

Aalborg Universitet

Technical Report

Real-Time Aware Hardware Implementation Effort Estimation

Abildgren, Rasmus; Diguet, Jean-Philippe ; Gogniat, Guy; Koch, Peter; Le Moullec, Yannick

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Abildgren, R., Diguet, J-P., Gogniat, G., Koch, P., & Le Moullec, Y. (2010). Technical Report: Real-Time Aware
Hardware Implementation Effort Estimation.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 27, 2024

https://vbn.aau.dk/en/publications/9183c88f-f78d-4b8a-954d-1bfc7633ea1c

Technical Report: Real-Time Aware Hardware
Implementation Effort Estimation

Rasmus Abildgren∗, Jean-Philippe Diguet†, Guy Gogniat†, Peter Koch‡, and Yannick Le Moullec‡

∗CISS †European University of Brittany ‡CSDR
Aalborg University, UBS – CNRS, Lab-STICC Aalborg University,

Selma Lagerlöfs Vej 300, Centre de recherche BP 92116 Fredriks Bajers Vej 7,
DK-9220 Aalborg East, Denmark F-56321 Lorient Cedex, France DK-9220 Aalborg East, Denmark

Abstract—This paper presents a structured method and under-
lying models for estimating the hardware implementation effort
of hard real-time constrained embedded systems. We propose
an optimization model which takes some of the most common
optimization techniques into account as well as the order in which
they should be applied. We suggest a set of two metrics used
to characterise the effects of optimisations: one expressing how
hard it is to reach an implementation satisfying the real-time
constraints for the implementation, and another one to reflects
how the distribution of parallelism in an algorithm influences the
impact of the optimisations. Experimental results do not show an
unambiguous result. However, for most algorithms our approach
enables the estimation of the hardware implementation effort of
hard real-time constrained applications.

Index Terms—real-time; hardware; implementation; effort;
FPGA

I. INTRODUCTION

The need for continuous innovation combined with growing
complexity, increased product release frequency, increasing
time-to-market pressure and fierce competition, make the task
of project managers working in the embedded systems industry
more and more challenging. For example, the 2009 Embedded
Market Study [1] reports that 63% of the projects were not
finished on schedule and that the average lateness is 4.4
months.

In this context, accurate development time estimates are
an essential tool which can make the difference between
success and failure. However, obtaining such estimates is not
a trivial task since development time depends on many factors,
including both technical (hardware and software e.g. prod-
ucts built upon new platforms, area/time/energy constraints),
human (e.g. skills, mood of the developers), and managerial
aspects.

Whereas methods and techniques are readily available for
estimating the development time of software executing on
GPPs [2], mainly for desktop applications, to the best of
our knowledge little efforts have been carried out in the
hardware domain. Working with a systematic approach for
estimating the development time for different projects requires
a certain maturity in the organisation. Many small and medium
sized enterprises (SMEs) usually do not have such priories,
although they would benefit from it. Many SMEs perform
”ad hoc” estimations (e.g. based on experience or intuition),

but in many cases these ad hoc approaches do not provide
accurate estimates, which in turn means delayed projects. This
work proposes a method and tools which offer a systematic
and structured approach for estimating more precisely the
implementation effort.

A. Our Prior Work

The work presented in this paper is part of a larger effort
aiming at improving this situation [3]. In this paper we
describe our contribution regarding the problem of estimating
the hardware implementation effort (in terms of development
time) for real-time constrained applications. This contribution
is an extension of what is summarized below.

In [3] it has been shown that every path in the algorithm(s)
that the designer must implement adds to the development time
and that the complexity of a design can be expressed by the
number of independent paths in the algorithm(s). It has also
shown that, when the experience of the designer is taken into
account, a relation between the number of independent paths
and development time exists and that it is possible to estimate
the hardware implementation effort (in terms of development
time) of applications.

However, in many cases the implementation can become
very challenging when (hard) real-time constraints need to
be fulfilled. Typically in such cases only a limited number
of “implementational tracks” lead to a (or sometimes the)
satisfying solution. This can be illustrated as in Fig. 1, where
only one implementation track (the thick red line) satisfying
the contraints. The idea on which this work builds upon is that
real-time constraints make the implementation more difficult
and that, in order to fulfill these constraints, designers need to
perform certain optimizations in a certain order. Identifying a
or the suitable track(s) adds to the overall development time
since extra efforts must be spent at evaluating and applying
the right combination (i.e. type and order) of optimization
techniques. In order to take these considerations into account,
we propose to complement and augment our prior work
with several extensions. These extensions are described in
Section I-B.

Solution space

D
e

si
g

n
 a

n
d

Im
p

le
m

e
n

ta
ti

o
n

Fig. 1. The task of designing and implementing an algorithm can be seen as
going from a specification to a solution. Typical more than one solution will
satisfy the same specification. However, when constraints are introduced, the
solution space narrows down and only a few or one “implementation tracks”
(depicted as the thick red line) will result in a satisfying solution.

