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1. INTRODUCTION

Offshore structures of all types are generally subjected to cyclic loading from wind, current earth-
quakes and waves acting simultaneously, which cause time-varying stresses in the structure. The
environmental quantities are of a random nature and are more or less correlated to each other
through the generating and driving mechanism. Waves and earthquakes are generally considered
to be the most important sources of the structural excitations. However, earthquake loads are only
taken into account in the analysis of offshore structures close to or in tectonic offshore fields. For
fixed offshore structures in deep water environments wind loads represent a contribution of about
5 % to the environmental loading [1]. Current loads are mostly considered to be unimportant in
the dynamic analysis of offshore structures, because their frequencies are not sufficient to excite the
structures. The reliability calculation of offshore structures is a difficult task due to the random
nature of the loading, and also due to insufficient information of structural failure under these
conditions. A stochastic assessment of the reliability analysis of structures is therefore inevitable.
Dynamic loads, such as wave loads, produce stress fluctuations in the structural members and
joints and are the primary cause of fatigue damages. A fatigue analysis of offshore structures
can be described in general terms as a calculation procedure, starting from the waves and ending
with a fatigue damage occurring in the material or in the joints. The links between the waves
and the damage are formed by mathematical models for the wave forces, the structural behaviour
and the material behaviour. I view of the stochastic and dynamic character of the waves it is an
obvious choice to apply spectral fatigue analysis methods to the fatigue problem. In this paper, a
stochastic reliability assessment for jacket type offshore structures subjected to wave loads in deep
water environments is outlined. In the reliability assessment, structural and loading uncertainties
are taken into account by means of some stochastic variables. To estimate statistical measures of
structural stress variations the modal spectral analysis method is applied. .

The analysis is divided into four steps:

I  Description of the sea state

a) short-term model

b) long-term model
II Description of the wave loading
IIT Structural analysis

IV Fatigue analysis




2. DESCRIPTION OF THE SEA STATE

Short-term model:
The observed sea elevation at the fixed location 7 at the time t, n(7,t), can be considered as a

realization of non-stationary stochastic process, whose characteristic parameters vary slowly with
time. Further, we assumed that for short-term periods (a few hours) the sea surface n(7,t) can
be considered as a realization of a stationary stochastic process. This process is assumed to be a
zero-mean ergodic Gaussian process. The cross-spectral density of the sea surface at the points n
and m (with spatial coordinates (,,Yyn) and (Zm,Tm), respectively) can be written as:

Snnnm (W) = Syn(w) /0 $(8) exp(—er(w)(Azcosd + Aysind))do (1)

where e = /=1, AT = (q — Tm) » Ay = (yn — Ym) and & is the wave number, defined as:

w? = k g tanh(xd) . w>0.0 g k> 0.0 (2)

Serveral analytical expressions have been suggested for the spreading function %(#). Generally, a
cosine function is used:

b(8) = { (I)( cos®™(8 — 6) -3<(6-6)<3% ()

elsewhere

Where 8 denotes the average direction of wave propagation and K is a normalization factor defined
so that the spreading function between —Z and 7 is equal to one:

1 T(n+1) (@)

K=\/F T(n+3)

where T is the Gamma function and n is a parameter defining the width of the distribution. For
the limiting case n = 0 eq.(3) approaches the Dirac delta function corresponding to long-crested
waves.

Here, the JONSWAP spectrum is adopted as a reasonable model of the sea surface, Sy,. This
spectrum reads [6]:

— 5 w —4 & 1w _ 0'2
Snle) = agubeap(=3( )y A e
p

where

w is the frequency (rad/sec)

a  is the equlibrium range parameter

g is the acceleration of gravity

wp is the spectral peak (= 27/T} )

~  is the spectral peak parameter

o is the spectral peak width parameter (here taken as 0.08)

Long-term model:
As mentioned earlier, it is assumed that the sea surface elevation at a fixed location for stort-term

periods can be accurately modelled by a zero-mean ergodic Gaussian process. This process i
completely characterized by the frequency spectrum Sp,(w) which, for a given average directior

of wave propagation 8, can be described by two parameters, namely by the significant wave heigh



H, and the spectral peak periods T,. The long-term probability distribution of the sea state is

then given as a joint distribution of 6,H, and Ty, Py 1.3 (h,t,8). It is not possible to establish
this distribution theoretically. The distribution has to be estimated from wave observations in the
ocean area concerned or derived applying hidcasting models, i.e. the chosen analytical model has
to be fitted in the best possible way to the data.

