation. Initial data sets are downloaded in different for-
mats i.e., SHP format for CHR, Environmental, and Geographical data; CSV

222

7. Discussion and Perspectives

format for CVR data. In order to create the desired relational implementation
of the use case spatial data cube, we used the unique identifiers (i.e., CVR and
CHR numbers) or utilized spatial joins by joining attributes from one geom-
etry feature to another based on the spatial containment relationship. For
instance, we overlaid the point coordinates of the farms from CHR data and
polygon coordinates of three environmental data sets in order to intersect and
find the soil quality measurements for NitrogenReduction, NitrateClass and
PhosphorClass of each farm. Another interesting spatial join is utilized for
relating the Parish level members with DrainageArea level members. Since
there is an (n− n) cardinality relationship, some parishes intersect with more
than one drainage area, thus we used topological relationships (intersects and
within) to find the related child and parent level members. For interacting
and handling the spatial data, we used QGIS with integration to PostGIS12.
We used PostgreSQL to create and export relational tables.

The lack of tools for mapping a spatial multidimensional model to the
relational model has been an impediment since we have to use topological
relationships, where there is an (n − n) cardinality relationship. Therefore,
semantic ETL for data warehouses [20] is an important research topic, which
requires improvements also for spatial data. Semi-automated tool support
of geo-semantic ETL for publishing data warehouses on the SW is a promis-
ing improvement for handling the above processes such that the spatial joins
can be processed efficiently. Before publishing the final RDF data, a compre-
hensive data cleansing step is essential for removing redundant columns and
cleaning the noise due to unescaped characters, denormalized spatial literals,
and encoding problems.
4) Publication. In order to store and publish the RDF data we chose the Virtu-
oso Universal Server as a triple store. The details about the SPARQL endpoint
can be found on the project page http://extbi.cs.aau.dk/GeoFarmHerdState.

Publication of metadata in Danish and English languages should be com-
pleted. Also for enabling efficient discovery of published spatial data cubes,
adding an entry of the data in the CKAN repository (datahub.io) is required.
5) Exploitation. The goal of our research is to re-use open government data
and publish it as spatial data cubes on the SW for advanced multidimen-
sional analysis. Therefore, we show how to query in SPARQL with SOLAP
operators.

We recognize the need for non-expert SW users to write their spatial an-
alytical queries in our high-level SOLAP language instead of the lower-level
complex SPARQL language. Thus, a query system with a GUI that can in-
terpret spatial data cube schemas for allowing users to perform high level
SOLAP operations is ongoing work. Performing SOLAP queries in SPARQL
to work over multiple RDF cubes with s-drill-across and supporting spatial ag-

12QGIS: http://www.qgis.org/ PostGIS: http://postgis.net/

223

http://www.qgis.org/
http://postgis.net/

References

gregation (s-aggregation) over spatial measures are other important improve-
ments on exploitation of spatial data cubes.

8 Conclusion and Future Work

The need for spatial analytical queries on the Semantic Web increases con-
stantly with regularly published open government data, but there is a lack of
effective solutions and efficient models. As a first attempt to publish spatial
data cubes from open data, we have shown that the QB4SOLAP vocabulary
can be used to link Danish government data that is published in different
domains. First, we have studied the use case data sets thoroughly with cor-
responding regulations and requirements in order to satisfy cross-domain
interests (e.g., tracking soil quality in livestock farms and farm animals den-
sity on drainage areas etc.). Second, we have conciliated the flat data sets
in order to model the MD concepts of a spatial data cube. Third, we de-
scribed the most popular individual SOLAP operators and a nested SOLAP
operation pattern with examples and their SPARQL implementation.

In this paper, the QB4SOLAP vocabulary is validated by a non-trivial
spatial use case. As a proof of concept, we showed that linking spatial (gov-
ernmental open) data on the Semantic Web can be achieved at an advanced
level, not solely linking spatial open data on the SW but also modeling this
data for advanced analytical queries with SOLAP operations.

Several directions are interesting for future research: developing a geo-
semantic ETL tool to support the process of creating spatial data cubes on
the SW, a GUI for non-expert users to perform SOLAP operations on SW
spatial cubes, extending the use case and implementing advanced SOLAP
queries, such that; as s-drill-across and s-aggregation on the SW.

References

[1] J. B. Arendt, “Denmark releases its digital raw material,” http://uk.
fm.dk/news/, Ministry of Finance of Denmark, Denmark Ministry of
Finance, October 2012.

[2] A. B. Andersen, N. Gür, K. Hose, K. A. Jakobsen, and T. B. Ped-
ersen, “Publishing Danish Agricultural Government Data as Seman-
tic Web Data,” in Semantic Technology: 4th Joint International Semantic
Technology Conference (JIST’14), vol. 8943. Springer, 2014, pp. 178–186,
https://dx.doi.org/10.1007/978-3-319-15615-6_13.

[3] N. Gür, K. Hose, E. Zimányi, and T. B. Pedersen, “Modeling and Query-
ing Spatial Data Warehouses on the Semantic Web,” in Semantic Tech-
nology: 5th Joint International Semantic Technology Conference (JIST’15),

224

http://uk.fm.dk/news/
http://uk.fm.dk/news/
https://dx.doi.org/10.1007/978-3-319-15615-6_13

References

vol. 9544. Springer, 2015, pp. 1–20, https://dx.doi.org/10.1007/
978-3-319-31676-5_1.

[4] N. Gür, T. B. Pedersen, E. Zimányi, and K. Hose, “A Foundation for
Spatial Data Warehouses on the Semantic Web,” Semantic Web Journal,
vol. 9, no. 5, pp. 557–587, 2018.

[5] A. Abelló, O. Romero, T. Pedersen, R. Berlanga Llavori, V. Nebot,
M. Aramburu, and A. Simitsis, “Using Semantic Web Technologies for
Exploratory OLAP: A Survey,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 27, no. 2, pp. 571–588, 2014, https://doi.org/
10.1109/TKDE.2014.2330822.

[6] D. Pedersen, K. Riis, and T. B. Pedersen, “Query optimization for OLAP-
XML federations,” in Proceedings of the 5th International Workshop on Data
Warehousing and OLAP (DOLAP’02). ACM, 2002, pp. 57–64.

[7] B. Kämpgen, S. O’Riain, and A. Harth, “Interacting with Statistical
Linked Data via OLAP Operations,” in The Semantic Web: ESWC 2012
Satellite Events, vol. 7540. Springer, 2012, pp. 87–101, https://dx.doi.
org/10.1007/978-3-662-46641-4_7.

[8] R. Cyganiak, D. Reynolds, and J. Tennison, “The RDF Data Cube Vocab-
ulary,” 2014.

[9] B. Kämpgen and A. Harth, “OLAP4LD–A framework for building anal-
ysis applications over governmental statistics,” in The Semantic Web:
ESWC’14. Springer, 2014, pp. 389–394.

[10] W3C, “Data Cube Implementations,” 2014, https://www.w3.org/2011/
gld/wiki/Data_Cube_Implementations.

[11] L. Etcheverry, A. Vaisman, and E. Zimányi, “Modeling and Querying
Data Warehouses on the Semantic Web using QB4OLAP,” in Data Ware-
housing and Knowledge Discovery (DaWaK’14), vol. 8646. Springer, 2014,
pp. 45–56, https://dx.doi.org/10.1007/978-3-319-10160-6_5.

[12] A. Matei, K.-M. Chao, and N. Godwin, “OLAP for Multidimensional
Semantic Web Databases,” BIRTE, pp. 81–96, 2015.

[13] P. Zhao, X. Li, D. Xin, and J. Han, “Graph Cube: On Warehousing and
OLAP Multidimensional Networks,” SIGMOD, pp. 853–864, 2011.

[14] K. A. Jakobsen, A. B. Andersen, K. Hose, and T. B. Pedersen, “Opti-
mizing RDF Data Cubes for Efficient Processing of Analytical Queries,”
COLD, 2015.

225

https://dx.doi.org/10.1007/978-3-319-31676-5_1
https://dx.doi.org/10.1007/978-3-319-31676-5_1
https://doi.org/10.1109/TKDE.2014.2330822
https://doi.org/10.1109/TKDE.2014.2330822
https://dx.doi.org/10.1007/978-3-662-46641-4_7
https://dx.doi.org/10.1007/978-3-662-46641-4_7
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
https://dx.doi.org/10.1007/978-3-319-10160-6_5

References

[15] M. Perry and J. Herring, “GeoSPARQL: A Geographic Query Language
for RDF Data,” OGC Implementation Standard, 2012.

[16] Danish Ministry of the Environment, “Consolidated Act on Livestock
Farming Environmental Approvals,” 2012, http://eng.mst.dk/media.

[17] Nitrates Directive, “Danish nitrate action programme 2008-2015 regard-
ing the nitrates directive; 91/676/eec,” http://eng.mst.dk/media/mst/
Attachments/DanishNitrateActionProgramme2008201507092012.pdf,
Nitrates Directive, Tech. Rep., 2012.

[18] B. Villazón-Terrazas, L. Vilches-Blázquez, O. Corcho, and A. Gómez-
Pérez, “Methodological Guidelines for Publishing Government Linked
Data,” in Linking Government Data. Springer New York, 2011, pp. 27–49.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4614-1767-5_2

[19] A. Vaisman and E. Zimányi, “Spatial data warehouses,” in Data Ware-
house Systems: Design and Implementation. Springer, 2014.

[20] R. P. Deb Nath, K. Hose, and T. B. Pedersen, “Towards a Programmable
Semantic Extract-Transform-Load Framework for Semantic Data Ware-
houses,” in Proceedings of the 18th International Workshop on Data Ware-
housing and OLAP (DOLAP’15). ACM, 2015, pp. 15–24, https://doi.
org/10.1145/2811222.2811229.

226

http://eng.mst.dk/media
http://eng.mst.dk/media/mst/Attachments/DanishNitrateActionProgramme2008201507092012.pdf
http://eng.mst.dk/media/mst/Attachments/DanishNitrateActionProgramme2008201507092012.pdf
http://dx.doi.org/10.1007/978-1-4614-1767-5_2
https://doi.org/10.1145/2811222.2811229
https://doi.org/10.1145/2811222.2811229

Paper F

Multidimensional Enrichment of Spatial RDF Data
for SOLAP

Nurefşan Gür, Torben Bach Pedersen, Katja Hose, and Mikael
Midtgaard

The paper is under preparation for submission to
Semantic Web Journal

Abstract

Large volumes of spatial data and multidimensional (MD) data are being published
on the Semantic Web (SW) has lead to new opportunities for advanced analysis such
as spatial Online Analytical Processing (SOLAP). The RDF Data Cube (QB) and
QB4OLAP Vocabularies have been widely used for annotating and publishing sta-
tistical and MD RDF data. Even though such statistical data sets might have spatial
information (i.e., coordinates), lack of spatial semantics and spatial MD concepts in
QB4OLAP and QB does not allow users to employ SOLAP queries over spatial data
using SPARQL or a third-party SPARQL query generator tool - GeoSemOLAP for
SOLAP operators. QB4SOLAP Vocabulary fully supports annotating spatial and
MD data on the SW, which allows users to query endpoints with GeoSemOLAP
or SOLAP operators in SPARQL. In order to enable SOLAP on existing QB and
QB4OLAP data on the SW, we propose a RDF2SOLAP enrichment module that
can automatically annotate spatial MD concepts in QB4SOLAP. We present a wide
range of enrichment algorithms by applying them on a non-trivial real world use case
from governmental open data sets with complex geometry types.

c© 2020 IOS Press and the authors. All rights reserved. Reprinted, with
permission from Nurefşan Gür, Torben Bach Pedersen, and Katja Hose. Mul-
tidimensional Enrichment of Spatial RDF Data for SOLAP. Under preparation
for submission to: Semantic Web Journal, 2020.
The layout has been revised.

1. Introduction

1 Introduction

Data warehouses (DWs), Online Analytical Processing (OLAP) tools and
queries are well-established for interactive data analyses. DWs have multidi-
mensional (MD) models and store large volumes of data. MD models locate
data in an n-dimensional space, which are usually called data cubes. The cells
of the cube represent the topic of analysis, and associate observation facts
with (numerical) measures that can be aggregated. Spatial data cubes can also
contain spatial measures, which can be aggregated with spatial functions. For
example, a fact cube for farms has a numerical measure ‘number of animals’
in the farm and has ‘farm’s coordinates’ as spatial measure. Facts are linked
to dimensions, which provide contextual information, e.g., farm production,
farm location, and farm livestock. Dimensions are organized into hierarchies
with levels, e.g., parish of the farm, herd type of livestock that allow users to
analyze and aggregate measures at different levels of detail. Levels have a set
of attributes that describe the characteristics of the level members.

In traditional DWs, the location dimension is generally used as a con-
ventional (non-spatial) dimension with alphanumeric data and thus given
only with a nominal reference to places and areas, e.g., parish name. This
does not allow applying spatial operations over the true spatial location data
or deriving topological relations among the hierarchy levels of the location
dimension, which are essential for enabling spatial OLAP (SOLAP) analy-
sis. By including the geometric information of location data in MD models,
we can significantly improve the analysis process (e.g., proximity analysis of
locations) with additional perspectives by revealing dynamic spatial hierar-
chy levels and new spatial level members in SOLAP operations (details and
examples in [1, 2]). Or by using the geometry attributes of level members,
topological relations between the levels, and levels and facts can be implicitly
specified. These topological relations are essential in order to correctly ag-
gregate measures between the levels with many-to-many (N:M) cardinality
relations.

The Semantic Web (SW) has evolved, from prominently focusing on data
publishing to also supporting complex queries such as interactive analytical
queries. Simultaneously, the data available on the SW has evolved from being
simple, mostly alphanumerical data, to include complex data types such as
geospatial data. There are many examples of governmental and statistical
Linked Open Data (LOD) sets with geographical attributes. However, such
datasets are not typically modeled with multidimensional (MD) concepts.
Thus, they cannot be queried with interactive analytical queries - OLAP on
the SW. Even though, several platforms and tools for Business Intelligence
(BI) and data warehouses emerged in the recent years [3], there is still a
lack of common standard to model and publish (geo) semantic cubes on the

229

Paper F.

SW [1].
Some of the statistical datasets on the SW, which have observations and

measures (that are well suited for analytical queries) are published using the
RDF Data Cube Vocabulary (QB) [4], the current W3C standard. However,
QB lacks the underlying structural metadata for multidimensional models
and OLAP operations (explained in details in Section 7). Well-defined struc-
tural metadata is required in order to translate the OLAP queries into the
underlying technology, which is SPARQL 1.1 [5], since the focus of interest is
MD data on the SW [2]. QB4ST [6] is a recent attempt to define extensions
for spatio-temporal components to RDF Data Cube (QB). However, it has the
inherent multi-dimensional modeling limitations of the QB vocabulary.

In order to address the MD modeling challenges of the QB vocabulary,
QB4OLAP [7] has been proposed, which reuses QB definitions by adding the
required MD schema semantics. There is already a significant number of
data sets published using QB vocabulary. The QB2OLAP enrichment mod-
ule [8] helps users to semi-automatically produce a QB4OLAP description of
a QB data cube by adding the necessary MD semantics (e.g., the hierarchi-
cal structure of the dimensions) and the corresponding instances to populate
the dimension levels. However, QB4OLAP annotation only covers non-spatial
MD data cube concepts and its operations. Even though such statistical data
sets have spatial information, not annotating the spatial MD concepts (e.g.,
spatial hierarchy levels such as administrative regions) hinders querying the
data with interesting spatial OLAP operations.

RDF2SOLAP moduleExternal Geo-
vocabularies

SOLAP

User Spatial RDF Data Warehouses

GeoSemOLAP

SOLAP to SPARQL

QB4SOLAP

Spatial RDF
Endpoints

Fig. F.1: Future vision of SOLAP on the SW

230

1. Introduction

Problem Definition. In the current state of the Semantic Web, spatial OLAP
(SOLAP) queries are not possible through the existing spatial RDF endpoints.
If a (spatial) data warehouse user would like to query spatial RDF data from
the Semantic Web with SOLAP operations, the user needs to download the
RDF data, map it to a relational data model (e.g., with a snowflake schema),
and then import it into a traditional spatial data warehouse in order to query
it with SOLAP queries, which is slow, labor-intensive, and stores the data in
a non-open format.

There are existing tools and vocabularies for (spatial) data warehouse
users to use on the Semantic Web. The QB4SOLAP vocabulary [9] allows
spatial data warehouse users to publish their data on the Semantic Web
with spatial multi-dimensional concepts. High-level SOLAP operators and
how to translate them into SPARQL are defined with query generation al-
gorithms [1]. Based on these algorithms, GeoSemOLAP [2] is developed to
allow users querying with SOLAP operations on the Semantic Web with-
out knowledge of SPARQL or RDF via a graphical user interface. How-
ever, GeoSemOLAP is restrained to RDF data sets, which are annotated with
QB4SOLAP.

In order to minimize the user effort for querying existing spatial RDF end-
points (that are already published in other vocabularies, e.g., RDF Data Cube
Vocabulary, QB4OLAP Vocabulary) with spatial analytical queries (SOLAP),
an automated way of annotating spatial metadata with QB4SOLAP from the
existing endpoints is necessary. Therefore, we propose an RDF2SOLAP en-
richment module that can operate at the back-end of GeoSemOLAP.

Contributions. In order to address this issue our main contributions are:

* We show that the QB4SOLAP vocabulary yields the need for fully-
fledged spatial data warehouse concepts, by demonstrating the running
use case examples from real world governmental open data sets from
various domains (i.e., environment, farming) with complex geometry
types.

* A detailed explanation and comparison of RDF data examples, which
are depicted as graphs, and annotated both in QB4OLAP and QB4SOLAP
vocabularies, then identifying the required spatial MD metadata and
concepts (e.g., spatial hierarchies and topological relations) for SOLAP
analysis based on the given comparison.

* Hierarchical enrichment algorithms for (1) detecting topological rela-
tions at explicit hierarchy steps with direct links between the level mem-
bers; and (2) discovering topological relations at implicit hierarchy steps
(without direct links between the level members).

231

Paper F.

* Factual enrichment algorithms for both implicit and explicit fact-level
relations between the fact and level members.

* An automated way of re-defining a fact schema after factual enrich-
ment, and association of spatial aggregate functions with spatial mea-
sures.

* Evaluation of our approach in terms of accuracy by comparing the num-
ber of topological relations found in RDF2SOLAP framework against
two different environments (RDBMS, and GIS tool), which can operate
with spatial data types.

Paper organization. The remainder of this paper is organized as follows.
Section 2 defines the preliminary concepts used throughout the paper with a
running use case example. Section 3 presents the system architecture for the
MD enrichment process. Section 4 defines the RDF2SOLAP enrichment al-
gorithms with necessary helper functions and formalization of (spatial) RDF
data. Section 5 presents the implementation details along with interesting
examples and discusses the challenges and implemented solutions. Section 6
presents the qualitative and quantitative evaluation with comparison base-
lines. Finally, Section 7 discusses related work and Section 8 concludes the
paper with an outlook to future work.

2 Preliminaries

In this section, we explain the preliminary concepts of spatial data ware-
houses and spatial OLAP (SOLAP) (Section 2.1) and how to deploy them on
the Semantic Web (Section 2.2) using QB4SOLAP vocabulary.