B. Contributions

One major contributor to the overall development time is
the implementation effort. The contributions presented in this
paper are i) a method and ii) a set of underlying models
aiming at estimating the implementation effort, measured
in time, of real-time constrained embedded applications.
We propose an optimization model which takes some of
the most common optimization techniques into account
as well as the order in which they should be applied. An
essential contribution of this work is a set of two metrics
used to characterise the effects of optimisations. The first
one expressing how hard it is to reach an implementation
satisfying the real-time constraints for the implementation.
The second one reflects how the distribution of parallelism in
an algorithm influences the impact of the optimisations.

The remainder of the paper is organized as follows: section
II introduces related works. Section III details the proposed
methodology and section IV details the metric for the distri-
bution of the parallelism. Subsequently, section V presents and
discusses the experimental results obtained. Finally, section VI
concludes the paper.

II. STATE OF THE ART - EFFORT ESTIMATION

To the best of our knowledge, very few works address the
problem of estimating the hardware implementation effort of
hard real-time constrained applications. On the other hand,
there exist several approaches for estimating the software
implementation effort, some of them providing ideas and
directions for the hardware oriented ones. Thus, in this section
we start by reviewing the most relevant approaches for estimat-
ing the software implementation effort and proceed with the
few existing approaches for hardware implementation effort
estimation.

Some of the most known and used tools for estimating
the software implementation effort are the COCOMO project
[2], function point [4], and SPQR/20 [5]. They all build
upon the same concept: firstly, in order to quantify certain
properties of an algorithm, a measure or set of measures is
defined. Secondly, a model describing the relation between
the measure(s) and the implementation effort is derived.

The core idea in COCOMO (COnstructive COst MOdel)
[2] is that the effort mainly depends on the project size,
i.e., Effort = A · sizeb where A and b are adjustable
parameters which must be trained in order to reflects factors
such as manpower, experience of the developers, etc. The
remaining parameter in the equation, the size of a project,
can be measured by means of e.g. Lines of Codes (LOC);
however, this is subject to criticism and thus other measures
have been proposed like function point.

Function point [4] consists of two main stages: the first
stage consists in counting and classifying the function types
of the software: identified functions are weighted to reflect
their complexity, which in practice is left to the developers’s
perception. The second stage is the adjustment of the function
points based on 14 parameters which are tuned according to
the characteristics of the application and of its environment.
Subsequently, the function points are converted into a LOC
measure based on an implementation language-dependent fac-
tor, which in turn can be used as an implementation effort
estimation metric.

SPQR/20 (Software Productivity, Quality and Reliability
with regard to 20 influencing factors) has been proposed as a
less heuristic-oriented variant of function point; experimental
results [6] suggest that it can provide the same accuracy than
function point while being simpler to work with.

Publications dealing with the estimation of hardware im-
plementation effort are far less abundant than those dealing
with software. Considering the context of the present work,
interesting approaches include VHDL function point [7] and
cost models such as [8]. Several other publications such as [9]
compare actual hardware implementation efforts for different
design methodologies but do not provide any systematic
method to estimate those efforts.

VHDL function point, presented in [7], builds upon the
idea of function points analysis and is modified to work with
VHDL code. The approach consists in counting the number
of internal I/O signals and components, and classifying these
counts into levels. From there, a function point value related
to VHDL is extracted. Experimental results considering the
number of source lines in the LEON-1 processor project
yields predictions which are within 20% of the real size.
However, estimating the size does not always give an accurate
indication of the implementation difficulty, especially when
the application is subject to real-time constraints.

[8] introduces a cost model with the objective of un-
derstanding current Product Development Cycles (PDC) and
evaluating the impact of new technologies on these PDC. In
particular, the authors focus on cost and product development
time and propose a PDC known as One Pass to Production

(OPP) which takes both software and hardware aspects of
a complete system into consideration. Although promising,
their approach is very specific (they consider a FPGA-based
NOC backbone) and the numerous assumptions made by the
authors (e.g. regarding the number of required engineers)
make it challenging to see how their approach could be made
sufficiently generic to be applied to much more varied types
of applications.

We can safely conclude that there is currently a lack of
suitable and systematic methods and tools for estimating
the hardware implementation effort for real-time constrained
applications. In what follows we present our contribution to
improve this situation.

III. METHODOLOGY

In [3] it has been shown that the hardware implementation
effort can then be modelled as

Effort = A(η(Dev) · P (alg))b (1)

where η reflects the experience of the developer Dev, P (alg)
is the number of independent path in the algorithm alg, and
A and b are trim parameters.

Experimental results have shown that it is possible to
estimate the hardware implementation effort, expressed as the
development time, of applications and that the proposed model
is able to estimate the need implementation effort with a
confidence interval of 95%. However, this approach is not
specifically targeting real-time constrained applications and is
therefore not suitable for this type of application.