In most wave observations up till now no information of the mean direction of propagagion 0 has
been included. If it is assumed that the joint distribution of H, and T, is independent of 6, the
joint distribution py 13 (h,t,0) can be written as:

Py, 1.5 (ht,0) = pr, (,t) P5 (6) ®)

For our purpose the probability density function pg,T, (k,t) is conveniently written as:
pu,1, (hyt) = py 11, (t1R) po,(R) (7)

where pg, (h) is the marginal probability density function for H, and pr,|n, (t|R) is the conditional
probability density function for T, given H,. pg, (h) and pr,|n, (t|h) are fitted to the observations

separately. The numerical values for py,7, (h,t) are obtained by means of eq.(7). Here pm,(h) is
modelled by log-normal distribution for H, <v'and by Weibull distribution for H, < v, i.e.

—(inh—pm,)?
\/2_7317,;,); ezp( nzag;:H ) ) h<wv
PH, = én . (8)
%(%) ea:p(—%) p>0,6>0,h>v

where pg. and o2, are the mean and variance of the variable In (H,), respectively, and where
HH, H,

continuity is required for py, (k) and Py, (k) at h=v. The conditional distribution of T, given H,
is approximated by the log-normal distribution, i.e.

pr,|H,(th) = . 65'3P(—(lnt ~ uTP)z) (9)
pIHo V2mor,t 20'%1},

where p7, and a%wp are the mean and variance of the variable In (T} ), respectively.

The marginal probability density function py(6#) will divide the circle into a certain number of
sectors and associate each sector with a point probability pg(fk),k = 1,...,n where 6 is the
midpoint of sector no. k and n is the number of sectors.

3. DESCRIPTION OF THE WAVE LOADING

In chapter 2 the statistical nature of the waves was dealt with. Now the consequential loading on
a structural element is considered. It is well known that the force on a vertically placed circular
cylinder subjected to wave action consists of a drag as well as an inertia component. It is assumed
that Morison’s equation can be applied to a cyndrical member oriented in a random manner. The
tﬁtal wave force per unit length of cylinder of the diameter D at the position 7, = (z,,Y,,2,) at
the time ¢ is:

_ fre(Tor)] _ _
fn(Foat) = fny(Foat) = fapt+ far (10)
fnz(To,1)

where




TnD = KD lan(FO’t)! U'Tﬂ(Fovt)

far = K7 Eﬂ(Fo’t)
KD =1/2CD pD
K; =1/4C;’M71',0D2

u(7,,t) is the horizontal water particle velocity at the position 7, at the time .
u(7,,t) is the horizontal water particle acceleration at the position 7, at the time ¢.

z,y,z is the global coordinate system.

Cp is the drag coefficient.
Cum is the inertia coefficient.
p is the density of water.

and where the subscript n refers to the normal direction of the cylinder.

The non-linear drag term f,p in eq.(10) makes the computations for correlations and spectral
densities extremely difficult and intractable, and therefore, a recourse to linearization of the drag
term in eq.(10) is made. The "minimum square error linearization method” [9] is used here. The

linearized version of the drag term f,p becomes :

_ ;T ln l12 l13 t.f""'
Foo= KpLan(Fot) = Kp |y L Lo | |tny (11)
lat laz lss i‘nz

0y

where L is the linearization coefficient matrix which is given in appendix A.
Eq.(11) can now be written as: ‘

_ fﬂI(Foﬂt) = — -
fn(Fo,t) = fny(Fovt) = KplL 7:571(7:0’75) + Kfﬁn(Fovt) (12)
fnz(Fovt)

The normal vectors %, and %n in eq.(12) can be expressed in terms of a unit vector ¢ = (eowey, C2)
along the cylinder axis as follows (see Appendix A):

in = ex (T x8)=Cu
i, = ex(@®x8)=Ca (13)
where
_ (1—¢2) —czey €€ o
C = (1-c) e | = [{Ch €3, L]
sym (1-¢c2
_ Uz B Uz
u = |uy g U = |ty
Ty Gy
Now eq.(12) can be rewritten as:
— fnz(Fo,t) —— . = e
F (Fort) = | fay(Tot) | = Kp L Cu(Fy,t) + K1 C U(T,,t) (14

fnZ(FOVt)