2.1 Spatial Data Warehouses and SOLAP

Data cubes and spatially extended cube concepts Data warehouses (DW)
are based on the multidimensional (MD) model, which models data in an
n-dimensional space, and they are often referred to as data cubes. A cube
schema defines the structure of a cube with MD concepts. The cells of the
cube represent (observation) facts with a set of attributes called measures. Facts
are linked to dimensions, which are the axes of an MD space and provide
perspectives to analyze the data. Dimensions are organized into hierarchies,
which allow users to aggregate measures at different granularities along the
levels of a hierarchy. Hierarchies are composed of levels, which have a set
of attributes that describe the characteristics of the level members. Each level
member is defined by its attributes and attribute values.

232

2. Preliminaries

Fig. F.2: GeoFarmHerdState – Parish, Farm, and Drainage area instances

Cube members are MD concepts, which are defined at the instance level,
and these are composed of level members, attributes of level members, partial
order on level members, and fact members. A hierarchy step between levels (a
child level and a parent level) defines a set of roll-up relations, where each
relation relates a child level member to a parent level member. These roll-up
relations define a partial order between level members with a cardinality re-
lation. The cardinality (1:1, 1:N, N:1, N:M) describes the number of members
in one level that can be related to a member in the other level for both child
and parent levels.

Spatial data warehouses (SDW) extend a DW by storing geometries such
as point, line, and polygon in the values of spatial measures and values of level
attributes for spatial dimensions. The spatially extended MD schema of an
SDW has spatial dimensions, spatial hierarchies, spatial levels [10], spatial hi-
erarchy steps, and topological relations1 (in addition to cardinality relations)
between spatial levels for each spatial hierarchy step [9]. Similar to conven-
tional DWs, facts of an SDW can be associated with numeric measures, which
are using aggregation functions such as SUM, AVG, etc. A fully extended spa-
tial MD schema of an SDW should also define spatial measures, which have
geometries and spatial aggregate functions such as UNION, CONVEX HULL,

etc., on those spatial measures. For a detailed explanation of SDW concepts
we refer the reader to [12].

1Topological relations are Boolean spatial predicates that specify how two spatial objects are
related to each other, e.g., within, intersects, touches, crosses and etc. [11].

233

Paper F.

Address

Farm

CHRnr
FarmLocation
LivestockUnit

NumberOfAnimals
FarmLocation
NitrogenReduction +!
NitrateClass +!
PhosphorClass +!

 GeoFarmHerdState Parish

ParishID
ParishName
ParishArea
ParishPolygon

Geography

DrainageArea

WaterID
WaterName
WaterArea
WaterPolygon

TimeDim

FarmDim

HerdDim

ParishDim

A B

O
w

n
e
rs

h
ip

Level attributes and measures

Legend of Symbols

Multipolygon (geometry data type)

Polygon (geometry data type)

Point (geometry data type)

+! Non-additive measure type

Intersects (topologica l re lation)

With in (topological re lation)

N:N (cardinality relation)

Level-Level (Hierarchy step) and Level-Fact relations

N:1 (cardinality relation)

Fig. F.3: GeoFarmHerdState – Conceptual MD schema of livestock holdings data (Spatial con-
cepts)

OLAP and spatial OLAP operations DWs are commonly used to store
large volumes of data for decision support with On-Line Analytical Process-
ing (OLAP) operations. Spatial OLAP (SOLAP) integrates the features of
OLAP tools and geographical information systems (GIS) [13]. SOLAP en-
ables advanced analytical processing by taking the spatial information in the
cube into account.

For example, a spatial data cube of livestock holdings in farms (referred
to as GeoFarmHerdState in the rest of this paper) defines the farm location as
a spatial measure, which is linked to the observation facts. In order to de-
rive perspectives and relations on the state of the farms’ livestock holdings
(herds), spatial levels are defined: parishes and drainage areas. A sample set
of the corresponding spatial data cube members are given in Figure F.2. The
spatial MD concepts of the data cube are defined in the conceptual schema
in Figure F.3, which depicts a simplified version of the GeoFarmHerdState
spatial data cube without its non-spatial dimensions (full version of the Ge-
oFarmHerdState cube is described in our previous work [14]). The cube has
two spatial dimensions: FarmDim and ParishDim. The latter has a spatial hier-
archy (Geography) with two spatial levels: Parish and DrainageArea. FarmDim
on the other hand does not have a spatial hierarchy, despite its spatial (base)
level: Farm.

The GeoFarmHerdState cube has spatial fact members of state of the
farms within a time frame with different kind of measures, i.e., numeric

234

2. Preliminaries

DrainageArea: ”Mariager Ind.” DrainageArea: ”Langerak”

Parish: ”Oue” Parish: ”Astrup”

Farms: {f1,…, fn} Farms: {e1,…, en} Farms: {d1,…, dn}

within

within intersects intersects

within within

within

within

co
n
ta
in
s

co
n
ta
in
s

within

Fig. F.4: Hierarchy example for SOLAP

measures: NumberofAnimals in the farm and NitrogenReduction potential of
the farm land/soil, spatial measures: FarmLocation (Figure F.3)2.

To evaluate SOLAP operations, spatial levels such as Parish and DrainageArea
are used to aggregate measures at different levels of detail. Due to the poly-
gon geometry of the spatial level members, there are two different roll-up
relations for the hierarchy step between the Parish and DrainageArea levels,
where a parish can be completely contained within a drainage area or a parish
and a drainage area can intersect.

For example, parish “Oue" is within drainage area “Mariager Inderfjord".
Thus all the farms that are within “Oue" are also within “Mariager Inder-
fjord". Whereas, parish “Astrup" intersects with drainage areas “Mariager
Inderfjord" and “Langerak". Therefore, some farms that are within “As-
trup" are within “Mariager Inderfjord", while the rest of the farms are within
“Langerak". Figure F.2 displays a sample set of Parish and DrainageArea
level members.

The possible roll-up relations for the example above are depicted in Fig-
ure F.4 with black and red arrows, respectively representing the topologi-
cal relations within and intersects. Blue arrows show the topological relation
contains, which are drill-down (inverse operation of roll-up) relations from
DrainageArea level to Farm level.

Topological relations between the levels and levels and facts can be im-
plicitly specified through the geometry attributes of their instances (level
members and fact members). The relations between spatial levels enable
processing spatial roll-up and drill-down through range queries with spatial
predicates [15]. In terms of cardinality, there is an N:M relationship between
level members since a parish may intersect with more than one drainage area

2Non-additive measures are also numeric measures, which are given in percentages or classi-
fied in numbers, therefore they cannot be meaningfully summarized by all aggregate functions
i.e., SUM. However, depending on the semantics, other aggregate functions can be associated with
them, e.g., AVG NitrogenReduction potential, MAX NitrateClass.

235

Paper F.

and vice versa. This induces the problem of computing measures incorrectly
when a roll-up operation goes through an N:M relationship, which actually
is the case between the Parish level and the DrainageArea level. For exam-
ple, we would like to aggregate the measure NumberOfAnimals, from Parish
level to the DrainageArea level with a roll-up query. In such a roll-up query,
we might falsely aggregate the number of animals in farms that are contained
within the parish, but not contained within the drainage area, since the parish
intersects with another drainage area. In order to refine such an analysis, SO-
LAP operations are required, where a (spatial) drill-down should be applied
to the lowest granularity - from Parish level members to GeoFarmHerdState
fact members, and then a spatial roll-up (with within predicate) can be ap-
plied from fact members (Farm instances) to DrainageArea level members.
This would prevent falsely aggregating the number of animals from the farms
that are (spatially) disjoint to the corresponding drainage area.

_:hs

gfs:parish gfsi:parish_8648

gfs:drainageArea

gfsi:parish_8517

gfsi:water_159gfsi:water_3710

skos:broader skos:broader

sk
os
:b
ro
ad
er

"Mariager
Inderfjord""Langerak"

gfs:waterName gfs:waterName

"POLYGON((8.4038 56.7963, 8.3984 56.7721, 8.3689 56.7410, 8.3411 56.7372, 8.3078 56.7281, 8.2987 56.7601,
8.2563 56.7763, 8.3112 56.8087, 8.3511 56.8137, 8.4038 56.7963))"^^:spatialLiteral

"Oue""Astrup"

gfs:parishNamegfs:parishName

qb4o:memberOf

qb4o:memberOf

qb4o:memberOf

qb4o:memberOf

qb4o:ManyToManyqb4o:pcCardinality

qb4o:parentLevel

"POLYGON((8.6048 56.9843, 8.5908 56.8969, 8.5707 56.8664, 8.5975 56.8519, 8.5215 56.8483, 8.3959 56.7625,
8.3938, 56.7340, 8.3613 56.6802, 8.2584 56.7764, 8.2475 56.7051, 8.2175 56.7232, 8.3121
56.8441, 8.2806 56.8659, 8.3602 56.9569, 8.4786 56.9713, 8.5474 56.9905, 8.6048 56.9843))"^^:spatialLiteral

gfs:parishP
olygon

gfs:w
aterP

olygon

qb4o:childLevel

Fig. F.5: Hierarchy steps in QB4OLAP before multidimensional enrichment

2.2 QB4SOLAP: Spatial RDF Data Cube Vocabulary for SO-
LAP operations

There is an increasing amount of Linked Open Data (LOD) on the Semantic
Web containing spatial information and numerical (statistical) data. This led
to new opportunities for OLAP over spatial data using semantic web tech-
nologies and standards. Datasets on the SW use a standardized format: RDF

236

2. Preliminaries

(resource description framework).
In order to enable SOLAP operations on the Semantic Web, a comprehen-

sive RDF vocabulary is needed, i.e., annotation of the spatial hierarchy steps
with topological relations. QB4SOLAP [1] is an RDF vocabulary, which al-
lows MD data users to define cube schemas and cube instances as RDF triples.
The QB4SOLAP vocabulary is an extension of QB4OLAP [7] capturing the
semantics of spatial MD concepts (i.e., spatial hierarchy steps) that are essen-
tial for SOLAP operations. The QB4SOLAP Vocabulary is available on our
project website3. The latest version is QB4SOLAP V1.3 and it is available via
a persistent URL4. A comprehensive foundation on spatial data warehouses
on the Semantic Web can be found in [1], which includes the detailed defini-
tions with semantics of spatial MD concepts in RDF both at the schema level
and instance level using QB4SOLAP.

_:shs

gfs:parish gfsi:parish_8648

gfs:drainageArea

gfsi:parish_8517

gfsi:water_159gfsi:water_3710

"Mariager
Inderfjord""Langerak"

gfs:waterName gfs:waterName

"POLYGON((8.4038 56.7963, 8.3984 56.7721, 8.3689 56.7410, 8.3411 56.7372, 8.3078 56.7281, 8.2987 56.7601,
8.2563 56.7763, 8.3112 56.8087, 8.3511 56.8137, 8.4038 56.7963))"^^:spatialLiteral

gfs:parishNamegfs:parishName

qb4o:memberOf

qb4o:memberOf

qb4o:memberOf

qb4o:memberOf

qb4o:ManyToManyqb4o:pcCardinality

qb4o:parentLevel

"POLYGON((8.6048 56.9843, 8.5908 56.8969, 8.5707 56.8664, 8.5975 56.8519, 8.5215 56.8483, 8.3959 56.7625,
8.3938, 56.7340, 8.3613 56.6802, 8.2584 56.7764, 8.2475 56.7051, 8.2175 56.7232, 8.3121
56.8441, 8.2806 56.8659, 8.3602 56.9569, 8.4786 56.9713, 8.5474 56.9905, 8.6048 56.9843))"^^:spatialLiteral

gfs:parishP
olygon

gfs:w
aterP

olygon

qb4o:childLevel

qb4so:Intersects

qb4so:Within

qb4so:intersects

qb
4s
o:
in
te
rs
ec
ts

qb4so:within

"Oue""Astrup"

qb
4s
o:
pc
To
po
R
el

Fig. F.6: Spatial hierarchy steps in QB4SOLAP after multidimensional enrichment

In the following, we depict an example of a hierarchy step from gfs:Parish

child level to gfs:drainageArea parent level (Figure F.5). In the figure, we
prefix the schema elements (attributes, levels, etc.) of the (GeoFarmHerd-
State) cube with gfs: and instance data from the cube with gfsi:. The
left-center part of Figure F.5 shows the hierarchy structure _:hs, between
gfs:parish and gfs:drainageArea levels at the schema level with QB4OLAP
vocabulary. QB4OLAP objects, classes and properties are prefixed with qb4o:.
The levels (gfs:parish and gfs:drainageArea) are linked to the instances

3https://extbi.cs.aau.dk/QB4SOLAP
4https://w3id.org/qb4solap#

237

https://extbi.cs.aau.dk/QB4SOLAP
https://w3id.org/qb4solap#

Paper F.

of level members (e.g., gfsi:parish_8648, gfsi:water_3710 and etc.) by
qb4o:memberOf property. The polygon geometry attributes are highlighted
in blue boxes, on the top and the bottom of the figure. The coordinates
recorded in the geometry attributes can be used to derive the topological rela-
tion between the level members by applying spatial boolean predicates (e.g.,
instersects?, within?) on the polygon geometries of the parish and drainage
area level members.

However, QB4OLAP does not support annotating the topological relations
that might exist between the level members at a hierarchy step. QB4OLAP
uses only skos:broader property from SKOS (Simple Knowledge Organi-
zation System) [16] semantic relations for capturing the roll-up relations at
hierarchy steps. The roll-up relations with skos:broader property are high-
lighted in red boxes in Figure F.5. The skos:broader property does not de-
scribe the nature of the roll-up relation with topological relations for spatial
hierarchies. Therefore, QB4OLAP cannot capture the topological relations in
a hierarchy step from Parish level to DrainageArea level or between these
levels’ members.

On the other hand, QB4SOLAP can define topological relations both at
the schema level and the instance level. In Figure F.6, we prefix QB4SOLAP
objects, classes and properties with qb4so: and highligh them in green
lines. The left-center part of the figure shows the spatial hierarchy struc-
ture :_shs, which has a QB4SOLAP property qb4so:pcTopoRel, and that has
two QB4SOLAP class instances qb4so:Within and qb4so:Intersects. This
means, when we compare the geometry attributes of parish level members
and drainage area level members, we discover two different topological re-
lations (within and intersects) for all the (spatial) hierarchy steps between the
parish and drainage area levels. And these relations are annotated at the
schema level on the left-center part of Figure F.6.

Similarly, gfs:parish and gfs:drainageArea levels are linked to the in-
stances of level members (e.g., gfsi:parish_8648) by qb4o:memberOf prop-
erty. The explicit topological relations between the each level members along
a spatial hierarchy step are depicted in the figure with qb4so:intersects or
qb4so:within predicates, which are highlighted in green boxes (e.g., gfsi:pa�
rish_8648 intersects with gfsi:water_159 and gfsi:water_3170 etc.).

In conclusion, QB4SOLAP can enable SOLAP operations by defining the
semantics of spatial MD concepts both at the schema level and instance level.
These semantics are essential for SOLAP operations and they are defined as
extensions to the QB4OLAP vocabulary.

238

3. System Architecture

3 System Architecture

The importance of SOLAP to get accurate results in operations over spatial
data warehouses is explained in Section 2.1. However, the RDF data cubes
(with spatial attributes) on the Semantic Web are not always annotated with
vocabularies that allow users to formulate SOLAP queries. In this section we
present an overview of the MD enrichment flow from RDF QB to QB4OLAP
data cubes and QB4OLAP to QB4SOLAP data cubes. Thus, the users can
query the RDF data cubes with SOLAP queries.

INTERFACE ENRICHMENT MODULES

SOURCE
TRIPLE

 STORES

SPA
R

Q
L EN

D
PO

IN
TS

Q
U

E
R

IES

Select/Load QB
Graph

Select/Load
QB4OLAP

Graph

QB2OLAPem

QB4OLAP Triples

GeoSemOLAP

QB4SOLAP Triples

Triple
Generation

Download
QB4SOLAP

Graph

RDF2SOLAP
enrichment module

Hierarchical
enrichment

phase

Factual
enrichment

phase

Fig. F.7: Multidimensional Enrichment Process

Multidimensional enrichment process flow is illustrated in Figure F.7 with
three main architectural layers: Interface, Enrichment Modules, and SPARQL
Endpoints. The first layer facilitates user interaction with the enrichment
modules (i.e., QB2OLAPem) and third party tools (i.e., GeoSemOLAP). Our
main contribution in this paper is the RDF2SOLAP enrichment module, which
is the core of the second layer. The RDF2SOLAP enrichment module oper-
ates on QB4OLAP triples that either already exist in the original data or have
been generated by QB2OLAPem enrichment module [8]. QB2OLAPem al-
lows users to enrich an RDF QB dataset with QB4OLAP concepts and returns
a graph of QB4OLAP triples.

239

Paper F.

The internal process flow of RDF2SOLAP enrichment module consists of
three phases: Hierarchical enrichment phase, factual enrichment phase, and
triple generation (phase). Hierarchical and factual enrichment phases iter-
atively perform the enrichment algorithms explained in Section 4. Both of
these enrichment phases allow interaction with external SPARQL endpoints
to enhance the enrichment process via potential spatial and multidimensional
concepts that could be retrieved externally. The third phase is the triple gen-
eration, which creates QB4SOLAP triples that can be used in third party
tools such as GeoSemOLAP. GeoSemOLAP allows users without knowledge
of RDF and SPARQL to query with SOLAP operations by interactively for-
mulating the queries using a GUI with interactive maps [2].

The third layer (SPARQL endpoints) allows both user-SPARQL endpoint
interaction for retrieving QB or QB4OLAP graphs and system-SPARQL end-
point interaction where RDF2SOLAP enrichment module queries the external
triple stores for enhancing the hierarchical enrichment and factual enrich-
ment.

RDF2SOLAP is implemented in Javascript on Node.js platform with N3.js
library for parsing the RDF triples in Javascript and Turfjs library for spatial
analysis5.

4 RDF2SOLAP Enrichment Algorithms

In this section, the algorithms in RDF2SOLAP enrichment module are pre-
sented. Our MD enrichment approach builds upon QB4OLAP triples that ei-
ther already exist in the original data or have been generated by QB2OLAPem
enrichment module [8] as depicted in Figure F.7. QB4OLAP defines only the
non-spatial multidimensional semantics of RDF data, whereas QB4SOLAP
enriches the MD semantics of RDF data with spatial concepts. The high-level
formalizations of spatial and non-spatial multidimensional RDF data is de-
fined in [1]. We use these formalizations to refer in the algorithms as input
and output variables. In the following, we briefly explain the basic notations
in RDF terms that are necessary for the algorithms.

The basic construct of RDF is a triple t = (s, p, o) consisting of three
components; s is the subject, p is the predicate, and o is the object. RDF
triples are defined over T = (I ∪ B)× I × (I ∪ B ∪ L), where I is the set of
IRIs (Internationalized Resource Identifiers), B is the set of blank nodes, and
L is the set of literals. An object value can be a literal (i.e., string, spatial
literal6, integer etc.). Subjects and objects can be represented by a blank node
for anonymous resources. Predicates are always represented by IRIs. A set
of RDF triples is referred to as an RDF graph G. We use superscript notation

5N3.js: https://github.com/rdfjs/N3.js Turfjs: http://turfjs.org/
6Spatial literals are represented as Ls.