Since we in this work want to take hard real-time constraint
into account, we propose a method which adds a parameter
τ(tc) expressing the difficulty or hardness of reaching an
implementaion which meets the time constraint, tc. This
parameter we will call implementation hardness and therefore
the effort can be modeled as:

Effort = A(η(Dev) · P (alg) · τ(tc))b (2)

The underlying idea is that as far the execution time texec
is from tc the more difficult it will be to fullfil tc. Whenever
tc is not met, optimizations have to be performed. However,
modeling optimizations and their impact is not a trivial task for
a designer; therefore, in what follows, we propose a method
and a set of models which reflect the most common cases.

A. Real-Time Constraint

When optimizing the implementation to meet a real time
constraint, the optimization strategies can be many fold. For
a developer, the optimization strategy is very much appli-
cation dependent but also depends on his experience and
on his analytical thinking. Optimizations can fall into two
different domains; spatial and temporal. Optimizations in the
spatial domain include algorithmic parallelism exploitation on
multiple functional units. For the temporal domain, different
optimization techniques exist such as chaining and pipelining.

Parallelism

Chaining

Pipelining

Sequential

Fig. 2. The overall optimisation approach where the starting point usually
will be the sequential version of an algorithm. The developer freely chooses
in which order he/she performs the different optimisations strategies. For our
approach we constrain the optimisation strategy to follow the thick line.

Typically, the type of optimization to be performed in
the temporal domain is chosen depending on a) data/control
dependencies in the algorithm and b) the constraint type:

• Throughput (pipelining)
• Latency (chaining)
Both type of constraints can benefit from parallelism ex-

ploration. Usually when analyzing an algorithm, for e.g.
parallelism, the measure applied will indicate the potential
of exploiting the entire parallelism in the algorithm, as for
example with the measure γ [10]. Performing a straight
manual implementation of an algorithm will usually not result
in a complete exploitation of the parallelism. Either because it
is not necessary or because the designer has omitted optimiza-
tions which could have a significant impact on the exploitation
of the algorithm’s inherent parallelism.

An illustration of the overall optimisation approach is shown
in Fig. 2. The starting point will usually be a sequential version
of the algorithm. The developer chooses in which order he/she
performs one or several of the different optimisations strate-
gies. The order and types of strategies will vary from algorithm
to algorithm. To generalise our approach we constrain the op-
timisation strategy to follow the template denoted by the thick
line in Fig. 2. This limits the overall strategy to complete the
parallelism optimisation strategy before starting the chaining
strategy. We will not consider pipelining optimisations further
in this paper.

In order to guide the designer in the exploration of the
parallelism, this work considers a fully spatially parallelized
algorithm as an extreme. Similarly, a complete chained im-
plementation is also considered as extremes, these extremes
indicate the bounds of how much speedup can be obtained
when applying the respective type of optimization, without
rewriting the algorithm.

Furthermore, not knowing the exact strategy that a devel-
opment engineer is following, but knowing which options
he/she has, our hypothesis is that it is possible to estimate
the minimum number of optimizations required in order to

fulfill a real-time constraint. This, in turn, provides useful
information which can be converted into the implementation
hardness parameter, τ , of Eq. 2 for estimating the required
implementation effort.

It is therefore important to know how many optimizations
inside the different categories should be applied in order to
fulfill the time constraint, tc. The next section describes the
concept of estimating the execution time on basis of the
number of optimisations.

B. Optimisation Dependent Execution Time Estimation

exect

Sequential

ct

Parallel Parallel and
Chaining

Fig. 3. Relation between the number of applied optimisations (represented
by the small vertical lines) and the resulting execution time, texec , for sev-
eral optimisation strategies (parallelization and parallelization+chaining). The
reduction of the execution time gets smaller as the number of optimisations
increases for a certain strategy (represented by the spacing between the small
vertical lines). In order to arrive at an execution time equal to or smaller
than the time constraint, tc , several possible paths exist which depend on a
combination of different optimisation strategies and the number of applied
optimisations for each strategy.

Every optimisation yields a certain speed-up to the execu-
tion time. Fig 3 shows the execution time of an algorithm
with different numbers of optimisations for the different
optimisation categories. This is illustrated by the relation
between the number of applied optimisations (represented
by the small vertical lines) and the resulting execution time
(texec) for several optimisation strategies (parallelization and
parallelization+chaining).

The reduction (per optimisation) of the execution time gets
smaller as the number of optimisations increases for a certain
strategy. This is represented by the spacing between the small
vertical lines. In order to arrive at an execution time equal
to or smaller than the time constraint (tc) represented by the
dashed line, the designer can choose between several possible
paths. An optimization path is the number of optimizations
performed in the parallelization category followed by the
number of optimizations performed by chaining. The number

of optimisations in the different categories can vary since there
can be more than one path satisfying the time constraint.