Two points in the wave fleld are considered, i.e. point [ with the coordinates 71 = (z,y1, 21) and
point m with the coordinates 7, = (m, Ym,2zm). | denotes a circular cylindrical element L with the
diameter Dy, and the unit vector ¢, = (¢;,,¢y,, ;) along the cylinder axis and point m denotes
a circular cylindrical element M with the diameter Djs and the unit vector Car = (€24, Cyary Cang)
along the cylinder axis. The cross-covariance function for the various combinations of wave force

components at [ and m can now be expressed as a function of the covariance functions of % and

ti. The cross-spectral densities between various components can be found by deriving the Fourier
transforms of the corresponding cross-covarince functions. The cross-spectral density between the
forces fri and fhim becomes (subscripts nil and njm (¢, j = z,y, z) denote the force perpendicular
to the elements in the directions 7 and j at the points [ and m ):

Sfit frim @) = KDy KDy [({Bi}; {Bm} ;)] [Suvim]
+ Kp, K [({Bi}; {Cm};)] [Sisiirn]
+ K1, Kpy[({CL}; {Bm};)] [Sarinm]
+ K1, K, [({Cr}; {Cm}))] [Susinn] (15)
where _ _ . _
[{Bi}, {Bi}, {Bi},] = Li
[{Bm}, {Bm}, {Bm}.] =

Qll

r = [{C1}, {C1}, {CL},] =

i

Qll

. . _ (l—ch) T T
M = [{Cu}, {Cum}, {Cu}.] = (1=chy) —CymCon

sym. (1-¢%,)

; and fm are the linearization coefficient matrices for point [ and point m, respectively.

]

[ Siiia,, (@) Sy, (@) Sigi.,, (W)
[Sirim] = | Siy i, (W) Sigiy,, (@) Siy i, (@)

| Sisyiie, W) Sigiy, (W) Sis i, (W)

Sﬁz,uzm(w) Su:,u,,m(w) Suz,uzm(w)
[Siri] = | Sy iz, (@) Siy iy, W) Siy, ., (W)
_Sﬁz,uzm( ) uz,u,,m(w) Suz,uzm(w)
Sigpien, (@) Siziy, (@) Siga.,, (W)
[Sirin] = | Sy ie, (@) Siyay, (W) Siy ., (@)
| Sisjie,, (W) Siay,, (W) Sa, ., (@) ]

Sig iz, (W) Sis iy, (@) Sig., (W)]
[Sijim] = | Sy, ie, (W) S (w)  Siy, ., (W)

ﬁﬂl ﬁﬂm
T, (w) S, i, (@) ]

u,luym




The brackets [...][...] in eq.(15), and later in eq.(18), are not matrix multiplications in the con-
ventional sense, they are used here only to denote a row-to-column multiplication. After one
row-to-column multiplication a sum is made and added to the sum of the second row-to-column
multiplication and so on, so that the final result is only a single term. The cross-spectral densi-
ties of the water particle velocity [Si,4,,] may be expressed in terms of the one-dimensional wave

spectral density Spp(w) by using eq.(1) as, [2]:

[Sii] = Sqn(w) /9 WEA(w, 21, zm ) (B)exp(—er(w)(Az cosb + Ay sind))df - (16)
where _ _ T
A(w’ 2l Zm) = A(E(w), ZI)A (E(w)s Zm)
T 1 c?sg cos:(n(w)z)
F0) =GR | bt
* denotes complex conjugated

e =v-1

d is the water depth

Az =1z;— :cm

Ay =Y~ Ym

k(w) is the wave number, defined in eq.(7)

() is the spreading function, defined in eq.(19)

The z-coordinates are measured from the bottom positive upwards.

The cross-spectral densities of water particle accelerations [Si,,.], acceleration and velocity [Sa, i
and velocity and acceleration [Sﬁ,ﬁmfcan be obtained using the properties of the derived processes

This gives:
[St13m] = @ [Siim]
(17
[Sivim] = —[Surin] = & [Siyiin]
Applying eq.(17), eq.(15) can be rewritten as:
Stonfnim(@) = KDy, Kpy({Bi};{Bn};) +w*Kr, K1, ({CL}:{Cm};)
+ ew(Kp, Ky ({Bi); {Cu};) — K1, Ky ({C1}; {Bm})))] [Sivim] (18

4. STRUCTURAL ANALYSIS

It is assumed that the structure can be modelled as a space frame of three-dimensional bear
elements connected by nodal points, where each structural member in the structure has one c
more elements. If the structural system is modelled by a linear system and by a finite number ¢
degrees of freedom then the dynamic equations may written as:

i+Kz=F (1¢

Qll

T+

S|



is the displacement vector

is the damping matrix

where

T

M is the mass matrix
C

K is the stiffness matrix
F

is the load vector which varies with time

The matrix equation (19) represents a finite number of coupled differential equations. In this paper
it is chosen to use a "modal analysis” to transform the coupled system into an uncoupled system.

