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ABSTRACT

A simple model of the wave load on slender members of offshore struc-
tures is described. The wave elevation of the sea state is modelled by a sta- ~
tionary Gaussian process. A new procedure to simulate realizations of the
wave loads is developed. The simulation method assumes that the wave par-
ticle velocity can be approximated by a Gaussian Markov process. Known
approximate results for the first-passage density or equivalently, the distri-
bution of the extremes of wave loads are presented and compared with
rather precise simulation results. It is demonstrated that the approximate
results are unconservative at least for the spectra used in this investigation.

Key words: Simulation, First-passage problems, Wave loads, Engineering
modelling.

1. INTRODUCTION

Due to the non-linear relation between the wave characteristics of a sea
state and the wave loading on slender members of e.g. an offshore struc-
‘ture it has until recently been necessary to make a number of approxima-
tions to be able to estimate the extremes of wave loads [1, 2]. Usually, the
wave load is linearized and assumed to be Gaussian. Recently, Grigoriu [3]
has shown how to determine exactly the mean outcrossing rate of a safe
area of the wave load and how to determine approximations to the first-
passage density function or equivalently, the distribution function of the
extreme wave load. ’

In this paper a new simulation procedure to obtain estimates of the
first-passage density function is described. The wave elevation in a sea state
is modelled as a stationary stochastic process. Further, it is assumed that
the stochastic process can be approximated by a Gaussian Markov process.
It is described how this approximation can be made with high degree of
precision.

2. MODELLING OF WAVE LOADS

The first step in modelling wave loads on slender cylindrical members is
modelling of the sea state, Sarpkaya & Isacson [1] and Soares & Moan [2].
For convenience the water particle kinematics is here determined on the
basis of a linear wave theory which connects the water depth d, the wave
angular frequency w, and the wave height H (and then the surface eleva-
tion 7). The waves are assumed to be plane. The surface elevation is mo-
delled as a Gaussian stochastic process {n(t), t € [0, T]} with a given spec-
trum S, (w). Two choices of §, (w) are investigated: the JONSWAP spec-
trum and the Pierson-Moskowitz spectrum [1].

The horizontal particle velocity u can now also be modelled as a Gaus-
sian stochastic process with the spectrum

S,(w) = Hy(w)*S, (w) @)

where H,(w) connects u(t) and n(t). The stochastic process {u(t)} is mo-
delled such that

Elu(t)] = u,
=1

2
au




12} 8@
0.8+
JONSWAP
Pierson-Moskowitz
04+
0.0 : } } ———— (0
1.0 2.0 3.0 4.0 5.0

Fig. 1. Spectra for horizontal particle velocity u.

where E[ ] and o signify the expectation operation and the variance oper-
ation. ug can e.g. be interpreted as the current. In fig. 1 S, is shown when
S, is the JONSWAP and the Pierson-Moskowitz spectra. The water depth
d is chosen equal to 50 m and the frequency corresponding to the peak in
the spectra wy = 0.2 7.

Generally, the loads on structures composed of slender cylindrical mem-
bers are calculated by using the Morison equation [1], [2] and Grigoriu [3],
i.e. the loads are proportional to

P(t) = u(t)lu(t)| + au(t) (2)

where u(t) is the wave particle acceleration and a is a coefficient which
measures the relative importance of the non-linear drag forces and the
linear forces of inertia.

Because of the non-linear relation (2) the stochastic process {P(t),
t € [0, T]} which models the wave loads is not Gaussian. Therefore, P(t) is
often linearized, [1], so that the wave loads become Gaussian. It has to be
emphasized that there is considerable model uncertainty connected with
using (2) to predict the wave loads.

3. ESTIMATES OF EXTREME WAVE LOADS AND FIRST-PASSAGE
DENSITIES

The event of failure is defined as the event that the wave load exceeds some
critical value B which is assumed to be time independent, i.e. the safe area
is the interval

S=]—,B[ (3)

Only the set 2, of realizations of the process {P(t), t € [0, T]} which is in
the safe area to the time t = 0 is considered. Let the first-passage density
function be v(t). The probability of failure of the process {P(t), t €[0, T]}
in the time interval [0, t] is then
»t
Q(t, B) =\ v(ryar (4)
¢




The mean outcrossing rate of {P(t)}, vy (t) = vq (t, B) is always greater than
or equal to the first-passage density.