Therefore, it is necessary to know an estimate of the exe-
cution time for different optimization paths. In the following
we describe how to estimate the execution time for the non-
optimized case and the three different optimisation cases:

1) Case 0: No optimization (sequential execution): The
most simple case is the sequential execution. To calculate the
estimate, texec , we use the following equation:

texec(0) = NOP
1

ˆfarch
(3)

where NOP denotes the number of operations in the sequen-
tial algorithm and 1

ˆfarch
the time for executing one operation.

In this work we assume that all operations can be considered
as atomic and therefore have the same execution time.

2) Case 1: Parallel optimization: The estimated execution
time, texec(NOOPAR), when applying a certain number of
parallelization optimisations, NOOPAR, can be expressed as

texec(NOOPAR) =
NOP

γimpl(NOOPAR)

1

ˆfarch
(4)

where γimpl(NOOPAR) expresses the degree of speed-up
obtained with NOOPAR number of optimisation. This can
be calculated as:

γimpl(NOOPAR) =
NOP

NOP −NOPopt(NOOPAR)
(5)

where NOPopt(NOOPAR) expresses the reduction in exe-
cuted operations in the critical path when NOOPAR, number
of optimizations, are applied. How to obtain this estimate is
further discussed in section III-C.

All in all this gives:

texec(NOOPAR) = (NOP −NOPopt(NOOPAR))
1

ˆfarch
(6)

3) Case 2: Chaining: Similarly, for chaining we can ex-
press the estimated execution time, texec(NOOChain), as:

texec(NOOChain) = (NOP −NOPopt(NOOChain))
1

ˆfarch
(7)

where NOOChain denotes the number of applied chaining
optimizations. Please note that, ˆfarch, the frequency of the
architecture will typically change when creating larger opera-
tors.

4) Case 3: Combined: Combining the parallelized and
chained cases will leave us with the following equations:

texec(NOOPAR, NOOChain) =(
NOP

γimpl(NOOPAR)
− NOPopt(NOOChain|NOOPAR)

ϕ(NOOPAR)−1

)
1

ˆfarch
(8)

where ϕ(NOOPAR) is a parallelism distribution measure
which takes the fact that a chaining optimisation in the parallel
context does not necessarily result in a reduction of the
execution time. We discuss this later in section IV.

C. Optimisation Impact Estimation

When implementing an algorithm containing loops, dif-
ferent loops have different numbers of iterations. Typically,
loops with larger numbers of iterations contribute more to
the execution time of the algorithm than loops with small
numbers of iterations. Optimizing an operation in a loop with
a large number of iterations yields a larger reduction of the
execution time. Assuming that the effort required to perform
an optimisation does not change with the number of iterations,
processing the loops with the largest number of iterations first,
pays a larger impact on the reduction of the execution time for
a given implementation effort. It is therefore essential to take
this into account when estimating the optimisation impact on
the execution time.

The real impact of an optimisation on algorithms that
include loops can not be known without deep inspection of
the algorithm; however, an approximation would be beneficial.
We therefore propose a measure approximating that. The
requirements for defining such a measure include that it
should reflect the number of executed operations compared
to the number of operations that need to be implemented. In
Fig. 4 a random algorithm containing loops is considered. The
figure shows the relation between the number of optimisations
and the corresponding reductions in the executed number of
operations. The optimisations are ordered according to their
impact on the execution time of the algorithm. The solid line
represents the real impact. The dashed line, the average and
the dotted line, a first order logarithmic based approximation.
The real line corresponds to the case where the optimisations
are fully prioritised according to their impact, the average line
corresponds to the mean impact of a random optimisation
strategy.

One interesting point in the graph in Fig 4 is the end point.
The number of operations which can be parallelized as well
as the number of operations which can be chained limit the
possible number of optimisations. We denote the maximum
number of optimisations for the parallel case as:

|NOOPAR|max = NOPimpl − CPimpl (9)

where NOPimpl represents the number of implemented op-
erations and CPimpl the number of implemented operations
which are present in the critical path. These numbers are
different from NOP and CP when loops are present since the
operations inside a loop are executed several times. Similarly
to the measure in Eq. 9 a measure, NOPopt(|NOOPAR|max),
for the maximum number of executed optimised operations can
be calculated. The ratio between these two measures reflects
the average impact of the loops present in the algorithm when
taking the parallelism into account. This will be the slope of
the average line in Fig. 4.

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

Number of Optimisations (NOO)

R
ed

uc
tio

n
of

 N
O

Ps
 [

N
O

P]

Real
Average
Approximation

Fig. 4. The figure shows the impact (in terms of reduction) of optimisations
in an algorithm with operations in different loops and also outside loops.
The operations are optimised following the order of their impact on the
execution time of the algorithm. The solid line represents the real impact. The
dashed line, the average and the dotted line, the approximated. The real line
corresponds to the case where the optimisations are fully prioritised according
to their impact, the average line corresponds to the mean impact of a random
optimisation strategy.

A similar approach is used for the chaining case except that
the maximum number of optimisations is calculated as:

|NOOChain|max (NOOPAR) = NOPimpl − P (NOOPAR)
(10)

where P (NOOPAR) denotes the number of paths in the
algorithm, which is further detailed in section IV.