The uncoupled system becomes:
4+ 2jwid; +wie = fi (20)

where g; is the modal coordinates , (; is the damping ratio and wj; is the j th patural frequency.
The stresses 3 at internal points in the structure may be found as:

q (21

Nl

3 =

where the components Tij in the matrix T indicate the stress at point 7 due to displacement in
mode j, and 7 is the solution of eq.(20). The cross-spectral density of the stresses at points k and
| may be written as (see eq.(21)):

Sorar@) =Y > TeiTijSqiq; (W) (22a)

=1 j=1
where
Sqiq; (W) = Hy, 1, (W) Hy; 5; (@) 55,5, (w) (220)
Hyp(w) = L (22¢)
% fi\®) = w? — w? + 2eCiww; g

Srp W) =Y. ¢irdisSrF, (W) (22d)

r=1 s=1

and where n is the number of mode shapes, * denotes the complex conjugate, € = v—1, ¢ir is the
i,7) element in the mode shape matrix and m is the number of degrees of freedom.

he cross-spectral density of the load at the points r and s, SF.F,, may be found as shown in
chapter 3 (see eq.(18)).

For the fatigue analysis in chapter 5 the cross-spectral density of the stresses as a whole is not
interesting. However, three characteristics, namely the area m,, the second moment m, and the
fourth moment m, of the auto-spectral density (i.e. k =1[in eq.(22a)) are of interest. The area of

the auto-spectral density can be derived as:

mo(o) = (o) = [ 7 Suuay ()i (23)




and the second and the fourth moment of the auto-spectral density as:

mo(sn) = | " Sy () (24)

ma(se) = [ " A8 g0 ()0 ()

5. FATIGUE ANALYSIS

In chapter 4 it was shown how the spectral densities of the stresses in a given hot spot in the
structure can be estimated. Here fatigue damage is defined as a result of cumulative damage

because of stress fluctuations (the stress amplitude).

For a short-term period the sea state is assumed to be a zero-mean ergodic Gaussian process,
see chapter 2. By using the linearized version of the Morison equation (see chapter 3), and by
modelling the structural system linearly (see chapter 4) the stress response S becomes a zero-mean
ergodic Gaussian process too.

A number of cycles counting algoritms have been proposed, see i.e. [20]. Two of the counting
methods, namely the range count method (RC) and the rainflow count method (RFC) are generally
recognized as the method which produces the best results, and they will be included here. Both
methods give the same result for an ideal narrow-band stress history, but for wide-banded stress
history the result can be very different.

In section 5.1 it will be shown how the probability of fatigue failure can be estimated by using
Miner’s rule and the so-called S-N approach.

5.1 Reliability Analysis

The relationship between the stress fluctuation and the damage can be found by using Miner’s
rule, witch states in essence that every stress cycle i results in the degree of damage D; equal to

1 \
D; = N (26,

where N; is the number of cycles to failure, if the same stress cycle is repeated over and over again
The most commonly used model to determine N; is the so-called S — N approach [14]:

25\ "™ ,
N; = (?> (27

where S; is the stress amplitude and K and m are constants which can be determined by constant:
amplitude test. To allow for the scatter in the number of cycles to fatigue and to allow for a mode
uncertainty by using Miner’s rule, K and m are modelled as random variables. To allow for the
uncertainty in the estimation of the stress amplitude a new random variable B will be introducec

into eq.(27) as:

25;B\ "™
N; = (—K—> (28

Under constant amplitude loading failure occurs by definition when the total degree of damag;
Dio: = Y D; attains the value Dyqit equal to 1. However, with variable-amplitude random loadin;



the influences due to the load history may cause failure at the value D,;; different from 1. To take
into account the uncertainty of the failure defintion, Dy,;; will be modelled as a random variable.