If the first-passage density is known, the distribution function of the
stochastic variable P, ,, modelling the maximum load in the interval [0, t]
is

Fp (%) =P(Ppay < X)=1—Q(t, x) (5)

The density function of the maximum load can then be obtained by dif-
ferentiation of Fp___ (x).

For this modelling of the wave load it is not possible analytically to -
calculate the first-passage density. In section 4 a method to obtain simula-
tion estimates of the first-passage density is described. In this section differ-
ent approximations to the first-passage dentisy and the failure probability
are described, Grigoriu [3].

First it is assumed that a = 0, i.e. only drag forces are assumed import-
_ant. The density function fp, of P can then be found as

f(x) = i exp(— F (sign(x) VIET — up)") 6)
The mean E[Pp ] and variance 01§D are then

E[PL] = ul (1 + u3?)(2®(uy) — 1) + 2u3’ v(ug)) (7

o3 =uf(3ug* + 6ug’ + 1)~ B[Ry’ (8)

where ¢ and & are the standard normal density and distribution functions,
respectively.

The mean outcrossing rate vy p (on condition that all realizations ini-
tiate in the safe area) is

vo,p (tB) = 52 (@(sign(B)/TB — ) exp(- 3 (sign(B)TB —uy)’)
©

where 03 is the variance of the derivative process {u(t)}.

In the literature it is often assumed that the drag force can be linear-
ized. Then the drag force is normally distributed with mean E[Pp] and
variance af,D . The variance of Py is approximately

O’%D = 403.1 ud (1 + ug?) (10)

and the mean outcrossing rate vg' p Is

op B—E[Pp] B—E[P,]
2 (o ()t exp(— (52 (1)
D D

G =
VO’D(t,B) 2oy
D

If the critical value B of the force is relatively high it is reasonable to
assume that the outcrossings of the safe area are independent and follow a
Poisson process, Lin [4], i.e. the failure probability can be approximated
by




Q(t, B) = 1 — exp(— v, p (£, B)t) (12)
and the first-passage density by

v(t) = vy 1 (t, B)exp(— ¥ 1 (t, B)Y) (13)

Instead of v 1, the Gaussian approximation vg'D can be used.

If a # 0, i.e. the forces of inertia are important, the expected value and
variance of P are

E[P] = E[Pp | (14)
013 = U;D + a? 03 (15)

The variance of P is then
2 = g2 2 2
og OPD +a o (16)
where o is the variance of {ii(t)}.

The mean outcrossing rate v, of {P(t)} = {u(t)u(t) + au(t)} can be
approximated by, Thoft-Christensen & Baker [5],

9

: 1
vy (B) = 5 307 #to; )o,p (b B—x) dx +

S () =g ¢l )dx (7)

When the drag force is linearized the mean outcrossing rate can be approx-
imated by
B—E[P_]
G - 1 P 1 D 2
B)=g—— == 18
G (B) = 550 exp(— 5 (——20)") (18)
If the outcrossings are rare the failure probability and the ﬁrst-passage den-
sity can be approximated by (12) and (13) when vy and "0 are used instead
of vy p and V(()}D
It is convenient to introduce the normalized critical value b defined by

4. SIMULATION OF WAVE LOADS

The basic simulation method used is a method described by Franklin [6, 7].
This method is used to simulate realizations of the normal stochastic pro-
cess {u(t), t € [0, T]}. In order to use Franklin’s method it is necessary to
approximate {u(t), t € [0, T]} by a normal Markov process {u(t),t€[0, TI}
which is characterized by the assumption that its spectral density can be
written as follows




glwg
Sa(«@) 27r D(iw) (20)
where
C(z) = cyz™ + clzm_1 +...+c,z » GER (21)
D(z)=2"+d;z2* 1 +...+dz , dER (22)

S; is assumed to be integrable which implies n > m > 0. Further, the zeros
of D have to fulfil Re(z) < 0.