240

https://github.com/rdfjs/N3.js
http://turfjs.org/

4. RDF2SOLAP Enrichment Algorithms

to represent the type of the QB4OLAP graph either as schema graph GS or
instance graph G I . The instance graph has entities from a use-case dataset
as a set of RDF triples. The schema graph describes the structure (schema)
of the dataset recorded in the instance graph. We use subscript notation to
represent the MD concepts in RDF terms as a graph as exemplified in the
following: G I

A(lm) is the RDF instance graph for attributes of level members,
i.e., in the use case example this graph corresponds to the set of triples in
Listing 2, Lines 3-6 or Lines 9-13 and Lines 17-22. GS

HS(h) is the RDF schema
graph for hierarchy steps, i.e., in the use case example this graph corresponds
to the set of triples in Listing 1.

We define the function id(x) : G → I , that given an MD element x returns
its identifier I from the graph G. Similarly, we use superscript notation to
indicate the type of the identifier from the schema graph (GS) and instance
graph (G I), e.g., idS(a) for a schema identifier of a level (gfs:parish in List-
ing 2, Line 2 or in Listing 1, Line 2) and idI(lm) for an instance identifier of a
level member (gfsi:parish_8648 in Listing 2, Line 1 or Line 8).

The main contributions to the MD enrichment process is provided by two
enrichment phases; hierarchical enrichment phase and factual enrichment phase in
RDF2SOLAP enrichment module. These phases are explained in Section 4.1
and Section 4.2 respectively, with the corresponding algorithms.

4.1 Hierarchical enrichment phase

The hierarchical enrichment phase is built around spatial levels and their
level members forming the spatial hierarchy of a dimension. Thus, by identi-
fying the spatial relations between the spatial levels and their level members,
we can find the spatial hierarchy steps and the possible topological relations
for these hierarchy steps.

Each spatial hierarchy corresponds to a path of roll-up relationships be-
tween the child level and parent level: each of these roll-up relationships
corresponds to a spatial hierarchy step (Section 2.1). An example of a (spatial)
hierarchy with QB4SOLAP is given in Listing 1. Line 4 extends the QB4OLAP
schema definitions by enriching the hierarchy step with possibility to anno-
tate the spatial hierarchy steps with topological relations (see Section ?? for
details and Section 2.2 examples).

Spatial hierarchies in QB4SOLAP with topological relations

1 _:_shs rdf:type qb4o:HierarchyStep ; qb4o:inHierarchy gfs:geography ;

2 qb4o:childLevel gfs:parish ; qb4o:parentLevel gfs:drainageArea ;

3 qb4o:pcCardinality qb4o:ManyToMany ;

4 qb4so:pcTopoRel qb4so:Within , qb4so:Intersects .

Listing F.1: Spatial Hierarchy structure in QB4SOLAP

241

Paper F.

In Listing 2, we give the GeoFarmHerdState spatial level members from
Parish and Drainage Area levels. Lines 1-7 (Listing 2) represents the QB4OLAP
annotation of a child level member from Parish level before multidimensional
enrichment (with skos:broader), which are depicted in Figure F.5. Lines 8-
14 represents the QB4SOLAP annotation of the same Parish level member
after the multidimensional enrichment with topological relations, which are
depicted in Figure F.6. Lines 15-22 represents the annotation of a parent level
member from Drainage area level, which remains the same before and af-
ter multidimensional enrichment, since the hierarchy steps are defined with
bottom-up relationships from child level to parent level and the roll-up rela-
tions and thus also the topological relations are annotated at the child level
members of the hierarchy step.

Parish (child) Level member before hierarchical enrichment##

1 gfsi:parish_8648 rdf:type qb4o:LevelMember ;

2 qb4o:memberOf gfs:parish ;

3 gfs:parishID 8648 ; gfs:parishName "Astrup" ;

4 gfs:parishArea 47,969 ; gfs:parishPolygon "POLYGON((8.438 56.796,

5 8.3984 56.7721, 8.3689 56.7410, 8.3411 56.7372, 8.3078 56.7281,

6 8.3112 56.8087, 8.3511 56.8137, 8.438 56.796))"^^geo:spatialLiteral ;

7 skos:broader gfsi:water_3710 , gfsi:water_159 .

Parish (child) Level member after hierarchical enrichment##

8 gfsi:parish_8648 rdf:type qb4o:LevelMember ;

9 qb4o:memberOf gfs:parish ;

10 gfs:parishID 8648 ; gfs:parishName "Astrup" ;

11 gfs:parishArea 47,969 ; gfs:parishPolygon "POLYGON((8.438 56.796,

12 8.3984 56.7721, 8.3689 56.7410, 8.3411 56.7372, 8.3078 56.7281,

13 8.3112 56.8087, 8.3511 56.8137, 8.438 56.796))"^^geo:spatialLiteral ;

14 qb4so:intersects gfsi:water_3710 , gfsi:water_159 .

DrainageArea (parent) Level member##

15 gfsi:water_159 rdf:type qb4o:LevelMember ;

16 qb4o:memberOf gfs:drainageArea ;

17 gfs:waterName "Mariager Inderfjord" ; gfs:waterArea 267,477 ;

18 gfs:waterPolygon "POLYGON((8.6048 56.9843, 8.5908 56.8969,

19 8.5707 56.8664, 8.5975 56.8519, 8.5215 56.8483,

20 8.3959 56.7625, 8.3938, 56.7340, 8.3613 56.6802,

21 8.2584 56.7764, 8.2475 56.7051, 8.2175 56.7232,

22 8.5474 56.9905, 8.6048 56.9843))"^^geo:spatialLiteral .

Listing F.2: GeoFarmHerdState level members, attributes, and spatial roll-up relations

We exploit QB4OLAP semantics such as non-spatial hierarchy steps and
levels as a starting point to find the spatial hierarchy steps. We distinguish
two cases:
Case 1: Finding explicit spatial hierarchy steps for QB4OLAP levels with
skos:broader roll-up relations between their child-parent level members by

242

4. RDF2SOLAP Enrichment Algorithms

Algorithm 1: getSpatialValues(G I
A(lm)) : Vs(a)

Input: G I
A(lm)

Output: Vs(a)
1 begin
2 Vs(a) = ∅; /*initialize output set as empty set*/
3 foreach (idI(lm) idS(ai) vai) ∈ G I

A(lm) do
4 if vai is a geo:spatialLiteral then
5 Vs(a)∪ = {vai};

6 return Vs(a)

detecting spatial hierarchy steps in Section 30. For this case we assume that
level members have direct skos:broader relations as depicted in Figure F.5
and Listing 2, Line 7 with skos:broader property.
Case 2: Finding implicit spatial hierarchy steps from QB4OLAP levels without
direct roll-up relations through the skos:broader property. In this case we
assume that the level members are only defined by the qb4o:memberOf prop-
erty as shown in Listing 2, Line 2 but do not have the skos:broader roll-up
relation as given in Line 7. In this case, it is still possible to discover spa-
tial hierarchy steps by finding the spatial (topological) relations between level
members through their attributes as explained in Section 19.

Spatial helper functions

In order to address the cases explained above, we need two spatial helper
functions; for retrieving spatial from a set of given attribute values (Algo-
rithm 1, getSpatialValues), and for relating the spatial attributes (Algo-
rithm 2, relateSpatialValues), which are explained as follows.

Algorithm 1 (getSpatialValues) . The first helper function gets an input
graph of attributes of level members G I

A(lm) and returns a set of spatial at-
tribute values Vs(a). For example, the function could receive Lines 3-6 from
Listing 2 as an input. In the algorithm, Lines 3 and 4 checks the values vai

of each attribute idS(ai) (e.g., gfs:parishName, gfs:ParishArea, etc.), if the
value is a type of geo:SpatialLiteral (e.g., the POLYGON geometry value
linked to the gfs:parishPolygon attribute), then the value is incrementally
added to the output set Vs(a)

7 in Line 5.

7Note that a level member might have the polygon geometry type for the parish borders and
have the point geometry type for the parish center, therefore a set of spatial values is required.

243

Paper F.

Table F.1: Topological relations for Hierarchy Steps (X: hierarchically and topologically applica-
ble, ×: topologically not applicable, –: hierarchically not applicable)

Roll-up
Relations

child level point (pt.) line (ln.) polygon (po.)

parent level pt. ln. po. pt. ln. po. pt. ln. po.

To
po

lo
gi

ca
lR

el
at

io
ns

within × X X – X X – – X
contains – – – – – – – – –
intersects X X X – X X – – X
touches × × × – X X – – X
overlaps × × × – X X – – X
crosses × × × – X X – – ×
coveredBy × × × – × X – – X
covers – – – – – – – – –
equals X × × – X × – – X

Algorithm 2: (relateSpatialValues) . The next helper function is designed
based on Table F.1, w.r.t. the geometry values of the child-parent level mem-
bers and based on the structure of a hierarchy step. We prepared Table F.1
with topological relations based on DE-9IM8. We consider only the three sim-
ple geometry types, point, line, and polygon as the spatial attribute values of
child-parent level members in roll-up relations, excluding complex geome-
try types such as multi-polygon, multi-point etc. The possible topological
relations that can occur in a spatial hierarchy step with a roll-up relation
from child level to parent level are marked with check sign (X) in the table.
Topological relations such as contains and covers are not hierarchically applica-
ble since a spatial child level member cannot contain or cover a spatial parent
level member. For these relations, we mark the complete rows with minus
sign (–) in the table, since they are not hierarchically applicable. Similarly, we
mark the complete columns of line-point, polygon-point, and polygon-line roll-
up relations with the minus sign (–), since these are also not hierarchically
applicable. This is because, we assume that in the instance data, a parent level
member should always have a spatial attribute of a geometry type of the same
or higher dimensionality of its child level member (a point is 0-dimensional,
a line is 1-dimensional and a polygon is 2-dimensional).

For example, a child level member with a spatial attribute of line geom-
etry can only have parent level member(s) with spatial attributes of line or
polygon geometries but not point geometry. We mark the topologically not
applicable relations with cross sign (×) according to the DE-9IM model (e.g, a
line cannot overlap a polygon).

In Figure F.8, we depict the hierarchically and topologically applicable
topological relations from Table F.1. We simplified them by generalizing the

8DE-9IM (Dimensionally Extended Nine-Intersection Model) is a topological model that de-
scribes spatial relations of two geometries in two dimensions [11].

244

4. RDF2SOLAP Enrichment Algorithms

(a) point – point

intersects?

equals?

(b) point – line

within?

intersects?

within?

(c) point – polygon

intersects?

coveredBy?

(d) line – line

overlaps?

within? touches? crosses?

intersects?

 (e) line – polygon

coveredBy?

within?

overlaps?

crosses?

touches?

intersects?

intersects?

(f) polygon – polygon

within?

overlaps? touches?

Fig. F.8: Simplifying Topological Relations

possible relations (e.g., if a line touches or crosses with another line at one
point, they are both classified as intersects in Fig. F.8(d)). The most general
relations are underlined in Fig. F.8 for each pair of geometry types (Fig. F.8(a),
(b), (c), (d), (e), and (f)).

In Algorithm 2 relateSpatialValues, we only consider these general
topological relations that have higher probability to satisfy the correspond-
ing spatial predicates. For example, the topological relation intersects has the
highest probability to satisfy from the DE-9IM matrix [11]. We generalize the
similar spatial predicates to the ones that have higher probability to occur in
a 2-dimensional space. For example, we generalize the relations such as a
line overlaps (along the border of) a polygon can be generalized to the rela-
tion - a line crosses a polygon at a minimum two points, which can be later
generalized to the relation - a line intersects a polygon at a (minimum) single
point as in Figure F.8(e). Similarly, a line touches a polygon at a single point
can be generalized to the relation - a line intersects a polygon at a (minimum)
single point.

The topological relation coveredBy requires an area of a geometry, there-
fore it is applicable only in line-polygon and polygon-polygon relations (Fig-
ure F.8(e) and F.8(f)). For simplicity reasons, we choose to generalize them as

245

Paper F.

the within topological relation. In the algorithm we also prioritize to check the
topological relations based on the compared geometry types. If the spatial at-
tribute values to relate are point and polygon geometry types, as in Fig. F.8(c),
it is more likely that a point is within a polygon than a point intersects a polygon
in the instance data.

Therefore, we initially check for a more probable relation in the algo-
rithm. For example, for point-polygon relations case in Algorithm 2, Line 10:
initially, within spatial predicate is checked in the if statement (Line 11), then
intersects spatial predicate is checked in the else if statement (Line 13). Af-
ter checking all the possible combinations of the spatial attribute values in
switch case, a topological relation is returned from the algorithm (Line 30).

Now, we have given the necessary spatial helper functions, we present the
main algorithms in the following Sections 30 and 19 for finding the spatial
hierarchy steps.

Detecting spatial hierarchy steps

In this section, we present the algorithm for Case 1, given in the beginning
of Section 4.1, to find the explicit spatial hierarchy steps for QB4OLAP levels
with skos:broader roll-up relations between their child-parent level mem-
bers.

Algorithm 3 (detectspatialHS). The input variables for Algorithm 3 are
the instance graphs of attributes of level members G I

A(lm) and roll-up rela-

tions of the hierarchy steps G I
RU(hs) between the level members. The RDF

graph formulation of the attributes of the level members A(lm) is: G I
A(lm) =⋃p

i=1{(id
I(lm) idS(ai) vai) | lm vai}. Here, we denote by lm vai that

a level member lm has value vai for attribute ai (e.g., Listing 2, Lines 3-6,
Lines 9-13 and Lines 17-22). The RDF graph formulation of the roll-up rela-
tions RU(hs) is: G I

RU(hs) =
⋃k

i=1{(idI(lmc) skos:broader idI(lmp)) | lmci v
lmpi}. Here, we denote by lmci v lmpi the partial order between level mem-
bers, where a child level member lmci rolls up to a parent level member lmpi

9

(e.g., Listing 2, Line 7).
The output of Algorithm 3 is the instance graph of roll-up relations for

the detected spatial hierarchy steps G I
RU(shs) (e.g., Listing 2, Line 14). In Line 2,

initially the output graph is initialized as an empty set. Next, in Line 3 we
create two temporary graphs: G I

A(lmc)
and G I

A(lmp)
as empty sets10, to keep

triple patterns separately in two graphs for attributes of child and parent level
members. We also create two temporary sets: Vs(ac) and Vs(ap) for keeping

9We use subscript c and p to distinguish values for child and parent level members.
10Remark: a set of RDF triples is referred to as an RDF graph

246

4. RDF2SOLAP Enrichment Algorithms

Algorithm 2: relateSpatialValues(vac , vap):topoReli

Input: vac , vap

Output: topoReli
1 begin
2 topoReli = null; /*geoType(va) function returns the geometry

type of a given attribute value*/
3 switch (geoType(vac), geoType(vap)) do
4 case (POINT, POINT) do
5 if equals?(vac , vap) then
6 topoReli= qb4so:equals

7 case (POINT, LINE) do
8 if intersects?(vac , vap) then
9 topoReli= qb4so:intersects

10 case (POINT, POLYGON) do
11 if within?(vac , vap) then
12 topoReli= qb4so:within

13 else if intersects?(vac , vap) then
14 topoReli= qb4so:intersects

15 case (LINE, LINE) do
16 if intersects?(vac , vap) then
17 topoReli= qb4so:intersects

18 else if overlaps?(vac , vap) then
19 topoReli= qb4so:overlaps

20 case (LINE, POLYGON) do
21 if within?(vac , vap) then
22 topoReli= qb4so:within

23 else if intersects?(vac , vap) then
24 topoReli= qb4so:intersects

25 case (POLYGON, POLYGON) do
26 if within?(vac , vap) then
27 topoReli= qb4so:within

28 else if intersects?(vac , vap) then
29 topoReli= qb4so:intersects

30 return topoReli

247

Paper F.

Algorithm 3: detectSpatialHS(G I
RU(hs),G

I
A(lm)) : G I

RU(shs)

Input: G I
A(lm), G

I
RU(hs)

Output: G I
RU(shs)

1 begin
2 G I

RU(shs) = ∅; /*initialize output graph as emptyset*/

3 G I
A(lmc)

= ∅; G I
A(lmp)

= ∅; Vs(ac) = ∅; Vs(ap) = ∅; topoReli = null;
/*temporary variable and sets*/

4 foreach ((idI(lmc) idS(ac) vac), (id
I(lmp) idS(ap) vap)) |

(idI(lmc) idS(ac) vac), (id
I(lmp) idS(ap) vap) ∈

G I
A(lm) ∧ (idI(lmc) skos:broader idI(lmp)) ∈ G I

RU(hs) ∧
lmc vac ∧ lmp vap ∧ lmc v lmp do

5 G I
A(lmc)

= {(idI(lmc) idS(ac) vac)};
6 Vs(ac) =getSpatialValues(G I

A(lmc)
);

7 if Vs(ac) 6= ∅ then
8 G I

A(lmp)
= {(idI(lmp) idS(ap) vap)};

9 Vs(ap) = getSpatialValues(G I
A(lmp)

);

10 if Vs(ap) 6= ∅ then
11 foreach (vac , vap) ∈ Vs(ac) ×Vs(ap) do
12 topoReli = relateSpatialValues(vac , vap);
13 if topoReli 6= null then
14 G I

RU(shs)∪ = {(idI(lmc) topoReli idI(lmp))};

15 return G I
RU(shs)

the spatial attribute values from the child and parent level members, and
initialize them as empty sets in Line 3. A set of spatial attribute values is
defined over spatial literals Ls as Vs(a) = {va1 , . . . , vai , . . . van | 1 ≤ i ≤ n ∧
vai ∈ Ls}.

In the foreach loop in Line 4, we go through the elements of the input
graphs G I

A(lm) and G I
RU(hs) that are fulfilling a specific criteria, which is having

an explicit skos:broader relation between child and parent level members.
In Line 5, while iterating through the foreach loop, we assign the set of

triples of child level members and their attributes to the temporary graph
G I

A(lmc)
. This temporary graph is given in Line 6 as an input to the helper

function getSpatialValues (Algorithm 1), which finds the spatial attribute
values from the given graph, and returns a set of spatial attribute values (i.e.,

248

4. RDF2SOLAP Enrichment Algorithms

Vs(ac)) that are found in the input graph. The output of the helper function
(Vs(ac)) keeps the spatial attribute values of the child level member idI(lmc).

Next in Line 7, if Vs(ac) is not empty and has some spatial values of
idI(lmc), then we populate the next temporary graph G I

A(lmp)
with its par-

ent level idI(lmp) and attributes of the parent level in Line 8.
Similar to Line 6, Line 9 calls the helper function getSpatialValues with

the input graph G I
A(lmp)

and the output of the function is assigned to the
temporary set Vs(ap). If this set is also not empty (Line 10), we go through the
pairs of values (vac , vap) of the child-parent level members (Line 11), which
are selected from the temporary graphs G I

A(lmc)
and G I

A(lmp)
.

In this loop, we call the next helper function relateSpatialValues (Al-
gorithm 2), where the input is the spatial value pairs. The output value of
this function is the topological relation between the corresponding child and
parent level members, and it is assigned to the initially created temporary
variable topoReli (Line 12). If this value is not null (checked in Line 13),
relateSpatialValues function returns a topological relation (Line 12) that is
satisfied as shown with a check-mark (X) from Table F.1.