In fatigue analysis of jackets, the analysis will primarily focus on the welded joint between the
members. When considering a fatigue failure in tubular joints the geometry of the whole nodal point
becomes very important, since stress concentrations will occur due to the non-uniform stiffness of
the chord wall and the brace. The locations, or points at which the highest stress occurs, are called
hot spots. In welded joints two different hot spots for each brace in the joint are found, one at the
weld toe on the brace side, the other on the chord side, i.e. for K-joints there are four hot spots.
The stress concentration factor (SCF) is defined as the ratio of the hot spot stress o,,; to the

nominal stress o in the brace, i.e.

SCF = Imez (29)
oN

The SCF’s for-a given joint geometry and loads can be estimated either by full-scale tests or
by a FEM-analysis. Here the SCF’s are estimated by using some empirical formulas suggested
by Kuang, [12], [13], which are based on thin shell FEM-analysis of different joint-geometry and
loads. Two modes of fatigue failure, called failure elements, are defined to occur for each brace
in a tubular joint, cracking at the hot spot toe of the weld jointing the brace to the chord (brace
fatigue) and cracking at the hot spot in the wall of the chord itself (punching shear fatigue). The
locations in the chord/brace intersection, where the hot spot stresses occur, depend on the external
loads. In [12] it is recommended to check the 8 points along the brace/chord intersection to locate
the hot spots, see figure 1.

——— chord

3 o
7 Gs—_ brace

Figure 1. Points in the brace/chord intersection where the stress concentrations are checked.

For a given sea state, the mean fatigue damage of a failure element under consideration per stress
amplitude, D; can be determined by substituting eq.(26) and eq.(28) as:

D; = /000 D;(s) ps(s)ds (30)

where ps(s) is the distribution function of the stress amplitudes, see section 5.1.

The total damage in the failure element, D;,; is obtained by summing up the mean damage D;
over the service life of the structure, taking account of the long-term distribution of the sea states
(see chapter 2):

Tr -
By = / /H | /T Teay DA ) e ) pi () ) di dh (31)

where pg,(h) is the marginal probability density function of the significant wave height H,,
PT,| H.(tlhB is the conditional probability density function of the wave spectral peak periods Ty,
given H,, p5(0) is the probability density function of the mean direction of the wave propagation,

8, Ty, is the total service life and Trmp is mean period of a stress cycle within the sea state.
The fatigue failure mode for the failure element is described by a safety margin M, defined as:

M=Dfa.il - Dtot (32)




and the probability of failure Py is
Py =P(M £0) (33)

For a narrow-banded stress process ps(s) becomes Rayleigh distributed. D; can be written as:
= * 2s\™ s 52
.D,' = B™ | — —_— S (3
J (K) ot ( z> i
_pmnIs ™ m
= B" 2= (2\/5) DL+ 3) (34)

where T'(--+) is the gamma function.

And the total degree of damage Dy,¢ can be written as:

_ TpB™ o%(t,h,6) L m
Dtot—/E/‘prTmp(t’h’g) o (2v2) T+ )

pr,|#, (k) pu,(h) py dt dhdb  (35)
where Tr,p can be estimated as:
= Mo
Tmp = 2 iy m2 (36]

1

where m, and m, are the area and the second moment of the auto-spectral density of the stres:
spectra in the faifure element.

In general, the safety margin M, as in eq.(32), is a function of the number of correlated non:
normally distributed random variables X = (Xi,...,X,) called basic variables (where X =
(Dfeit, B,m, K)), ie. M = Ff(X). f(T) is called the failure function defined in such a waj
that it divides the n-dimensional basic variables space w into two regions, namely a safe regior
w,, where f(Z) > 0, and an unsafe region wy, where f(Z) £ 0. By a suitable transformatior
the correlated and non-normally distributed variables X are transformed into uncorrelated anc
standardized normally distributed variables Z. By this transformation the failure surface is giver
by f(Z) = 0 in the corresponding z-space. In the n-dimensional z-space the reliability index f i
defined as the shortest distance from the origin to the failure surface, i.e.

f=mip (Z> o

=1

It can be shown that the probability of failure Py in eq.(33) can be determined with good approx
imation from

Ps =~ ®(—f) (38

where ®(-) is the standard normal distribution function.