It turns out to be difficult to obtain a good and stable first
order approximation of the impact of the loops in the algorithm
based on the limited number of data which we have available.
We have therefore decided to use the average as a measure
for the impact of an optimisation which can be calculated as:

NOPopt(NOOPAR) =
NOPopt(|NOOPAR|max)

|NOOPAR|max

NOOPAR

(11)
and

NOPopt(NOOChain|NOOPAR) =

NOPopt (|NOOChain|max (NOOPAR))

|NOOChain|max (NOOPAR)
NOOChain (12)

IV. METRICS

A. Metric of distribution of parallelism

When chaining operators, the impact on the execution time
depends on whether the optimisations are done in the critical
path or in other paths. For this work we expect that the
developer has carefully analysed the algorithm and is only
optimising where it is most feasible, i.e. in the critical path.

(a) Extreme 1 (b) Extreme 2 (c) Average

Fig. 5. Illustration of the distribution of the parallelism in the algorithm. Fig
5a and 5b shows the two extremes, with either the critical paths (grey) being
comparable to the other paths (denoted highly distributed case) or completely
unique (denoted narrow case). Fig 5c shows a more average case. All examples
have 15 nodes and a critical path of 5, which will give a speedup measure,
γ = 3. When operations get chained, the different cases lead to different
reductions of the critical path. This makes it difficult to predict the reduction
of the critical path per chaining optimisation. This calls for a metric indicating
the distribution of the parallelism.

However, chaining operations in the critical path can lead to
a situation where the path which was originally the critical one
is reduced, due to the optimisations, so another path becomes
the the longest one. Fig 5 shows three different examples,
all having 15 nodes and a critical path of 5, which gives a
speedup measure, γ = 3. Fig 5a shows an example where the
initial critical path (grey) has the same length as the two other
paths in the algorithm (highly distributed case). Chaining two
operations in the critical path will change the longest path
to one of the two others. Opposite to this, Fig 5b shows an
example where the initial critical path is significantly longer
(narrow case), which means that chaining operations in this
case will lead to a reduction of operations in the initial critical
path. In between, Fig 5c shows a more average example.

Knowing the graph would make it possible to derive the
exact reduction of the algorithm’s critical path with a specific
number of chaining optimisations. However, not knowing
the graph but only the average speedup, γ, the number of
operations and the length of the initial critical path makes it
challenging to predict this reduction.

In order to obtain a more sufficient estimate of the effect of
an average chaining optimisation, we propose a metric which
considers the distribution of the parallelism in the algorithm.

It is desirable that such a metric has the following proper-
ties: in case of a highly distributed parallelism (see Fig 5b),
i.e. many paths in the algorithm, the value of the metric should
converge towards one. In case the distribution is “narrow” (see
Fig 5a), i.e. the number of paths is equivalent to the speedup,
the metric should give a value close to zero.

Most graphs will not fall into the two extremes from
Fig 5, but will be more like the average case. In order to
obtain the metric of the the average contribution of chaining
optimisations, we propose a mechanism with which any graph
can be transformed and handled as a combination of the
two extremes. The transformation is illustrated in Fig 6. The
mechanism is as follows: keep the critical path fixed and
substitute the off critical paths (i.e. all paths excluding the
critical one) with paths having their average length.

Doing this transformation brings us to a simplified problem
where we first can handle chaining as the narrow distributed

M

Transform Average

CP

Real Simplified Model

Fig. 6. Every graph can be transformed into a graph which can be treated
as the two extremes of Fig 5. M denotes the length of the critical path which
is longer than the average of the off critical paths length.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

Optimisations

Im
pa

ct

Optimisation impact when chaining

φ
φ

avg

Fig. 7. This figure shows the relation between the number of optimisations
and the corresponding impact when performing chaining optimisations. The
solid line shows the impact when working with the transformed graph. In the
beginning every optimisation is performed in the critical path, where every
optimisation results in a reduction. When the average length of the off critical
path paths is reached, chaining optimisations need to be performed in every
path to induce a reduction. The dashed line denotes the average impact of the
chaining optimisations.

case, and second as the highly distributed case. It is given that
the impact of the chaining optimisation will always be better
or equal to this simplified model, with this number of paths.
An optimisation following this model is shown in Fig 7.

In order to handle that graph as the narrow distributed case,
it is important to know how large the difference between the
critical path and the off critical paths is. To do so we utilize
P (NOOPAR), the number of paths of the parallel-optimised
algorithm. The difference between the critical path and the
average of the off critical paths can then be calculated as:

M =

(
1− γ − 1

P (NOOPAR)− 1

)
CP (13)

when the critical path is changed so that the critical path has
the same length as the average of the off critical paths, the
scenario changes to the highly distribution extreme. The rest
of the chaining optimisations are handled as so.

Since most algorithms do not fall into one of the two
extremes, when estimating the impact of a certain number of

chaining optimisations the average measure is more represen-
tative than the measure obtained based on considering the two
extremes.