Finally, the output graph for spatial hierarchy steps G I
RU(shs) is incremen-

tally generated by adding the triple pattern with the topological relation
(Line 14) and the output graph for the detected spatial hierarchy steps is
returned (Line 15).

Discovering spatial hierarchy steps

In this section, we present the algorithm for Case 2, given in the beginning of
Section 4.1, to find the implicit spatial hierarchy steps from QB4OLAP levels,
which do not have direct (skos:broader) roll-up relations. In this algorithm
we have to handle the situations, where there are no explicit hierarchy steps
between the level members. Therefore, we benefit from schema graphs of
dimensions, hierarchies, and levels for iterating through the RDF triples and
compare the spatial attribute values of the level members to find the topolog-
ical relations within the same dimension.

Algorithm 4 (discoverSpatialHS). The input variables for Algorithm 4 are
the schema graphs of dimensions GS

D, hierarchies of the dimensions GS
H(d),

levels of the hierarchies GS
L(h), and the instance graphs of level members of

levels G I
LM(l), and attributes of level members G I

A(lm). Each dimension d ∈ D
has a set of hierarchies H(d), which is shown in the RDF graph formulation
for a dimension d ∈ D as: GS

d =
⋃

h∈H(d){(idS(d) qb4o:hasHierarchy idS(h))}.
Each hierarchy h ∈ H(d), belongs to a dimension d and has a set of levels
L(h), which is shown in the RDF graph formulation for a hierarchy h ∈ H(d)

249

Paper F.

Algorithm 4: discoverSpatialHS(GS
D,GS

H(d),G
S
L(h),G

I
LM(l),G

I
A(lm)): G

I
RU(shs)

Input: GS
D , GS

H(d), G
S
L(h), G

I
LM(l), G

I
A(lm)

Output: G I
RU(shs)

1 begin
2 G I

RU(shs) = ∅; topoReli = null /*initialize the output graph as an empty set and a
temporary variable as null*/

3 Vs(an) = ∅; Vs(ak)
= ∅; /*initialize temporary sets as empty sets for keeping spatial

attribute values*/
4 G I

A(lmn)
= ∅; G I

A(lmk)
= ∅; /*initialize empty sets to keep triple patterns for

attributes of level members*/
5 foreach (idS(d) qb4o:hasHierarchy idS(h)) ∈ GS

D /*iterate through the
dimensions*/ do

6 foreach (idS(h) qb4o:inDimension idS(d)) ∈ GS
H(d) /*iterate through the

hierarchies*/ do
7 foreach (idS(h) qb4o:hasLevel idS(l)) ∈ GS

H(d) /*while iterating through
the levels in the hiearchy, get level pairs next*/ do

8 foreach (idS(li), idS(lj)) ∈ GS
L(h) × G

S
L(h) | idS(li) 6= idS(lj)∧

9
⋃

lm∈LM(l)((idI(lm) qb4o:memberOf idS(li)), (idI(lm) qb4o:memberOf

idS(lj))) ∈ G I
LM(l) /*in each level pair, while iterating through their

level members, get a pair of level members (idI(lmn), idI(lmk),
where each level member comes from different levels*/ do

10 foreach (idI(lmn), idI(lmk)) ∈ G I
LM(l) × G

I
LM(l) | idI(lmn) 6=

idI(lmk) ∧ idI(lmn) ∈ G I
LM(li)

=⇒ idI(lmk) ∈ G I
LM(lj)

| G I
LM(li)

⊂
G I

LM(l) ∧ G
I
LM(lj)

⊂ G I
LM(l) ∧ G

I
LM(li)

6= G I
LM(lj)

/*iterate through

the pairs of level members*/ do
11 foreach ((idI(lmn) idS(ai) vai), ((id

I(lmk) idS(aj) vaj)) ∈
G I

A(lm) × G
I
A(lm) /*iterate through the pairs of level

members’ attributes*/ do
12 G I

A(lmn)
= {(idI(lmn) idS(ai) vai)}; G I

A(lmk)
= {(idI(lmk)

idS(aj) vaj)};
13 Vs(an) = getSpatialValues(G I

A(lmn)
);

Vs(ak)
= getSpatialValues(G I

A(lmk)
);

14 if Vs(an) 6= ∅ ∧Vs(ak)
6= ∅ /*make sure there are spatial

values in the temporary sets*/ then
15 foreach (vai , vaj) ∈ Vs(an) ×Vs(ak)

do
16 topoReli = relateSpatialValues(vai , vaj);
17 if topoReli 6= null /*make sure there is a

topological relation assigned to the variable*/
then

18 G I
RU(shs)∪ = {(idI(lmn) topoReli idI(lmk))};

19 return G I
RU(shs)

250

4. RDF2SOLAP Enrichment Algorithms

as: GS
h = {(idS(h) qb4o:inDimension idS(d)} ∪⋃l∈L(h){(idS(h) qb4o:hasLe�

vel idS(l))}. Each level l has a set of level members LM(l) = {lm1, . . . , lmy},
which is shown in the RDF graph formulation for a level member lm ∈ LM(l)
as:
G I

lm = {(idI(lm) qb4o:memberOf idS(l)}.
Each level member lm has a set of attributes A(lm). The RDF graph formu-
lation of attributes of level members G I

A(lm) is already given in Section 30.
In Listing 2, examples of a triple pattern for level members and attributes
of level members are given in Lines 1-6, Lines 8-13 and Lines 15-22, without
explicit roll-up relations (Line 7).

The output of Algorithm 4 is the instance graph of roll-up relations for the
discovered spatial hierarchy steps G I

RU(shs) (e.g., Listing 2, Line 14). In Line 2,
initially the output graph is initialized as an empty set, and a temporary vari-
able (topoReli) for keeping the discovered topological relations is initialized
as null. In Line 4, we create two temporary graphs: G I

A(lmn)
and G I

A(lmk)
as

empty sets similar to Algorithm 3. We also create two temporary sets: Vs(an)

and Vs(ak)
for storing spatial attribute values and initialize them as empty sets

in Line 3.
In order to discover the spatial hierarchy steps, we need to get the at-

tributes of all the level members from the instance graph (G I
A(lm)), and com-

pare their spatial attribute values in pairs, where the pairs of level member
attributes should be coming from two different levels in the same dimension
hierarchy. Therefore, before getting the attributes of the level members, we
need to classify the level members as they are grouped in different levels of
a dimension hierarchy.

To achieve that, we use the schema definitions readily available in QB4OLAP,
by looping through in Algorithm 4, in nested loops of dimensions in Line 5,
hierarchies in the dimension (Line 6), levels in the hierarchy (Line 7). This
helps us to determine the levels in a dimension hierarchy, where we can get
level pairs from the same hierarchy (Line 8).

Now, while looping through the level pairs, we can identify the level
members via the qb4o:memberOf property (Line 9). We get a pair of level
members, where each level member should come from a different level, then
we iterate through that pair of level members (Line 10).

Then, we get the triple patterns for the attributes of the level members
from the each of the level member in the pair, and iterate through those pairs
of the triple patterns (Line 11). While iterating through the triple patterns, we
insert them to the temporary graphs G I

A(lmn)
and G I

A(lmk)
(Line 12), which are

created earlier as empty sets in Line 4. So that, we can filter the spatial values
from the triple patterns kept in the temporary graphs by calling the helper
function getSpatialValues (Algorithm 1), with those input graphs G I

A(lmn)

and G I
A(lmk)

(Line 13).

251

Paper F.

Next, we call the helper function getSpatialValues (Algorithm 1) twice,
with the input graphs G I

A(lmn)
and G I

A(lmk)
. The outputs of the each (helper)

function call are assigned to the temporary sets Vs(an) and Vs(ak)
correspond-

ingly (Line 13). If these sets are not empty (Line 14), it means that getSpatial�
Values identified spatial values in the triple patterns of the input graphs.

Then, we iterate through the spatial value pairs retrieved from the each of
the sets (Line 15). In this loop, we call the next helper function relateSpatial�

Values (Algorithm 2), where the input is the spatial value pairs. The output
value of this function is the topological relation between the corresponding
level members, and it is assigned to the initially created temporary variable
topoReli (Line 16).

Finally, if this topoReli value is not null (Line 17), the output graph for
the spatial hierarchy steps G I

RU(shs) is incrementally generated by adding the
triple pattern with the topological relation (Line 18) and the output graph for
the discovered spatial hierarchy steps is returned in Line 19.

4.2 Factual enrichment phase

The factual enrichment phase is built around the observation facts and their
spatial attributes a.k.a spatial measures and fact-dimension relations (Sec-
tion 2.1).

In a QB4OLAP data structure schema, facts are linked to the dimensions
at the lowest granularity level, which is the base level of the dimensions. For
example, GeoFarmHerdState cube has two spatial base levels linked to the
cube: Parish level and Farm level. The GeoFarmHerdState cube also has a
spatial measure listed in the cube: FarmLocation (Figure F.3). In QB4OLAP, a
fact schema defines the structure of a cube with the qb:DataStructureDefini�
tion property (Listing 3, Line 1). Base levels (Lines 2 and 4) and measures
(Line 6) are given as qb:components of the fact (Listing 3). The cardinality
relationship between the base level and the fact can be also represented with
qb4o:cardinality in QB4OLAP as given in Lines 2 and 4 in Listing 3.

On the other hand, with QB4SOLAP we can also represent fact-level topo-
logical relations, which are similar to the topological relations between the
child-parent levels at the hierarchy steps. Fact-level topological relations are
given in spatial fact schema with blue in Lines 3 and 5 (Listing 3). QB4SOLAP
also extends the (cube) schema with spatial aggregate functions, which are
defined over spatial measures as highlighted in blue (Listing 3, Line 7).

##Spatial Fact Schema in QB4SOLAP##

1 gfs:GeoFarmHerdState a qb:DataStructureDefinition ;

#Lowest spatial level for each dimension in the cube#

2 qb:component [qb4o:level gfs:farm ; qb4o:cardinality qb4o:ManyToOne ;

3 qb4so:topologicalRelation qb4so:Equals] ;

4 qb:component [qb4o:level gfs:parish ; qb4o:cardinality qb4o:ManyToOne ;

252

4. RDF2SOLAP Enrichment Algorithms

5 qb4so:topologicalRelation qb4so:Within] ;

#Example of a spatial measure in the cube#

6 qb:component [qb:measure gfs:farmLocation ;

7 qb4o:aggregateFunction qb4so:ConvexHull] .

Listing F.3: GeoFarmHerdState fact schema definition in QB4SOLAP

An example of an observation fact (fact member) at the instance level is
given in Listing 4. A fact member is a qb:Observation (Line 1), which is
related to the base levels (Line 2) with respect to the data structure definition
(DSD) of the fact schema, and has a set of measures (Lines 3, 4) where some
measures (Line 4) might have spatial values (Listing 4). In order to define a
QB4OLAP fact schema, first, we need to enrich the fact members by anno-
tating with topological relations as highlighted with blue in Line 5. We can
derive topological relations between the fact members and the (base) level
members by comparing the spatial measures of the fact members and spatial
attributes of the (base) level members with Boolean spatial predicates. The
links between the fact members and base level members are already given
explicitly in Line 2 (Listing 4). However, these links are simple references
between the fact and base level members, which do not describe the nature
of the topological relation. By applying Boolean spatial predicates on fact
and level members, we can find the exact topological relations, i.e., if a fact
member intersects with the level member or if a fact member is within the
level member. We explain how to detect these explicit fact-level (topological)
relations in Section 6.

Moreover, there might be also some missing links between the (observar-
tions) fact members and the corresponding base level members. For this case
we need to find all the base level members that are spatial and derive the
links between the spatial measure values and spatial attribute values (of the
base level members) by using Boolean spatial predicates. We explain how
to discover fact-level (topological) relations, which are not explicitly linked
between observation fact and base level members in Section 20.

There are also cases that we would like to establish a direct (topologi-
cal) relation between the fact members and higher granularity (parent) level
members, which are not at the base level of the dimension. We explained in
the example depicted in Figure F.4 that wrongly aggregating the measures
(i.e., double counting) becomes a problem when we roll-up between the lev-
els, which have many-to-many (N:M) cardinality relations (as in Parish and
Drainage Area levels). Therefore, it is necessary to drill-down to the lowest
granularity (fact members) and find the direct relation between the observa-
tion fact members and the corresponding level members of the higher level
in many-to-many cardinality relations.

In order to prevent this problem, we address the issue in our algorithm
to discover and annotate the fact-level (topological) relations, which are be-
tween the observation fact members and level members of a higher level in

253

Paper F.

an N:M cardinality relation in Section 20. For example, such a relation given
is in green in Line 6 (Listing 4) that shows a topological relation between an
observation fact member (farm state) and a higher level –not a base level–
member (drainage area).

##GeoFarmHerdState cube: observation fact example##

1 gfsi:farmState_103850_12_2015 a qb:Observation ;

2 gfs:farm gfsi:farm_103850 ; gfs:parish gfsi:parish_8648 ;

3 gfs:livestockUnit "4.2699999999999996"^^xsd:double ;

4 gfs:farmLocation "POINT (8.31941 56.75822)"^^geo:spatialLiteral ;

5 qb4so:equals gfsi:farm_103850 ; qb4so:within gfsi:parish_8648 ;

6 qb4so:within gfsi:water_3770 .

Listing F.4: GeoFarmHerdState fact member, with base levels and measures

Finally, in Section 21 we explain how to define a data structure definition
(DSD) of spatial fact schema using a QB4OLAP fact schema and the spatial
fact member instances derived in the previous two algorithms.

Detecting explicit fact-level relations

In this section we present an algorithm for detecting explicit fact-level topo-
logical relations between observation fact members and base level members,
where there is a direct reference between the fact member and the base level
member. In order to derive these topological relations we need to get the
spatial attributes of fact members (spatial measures) and base level members.

Algorithm 5 (detectFactLevelRelations). The input variables for Algo-
rithm 5 are the instance graphs of fact members G I

FM(F), level members G I
LM(l),

and attributes of level members G I
A(lm).

Every fact member fi ∈ FM has an IRI idI(fi) and defined as a qb:Observation.
The RDF graph formulation of a fact member fi is:
G I

fi
=
⋃

lj∈L(fi)
{(idI(fi) idS(lj) idI(lmj) | fi lmj} ∪⋃

mk∈M(fi)
{(idI(fi) idS(mk) vmk | fi vmk}.

Here, we denote by fi lmj that a fact member fi has an explicit link to a
level member lmj (e.g., Listing 4, Line 3). Remark that, we denote by lm
vai that a level member lm has value vai for attribute ai (Section 30), which
is used in Algorithm 5, Line 12 in order to get the attribute values of the
linked level members. Moreover, we denote here by fi vmk that a fact
member lm has value vmk for measure mk (e.g., Listing 4, Lines 5 and 6). The
RDF graph formulation of the other input variables are: attributes of level
members G I

A(lm) and level members G I
LM(l) are already given, respectively, in

Sections 30 and 19.

254

4. RDF2SOLAP Enrichment Algorithms

Algorithm 5: detectFactLevelRelations(G I
FM(F),G

I
A(lm)) : G I

FM(Fs)

Input: G I
FM(F), G

I
A(lm)

Output: G I
FM(Fs)

1 begin
2 G I

FM(Fs)
= G I

FM(F); topoReli = null; G I
A(fimk)

= ∅;

3 G I
A(lmj)

= ∅; Vs(mk)
= ∅; Vs(ai)

= ∅; /*initialize the ouput graph,

temporary variable and sets*/
4 foreach /*get each observation fact (fact member)*/
5 (idI(fi) rdf:type qb:Observation) ∈ G I

FM(F) do
6 foreach /*get measure-level member pairs*/

7 ((idI(fi) idS(mk) vmk), (id
I(fi) idS(lj) idI(lmj)))

8 ∈ G I
FM(F) × G

I
FM(F) | fi vmk ∧ lmj vai∧

9 (idI(lmj) idS(ai) vai) ∈ G I
A(lm) /*get measure and attribute

values of level members*/ do
10 G I

A(fimk)
= {(idI(fi) idS(mk) vmk)};

11 Vs(mk)
= getSpatialValues(G I

A(fimk)
);

12 if Vs(mk)
6= ∅ then

13 G I
A(lmj)

= {(idI(lmj) idS(ai) vai)};
14 Vs(ai)

= getSpatialValues(G I
A(lmj)

);

15 if Vs(ai)
6= ∅ then

16 foreach (vmk , vai) ∈ Vs(mk)
×Vs(ai)

/*foreach spatial
value pairs*/ do

17 topoReli = relateSpatialValues(vmk ,vai);
18 if topoReli 6= null then
19 G I

FM(Fs)
∪ = {(idI(fi) topoReli idI(lmj))};

20 return G I
FM(Fs)

255

Paper F.

The output of Algorithm 5 is the enriched instance graph of fact members
with topological relations G I

FM(Fs)
. In Line 2, we initialize the output graph

as the input graph of fact members (without topological relations) so that
we can gradually enrich it with the detected topological relations (Line 22).
Initially, the topological relation variable topoReli is set to null. We also
create two temporary graphs: G I

A(lmj)
and G I

A(fimk)
as empty sets to keep

triple patterns separately in two graphs for attributes of level members and
(measures of) fact members. We also create two temporary sets: Vs(mk)

and
Vs(ai)

for keeping the spatial values from the fact and level members, and
initialize them also as empty sets in Line 3.

In the first foreach loop (Line 4 and 5) we retrieve the observation fact
members from the input graph of fact members, which corresponds to Line 1
in Listing 4. Getting the fact members allows us to access each of their
measures in Line 6 and level members in Line 7 (Algorithm 5). In the next
foreach loop (Line 9) we match the each measure-level member pair, where
we can already retrieve the measure values from the input graph of fact mem-
bers G I

FM(F) (Line 10) and through the input graph for attributes of the level

members G I
A(lm) (Line 11 and 12), we can retrieve the attribute values. In

Line 13, we assign the set of triples for measure attributes of fact members to
a temporary graph G I

A(fimk)
created earlier in Line 2. This temporary graph

is given as an input to the helper function getSpatialValues (Algorithm 1)
in Line 14 (Algorithm 5). The helper function returns the spatial attribute
(measure) values of the fact members, which are kept in the temporary set
Vs(mk)

. If this set is not empty (checked in Line 15) and has some spatial
measures of fact member idI(fi), we repeat the same procedure for retrieving
the spatial attribute values of level member idI(lmj) in Lines 16 and 17. If
the output set for spatial attribute values Vs(ai)

is also not empty (Line 18),
then we go through the pairs of spatial values (vmk , vai) in Line 19. In this
loop, we call the next helper function relateSpatialValues (Algorithm 2),
where the input is the spatial value pairs. The output value of this function is
the topological relation between the corresponding fact and level members,
which is assigned to the variable topoReli (Line 20).