Until now a probability of failure for one failure element has been considered. When the probabilit;
of fatigue failure of the whole structure is considered the probabilities of failure for every failur
clement must be evaluated. If the largest of these probabilities of failure is used as a measure c
the probability of fatigue failure of the structure this is called reliability modelling at level 0. :
more satisfactory estimate of the probability of fatigue failure of the structure Pf is based on



systems approach (see [15]). This is called reliability modelling at level 1. The systems probability
of fatigue failure can be estimated as:

P}~ 1-8,(B,7) | (39)

where n is the number of failure elements in the structure, ®, is the n-dimensional standardized
normal distribution function, 8 (= f,...,Bs) the reliability indices for the failure elements and

p the correlation matrix for the safety margins. In real structures the number of failure elements
n is very often very large, but usually a large number of failure elements is not significant for
the systems reliability which means that evaluation of the systems probability of fatigue failure in
eq.(39) becomes much less complicated.

6. APPLICATION

In the above chapters a method for estimating the probability of fatigue failure is briefly described.
To make this method applicable a new computer package "SAOFF” (Stochastic Analysis Of Fatigue
Failure) has been made. The program package which is written in FORTRAN, consists of five
calculation blocks, namely:

1) STIFFMAS :
This program reads the structural data and creates the global stiffness and mass matrices for

the structure.

2) EIGEN
This program evaluates the n smallest eigenfrequencies and corresponding eigenvectors (mode
shapes), where n is defined by the user.

3) MODAL
This program is the most complex and time-consuming part of the whole program package.
Here the 0-,2- and 4-moments of the cross-spectral density of the modal displacements are
evaluated, namely (see chapters 3 and 4 for more details):

0-moment:
/ N Sgiq; (w)dw
0
2-moment:
J e

4-moment:

/ w* Sgiq; (w)dw
0

4) SIGMA
In this program the auto-spectral densities and their moments for the hot spot stresses in joints
defined by the user are evaluated. (Here the SCF's are taken into account in the calculation

of Tk,' and Tkj).
5) RELIA

In this program the probability of fatigue failure of failure elements in the joints (which was
defined in SIGMA) is estimated. Here the user can choose between 3 different estimates of
the distribution of the stress amplitudes pg(s), namely :

1) Rayleigh distribution (narrow-banded approach)




9) Distribution defined by the RFC-method (simulation)
3) Distribution defined by the RC-method (analytical estimation or simulation)

And the systems probability of fatigue failure is estimated by using Hohenbichler approxima-
tion (see chapter 5 for more details)

6.1 Example

Consider the model of a steel jacket offshore platform in figure 2. All structural elements are
tubular beam glements made of steel with modulus of elasticity E = 0.205-10° kN/m? and density
= 7800kg/m”".

%he cross-gs,(/ectional diameters and thickness are shown in table 1. The foundation is modelled as
elastic springs with horizontal stiffness equal to 1.2 105kN/m, vertical stiffness equal to 10° kN/m
and rotational stiffness equal to 1.2 - 10%kNm/rad. The total mass of the deck is assumed to be
4.8-10%kg. The service life of the structure is taken as 25 years. B

The calculation is carried out by considering 1 direction of wave propagation 6, namely 6, =0°
(z-direction), with the probability P, = 1.0 where 8 is defined in figure 2. Long crested waves

are assumed (n = 0 in eq.(3)).

Figure 2. Steel jacket offshore platform.

The parameter in the long-term probability density function of the significant wave height H,
pa,(R), and conditional probability density function of the wave spectral peak periods T}, give
H,, pr,|H,(t|h) are estimated by fitting observations from the northern part of the North Sea i
th?i peri(oc;)1980-1983 (8222 observations), see [19] for more details. The parameters are (see eq.(&
and eq.(9)):

o}, = 0.376, pg, = 0.836, v =3.27 m, p = 2.822, £ =1.547
ut, = 1.59 + 0.42 In(h + 2)
o2 =0.005 + 0.85 ezp (—0.13 A1)



Members Diameter (m) Thickness (m)

deck legs 2.00 0.050
jacket legs 1.20 0.016
braces (vertical plane) 1.20 0.016
braces (horizontal plane):

level 4+5 0.80 0.008

level -10 1.20 0.014

level -30 1.20 0.014

level -30 (diagonal) 1.20 0.016

level -50 1.20 0.014

Table 1. Cross-sectional data for structural elements.

The total damage calculation for each failure element is carried out by considering 15 sea states,
see table 2.