Furthermore, it can be shown that the real impact from
optimisation will be equal to or better than the average of
the simplified model1. Using such a measure will therefore
ensure that the estimates of the chaining optimisation impact
are not overestimated.

The measure for the impact of a chaining optimisation can
therefore be denoted by the following:

ϕ(NOOPAR) =

(
M

NOP
+

CP −M

NOP −M

)
(14)

With all these defined we are now ready to find the number
of optimisations need to fulfil the real-time constraint, and
define the metric expressing how hard it is to reach this im-
plementation. We call this metric for implementation hardness.

B. Implementation hardness

Knowing the maximal number of possible optimisations and
the minimum needed to meet the time constraint, the ratio
(Eq: 15) between these two indicates how much the imple-
mentation needs to be investigated. Using the analogy with
the implementation tracks, a number close to one indicates
that almost all possible optimisations in the algorithm need to
be considered, and only a very limited number of tracks will
lead to a solution. Finding these solutions will require a lot
of effort. On the other hand a number close to zero indicates
that few optimisations are required to meet the time constraint
and thus almost every implementation track will result in a
satisfying solution. Hereby less effort is probably needed.

τ(tc) =
|NOOPAR,Chain(tc)|min

|NOOPAR,Chain|max

(15)

Using τ(tc) in Eq. 2 we are now able to express the im-
plementation hardness, τ(tc), and thereby refine the estimated
implementation effort.

V. RESULTS

Similar to when we developed the implementation effort
estimation technique in [3], we will verify the proposed
improvement by first building a model on basis of the same
training data as in [3], and then validate the model with a set
of validation data, which is also the same as used earlier. By
doing so, we are able to first test if our considerations are valid
and tune the proposal, and still use the second set of real-life
data to evaluate whether it generalizes.

To summarize, the training data originates from two dif-
ferent application types that are both developed as academic
projects in universities in France. The training data has there-
fore not been produced specifically for this project, but is com-
parable to data from industrial projects. The first application
is composed of five different video processing algorithms that

1equal to or better than only applies when considering the lower integer
value of the achieved reduction, since no partial operators exist.

are able to track moving objects in a video sequence. The
second application is a cryptographic system, where we use
the hashing algorithms, MD5, AES and SHA-1, as well as a
combined crypto engine, which is also part of the system. The
developers for the training data have been a Ph.D. student and
M.Sc.EE. students, as can be seen in Table I.

The validation data originates from a local company, ETI
A/S, which is a Danish SME. The dataset contains algorithms
from a state-of-the-art network system and consists of Ethernet
applications implemented on FPGAs, as well as corresponding
testbeds. The system is a real-time system with hard time
constraints, and all algorithms were implemented as to meet
these constraints. The developers for the validation data had
some experience before starting the implementation as shown
in Table I. For more information about the data we would like
to point the reader to [3].

A. Training Data

Fig. 8 shows the training data where the uncorrected com-
plexity as defined by the number of linearly independent paths
(as defined in [3]) is plotted in relation to the needed effort. A
small update in the method of how to measure the independent
paths have been applied compared to [3]. This implies that we
now only measure the core of the algorithm, which is the part
going to be implemented on the FPGA, and do not include
small fragments of data formatting code. Taking these data
and applying the original experience transformation on the
data, results in the picture shown in Fig. 9. A least-squares fit
trend line can be extracted to form our model (Eq. 1):

Effort = A(η(Dev) · P (alg))b (16)

where the trim parameters A = 0.196 and b = 1.191. This is
depicted as the dash-dot-dash line.

In Fig 11, the new parameter τ(tc) taking the real-time
constraint into account is applied. The τ(tc) value for the
different algorithms is shown in the upper part of Table II.
This changes the complexity for the different algorithms a
little, and a new least-squares fit line of our model is depicted
with the dashed line. The trim parameters of our model (Eq. 2):

Effort = A(η(Dev) · P (alg) · τ(tc))b (17)

are now A = 0.209 and b = 1.181.
A comparison of the two models is shown in Table III,

where the model taking the real-time constraint into account
performs slightly better. However the result is not statistical
significant. However, we continue with the

B. Validation Data

We continuing by validating the correctness of the model
using the validation data. In Fig 11, the corrected validation
data are shown together with the model, which is depicted by
the dashed line, and a 95% confidence interval. Both the model
and confidence interval are extracted from the training data. It
is clear that most algorithms fit nicely with the proposed model
and are well within the confidence interval. The exceptions are

algorithm SS4 and SS5. In the next section we will discuss
this in details. The mean and variance of the prediction errors
are shown both with and without SS4 and SS5 in Table IV.