Discovering implicit fact-level relations

In this section, we present an algorithm for discovering fact-level (topological)
relations, where there are no direct links between the fact and level members.
In this algorithm we have to handle the following situations: 1) Finding the
topological relations between observation facts and base level members; 2)
Finding the topological relations between observation facts and parent level
members in an N:M cardinality relation. In both cases there are no direct
links between the observation facts and level members. Therefore, we benefit

256

4. RDF2SOLAP Enrichment Algorithms

from (QB4OLAP) schema graphs of dimensions, hierarchies, and levels for
iterating through the RDF triples to distinguish the base level members, and
find the parent level members, when there is an N:M cardinality relation
between the levels of a hierarchy at a hierarchy step.

Algorithm 6 (discoverFactLevelRelations). The input variables at the
schema level for Algorithm 6 are the schema graphs of dimensions GS

D, hi-
erarchies of the dimensions GS

H(d), levels of the hierarchies GS
L(h), and hier-

archy steps of the hierarchies GS
HS(h). The RDF graph formulations of the

schema level input variables (dimensions GS
H(d), hierarchies GS

H(d), and lev-

els GS
L(h)) are already given in Section 19. Therefore, we only explain the

structure of a hierarchy step in the schema graph. Each hierarchy step hsi
is defined in the schema graph GS

HS(h) as a blank node _:hsi ∈ B. Each

hierarhcy step is linked to a hierarchy idS(h) with the qb4o:inHierarchy

predicate and has a child level idS(lc), a parent level idS(lp), and a cardinal-
ity relation idS(card), which are given, respectively, with qb4o:childLevel,
qb4o:parentLevel, and qb4o:pcCardinality predicates in Line 6.

The input variables at the instance level are the instance graphs of fact
members G I

FM(F), level members of levels G I
LM(l), and attributes of level mem-

bers G I
A(lm). We have already explained the RDF graph formulations of the

instance level input variables (fact members G I
FM(F), level members G I

LM(l),

and attributes of level members G I
A(lm)) in Section 6.

The output of Algorithm 6 is the enriched instance graph of fact members
with the topological relations G I

FM(Fs)
. In Line 2, we initialize the output

graph as the input graph of fact members (without topological relations)
so that we can gradually enrich it with the detected topological relations
(Line 22). Initially, the topological relation variable topoReli is set to null.
We also create two temporary graphs: G I

A(lmj)
and G I

A(fimk)
as empty sets to

keep triple patterns separately in two graphs for attributes of level members
and (measures of) fact members. We also create two temporary sets: Vs(mk)

and Vs(ai)
for keeping the spatial values from the fact and level members, and

initialize them also as empty sets in Line 3.
In order to find the topological relations between observation facts (with

spatial measures) and base level members (with spatial attributes), first, we
need to find all the base levels, since there is no direct link between the
fact and level members. To achieve this in Algorithm 6, we use the schema
definitions readily available in QB4OLAP. In Line 4, we iterate through the
nested loops of dimensions to get the hierarchies and in Line 5 we iterate the
nested loops of hierarchies to get the hierarchy levels. In order to find the
base level of a hierarchy, we have to iterate through the hierarchy steps, where

257

Paper F.

Algorithm 6: discoverFactLevelRelations(G I
FM(F),G

I
LM(l), G

I
A(lm),

GS
D,GS

H(d),G
S
HS(h)) : G I

FM(Fs)

Input: G I
FM(F), G

I
LM(l), G

I
A(lm),G

S
D ,GS

H(d),G
S
HS(h)

Output: G I
FM(Fs)

1 begin
2 G I

FM(Fs)
= G I

FM(F); topoReli = null;

3 G I
A(fimk)

= ∅; G I
A(lmj)

= ∅; Vs(mk)
= ∅; Vs(ai)

= ∅;

4 foreach (idS(d) qb4o:hasHierarchy idS(h)) ∈ GS
D do

5 foreach (idS(h) qb4o:inDimension idS(d)) ∈ GS
H(d) do

6 foreach (idS(h) qb4o:hasLevel idS(ln)) ∈ GS
H(d) do

7 foreach (_:hsi qb4o:inHierarchy idS(h)) ∈ GS
HS(h) |

(_:hsi qb4o:childLevel idS(lc)) ∈
GS

HS(h) ∧ (_:hsi qb4o:parentLevel idS(lp)) ∈
GS

HS(h) ∧ (_:hsi qb4o:pcCardinality idS(card)) ∈ GS
HS(h) do

8 if (idS(ln) 6= idS(lp)) ∨ (idS(ln) = idS(lp) ∧ idS(card) =
qb4o:ManyToMany) then

9 foreach (idI(lmj) qb4o:memberOf idS(ln)) ∈ G I
LM(l) do

10 foreach ((idI(lmj) qb4o:memberOf idS(ln)),
(idI(fi) rdf:type qb:Observation))

11 ∈ G I
LM(l) × G

I
FM(F) |

⋃
mk∈M(fi)(id

I(fi) idS(mk) vmk) ∈
G I

FM(F) ∧
⋃

ai∈A(lm)

12 (idI(lmj) idS(ai) vai) ∈ G I
A(lm) do

13 foreach
((idI(fi) idS(mk) vmk), (id

I(lmj) idS(ai) vai)) ∈
G I

FM(F) × G
I
A(lm) do

14 G I
A(fimk)

= {(idI(fi) idS(mk) vmk)}; G I
A(lmj)

=

{(idI(lmj) idS(ai) vai)};
15 Vs(mk)

= getSpatialValues(G I
A(fimk)

); Vs(ai)
=

getSpatialValues(G I
A(lmj)

);

16 if Vs(mk)
6= ∅ ∧Vs(ai)

6= ∅ then
17 foreach (vmk , vai) ∈ Vs(mk)

×Vs(ai)
do

18 topoReli =
relateSpatialValues(vmk , vai);

19 if topoReli 6= null then
20 G I

FM(Fs)
∪ =

{(idI(fi) topoReli idI(lmj))};

21 return G I
FM(Fs)

258

4. RDF2SOLAP Enrichment Algorithms

each hierarchy step describes a child level, a parent level and a cardinality
relation between the levels (Line 6). If a level idS(ln) has never been assigned
as a parent level with qb4o:parentLevel predicate in any of the hierarchy
steps in a hierarchy h from the schema graph GS

HS(h), then ln is the base level
of a hierarchy h (Line 7).

Thus, we can retrieve the level members of level ln from the instance graph
level members G I

LM(l) (Line 8). In the next foreach loop we can pair the level

members from the instance graph G I
LM(l), and observation facts from the in-

stance graph of fact members G I
FM(F) (Line 9). We can retrieve a set of at-

tributes (measures) for fact members from the fact members graph (Line 10),
and a set of attributes for level members from the instance graph G I

A(lm)

(Line 11).
Then, in the next foreach loop in Line 12, we get the triple patterns with

each measure values of the fact member and attribute values of the level
member in pairs. While iterating through the (pair of) triple patterns, we
insert each member of the pair to the temporary graphs for measures of fact
members G I

A(fimk)
and attributes of level members G I

A(lmj)
(Line 13), which are

created earlier as empty sets in Line 3. Then, we can filter the spatial values
from the triple patterns kept in the temporary graphs by calling the helper
function getSpatialValues (Algorithm 1), with those input graphs G I

A(fimk)

and G I
A(lmj)

(Line 14). We call the helper function getSpatialValues (Algo-

rithm 1) twice, with the input graphs G I
A(fimk)

and G I
A(lmj)

, where the outputs

of the each (helper) function call are assigned to the temporary sets Vs(mk)

and Vs(ai)
correspondingly (Line 14). If these sets are not empty (Line 15), it

means that getSpatialValues identified spatial values in the triple patterns
of the input graphs.

Then, we iterate through the spatial value pairs retrieved from the each of
the sets (Line 16). In this loop, we call the next helper function relateSpatial

Values (Algorithm 2), where the input is a spatial value pair. The output
value of this function is the topological relation between the corresponding
level members, and it is assigned to the initially created temporary variable
topoReli (Line 17). If this topoReli value is not null (Line 18), the output
graph for the spatial fact members is incrementally enriched by adding the
triple pattern with the topological relation (Line 19).

In order to find the topological relations between the observation facts
and parent level members in an N:M cardinality relation, we check in Line 20
that if level idS(ln) is assigned as a parent level in a hierarchy step with
qb4o:parentLevel predicate and the hierarchy step entails an N:M relation
with qb4o:ManyToMany predicate. If that’s the case we repeat the same steps
from Lines 8 to 19.

Finally, the output graph for the spatial fact members with discovered fact-

259

Paper F.

level (topological) relations is returned in Line 22.

Defining spatial fact DSD

In this section, we present an algorithm for re-defining the fact schema data
structure definition (DSD) by enriching the DSD with fact-level topological
relations. An example of a fact schema in QB4OLAP is given in the black-
colored lines of Listing 3 (For now, please ignore Lines 3, 5 and 7). We
re-define the spatial fact schema to QB4SOLAP (Listing 3 Lines 1-7) by using
the enriched fact members that are generated via Algorithms 5 and 6.

Algorithm 7 (defineSpatialFactDSD). The input variables for Algorithm 7
are the instance graph of spatial fact members G I

FM(Fs)
and schema graph

of QB4OLAP fact schema GS
F . Spatial fact members in the instance graph

G I
FM(Fs)

must be annotated with QB4SOLAP or can be generated by using
Algorithms 5 and 6 from QB4OLAP fact members. A QB4OLAP fact schema
GS

F has (base) levels and measures of the cube as qb:components and de-
fines the fact-level cardinality relation with qb4o:cardinality predicate, ag-
gregate functions on (numerical) measures with qb4o:aggregateFunction

predicate11.
The output of Algorithm 7 is the enriched fact schema graph GS

F anno-
tating the fact-level relations with QB4SOLAP topological relations and mea-
sures with spatial aggregate functions.

In Line 2, we initialize the output graph as the input schema graph so
that we can gradually enrich it with QB4SOLAP schema annotations (Lines 5
and 15). Initially, an aggregate function variable aggFunci is created and set
to null (Line 2).

The first foreach loop iterates through the fact members graph G I
FM(Fs)

and finds each fact member fi by using the triple pattern (idI(fi) rdf:type
qb: Observation). The second foreach loop gets every distinct topological
relation topoReli of the fact member fi (Line 4). Then the output schema
is annotated with the identifier of these topological relations (Line 5). Next,
we get every measure vmk of the fact member fi (Line 6), and check if it is a
spatial measure (Line 7). If it is a spatial measure, we find the geometry type
with geoType function (Line 8). We have appointed the corresponding spatial
aggregate functions (Lines 10, 12, and 14) with regard to the geometry type
of the spatial measure (Lines 9, 11, and 13). Finally, the output schema GS

Fs
is annotated with the identifier of these spatial aggregate functions (Line 15)
and returned (Line 16).

11In QB4OLAP, qb4o:AggregateFunction class has only instances (e.g., qb4o:Avg, qb4o:Sum

functions) for numerical measures. QB4SOLAP extends this class with a subclass
qb4so:SpatialAggregateFunction, which has instances of spatial aggregate functions (e.g.,
qb4so:ConvexHull, qb4so:Union) for spatial measures [1, 9].

260

4. RDF2SOLAP Enrichment Algorithms

Algorithm 7: defineSpatialFactDSD(G I
FM(Fs)

,GS
F) : GS

Fs

Input: G I
FM(Fs)

,GS
F

Output: GS
Fs

1 begin
2 GS

Fs
= GS

F ; aggFunci = null; /*initalize the output graph and
temporary variable*/

3 foreach (idI(fi) rdf:type qb:Observation) ∈ G I
FM(Fs)

do

4 foreach (idI(fi) topoReli idI(lmj)) ∈ G I
FM(Fs)

|⋃
ln∈L(fi)

(idI(fi) idS(ln) idI(lmj)) ∈ G I
FM(Fs)

/*each topoReli in

the fact member triples goes into the DSD with its
corresponding level ln*/ do

5 GS
F(Fs)
∪ = {(idS(F) qb:component [qb4o:level idS(ln),

qb4so:topologicalRelation idS(topoReli)])};
6 foreach vmk ∈ (idI(fi) idS(mk) vmk) /*find the spatial measures

from the fact triples*/ do
7 if vmk is a geo:spatialLiteral then
8 switch (geoType(vmk)) /*geoType(va) function returns

the geometry type of a given attribute value*/ do
9 case (POINT) /*point geometry measures are

supported to be aggregated with ConvexHull
function*/ do

10 aggFunci = qb4so:ConvexHull

11 case (LINE) /*line geometry measures are supported
to be aggregated with Union function*/ do

12 aggFunci = qb4so:Union

13 case (POLYGON) /*polygon geometry measures are
supported to be aggregated with Union,
Centroid,*/ do

14 aggFunci =
qb4so:Union∨ qb4so:Centroid∨ qb4so:MBR
/*or MBR functions*/

15 GS
F(Fs)
∪ = {(idS(F) qb:component [qb:measure idS(mk),

qb4o:aggregateFunction idS(aggFunci)])};

16 return GS
Fs

261

Paper F.

5 Implementation

In this section, first we give the details on how the algorithms from Section 4
are implemented in order to generate spatially enriched RDF triples with
QB4SOLAP (Sections 5.1, 5.2, 5.3, and5.4). Afterwards, we present discuss
our implementation choices in Section 5.5 and present the results of apply-
ing the algorithms on the use case data – GeoFarmHerdState in Section 6
(Table F.4).

5.1 QB4SOLAP triples generation

In order to implement the algorithms given in Section 4, we have chosen a
use case data set, which can be annotated with multi-dimensional concepts
in QB4OLAP and has the required spatial properties to be enriched as a
fully spatial multidimensional cube with QB4SOLAP. The required spatial
properties are; 1) Level members in a (spatial) hierarchy must have spatial
attributes, where the geometry of the attributes should be different than only
a simple point geometry type, e.g., polygon, line e.t.c. Thus we can implement
the hierarchical enrichment (Section 4.1). 2) The fact members should have
spatial measures, thus we can implement the factual enrichment (Section 4.2).

Therefore, we have chosen GeoFarmHerdState use case, which is given as
the running example throughout the paper. In Section 2, we give the spa-
tial multi-dimensional concepts of the GeoFarmHerdState data cube and in
Section 4, we give the RDF triple snippet examples of those concepts: (a) spa-
tial hierarchy structure with QB4SOLAP (Listing F.1), (b) level members an-
notated with QB4OLAP and with QB4SOLAP after hierarchical enrichment
(Listing F.2), (c) spatial fact schema (Listing F.3), and (d) spatial fact members
with spatial measures (Listing F.4). A full overview of the GeoFarmHerdState
cube with spatial and non-spatial dimensions can be found in our previous
work [14] and on our project website http://extbi.cs.aau.dk/GeoFarmHerdState/.

Note that, we use the non-spatial annotation of GeoFarmHerdState data
cube with QB4OLAP as an input to our algorithms, which is publicly avail-
able from our SPARQL endpoint12 with corresponding namespaces for schema
data triples13 and instance data triples14.

We query the endpoint and extract the RDF data in JSON format in order
to use it as an input to our implementation of the four main enrichment algo-
rithms; Algorithm 3 - detectSpatialHS, Algorithm 4 - discoverSpatialHS,
Algorithm 5 - detectFactLevel, and Algorithm 6 - discoverFactLevel.

In the following, we give the implementation highlights of the each algo-
rithm and helper function along with the code snippets.

12SPARQL Endpoint: http://lod.cs.aau.dk:8890/sparql
13QB4OLAP schema: http://extbi.cs.aau.dk/geofarm/qb4olap/farm-qb4olap-schema.ttl
14QB4OLAP instances: http://extbi.cs.aau.dk/geofarm/qb4olap/farm-qb4olap-input.tar.gz

262

http://extbi.cs.aau.dk/GeoFarmHerdState/
http://lod.cs.aau.dk:8890/sparql
http://extbi.cs.aau.dk/geofarm/qb4olap/farm-qb4olap-schema.ttl
http://extbi.cs.aau.dk/geofarm/qb4olap/farm-qb4olap-input.tar.gz

5. Implementation

5.2 Detecting explicit topological relations

Detecting explicit topological relations are addressed in the following algo-
rithms: Algorithm 3 - detectSpatialHS and Algorithm 5 - detectFactLevel.
In both cases, the source data has explicitly defined roll-up relations, which
means there is a direct relation between level members with skos:broader

for hierarchy steps (e.g., Listing F.2, Line 7) and there is a direct relation
between a fact member and base level member’s foreign key URI (e.g., List-
ing F.4, Line 2)

The input variables for Algorithm 3 - detectSpatialHS are the triples
with roll-up relations of the hierarchy steps (G I

RU(hs)) and the attributes of
level members (G I

A(lm)) from the instance data graph. Explicit skos:broader
relations are annotated in the instance graph of hierarchy steps (G I

RU(hs)).
Therefore, we query the endpoint, by filtering with the explicit skos:broader
relations between all the level members. We fetch the results of the query in
Node.js in JSON format.

The input variables for Algorithm 5 - detectFactLevel are the triples
with fact members (G I

F M(F)) and the attributes of level members (G I
A(lm))

from the instance data graph. Explicit fact-level relations (by referring to the
foreign key URI of level members) are annotated in the instance graph of
fact members (G I

F M(F)). Therefore, we query the endpoint with all the fact
members and the corresponding attributes of level members. We fetch the
results of the query in Node.js in JSON format.

Initially, we need to provide the explicit (roll-up) relations between the
level members and fact-level members to implement the Algorithms 3 and 5
for detecting the (explicit) topological relations. As mentioned in the above
two paragraphs, we provide these relations from the data set by querying the
endpoint and fetching the results of the query in Node.js in JSON format.

Next step is to retrieve, respectively, the spatial attribute and measure
values from the attributes of the level members and fact members.

Retrieving attribute and measure values. In this step, we retrieve the (spa-
tial) attribute values and measure values of those level members and fact
members by accessing the object (o) of the each triple pattern t = (s, p, o)
from the instance graphs of attributes of level members (G I

A(lm)) and fact
members (G I

F M(F)) as given in Listing F.5, which is followed by passing the
getLevelMemberAttributes and getMeasures constants to getSpatialValues

constant15 as explained in the next paragraph (filtering spatial values) and
given in Listing F.6.

15We differentiate measure and level attribute values in seperate constants, since a measure is
annotated as qb:MeasureProperty and a level attribute is annotated as qb4o:LevelAttribute

in the schema graph.

263

Paper F.

1 const getLevelMemberAttributes = val =>

2 val.substring (val.indexOf("(") +1,

3 val.indexOf(")"));

4 const getMeasures = mval =>

5 mval.substring (val.indexOf("(") +1,

6 mval.indexOf(")"));

Listing F.5: Get level member attributes and fact member measures

Filtering spatial values. Before employing spatial analysis functions, we
have to filter the spatial attributes of level members and spatial measures of
fact members. Spatial values are always an object (o) value in a triple pattern
t = (s, p, o), which is defined as spatial literals Ls (Section 4). Therefore, we
have retrieved the attribute and measure values as objects as mentioned in
the above paragraph.

We have given the helper function Algorithm 1 - getSpatialValues, which
is used in the main algorithms. We have implemented this helper function
on Node.js by filtering the WKT geometries from the input JSON data as
exemplified in the following Listing F.6. We create a locationString con-
stant, which takes a string value from getLevelMemberAttributes (Line 2).
The string value is the last index location of a triple pattern constructed in
getLevelMemberAttributes16.