Hy (m) PH, Ty (sec) DT, |H,

5.8 0.366318

0.8 0.30924 7.9 0.442132
11.5 0.191550

7.1 0.306097

2.5 ) 0.42741 9.2 0.447116
12.6 0.246787

8.9 0.331933

4.3 0.22634 10.6 0.439235
i 14.0 0.228832

11.2 0.293697

7.9 0.03621 12.8 0.432785
14.9 0.273518

13.6 0.312393

12.0 0.00080 14.9 0.452909
16.7 0.234698

Table 2. The sea states under consideration and their probabilities.

In figure 2 two joints in the structure are considered, namely joints I and J (two T K-joints
which give 12 failure elements). Detailed data and numbering of failure elements for the joints
under consideration are shown in figure 3. The location of failure elements in the chord/brace
intersection is determined by checking 8 points along the chord/brace intersection, see figure 1.
The stochastic variables D, and B (see chapter 5.1) are assumed to be uncorrelated, but they
are the assumed to be fully correlated between failure elements and with the same statistical char-
acteristics, respectively. m and K are assumed to have correlation coefficient equal to -0.44 for
each failure element, but uncorrelated between failure elements. The statistical characteristics for
the stochastic variables are shown in table 3.

Basic variable Variable Distri- Expected Standard
buted value deviation
X Dian N 1.0 0.1
X, B LN 1.0 0.2
X3,...X13 Kla---Klﬁ LN 6400N/mm2 1024N/mm2
Xlg,...X34 mi,...Mie N 3.8 0.095

Table 3. Statistical characteristics for the stochastic variables (N: normal, LN: log-normal).




Figure 3. Detailed data and location of failure elements for joints under consideration
(e-means failure element).

The drag coefficient Cp in Morison's equation is taken as 1.3, but the coefficient of inertia Cps is
assumed to vary as [17]:

2 for0<z<0.6
Cy = { 2(1.65 ezp(—0.8974 z)) for 0.6 < z < 2.0
2(0.798/Vz? ) for z > 2.0

where z = % w? in which D denotes a member diameter, g denotes the acceleration of gravity

and w is the frequency.

The number of eigenfrequencies §and mode shapes) in the modal analysis is taken as 3 and the
damping ratio ( is taken as 1 % for all mode shapes. The significant failure elements are definec
as the failure elements which have safety indices less than Amin + 2.1, where fmin is the lowest
safety index for the failure elements. The three lowest eigenfrequencies are obtained as:

wy = 3.01 rad/sec

wq = 3.01 rad/sec
w3 = 6.48 rad/sec

. . — m . $ ‘
A run of the program SIGMA showed that the irregularity factor, « ( __2_\/’_”7‘7’ where m; is th

;th moment of the stress spectra), of the stress spectra in the failure elements is 0.37-0.6 for mos

of the sea states which mean broad banded stress spectrum.
In figure 4 a typical normmalized stress spectrum (normalized as m, = 1.0) for the failure element

(Hy = 4.3m, T, = 10.6 sec, o = 0.51).
o, (sec/rad)

2.5

2.0

1.5+

1.0+

0.5¢

0+ a
0 05 10 15 20 25 30 35 40 w(radfsec]

Figure 4. Typical normalized stress spectrum for the failure elements.



The distribution of stress amplitudes will be estimated by :
1 : Rayleigh distribution.
2 : Distribution defined by the RFC-method.
3 : Distribution defined by the RC-method.

Four not fully correlated significant failure elements are identified. They are given in table 4.

Failure ele- System relia-
ment 2 1 7 3 9 bility index §°
Rayleigh 5; 1.70 1.71 3.46 3.80 145
RFC B; 1.89 1.89 3.64 3.98 1.62
RC B; 2.43 2.44 4.19 4.53 2.16

Table 4. Safety indices for the significant failure elements and Hohenbichler approximation
of the system reliability index.

The correlation coefficient matrix of the linearized safety margins of the significant failure ele-
ments is:

1.0 0.65 0.65 0.65

= 1.0 0.65 0.65
P = | sym. 1.0 0.65
1.0

i

As we can see from table 4, there are significant differences between the safety indices of a failure
element dependent on how the distribution of the stress amplitudes is estimated and it is especially
interesting to see the significant difference between the probability density functions estimated by
the RFC and the RC methods, see figure 5.

10 «r p(2s)
[

08 -'5\ .
e
0.6 A \

0s J TN rec

~Rayleigh distnbution
0.2 4

00 ‘ —— 23[0,]
0 2 4 8 8 10

Figure 5. Estimation of the distribution density function of the stress amplitude based on
simulation and using RFC- and the RC-methods.