C. Discussion of result

Most of the algorithms fit nicely with the proposed model
and are well within the confidence interval. The improved
model indeed does perform better than the original model,
which had a mean error of 0.2 and a variance of 8. Taking
a closer look at Table II shows that for all the Ethernet
algorithms, except for SS3, we obtain an implementation
hardness value τ(tc) very close to one. This indicates that
the implementations have been very close to the maximum
achievable with the algorithm. This fits very well with the
knowledge that these algorithms are used in state of the art
high performance systems. However, the result for SS3 shows
that it should have been possible to choose a less optimised
solution and still meet the constraints, which would have
resulted in a reduction of the implementation time, at least
if the model holds for this algorithm.

An exception to these results are the SS4 and SS5 algo-
rithms, where the estimates do not fit the model. Looking at
table II again, we see that their implementation hardness value
is set to 1. This is an error value actually indicating that the
time constraint cannot be met with the current algorithm, and
an algorithm transformation is needed. This indicates that the
algorithm which is used for estimating the complexity of the
implementation and thereby the needed effort, will not be able
to fulfill the requirements, and an algorithm transformation
is probably needed. Not going into details with the two
algorithms, we can say that their final implementations involve
a lot of bit manipulation which is not easily reflected in the
initial C algorithm which is used for the measurement. A safe
conclusion is therefore that if the implementation hardness
factor indicates the need for algorithm transformation, the
result would hardly be covered by the proposed model.

Furthermore it is also important to stress that our set of
data originates from a single company with few developers.
So strictly speaking we can only conclude that this model can
be applied to the specific SME setup involved in the study and
partially to the academic environment studied. A large volume
and variety of experimental data for training and validation is
needed to generalise our model. Also, the model can be refined
with more parameters for more precise results.

VI. CONCLUSION

Accurate development time estimates are an essential tool
for project managers working in the embedded systems indus-
try. Obtaining such estimates is challenging and in particular
very few existing works can provide hardware implementation
effort estimates. In this paper we have presented our contribu-
tion to this topic, namely a systematic and structured approach
for estimating the hardware implementation effort of hard real-
time constrained applications.

The underlying idea off this work is that implementing a
system is more difficult when hard real-time constraints must

TABLE I
FACTS ABOUT THE DEVELOPERS. DEVELOPERS FOR TRAINING DATA

(TOP) AND VALIDATION DATA (BOTTOM)

Developer Education Years in the domain

Dev 1 Ph.D. stud. 0
Dev 2 Stud. (EE) 0
Dev 3 Stud. (EE) 0
Dev 4 Stud. (EE) 0

Dev 5 BSc.EE. 9
Dev 6 MSc.EE. 15
Dev 7 MSc.EE. 9
Dev 8 MSc.EE. 8
Dev 9 MSc.EE. 8

TABLE II
TRAINING DATA (TOP) AND VALIDATION DATA (BOTTOM). ALGORITHMS

ARE RELATED TO THE IMPLEMENTATION HARDNESS, τ(tc), THE

DEVELOPERS, AND THEIR EXPERIENCE AT THE GIVEN TIME. COMPLEXITY
IS NOT CORRECTED.

Algorithm Complexity τ(tc) Developer Dev. Exp.

T1 10 0.97 Dev 1 2
T2 24 0.99 Dev 1 10
T3 12 0.91 Dev 1 18
T4 14 0.96 Dev 2 1
T5 4 0.89 Dev 1 20

MD5 10 0.98 Dev 3 1
AES 10 0.99 Dev 4 8

SHA-1 27 0.98 Dev 4 14
Combined 59 0.99 Dev 4 14

SS1 25 0.99 Dev 6,7 150
SS2 35 0.98 Dev 5 150
SS3 17 0.26 Dev 5,6,7,8 150
SS4 50 1 Dev 6 6
SS5 29 1 Dev 7 3
SS6 25 0.99 Dev 5,6,7 3

Ethernet app 60 0.99 Dev 5,6,7,8,9 150
App 4 9 0.94 Dev 6 150

T1 T2

T3

T4

T5

MD5
AES

SHA-1

Combined

E
ff

or
t

[W
ee

ks
]

Complexity [Number of Paths]

Motion Tracking App
Cryptograpy Alg

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

22

Fig. 8. Relation between the implementation effort [number of weeks] and
the uncorrected complexity.

T1T2

T3

T4

T5

MD5
AES

SHA-1

Combined

E
ff

or
t

[W
ee

ks
]

Corrected Complexity [Number of Paths]

Motion Tracking App
Cryptograpy Alg

LS model fit - without τ(tc) correction

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

22

Fig. 9. Relation between the implementation effort [number of weeks] and
the complexity corrected according to the designers experience model.

T1

T4

T5

T2

T3

MD5
AES

SHA-1

Combined

E
ff

or
t

[W
ee

ks
]

Corrected Complexity [Number of Paths]

Motion Tracking App
Cryptograpy Alg

LS Model fit without τ(tc)

LS Model fit with τ(tc)

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

22

Fig. 10. Relation between the implementation effort [number of weeks] and
the complexity corrected according to the designers experience model and the
hardness of meeting the real-time constraint.