1 const getSpatialValues = value => {

2 const locationString =

3 getLevelMemberAttributes (value);

4 if (value.startsWith("POLYGON")) {

5 const polygons =

6 generatePolygonPoints(locationString);

7 return turf.polygon(coordinates:[polygons]); }

8 if (value.startsWith("LINE")) {

9 const lines = locationString;

10 return turf.lineString(coordinates:[lines]); }

11 if (value.startsWith("POINT")){

12 const points = locationString;

13 return turf.point(coordinates:[points]); }

14 return null; };

Listing F.6: Filtering spatial data types

Finding topological relations. Each of the four main enrichment algorithms
(Algorithms 3, 4, 5, and 6) returns an instance graph of level members or fact
members with topological relations annotated in QB4SOLAP. In order to find
these topological relations, we have given a helper function in Algorithm 2 -

16Similarly, we create a second locationString(2) for spatial measure values, that takes the
string value from getMeasures, which is not repeated in Listing F.6.

264

5. Implementation

relateSpatialValues. This algorithm is implemented by using boolean func-
tions (spatial predicates) from Turf.js library for relating spatial values and
finding the appropriate topological relations. The library supports the fol-
lowing topological relations with corresponding predicates between certain
spatial data types as given in Table F.2. A complete list of functions and
details of the functions can be found online at http://turfjs.org/docs.

Table F.2: Turf.js Spatial Boolean Functions

EQUALS WITHIN INTERSECTS

#booleanEqual: (equals)
between
POINT-POINT
LINE-LINE
POLYGON-POLYGON

#booleanWithin: (within)
between
LINE-POLYGON
POLYGON-POLYGON

#booleanCrosses:
(crosses) between
LINE-POLYGON

#booleanPointInPolygon:
(within) between
POINT-POLYGON

#booleanOverlap:
(overlaps) between
POLYGON-POLYGON
#booleanPointOnLine:
(intersects) between
POINT-POLYGON

We grouped the available Turf.js spatial boolean functions in Table F.2 un-
der three main topological relations (EQUALS, WITHIN, INTERSECTS), with
respect to the simplification rules for grouping topological relations, which
are given in Section 22 and explained along with Figure F.8 and Table F.1. In
Table F.2, Turf.js built-in functions (predicates) are given with #boolean pre-
fix. In parentheses, we give how we have named them in our implementation
by using the corresponding built-in functions.

The following listing (Listing F.7) gives an overview of the implementation
of the boolean functions from Table F.2 that are called in the main function
for relating spatial values (relateSpatialValues) given in Listing F.8. We give
one example for each of the main topological relations (EQUALS, WITHIN,
INTERSECTS).

This first spatial boolean function in Listing F.7 is equals (Lines 1-8),
which can be between any pair of the same spatial data type (Table F.2).
We have grouped child level spatial (attribute) values and parent level spa-
tial (attribute) values by their unique id (URI) for each spatial level attribute.
This allows us to use javascript array prototype (instance) methods e.g., every or
some, where we can create our own spatial predicate equals with condition
to satisfy that every (grouped) child level attribute values should be equal to
every (grouped) parent level attribute values. This ensures the multi-point,
multi-line, and multi-polygon data types can be covered in our implementa-
tion.

265

http://turfjs.org/docs

Paper F.

// equals function

1 const equals = (childLevelSpatialValues,

2 parentLevelSpatialValues) =>

3 childLevelSpatialValues.every(

4 childLevelSpatialValue =>

5 parentLevelSpatialValues.every(

6 parentLevelSpatialValue =>

7 turf.booleanEqual(childLevelSpatialValue,

8 parentLevelSpatialValue)));

// within function (POLYGON-POLYGON)

9 const within = (childLevelSpatialValues,

10 parentLevelSpatialValues) => {

11 const parentLevelMultipolygonBoundingBox

12 = turf.bboxPolygon(

13 turf.bbox(

14 turf.multiPolygon(coordinates: [

15 parentLevelSpatialValues.map(

16 parentLevelSpatialValue =>

17 pathOr([], [0], turf.getCoords(

18 parentLevelSpatialValue)))])));

// all child level values are within the parent level

// polygon (simplified with bounding box)

19 return childLevelSpatialValues.every(

20 childLevelSpatialValue => {

21 return turf.booleanWithin(

22 childLevelSpatialValue,

23 parentLevelMultipolygonBoundingBox);});};

// crosses function (LINE-POLYGON)

24 const crosses = (childLevelSpatialValues,

25 parentLevelSpatialValues) =>

26 childLevelSpatialValues.some(

27 childLevelSpatialValue =>

28 parentLevelSpatialValues.some(

29 parentLevelSpatialValue =>

30 turf.booleanCrosses(childLevelSpatialValue,

31 parentLevelSpatialValue)));

Listing F.7: Spatial Boolean Functions

For example, in the source data, we had multi-polygons for drainage ar-
eas, where each unique drainage ares is a multi-polygon and that is com-
posed of several polygons. Due to simplicity reasons, we did not store multi-
polygon data type in RDF triples. Instead, we have annotated each unique
drainage area as several polygons (of the multi-polygon), where each poly-
gon of the drainage area is bind to its drainage area via unique id - URI of
the drainage area. This means, in the instance graph of parent level mem-
bers G I

A(lmp)
(drainage areas), there will be triple patterns t = (s, p, o), where

many different polygons - objects (o) have the same subject (s) - URI of a
unique drainage area to represent the multi-polygon.

In order to handle these multi-polygons, we gather them in a bound-

266

5. Implementation

ing box by using turf.bboxPolygon and turf.bbox functions in Listing F.7,
Lines 13-14. In Listing F.7, Lines 10-18 depicts how several polygons of the
same parent level can be put into a bounding box, which is passed as a pa-
rameter to our second spatial boolean function within. Finally, the function
returns in Lines 19-23 with condition to satisfy that every (grouped) child
level attribute values should be within the simplified parent level polygon -
parentLevelMultipolygonBoundinxBox (Line 23).

The third spatial boolean function in Listing F.7 is crosses (Lines 24-
31), where we re-use the Turf.js spatial predicate booleanCrosses. This
function is very similar to overlaps in implementation. The only differ-
ence is crosses occurs between LINE-POLYGON, overlaps occurs between
POLYGON-POLYGON. For both cases, the condition to satisfy is that some
of the (grouped) child level attribute values should cross/overlap some of the
(grouped) parent level attribute values.

In the following listing (Listing F.8), we use our own spatial predicates
(explained above) in order to implement the helper function Algorithm 2
- relateSpatialValues. Remark that we have followed the simplification
rules for grouping topological relations (Figure F.8), aligned with switch cases
for spatial data type pairs from Algorithm 2 in our implementation.

In our implementation given in Listing F.8, we create two functions child�
LevelGeoType (Line 3) and parentLevelGeoType (Line 5), which returns the
geometry type of a given attribute value. This way we can implement switch(
geoType(vac), geoType(vap)) cases from Algorithm 2 - relateSpatialValues.

Detecting topological relations. Finally, we have implemented detecting
topological relations algorithms (Algorithms 3 and 5) with a bottom-up ap-
proach after implementing the core helper functions. In the following, we
give the function implemented on Node.js for detecting topological relations
(Listing F.9) between level members, which is covered in Algorithm 3. The
same approach with minor differences (in parameter passing) is used in our
implementation for detecting topological relations between fact-level mem-
bers, which is covered in Algorithm 5.

267

Paper F.

1 const relateSpatialValues = (childLevelSpatialValues,

2 parentLevelSpatialValues) => {

3 const childLevelGeoType = pathOr(

4 null, [0, "geometry", "type"], childLevelSpatialValues);

5 const parentLevelGeoType = pathOr(

6 null, [0, "geometry", "type"], parentLevelSpatialValues);

7 if (childLevelGeoType === "Point" &&

8 parentLevelGeoType === "Point") {

9 if (equals(childLevelSpatialValues, parentLevelSpatialValues)) {

10 return "qb4so:equals";}

11 } else if (childLevelGeoType === "Point" &&

12 parentLevelGeoType === "LineString") {

13 if (intersects(childLevelSpatialValues, parentLevelSpatialValues)) {

14 return "qb4so:intersects";}

15 } else if (childLevelGeoType === "Point" &&

16 parentLevelGeoType === "Polygon") {

17 if (pointWithin(childLevelSpatialValues, parentLevelSpatialValues)) {

18 return "qb4so:within";}

19 } else if (childLevelGeoType === "LineString"

20 && parentLevelGeoType === "LineString") {

21 if (crosses(childLevelSpatialValues, parentLevelSpatialValues)) {

22 return "qb4so:intersects";}

23 if (overlaps(childLevelSpatialValues, parentLevelSpatialValues)) {

24 return "qb4so:overlaps";}

25 } else if (childLevelGeoType === "LineString"

26 && parentLevelGeoType === "Polygon") {

27 if (within(childLevelSpatialValues,mparentLevelSpatialValues)) {

28 return "qb4so:within";}

29 if (crosses(childLevelSpatialValues, parentLevelSpatialValues)) {

30 return "qb4so:overlaps";}

31 } else if (childLevelGeoType === "Polygon"

32 && parentLevelGeoType === "Polygon") {

33 const isWithin = within(

34 childLevelSpatialValues,

35 parentLevelSpatialValues);

36 const isOverlaps = overlaps(

37 childLevelSpatialValues, parentLevelSpatialValues);

38 if (isWithin) {

39 return "qb4so:within";}

40 if (isOverlaps) {

41 return "qb4so:overlaps";}}

42 return null;};

Listing F.8: Relating spatial values

Listing F.9 is constructed with the main function detectSpatialHierarchy

Steps with parameters of parentLevelMembers , childLevelMembers, and
explicit Relations17. In Line 3, the constant spatialHierachySteps takes

17We do not repeat a similar listing in the paper for detecting topological relations between
fact-level members (Algorithm 5) where the parameter childLevelMembers from Listing F.9
corresponds to fact members and parentLevelMembers corresponds to base level members in

268

5. Implementation

the explicitRelations between child level and parent level members, and
creates constants for those in Lines 6 and 7. The next step is to get the
spatial values of the level members (child level members Lines 8-12 and
parent level members Lines 13-17), where we utilize the helper function
getSpatialValues, which is described in Listing F.6. In Line 20, we create
a constant topoRel, which takes the helper function relateSpatialValues

(Listing F.8) with two parameters childLevelSpatialValues and parentLevel�

SpatialValues that are created, in Lines 8 and 13, respectively. Next, we
return the topological relations (topoRel) as predicates (p) between Lines 22-
24. If a topological relation is not found we keep the explicit relation as
skos:broader (Line 23). Finally, we return the new results by replacing the
explicitRelations with spatialHierarchySteps (Lines 25-29).

1 const detectSpatialHierarchySteps = (

2 parentLevelMembers, childLevelMembers, explicitRelations) => {

3 const spatialHierarchySteps =

4 explicitRelations.results.bindings.map(

5 binding => {

6 const childLevelMemberId = binding.s.value;

7 const parentLevelMemberId = binding.o.value;

8 const childLevelSpatialValues = pathOr([],

9 [childLevelMemberId],childLevelMembers

10).map(childLevelMember =>

11 utils.getSpatialValues(

12 childLevelMember.value));

13 const parentLevelSpatialValues = pathOr([],

14 [parentLevelMemberId], parentLevelMembers

15).map(parentLevelMember =>

16 utils.getSpatialValues(

17 parentLevelMember.value));

18 const topoRel = utils.relateSpatialValues(

19 childLevelSpatialValues,

20 parentLevelSpatialValues);

21 return {

22 ...binding,

23 p: {type: "uri", value: topoRel ||"skos:broader"}};

24 });

25 return {

26 ...explicitRelations,

27 results: { ...explicitRelations.results,

28 bindings: spatialHierarchySteps}

29 };

30 };

Listing F.9: Detecting topological relations (between level members)

We give the implementation results in Section 6.3, Table F.4 for both cases
covered in Algorithms 3 and 5, together with number of input level members

the implementation of detecting topological relations between fact-level members.

269

Paper F.

and fact members.

5.3 Discovering implicit topological relations

Discovering implicit topological relations are addressed in the following algo-
rithms: Algorithm 4 - discoverSpatialHS and Algorithm 6 - discoverFact�
Level. In both cases, the source data has not any defined roll-up relations
(with skos:broader), or has missing spatial hierarchy steps between level
members. Similarly, a fact level member has no defined relation link to any
spatial level member of its dimensions.

The input variables for Algorithm 4 - discoverSpatialHS are the triples
with dimensions (GS

D), hierarchies in dimensions (GS
H(d)), levels in hierar-

chies (GS
L(h)) from the schema graph, and level members of levels (G I

L M(l))
and the attributes of level members (G I

A(lm)) from the instance data graph.
Therefore, we query the endpoint by filtering with the schema elements
qb4o:hasHierarchy, qb4o:inDimension, and qb4o:hasLevel. We fetch the
results of the query in Node.js JSON format.

The input variables for Algorithm 6 - discoverFactLe� vel are the triples
with dimensions (GS

D), hierarchies in dimensions (GS
H(d)), levels in hierar-

chies (GS
L(h)) from the schema graph, and fact members (G I

F M(F)), level
members of levels (G I

L M(l)) and the attributes of level members (G I
A(lm))

from the instance data graph. Therefore, we query the endpoint by filter-
ing with the schema elements qb4o:hasHierarchy, qb4o:inDimension, and
qb4o:hasLevel. We fetch the results of the query in Node.js JSON format.

The following listing (Listing F.10) shows how we implement a schema
wrapper by filtering the schema graph at our endpoint with predicates for
schema elements (Lines 3, 7, 11, and 14). Once we get to the levels, we filter
the level members in each level with qb4o:memberOf predicate (Line 11). Af-
terwards, we group level members by level that are in the same hierarchy and
pass these grouped level members as inputs to a similar function as in List-
ing F.9, which is called detectSpatialHierarchyStepsExpensive. This func-
tion takes only two parameters without explicit relations (two sets of level
members grouped by level: parentLevelMembers and childLevelMembers).
We run this algorithm several times for each pairs of grouped level mem-
bers (by level) within the same hierarchy as our approach is discovering
implicit relations between level members and fact-level members. For fact
members we use similarly one paremeter (i.e., parentLevelMembers) as the
grouped level members (by level), and the other parameter is fact mem-
bers (i.e., childLevelMembers), which are annotated as qb:Observation. In
detectSpatialHierarchyStepsExpensive function we utilize the same helper
functions that are implemented with child-parent topological relations and
simplification rules defined in Section 22 along with Figure F.8 and Table F.1.
This ensures to apply spatial boolean predicates (on geometries of level mem-

270

5. Implementation

bers and fact members) with relateSpatialValues helper function only be-
tween the appropriate spatial data types given in Tables F.1 and F.2. Since,
there are no explicit relations in detectSpatialHierarchyStepsExpensive

function, relateSpatialValues helper function is called Num.O fchildLev.Mem.×
Num.O fparentLev.Memb. times in one iteration, where with detectSpatial�

HierarchySteps function, the helper function is called only Num.O fexplicitRel.
times.

We give the implementation results in Section 6.3, Table F.4 for both cases
covered in Algorithms 4 and 6, together with number of input level members
and fact members.

1 const discoverSpatialHierarchySteps = schema =>

2 schema.results.bindings.filter(binding =>

3 binding.p.value ==="qb4o:hasHierarchy")

4 .map(hierachyBinding =>

5 schema.results.bindings.filter(binding =>

6 hierarchyBinding.o.value === binding.s.value

7 && binding.p.value ==="qb4o:hasLevel"));

8 .map(levelBinding =>

9 schema.results.bindings.filter(binding =>

10 levelBinding.o.value === binding.s.value

11 && binding.p.value ==="qb4o:memberOf"));

12 const inDimension =

13 schema.results.bindings.filter(binding =>

14 binding.p.value === "qb4o:inDimension");

15 module.exports ={

16 wrapper: discoverSpatialHierarchySteps};

Listing F.10: Discovering topological relations (schema wrapper)

5.4 Generating fact schema

Finally, we implement the enrichment of the fact schema, based on the spa-
tially enriched fact instances (members). In order to extract the input vari-
ables for Algorithm 7 - defineSpatialFactDSD, we use the spatially enriched
fact members (by Algorithms 5 and 6) and non-spatial fact schema.

The first step of generating the fact schema is to look for detected and dis-
covered topological relations between the fact and level members and then
annotate each of them with qb4so:topologicalRelation in the fact schema
as given in Listing F.3. The next step is to identify the spatial data types with
helper functions getMeasures and getSpatialValues (Listings 5 and 6). Fi-
nally, for each of identified spatial data type we annotate the fact schema with
the corresponding spatial aggregate function, e.g., spatial data type POINT
can have ConvexHull aggregate function, LINE can have Union etc.

In our implementation of detecting and discovering topological relations
between fact members and level members, we have only encountered qb4so:

271

Paper F.

within topological relation. Thus, the fact schema enrichment implementa-
tion generates Lines 4 and 5 as exemplified in Listing F.3. As spatial measures
in fact members, we have found POINT spatial data type. Therefore, the fact
schema enrichment implementation generates Lines 6 and 7, annotating that
the spatial measure has qb4so:ConvexHull aggregate function, as exempli-
fied in Listing F.3.

After the spatial enrichment is fully completed, both the schema18 and
the instance19 data is also published from the same SPARQL endpoint with
QB4SOLAP.

Table F.4 shows the results of our implementation and we discuss them in
details in Qualitative Evaluation (Section 6.3).

5.5 Implementation Choices

After thoroughly describing the necessary steps and enrichment algorithms,
here, we briefly present our implementation choices both in technical and
strategical terms for implementing our approach

In order to answer the question: "Can this approach be reasonably imple-
mented on top of triple stores by directly using web and semantic web technologies?",
we have come across a number of challenges, where specific choices had to
be made. These will be discussed next.

As triple store, we used: Virtuoso version 07.20.3217 on Linux (x86_64-
ubuntu-linux-gnu), Single Server Edition. Even though, Virtuoso supports sev-
eral shape types (e.g., POLYGON, MULTIPOLYGON, etc.), it has a limited
number of spatial Boolean functions available as built-in functions. There-
fore, we have decided to use a third party Javascript library for spatial analy-
sis, which is called Turfjs. We implemented RDF2SOLAP on Node.js platform.
Hardware set-up of the Node.js machine is given in Table F.3.

Table F.3: Hardware Setup (Node.js Machine)

Processor Name: Intel Core i7
Processor Speed: 2,8 GHz
Num. of Processors: 1
Num. of Cores: 4
L2 Cache (per Core): 256 KB
L3 Cache: 6 MB
Memory: 16 GB

For each test case we have queried the triple store’s SPARQL endpoint and
extracted the triple data in JSON format to Node.js, which is kept in mem-

18http://extbi.cs.aau.dk/geofarm/qb4solap/geofarm-qb4solap-schema.ttl
19http://extbi.cs.aau.dk/geofarm/qb4solap/geofarm-qb4solap-output.tar.gz

272

http://extbi.cs.aau.dk/geofarm/qb4solap/geofarm-qb4solap-schema.ttl
http://extbi.cs.aau.dk/geofarm/qb4solap/geofarm-qb4solap-output.tar.gz

6. Experimental Evaluation

ory. Using Node.js and a Javascript library for spatial analysis provides us
a flexible development environment, independent from any choice of triple
store.