7. CONCLUSIONS

e A method to estimate the reliability of offshore structures subjected to wave loads in deep
water environments is presented.

e Failure modes corresponding to fatigue failure are used.
e The reliability is estimated using a first-order reliability method.

e The statistically measured of structural stress variations is estimated by using modal spectral
analysis method.




The damage in the failure elements is estimated by using Miner’s rule and S-N approach.

The distribution function of the stress amplitudes, for a given sea state, is estimated by

[ ]

Rayleigh distribution, Rice distribution, RFC-method and RC-method.
o For most of the sea states under consideration the stress process became broad-banded and
therefore, the results by using Rayleigh distribution cannot be expected to give satisfactory
results.
e The RFC and RC methods give a different estimation of the distribution function of the stress
amplitudes, resulting in a major difference in the estimate of the safety indices.
e  This means that the order and definition of the stress amplitudes must be taken into account
in the damage accumulation model.
o  For this purpose more experimental and theoretical work are needed.
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APPENDIX A

This appendix deals with three-dimensional linearization of drag forces by the "minimum mean
square error linearization method” [9]. A circular cylinder as shown in figure Al is considered,
and it is assumed that Morison’'s equation may be applied to a cylindrical member in a random
manner. The non-linear term in Morison’s equation may be written as:

sz: "-.‘nz'

— - = . . : 1 5
fD = ny = Kp |un| un = Kp (u121:z: + u?zy +* u?lz)z l‘tﬂy (Al)
sz Unz
where _
_ Usiz _r 1-— cz —CzCy —CzCy Ug
ez sym 1-¢2 U,
c = (Cm cyvcz)
=T . . .
= (Tigy Uy )

Uz, Uy and u, are components of the water particle velocity in the z, y and z-direction, re-
spectively, and € is a unit vector along the cylinder axis.

Figure Al. 7, j and k represent the base vectors in the z, y, z-coordinate system.

The linearized version of equation (A1) is

For=Kp L Tn (A3)

where L is the linearization coefficient matrix, expressed as:

- l;tr, lxy l::z
L=l Iy L
lzz lzy lzz




The error introduced by using equation (A3) instead of equation (A1) is defined as:

e=(Tdn — 3(@n)) (A4)
where
_ gz(gn) 1 i"nz
g(un) = gy(_’.fn) = (U’?u: + U’gzy + uztz) = 7'.Lny
gz(d‘ﬂ) dnz

The criterion that the mean square value of the error € is at a minimum is expressed as:
E[g €T]. — minimum

where E[- -] denotes the expected value.

The coefficients /;; in the linearization matrix T may be written as [9],[10]:

= B[ M] ' (A5)

hij = Dtin;

The matrix I may now be expressed as:

2al 4is, tig, Brafingy Bngline ]
/ linl lin] litn|

E ad +2a3, il dpginy = B

lin] lin]

£l
Il
=l

.2 .2 ]
2
sym. Upg28p, FUn,

where [n| = (42, + 42, + 42,)3.

When the water particle velocity is assumed to be a zero-mean Gaussian process then the following
expression is obtained

E[M)] = / / / MN3(0, i iy i, )diodiydii (A6
—00 J =00 J—00

where N3(0,§¢xﬁ ,i, ) is a three-dimensional normal density function defined by:

| —_
= 1= eﬂ?P(—lfLTZa By n 71)
(27()3/2(d6t(2ﬂ:ayﬁz))1/2 2 s

gl

N;(0,

g ity )

where the covariance matrix Xy, 4,4, 18 defined by:

fOoo Sﬁ:ﬁz(W)dw fOoo Si‘z‘i"v(w)dw fooo Si‘zaz(w)dw

[Nl

iiyie = | 37 Sayu.@)dw  [77 Sy i, (w)dw I3 Sayi, (w)dw

fooo Si‘zi‘-: (w)dw .];]oo Si’-zi’-y (U./')dw f()oo Si’-zuz(w)dw



Sa;u; (w) is the cross-spectral density of the water particle velocity u; and %; (3,7 = z,y, 2).

Thus, N .5 .o
S . = = m—
EE = m = a7 S
1 —o0 o0 /oo |tn] (27 )3/2(det(Za, 4,4, ))'/?

1l—7=-1
exp(— §dTZa

) ditp iy dii

zﬁyuz

where Unz, Uny and U, can be expressed as functions of ., %, and @, (see eq. (A2)).