TABLE III
COMPARISON OF THE DEVELOPMENT TIME AND ESTIMATED

DEVELOPMENT TIME FOR THE TWO MODELS MEASURED IN WEEKS.

Algorithm Original Model Error New Model Error

T1 0.67 2.19
T2 1.38 3.29
T3 -0.82 -1.56
T4 -2.96 -4.45
T5 -1.53 -3.14

MD5 0.09 0.51
AES 2.57 6.65

SHA-1 2.10 5.28
Combined -1.40 -2.83

Mean (Variance): 1.50 (3.39) 1.42 (3.07)

App4

Ethernet

SS1

SS2

SS3

SS4

SS5

SS6

E
ff

or
t

[W
ee

ks
]

Corrected Complexity [Number of Paths]

95% Conf. Int.

LS Model fit with τ(tc)

Ethernet App

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

22

Fig. 11. Validation data plot: relation between implementation effort [number
of weeks] and complexity, corrected according to the designers experience
model and the hardness of meeting the real-time constraint.

be fulfilled since designers have to identify a or the suitable
implementational track(s) that lead to a satisfying solution. We
have proposed an optimization model which takes some of the
most common optimization techniques into account as well as
the order in which they are applied.

In particular we have suggested a set of two metrics which
are used to characterise the effects of optimisations. The
first one, the implementation hardness metric, reflects how
hard it is to reach an implementation satisfying the real-time
constraints for the application. The second one, the parallelism
distribution metric, reflects how the distribution of parallelism
in an algorithm influences the impact of the optimisations.

The experimental results is not unambiguous: for the model
the major improvement of the accuracy comes from refining
the way the complexity of training data is measured compared
to our prior work. A small and not statistical significant
improvement comes applying the implementation hardness
measure. When validating the model with the validation data,

TABLE IV
COMPARISON OF THE DEVELOPMENT TIME AND PREDICTED

DEVELOPMENT TIME MEASURED IN WEEKS.

Algorithm Estimation Error

SS1 -0.14
SS2 0.91
SS3 2.71
SS4 -9.64
SS5 -8.42
SS6 0.19
Ethernet app 0.90
App 4 0.96

Mean (Variance): -1.56 (22.02)
Mean without SS4 and SS5 (Variance): 0.92 (0.98)

most of the data approve the model, and fit with it very
well. A mean error of 0.92 week (variance 0.98) is achieved,
when not considering two outlying data points for which our
implementation hardness measure indicate that the time con-
straint for these algorithms can not me met. Strong algorithm
transformation is probably need here and safe conclusion will
therefore be that the proposed model will hardly cover these
cases.

In order to strengthen the result this work need to be
evaluated with more cases. The work would also benefit
from making room for other optimisation strategies such as
pipelining.

REFERENCES

[1] R. Nass, D. Blaza, and M. Barr, “2009 embedded market study,”
http://www.techonline.com/learning/livewebinar/216500641.

[2] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. Reifer, and B. Steece, Software Cost
Estimation with COCOMO II. Prentice Hall, 2000.

[3] R. Abildgren, J. Philippe Diguet, P. Bomel, G. Gogniat, P. Koch, and
Y. Le Moullec, “A priori implementation effort estimation for hardware
design based on independent path analysis,” EURASIP Journal on
Embedded Systems, September 2008.

[4] A. J. Albrecht, “Measuring application development productivity,” in
Proc. IBM Applications Development Symp., 1979.

[5] T. Jones, Programming Productivity. New York: McGraw–Hill, 1986.
[6] D. Jeffery, G. Low, and M. Barnes, “A comparison of function point

counting techniques,” Software Engineering, IEEE Transactions on,
vol. 19, no. 5, pp. 529–532, May 1993.

[7] W. Fornaciari, F. Salice, U. Bondi, and E. Magini, “Development
cost and size estimation starting from high-level specifications,” in
Proceedings of the ninth international symposium on Hardware/software
codesign, 2001, pp. 86–91.

[8] A. Agarwal and R. Shankar, “Cost feasibility analysis for embedded
system development and the impact of various methodologies on product
development cycle,” Florida Atlantic University, Tech. Rep., 2008.

[9] L. Piga and S. Rigo, “Comparing rtl and high-level synthesis methodolo-
gies in the design of a theora video decoder ip core,” in Programmable
Logic, 2009. SPL. 5th Southern Conference on, 2009.

[10] Y. Le Moullec, N. B. Amor, J.-P. Diguet, M. Abid, and J.-L. Philippe,
“Multi-granularity metrics for the era of strongly personalized SOCs,” in
Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF004c0061007300650072007400720079006b002e0064006b00200041002f0053002020130020005600e6006c0067002000640065006e006e00650020006f0070007300e60074006e0069006e0067002000740069006c002000700072006f00640075006b00740069006f006e002000610066002000480069006700680052006500730020005000440046002700650072002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 600
 /LineArtTextResolution 2400
 /PresetName (GWG_2400)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.284 858.898]
>> setpagedevice