It is mentioned earlier in Section 5.2 that we have multi-part POLYGON
data (for drainage areas and parishes), which means that, when several poly-
gons are grouped by unique (parish or water) URI they can compose a MUL-
TIPOLYGON for a single parish or drainage area instance. From the im-
plementation point of view, we had to implement a bounding box function
for multi-part POLYGON data, in order to, call the spatial Boolean func-
tions (within and intersects) between the correct parish and drainage area
instances, then annotate the topological relations between their unique URIs.
If triple stores already provided overall support of complex spatial data types,
spatial indices, and a complete support of built-in spatial functions, decou-
pling the triple stores during development of RDF2SOLAP would not have
been necessary. We could then directly use the spatial capabilities of the
triple stores that were required for developing RDF2SOLAP. However, to our
best knowledge, a third party spatial analysis library was needed to fully im-
plement our RDF2SOLAP (spatial) multi-dimensional enrichment algorithms
given in Section 4.

The details of our approach, endpoints, and data sets can be found on
our project page20. The code repository for the whole implementation can be
found on GitHub21.

6 Experimental Evaluation

Table F.4: Implementation Results of Detecting and Discovering Topological Relations

INPUT OUTPUT

NumberOf
Child Members

NumberOf
Parent Members

NumberOf
Explicit Relations

NumberOf
Topological Relations

Run times
(in seconds)

Section
5.2

Alg. 3 parishes: 2180 drainageAreas: 134 2683
intersects 636

29 s
within 2046

Alg. 5 farmStates: 40039 parishes: 2180 39800 within 39334 7 s

Section
5.3

Alg. 4 parishes: 2180 drainageAreas: 134 NONE
intersects 1088

2622 s
within 3392

Alg. 6
farmStates: 40039 parishes: 2180 NONE within 39998 1920 s
farmStates: 40039 drainageAreas: 134 NONE within 39845 525 s

The rationale of developing an RDF2SOLAP enrichment module is to en-
rich and re-annotate existing RDF data on the Semantic Web with spatial
and multi-dimensional data warehouse concepts. Then, the spatial RDF data
becomes available for querying with SOLAP operations in SPARQL without
losing its triple (RDF) format. We do not expect superior performance of our

20Project Page: http://extbi.cs.aau.dk/RDF2SOLAP
21RDF2SOLAP Repository: https://github.com/lopno/rdf2solap

273

http://extbi.cs.aau.dk/RDF2SOLAP
https://github.com/lopno/rdf2solap

Paper F.

implementation due to the limited spatial and multidimensional technologies
available in the RDF/SW stack. Instead, as long as we achieve comparable
performance and results, our proposal will give much more flexibility and
analytical power, without needlessly spending large amounts of time on ex-
tracting and converting the data from RDF to GIS and back.

First, we present the run-times of the algorithms given in the previous sec-
tion, for assessing the performance our approach, in quantitative evaluation
section (Section 6.1). In order to evaluate the performance of our approach
we present the total time for getting similar results over RDF data in two dif-
ferent (non-SW) environments in quantitative evaluation section. Next, we
give the comparison baselines in Section 6.2, for describing those two differ-
ent environments (GIS, RDBMS) that we are comparing our results against.
Then, in qualitative evaluation section we compare our results with those
two environment in terms of accuracy and coverage (Section 6.3). Finally, we
share the technical lessons learned in Section 6.4 and summarize our findings
in Section 6.5.

6.1 Quantitative Evaluation

The results of applying our algorithms on the running use case are summa-
rized in Table F.4. The results show the number of topological relationships
found between the level members in spatial hierarchies and between the base
level members and fact members. We distinguish the results for explicit and
implicit relations as implemented in the separate algorithms for spatial hier-
archies (Alg. 3 and 4) and fact-level relations (Alg. 5 and 6).

The input parameters and figures for each algorithm are given in Table F.4
under the INPUT column(s). The input datasets to the algorithms are 2180
parish members, 40039 farm state members, and 134 drainage area members.
The OUTPUT columns show the number of topological relations found and
run times of the algorithms. In this section, we only focus on evaluating
the performance of our implementation and discuss the output coverage for
number of found topological relations in qualitative evaluation section.

For all the algorithms that we have implemented, we provided the test
cases in the GitHub repository, where the results can be re-generated. Each
experiment given in Table F.4 was run (on Node.js running) on a MacBook
Pro 14,3 in a single process. The hardware details of the machine are given
in Table F.3.

In Table F.4, we can see that most expensive algorithm is Alg. 4 (discover�
SpatialHS) that runs in 2622 seconds. The algorithm takes input instances
of parish and drainage area with POLYGON data type, without explicit rela-
tions as in Alg. 3 (detecSpatialHS). In Alg. 3, with distinct explicit relations
(given 2683), the algorithm checks for the designated spatial Boolean func-
tions (within and intersects) just 2683 times for each Boolean function. How-

274

6. Experimental Evaluation

Table F.5: Performance Evaluation Results (f.s.= farm states, p.= parishes, d.a.= drainage areas)

Query
Platform

Performance Results
Run times Development cost

detectSpatialHS

(p.– d.a.)
RDF2SOLAP 29 s 5 min.
RDBMS < 1 s 1-1.5 days

detectFactLevelR.

(f.s. – p.)
RDF2SOLAP 7 s 5 min.
RDBMS < 1 s 1-1.5 days

discoverSpatialHS

(p. – d.a.)

RDF2SOLAP 2,622 5 min.
RDBMS 43 s 1-1.5 days
GIS 45 s 2 days

discoverFactLevelR.

(f.s. – p.)

RDF2SOLAP 1,920 s 5 min.
RDBMS 95 s 1-1.5 days
GIS 72 s 2 days

discoverFactLevelR.

(f.s. - d.a.)

RDF2SOLAP 525 s 5 min.
RDBMS 48 s 1-1.5 days
GIS 41 s 2 days

ever, in Alg. 4, the algorithm calls the spatial Boolean functions (within and
intersects) 134 × 2180 = 292120 times for each function. Similarly, compared
to Alg. 5., Alg. 6 is more expensive, because of running without explicit rela-
tions, although it is much faster than Alg. 4, since the Alg. 4 calls the spatial
Boolean functions between (farm states) POINT data type and POLYGON
data type (for parishes and drainage areas).

In Table F.5, we compare the run times of our algorithms with two differ-
ent query platforms (RDBMS and GIS) for detecting and discovering topo-
logical relations. From these platforms, Alg. 3 and 5 (to detect explicit topo-
logical relations) are only implemented on RDBMS, since GIS tool employs
spatial joins instead of joining through referential integrity of explicit rela-
tions. RDBMS demonstrates great performance for both Alg. 3 and 5 by
processing the queries less than 1 sec. for each. However, this query process-
ing times do not include extracting the certain input data sets from our RDF
end-point and loading the data into RDBMS and writing the SQL queries. To
discover implicit topological relations in Alg. 4 and 6, GIS tool out-performed
RDBMS in terms of processing time excluding the preparation and load
times. RDF2SOLAP performs slower in query processing time compared
to RDBMS and GIS, although, to implement the enrichment approach on na-
tive SW/RDF data, RDF2SOLAP is still the most efficient, since preparation
and load time is 5 minutes and the users don’t have to write SPARQL/SQL
queries or know how to use a GIS tool.

Even excluding the preparation and load times, RDF2SOLAP demon-
strated a comparable performance to the other query platforms, consider-

275

Paper F.

ing that the run times (in Table F.4 and F.5) for RDF2SOLAP cover also the
query processing times, parsing the RDF data in JSON, calling the helper
functions when necessary, and returning bounding box objects for multi-part
POLYGON data.

6.2 Comparison Baselines

In order to elaborate the performance and then accuracy of our approach
with choice of technologies to implement RDF2SOLAP, we compare our re-
sults (Table F.4) against two different environments: a leading GIS tool and
a leading RDBMS. The software versions of the tools and hardware of the
machine running these tools are given in Table F.622.

We load the WKT data (spatial attributes of level members) used in our
experiments with the same decimal precision of the coordinates to the GIS
tool, and to a geo-database on RDBMS from CSV files. We extract topological
relations between the child and parent members by using spatial joins in GIS
tool and using built-in spatial functions of the RDBMS.

Since both GIS tool and RDBMS cannot process RDF data in native format,
we have to prepare the data to load into these environments. The preparation
and load times of the data is given as development cost in Table F.5. The
preparation and load time is calculated assuming that the developer has basic
knowledge of the domain, extraction of RDF data with SPARQL queries, can
write SQL queries, and know how to use RDBMS and GIS tools. We extracted
the spatial level members (farms states, parishes, and drainage areas) used in
the algorithms from our RDF endpoint, in CSV format. In order to prepare
the data to be loaded into GIS tool and RDBMS we have to also use the
relational schema defined by QB4SOLAP.

22We cannot disclose the names of the GIS tool and RDBMS tool due to license restrictions

Table F.6: Hardware and Software Setup (RDBMS Server and GIS Platform)

Hardware
Processor Name: Intel Core i7
Processor Speed: 2,7 - 2,9 GHz
Num. of Processors: 4
Memory: 32 GB

Software
Operating System: Windows 10 Enterprise (10.0) 64-bit
RDBMS Server Memory: 64-bit
RDBMS Server Memory: 16287 MB
GIS Tool Version: 64 bit 2.18.21

276

6. Experimental Evaluation

On the GIS tool we saved CSV data layers (for each level; farm states,
parishes and drainage ares) and converted these into native GIS format which
are shape files. Then we run Join Attributes By Location function, which is a
built-in data management process. We run this function as batch process,
for parishes-drainage areas (Alg. 4), farm states-parishes, and farm states-
drainage areas (Alg. 6) as given in Table F.5.

Table F.7: Comparisons of number of topological relations found in each tool (f.s. = farm states,
p. = parishes, d.a. = drainage areas)

TOOLS
GIS RDBMS RDF2SOLAP

Alg. 3:
(p. – d.a.)

intersects N/A 1897 636
within N/A 785 2046

Alg. 5:
(f.s.– p.)

within N/A 39334 39334

Alg. 4:
(p. – d.a.)

intersects 2556 2802 1088
within 1039 785 3392

Alg. 6:
(f.s. – p.)

within 39805 39984 39998

Alg. 6:
(f.s. – d.a.)

within 39441 39845 39845

Measuring and comparing the run times (between Tables F.4 and F.5) is
not the only scope of the evaluation, since algorithms in the implementa-
tion of RDF2SOLAP run in several steps with helper functions for extracting
correct data (level members, hierarchy steps), finding the spatial (attribute)
values etc., while on the GIS tool and the RDBMS only “finding the topolog-
ical relations” part of the algorithms are ran. Converting RDF data into GIS
and RDBMS native format, loading to these environments, and preparation
of batch processes and SQL queries are inestimable manual work. Therefore,
the overall cost of using offline GIS and RDBMS tools for RDF data is very
expensive in terms of developer time compared to our RDF2SOLAP tool.
Therefore, we use the comparison baselines for scoping out the accuracy and
coverage of number of topological relations found for each algorithm in these
three different environments. We give the number of topological relations in
Table F.7 and discuss the results in qualitative evaluation section (Section 6.3).

6.3 Qualitative Evaluation

On the GIS tool we tested only finding (discovering) implicit topological re-
lations (discoverSpatialHS and discoverFactLevelRelations), where we
did not use direct links between farms, parishes, and drainage areas (through
referential integrity of defining the explicit relations), but we used the spatial

277

Paper F.

join functionality of the (GIS data management) tool. Therefore, Alg. 3 and
Alg. 5 are N/A in Table F.7 for the GIS tool.

On RDBMS, we tested both (detect and discover topological relations),
where we queried with joins on the unique IDs if it was present (drainage
area foreign key in parishes, parish foreign key in farm states), and with spa-
tial joins by using STWithin, STIntersects, and STOverlaps built-in func-
tions. In RDBMS, we found fewer within relations compared to the GIS
tool and more intersects relations (Table F.7, Alg. 4). On the contrary, the
RDF2SOLAP implementation finds more within relations and fewer intersects
relations than found in the GIS tool and the RDBMS. In Alg. 3 RDF2SOLAP
detects 2046 within relations, which is 47% more than RDBMS, where 785
within relations are detected. Similarly, in Alg. 4, which is also between
parishes and drainage areas, RDF2SOLAP finds 47% more than GIS and 54%
more than RDBMS (Table F.7). This is due to generalizing the multi-part
POLYGON data as bounding boxes.

We can see that the results from RDF2SOLAP for finding implicit and
explicit relations between POINT-POLYGON data types with Alg. 5 (farm
states-parishes:39334) and Alg. 6 (farm states-parishes:39998 and farm states-
drainage areas:39845) are very similar to the relations found in RDBMS,
which can be observed in Table F.7.

We found the exact same number of topological relations (within) in
RDF2SOLAP and RDBMS for Alg.5 (farm states-parishes: 39334) and Alg. 6
(farm states-drainage areas: 39845). For Alg. 6 (farm states-parishes), we
found 39984 within relations in RDBMS, and 39998 within relations with
only 14 difference (0,03%) in RDF2SOLAP (Table F.7). There is a little diver-
gence between the number of (within) relations found in the GIS tool and in
RDF2SOLAP in Alg. 6. There are fewer relations found in the GIS tool than
RDF2SOLAP, where the difference is 193 (0,4%) for farm states-parishes and
the difference is 404 (1%) for farm states-drainage areas. This can be toler-
ated compared to the discrepancy between the GIS tool and RDF2SOLAP (or
RDBMS and RDF2SOLAP) for POLYGON-POLYGON relations.

6.4 Technical Lessons

The deviation in RDF2SOLAP for POLYGON-POLYGON relations can be
prevented by using multi-part POLYGON and MULTIPOLYGON data as its
original form instead of generalizing them as bounding boxes.

However, in practice, storing the multi-part POLYGON data as MULTI-
POLYGONs in a triple store, loading the data to Node.js in JSON format
and applying spatial Boolean functions from Turf.js library was not possible
at many levels. We had encountered performance and formatting problems
while loading MULTIPOLYGON data type to Virtuoso, where the debugger
was not capable of providing a stack trace, where the error occurred. This

278

7. Related work

lead to missing data in the triple store for drainage areas. Even assuming that
the MULTIPOLYGON data was successfully loaded, Turf.js could not handle
POLYGON-MULTIPOLYGON within relations, which is normally possible
on the GIS tool or on RDBMS. Since keeping the multi-part POLYGON and
MULTIPOLYGON data in its original form was not feasible for the Web/Se-
mantic Web technologies (Turf.js API and RDF Store), we had a trade-off
between implementing the POLYGON-POLYGON relations in generalized
bounding boxes and deviating from the results found in two other environ-
ments.

6.5 Experimental Summary

RDF2SOLAP demonstrated accurate results in comparison with two other
tools (GIS and RDBMS) in terms of found topological relations between
POINT-POLYGON data types. Due to generalization of multipart POLYGON
relations, RDF2SOLAP has a minor divergence on the detected/discovered
number of topological relations and did not meet as exact same results as in
two other tools for detecting and discovering topological relations between
POLYGON-POLYGON data types. In terms of productivity, RDF2SOLAP is
far ahead of in-house GIS and RDBMS tools for enriching spatial RDF data by
finding hierarchy steps and fact-level relations since it does not require (over-
all) manual work to prepare and process the data, but operates on native
RDF/SW data with implicitly and explicitly defined test cases. By providing
RDF2SOLAP enrichment tool, user development costs can be significantly
reduced from days of preparation of data, query platforms, scripts, queries,
and etc. to one time cost of pointing to the end-point and fetching the data
sets from the SPARQL endpoint in test cases, which can be done in 5 minutes.

Comparing and evaluating the technical capabilities (for supporting spa-
tial data handling) of triple stores, APIs and libraries is beyond the scope
of this paper. Improvements on the underlying technologies can provide a
better development environment to implement RDF2SOLAP (spatial) enrich-
ment algorithms (Section 4) with better performance and accuracy. Further
improvements to the performance (processing times) of RDF2SOLAP can be
achieved either by implementing spatial indexes directly on the RDF data in
triple stores or we can build an R-tree in memory on node.js using Turf.js
library.

7 Related work

Utilizing DW/OLAP technologies on the Semantic Web with RDF data makes
RDF data sources more easily available for interactive analysis. There has
been lots of work studied OLAP and data warehousing possibilities on the

279

Paper F.

Semantic Web (SW) as summarized by Abelló et al. [17]. Our scope of work
is around spatial OLAP (SOLAP) and spatial data warehouses (SDW) on the
Semantic Web, which is not yet a comprehensively studied research topic. We
focus on performing spatial OLAP analysis directly over multi-dimensional
data published on the Semantic Web. Therefore, we review the related work
with relevant approaches classified under the following titles: (1) Data model-
ing and representation (on the SW for multi-dimensional and spatial data), (2)
Metadata enrichment and MD analysis (OLAP-like analysis over RDF data).

Data modeling and representation. The RDF Data Cube (QB) vocabulary [4]
is the W3C recommendation to publish statistical data and its metadata in
RDF. Thus, QB is commonly used to publish raw or already aggregated mul-
tidimensional data sets. However, QB lacks the underlying metadata for mul-
tidimensional models and OLAP operations. Set of MD concepts, such as,
hierarchy levels along a cube dimension, semantics of the relationships be-
tween levels, semantics and definitions of aggregate functions are missing in
QB vocabulary, which are essential in a MD schema in order to enable OLAP
analysis. Therefore, Kämpgen et al. define an OLAP data model on top
of QB by using SKOS [16] extensions23 to support multi-dimensional hierar-
chies [18, 19]. However, the proposed model have some limitations on levels
to exists only in one hierarchy. The OLAP operations are made available
on the data cubes with the proposed model, but restricting the cubes with
only one hierarchy per dimension. Etcheverry et al. propose QB4OLAP [7]
as an extension to QB vocabulary, which supports modeling a complete MD
data cube and querying the cube with OLAP operations on the Semantic
Web. Modeling of MD data on the Semantic Web motivated the publication
of datasets from several domains (e.g., statistical data sets from EuroStat and
World Bank data, AirBase air quality data, and many other environmental
and governmental open data) as RDF data cubes [20].

The need of fully multi-dimensional semantic data warehouses (where
OLAP operations are enabled in SPARQL) made QB4OLAP vocabulary promi-
nent. Therefore, RDF data cubes from statistical and environmental do-
mains [14, 21, 22] are published with an extended QB vocabulary. Moreover,
semantic Extract-Transform-Load (ETL) tools automate and ease the process
of annotating and publishing open data with QB4OLAP on the Semantic
Web [23]. Therefore, we can see more and more multi-dimensional datasets
annotated with QB4OLAP on the Semantic Web.

These multi-dimensional semantic modeling approaches and querying
with OLAP on the Semantic Web lead us to find ways for modeling, pub-
lishing and querying spatial data warehouses in particular, since modeling

23http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS

280

http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS

7. Related work

and querying spatial data bring new challenges. QB4SOLAP [9] - a spatial ex-
tension to a fully multi-dimensional QB4OLAP vocabulary emerges the need
of modeling and publishing geo-semantic data warehouses on the Semantic
Web.

Modeling and publishing (non multi-dimensional) spatial data on the Se-
mantic Web has been a focus by many communities and research groups.
Some of the efforts for standardizing and aligning vocabularies to describe
spatial data (e.g., locations, geometries, etc.) can be listed as GeoSPARQL [24]
by the Open Geospatial Consortium (OGC), Basic Geo (WGS84 lat/long) Vo-
cabulary by W3C Semantic Web Interest Group [25], NeoGeo Vocabularies by
GeoVocab working group [26], INSPIRE Directive metadata on the Semantic
Web [27], and GeoNames Ontology [28] among many others.

These standards have been commonly used in a wide scale of projects.
Government Linked Data (GLD) working group listed some of these geo-
vocabularies as standards to publish governmental linked data sets [29]. An-
dersen et al. re-use some of these vocabularies for publishing governmental
and spatial data on the Semantic Web [30]. LinkedGeoData is a big contri-
bution to the Semantic Web, which interactively transforms OpenStreetMap
data to RDF data [31]. GeoKnow project focuses on linking geospatial data
from heterogeneous sources [32]. More recent works by Kyzirakos et al. to
transform geospatial data into RDF graphs using R2RML mappings [33] and
geo-semantic labelling of open data [34] by Neumaier et al. show that spa-
tial data on the semantic web will keep growing. However, none of these
standards considers the MD aspects of spatial data for geo-semantic data
warehouses.

Large volumes of spatial data on the Semantic Web yields a need for ad-
vanced modeling and analysis of such data. As mentioned earlier QB4SOLAP
[9] remedy this need. Aggregate functions, cardinality relationships, topolog-
ical relations are rich source of knowledge in spatial data cubes in order to
query with spatial OLAP operations in SPARQL [1].

QB4ST [6] is a recent attempt to define extensions for spatio-temporal
components to RDF Data Cube (QB). However, it has the inherent limitations
of QB to support OLAP dimensions with hierarchies, levels and aggregate
functions. Lack of OLAP hierarchies and aggregate functions in QB4ST hin-
ders to define and operate with: topological relations at hierarchy steps, or
spatial aggregate functions on spatial measures, which are essential MD con-
cepts for SOLAP operators. These spatial MD concepts in geo-semantic data
warehouses are defined together with SOLAP to SPARQL query mappings
in [1].

Metadata enrichment and MD analysis. Increasing popularity of RDF data
cubes and MD OLAP cubes on the Semantic Web raised interest in tools and
frameworks that can ease the annotation and querying of MD data on the

281

Paper F.

Semantic Web from existing RDF sources.
Ibragimov et al. presents a framework for exploratory OLAP over Linked

Open Data (LOD), where the MD schema of the data cube is annotated with
QB4OLAP [35]. Based on this MD schema, they propose a system that is
capable of querying data sources, extracting and aggregating data to build
OLAP cubes in RDF. Similarly, Gallinucci et al. propose an exploratory OLAP
approach, namely iMOLD by interactively MD modeling of linked data [36].
Their approach allows users to enrich RDF cubes with aggregation hierar-
chies through a user-guided process. During this interactive process, the
recurring modeling patterns that express roll-up relationships between RDF
concepts are recognized in the LOD, then these patterns are translated into
aggregation hierarchies to enrich the RDF cube. Varga et al. enables OLAP
analysis with QB2OLAP tool in [21] over statistical data published with QB
vocabulary, by applying dimensional enrichment steps described thoroughly
in [8]. The proposed enrichment steps allow users to enrich a QB dataset with
QB4OLAP concepts such as fully-fledged dimension hierarchies. However,
none of these frameworks and approaches support spatial data warehouses
and SOLAP operations.

In this paper, we propose a framework, where OLAP cubes in RDF can
be enriched with spatial MD concepts from QB4SOLAP vocabulary by em-
ploying RDF2SOLAP enrichment algorithms over QB4OLAP triples. This
allows users to query MD cubes with SOLAP operators in SPARQL. Option-
ally, users can utilize GeoSemOLAP [2] tool on top of QB4SOLAP data sets,
which helps users to formulate SOLAP queries in SPARQL.

8 Conclusion and Future Work

Motivated by the need to conciliate MD/OLAP RDF data cubes and spatial
data on the Semantic Web as geo-semantic data warehouses, we have pre-
sented a number of contributions in this paper. As a first attempt to enrich
RDF data cubes with spatial concepts, we have shown that the QB4SOLAP
vocabulary yields the need for fully-fledged spatial data warehouse concepts
(that is built on top of non-spatial QB4OLAP and RDF Data Cube (QB) vo-
cabularies), by demonstrating the running use case examples from real world
governmental open data sets from various domains (i.e., environment, farm-
ing) with complex geometry types. We give the running use case examples
annotated both in QB4OLAP and QB4SOLAP vocabularies, in RDF triples
and formalized the RDF triples as parameters to use in the enrichment al-
gorithms. Second, we have built our conceptual architecture in relation to
existing semantic (spatial) OLAP tools (e.g., on top of QB2OLAPem enrich-
ment module and at the back-end of GeoSemOLAP). Third, we have pro-
vided hierarchical enrichment algorithms for two cases, which cover finding

282

References

explicit hierarchy steps with direct links between the level members and find-
ing implicit hierarchy steps (without direct links between the level members)
by comparing geometry attributes of the level members. We have defined
and deployed the necessary algorithms as spatial helper functions for find-
ing spatial attributes and comparing these attributes to derive topological
relations. Fourth, we have presented the factual enrichment phase for both
implicit and explicit fact-level relations between the fact and level members.
Moreover, we have presented how to re-define the fact schema after the fac-
tual enrichment phase in an automated manner. Re-defining the fact schema
includes also finding the spatial measures and associating them with spatial
aggregate functions.

Finally, we have evaluated our experiences and the accuracy of our ap-
proach and the implementation with the underlying technologies by compar-
ing the number of topological relations found in the RDF2SOLAP framework
(between the level members in spatial hierarchies and between the level mem-
bers and the fact members, respectively, during the hierarchical enrichment
phase and the factual enrichment phase) against two different environments.
In conclusion, RDF2SOLAP facilitates the spatial enrichment of RDF data
cubes and fills an important gap in our vision of SOLAP on the Semantic
Web.

Several directions are interesting for future research: creating a com-
prehensive benchmark test by implementing the RDF2SOLAP enrichment
algorithms on different platform and testing on different use cases, deriv-
ing spatial hierarchy levels and level member instances from external geo-
vocabularies and extending our approach in QB4SOLAP, GeoSemOLAP and
RDF2SOLAP to handle highly dynamic spatio-temporal data and multi di-
mensional analytical queries [37]. Another line of future work would be
runtime optimizations for scalable querying of spatial data warehouses [38].
Moreover, it is important to develop query optimization techniques for OLAP
queries on semantic DW RDF data, similar to the ones developed for cubes
and XML data [39–41]. Furthermore, to achieve scalable querying and run-
time optimization, new research directions can be taken with binary serial-
ization of the QB4SOLAP RDF data such as header dictionary triples (HDT),
which is a compact data structure that can be compressed and kept in-
memory, thus it enables high performance (and also concurrent) querying.

References

[1] N. Gür, T. B. Pedersen, E. Zimányi, and K. Hose, “A Foundation for
Spatial Data Warehouses on the Semantic Web,” Semantic Web Journal,
vol. 9, no. 5, pp. 557–587, 2018.

283

References

[2] N. Gür, J. Nielsen, K. Hose, and T. B. Pedersen, “GeoSemOLAP: SOLAP
on the Semantic Web Made Easy,” in Proceedings of the 26th International
Conference Companion on World Wide Web (WWW’17). ACM, 2017, https:
//dx.doi.org/10.1145/3041021.3054731.

[3] E. Malinowski and E. Zimányi, Advanced Data Warehouse Design:
From Conventional to Spatial and Temporal Applications. Data-Centric Sys-
tems and Applications. Springer, 2008, https://dx.doi.org/10.1007/
978-3-540-74405-4.

[4] R. Cyganiak, D. Reynolds, and J. Tennison, “The RDF Data Cube Vocab-
ulary,” 2014.

[5] World Wide Web Consortium, “SPARQL Query Language for RDF,”
W3C Recommendation, 2008, https://www.w3.org/TR/sparql11-query/.

[6] Atkinson, Rob, “QB4ST: RDF Data Cube extensions for spatio-temporal
components,” W3C Working Group, 2017, https://www.w3.org/TR/
qb4st/.

[7] L. Etcheverry, A. Vaisman, and E. Zimányi, “Modeling and Querying
Data Warehouses on the Semantic Web using QB4OLAP,” in Data Ware-
housing and Knowledge Discovery (DaWaK’14), vol. 8646. Springer, 2014,
pp. 45–56, https://dx.doi.org/10.1007/978-3-319-10160-6_5.

[8] J. Varga, A. A. Vaisman, O. Romero, L. Etcheverry, T. B. Pedersen, and
C. Thomsen, “Dimensional enrichment of statistical linked open data,”
Web Semantics: Science, Services and Agents on the World Wide Web, vol. 40,
pp. 22–51, 2016, https://dx.doi.org/10.1016/j.websem.2016.07.003.

[9] N. Gür, K. Hose, E. Zimányi, and T. B. Pedersen, “Modeling and Query-
ing Spatial Data Warehouses on the Semantic Web,” in Semantic Tech-
nology: 5th Joint International Semantic Technology Conference (JIST’15),
vol. 9544. Springer, 2015, pp. 1–20, https://dx.doi.org/10.1007/
978-3-319-31676-5_1.

[10] E. Malinowski and E. Zimányi, “Representing spatiality in a conceptual
multidimensional model,” in Proceedings of the 12th Annual ACM
International Workshop on Geographic Information Systems, ser. GIS ’04.
New York, NY, USA: ACM, 2004, pp. 12–22. [Online]. Available:
http://doi.acm.org/10.1145/1032222.1032226

[11] M. J. Egenhofer and J. Herring, “A mathematical framework for the def-
inition of topological relationships,” in Fourth international symposium on
spatial data handling. Zurich, Switzerland, 1990, pp. 803–813.

284

https://dx.doi.org/10.1145/3041021.3054731
https://dx.doi.org/10.1145/3041021.3054731
https://dx.doi.org/10.1007/978-3-540-74405-4
https://dx.doi.org/10.1007/978-3-540-74405-4
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/qb4st/
https://www.w3.org/TR/qb4st/
https://dx.doi.org/10.1007/978-3-319-10160-6_5
https://dx.doi.org/10.1016/j.websem.2016.07.003
https://dx.doi.org/10.1007/978-3-319-31676-5_1
https://dx.doi.org/10.1007/978-3-319-31676-5_1
http://doi.acm.org/10.1145/1032222.1032226

References

[12] A. Vaisman and E. Zimányi, “Spatial data warehouses,” in Data Ware-
house Systems: Design and Implementation. Springer, 2014.

[13] S. Rivest, Y. Bédard, M.-J. Proulx, M. Nadeau, F. Hubert, and J. Pas-
tor, “SOLAP technology: Merging business intelligence with geospatial
technology for interactive spatio-temporal exploration and analysis of
data,” ISPRS journal of photogrammetry and remote sensing, vol. 60, no. 1,
pp. 17–33, 2005.

[14] N. Gür, K. Hose, T. B. Pedersen, and E. Zimányi, “Enabling Spatial
OLAP over Environmental and Farming Data with QB4SOLAP,” in Se-
mantic Technology: 6th Joint International Semantic Technology Conference
(JIST’16), vol. 10055. Springer, 2016, pp. 287–304, https://dx.doi.org/
10.1007/978-3-319-50112-3_22.

[15] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Computing Surveys (CSUR), vol. 30, no. 2, pp. 170–231, 1998.

[16] A. Miles and S. Bechhofer, “SKOS Simple Knowledge Organization Sys-
tem Namespace Document,” W3C Recommendation, 2009.

[17] A. Abelló, O. Romero, T. Pedersen, R. Berlanga Llavori, V. Nebot,
M. Aramburu, and A. Simitsis, “Using Semantic Web Technologies for
Exploratory OLAP: A Survey,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 27, no. 2, pp. 571–588, 2014, https://doi.org/
10.1109/TKDE.2014.2330822.

[18] B. Kämpgen, S. O’Riain, and A. Harth, “Interacting with Statistical
Linked Data via OLAP Operations,” in The Semantic Web: ESWC 2012
Satellite Events, vol. 7540. Springer, 2012, pp. 87–101, https://dx.doi.
org/10.1007/978-3-662-46641-4_7.

[19] B. Kämpgen and A. Harth, “No size fits all–running the star schema
benchmark with sparql and rdf aggregate views,” in Extended Semantic
Web Conference. Springer, 2013, pp. 290–304.

[20] W3C, “Data Cube Implementations,” 2014, https://www.w3.org/2011/
gld/wiki/Data_Cube_Implementations.

[21] J. Varga, L. Etcheverry, A. A. Vaisman, O. Romero, T. B. Pedersen, and
C. Thomsen, “QB2OLAP: Enabling OLAP on Statistical Linked Open
Data,” in 32nd IEEE International Conference on Data Engineering, 2016,
pp. 1346–1349.

[22] L. Galárraga, K. A. M. Mathiassen, and K. Hose, “Qboairbase: The euro-
pean air quality database as an rdf cube.” in International Semantic Web
Conference (Posters, Demos & Industry Tracks), 2017.

285

https://dx.doi.org/10.1007/978-3-319-50112-3_22
https://dx.doi.org/10.1007/978-3-319-50112-3_22
https://doi.org/10.1109/TKDE.2014.2330822
https://doi.org/10.1109/TKDE.2014.2330822
https://dx.doi.org/10.1007/978-3-662-46641-4_7
https://dx.doi.org/10.1007/978-3-662-46641-4_7
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations

References

[23] R. P. D. Nath, K. Hose, T. B. Pedersen, and O. Romero, “Setl: A
programmable semantic extract-transform-load framework for semantic
data warehouses,” Information Systems, vol. 68, pp. 17–43, 2017.

[24] M. Perry and J. Herring, “GeoSPARQL: A Geographic Query Language
for RDF Data,” OGC Implementation Standard, 2012.

[25] Brickley, Dan, “Basic Geo (WGS84 lat/long) Vocabulary,” W3C Semantic
Web Interest Group, 2003, https://www.w3.org/2003/01/geo/.

[26] Salas M., Juan and Harth, Andreas, “NeoGeo Vocabulary Specification,”
GeoVocab Working Group, 2012, http://geovocab.org/doc/neogeo/.

[27] K. Patroumpas, N. Georgomanolis, T. Stratiotis, M. Alexakis, and
S. Athanasiou, “Exposing inspire on the semantic web,” Web
Semantics, vol. 35, no. P1, pp. 53–62, Dec. 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.websem.2015.09.003

[28] M. Wick, “GeoNames Ontology,” http://www.geonames.org/
ontology/documentation.html.

[29] Hyland, Bernadette and Terrazas V., Boris, “Cookbook for open govern-
ment linked data,” W3C Government Linked Data Working Group, 2011,
https://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook.

[30] A. B. Andersen, N. Gür, K. Hose, K. A. Jakobsen, and T. B. Ped-
ersen, “Publishing Danish Agricultural Government Data as Seman-
tic Web Data,” in Semantic Technology: 4th Joint International Semantic
Technology Conference (JIST’14), vol. 8943. Springer, 2014, pp. 178–186,
https://dx.doi.org/10.1007/978-3-319-15615-6_13.

[31] C. Stadler, J. Lehmann, K. Höffner, and S. Auer, “Linkedgeodata: A core
for a web of spatial open data,” Semantic Web, vol. 3, no. 4, pp. 333–354,
2012.

[32] G. Rojas, G. Giannopoulos, and J. J. L. Daniel Hladky, “Managing
Geospatial Linked Data in the GeoKnow Project,” in The Semantic Web in
Earth and Space Science. Current Status and Future Directions, vol. 20. IOS
Press, 2015, p. 51.

[33] K. Kyzirakos, D. Savva, I. Vlachopoulos, A. Vasileiou, N. Karalis,
M. Koubarakis, and S. Manegold, “Geotriples: Transforming geospa-
tial data into rdf graphs using r2rml and rml mappings,” Journal of Web
Semantics, vol. 52, pp. 16–32, 2018.

[34] S. Neumaier and A. Polleres, “Geo-semantic labelling of open data. se-
mantics 2018-14th international conference on semantic systems,” Proce-
dia Computer Science, 2018.

286

https://www.w3.org/2003/01/geo/
http://geovocab.org/doc/neogeo/
http://dx.doi.org/10.1016/j.websem.2015.09.003
http://www.geonames.org/ontology/documentation.html
http://www.geonames.org/ontology/documentation.html
https://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook
https://dx.doi.org/10.1007/978-3-319-15615-6_13

References

[35] D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi, “Towards ex-
ploratory olap over linked open data–a case study,” in Enabling Real-Time
Business Intelligence. Springer, 2015, pp. 114–132.

[36] E. Gallinucci, M. Golfarelli, S. Rizzi, A. Abelló, and O. Romero, “Inter-
active multidimensional modeling of linked data for exploratory olap,”
Information Systems, 2018.

[37] K. A. Jakobsen, A. B. Andersen, K. Hose, and T. B. Pedersen, “Opti-
mizing RDF Data Cubes for Efficient Processing of Analytical Queries,”
in Proceedings of the 6th International Workshop on Consuming Linked Data
(COLD’15), 2015, http://ceur-ws.org/Vol-1426/paper-02.pdf.

[38] L. Galárraga, K. Ahlstrøm, K. Hose, and T. B. Pedersen, “Answering
provenance-aware queries on rdf data cubes under memory budgets,” in
The Semantic Web – ISWC 2018, D. Vrandečić, K. Bontcheva, M. C. Suárez-
Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, and E. Simperl,
Eds. Cham: Springer International Publishing, 2018, pp. 547–565.

[39] D. Pedersen, K. Riis, and T. B. Pedersen, “Query optimization for OLAP-
XML federations,” in Proceedings of the 5th International Workshop on Data
Warehousing and OLAP (DOLAP’02). ACM, 2002, pp. 57–64.

[40] X. Yin and T. B. Pedersen, “Evaluating xml-extended olap queries based
on physical algebra,” Journal of Database Management (JDM), vol. 17, no. 2,
pp. 85–116, 2006.

[41] D. Pedersen, J. Pedersen, and T. B. Pedersen, “Integrating xml data in
the targit olap system,” in Proceedings. 20th International Conference on
Data Engineering. IEEE, 2004, pp. 778–781.

287

http://ceur-ws.org/Vol-1426/paper-02.pdf

N
u

r
efşa

n
 G

ü
r

M
o

d
eling

, Ann

o
tating

, a

n
d

 Q
u

er
ying

 G

eo
-Sem

a
n

tic
 D

ata W
a

r
eh

o
u

ses

ISSN (online): 2446-1628
ISBN (online): 978-87-7210-587-1

	_PHD_NG_FOR_OPPONENTS.pdf
	Omslag_Nurefsan_Gür.pdf
	PHD_Nurefsan_Gür_TRYK.pdf
	PhD_Thesis_Nurefsan_Gur.pdf

	Blank Page

	Kolofon_Nurefsan Gür.pdf
	_PHD_NG_FOR_OPPONENTS
	PHD_Nurefsan_Gür_TRYK.pdf
	Kolofon_Nurefsan Gür.pdf

	Omslag_Nurefsan_Gür

	Blank Page