If {F(t)} is a white noise stochastic process with mean zero, variance 1,
and spectral density

1
Sp(w) =5= (23)
then u(t) is related to F(t) by the following system of equations:
u(t) = CoZp, () +c;Z () + ...+ ¢ Z () (24)

Zp, 1 (0)+ &y Z (6) + ...+ d_Zq(t) = F(t) (25)
where Z(t) is the (i — 1)!" derivative of Z, .
Franklin [6, 7] has shown that the vector process Z (t) = (Z1 (%), Zy(t), .
o 55 Zn(t)) at the time t + At can be determined by

Z(t+ At)=E(AD)Z(t)+ TW (26)

where E(At) is a matrix with constant elements which depend on At and
T is a matrix with constant elements and where W is a stochastic vector
with independent elements which are normally distributed with mean 0
and variance 1. Franklin has shown how E, T and an initial realization of
Z can be determined for given coefficients d;, d2 oo ey dn.

Once realizations of Z(t) at the times 0, At, 2At, . . . are known reali-
zations of u(t) at the times 0, At, 2At, ... can be determmed using (24).

As seen from (2) realizations of the acceleratlon u(t) are also necessary
in order to determine realizations of the wave load {F(t)}. Realizations of
u(t) can be simulated, using instead of (24),

Ut) = coZpyo () + 12, () + - .+ c Zy(t) 27)

Simultaneous realizations of u(t) and u(t) are calculated using the same
realization of Z(t) in (24) and (27). u(t) and u(t) are then independent as
required.

Because the spectrum of {u(t)} is assumed to be integrable the degrees
of C and D have to fulfil the requirement

n—1>m=>0
In order to estimate the first-passage density function when a realiza-

tion of the stationary process {P(t)} is known the following relation is
used which is valid when the safe area is time independent, Rice [10]




v(t) = v(0, B)(1 — Fy (t)) (28)

where Fy is the distribution function of the stochastic variable Y, repre-
senting the length of time between succeeding in and outcrossings of a
certain realization. Further, v (0, B) can be estimated by

vy (0, B) = E—[lﬁ (29)

5. EXAMPLES

In the following example a sea state is considered which is modelled as
shown in section 2, i.e. the spectrum of the wave particle velocity is

either the JONSWARP spectrum or the Pierson-Moskowitz spectrum. These
spectra are then approximated by rational spectra as required by the simu-
lation method in section 4. This curve fitting problem is solved using an
optimization algorithm developed by Schittkowski [8, 9]. In figures 2 and
3 the results are shown for the JONSWAP spectrum when (n =4, m=1),
and (n =6, m = 4) are used.
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Figure 2. Approximation of JONSWAP spectrum.n=4andm=1.d; =
0.9839, dy = 4.053,d3 =1.352,d, = 1.496, cy =0.8274,and c; = 0.
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Figure 3. Approximation of JONSWAP spectrum.n=6 and m =3.d; =
10.13,dy = 27.54,d3 = 38.85,d, = 32.44,d5 =14.49,dg = 7.266, cy =
10.14, c; = 3.063, c, =2.834,and c3 = 0.




From the figures 2 and 3 it is seen that with n = 6 and m = 3 a rather
good approximation is obtained.

The approximation of the Pierson-Moskowitz spectrum is shown in
figure 4. Also here a very good approximation is obtained with n =6 and
m = 3.
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Figure 4. Approximation of Pierson-Moskowitz spectrum.n=6 and m =
3.d; =6.428,d, =32.27,d3 = 40.95,d, = 35.68,d; =14.43,dg =
5.100, ¢y =13.43, ¢y =0.01178, cy =1.634, c3 = 2.686-107%.
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Figure 5. Spectrum of simulated velocities (n = 6, m = 3) obtained by
averaging over 50 spectra with 1024 points.

In figure 5 a spectrum of the velocity u(t) obtained by the simula-
tion method in section 4 is shown. The spectrum is seen to agree very
well with the Pierson-Moskowitz spectrum.
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Given the rational approximation to the velocity spectrum it is easy
by using calculus of residues to calculate the standard deviations o and

. For the JONSWAP spectrum we obtain g = 1.496 and oy =6 249
In figure 6a the ratio between the exact result vo.p (9) and vG (1i)is
shown. It is seen that for high values of the bamer b it is non conserva-
tive to use the Gaussian approximation ”O,D Simulation results obtained
using (29) are seen to be close to (2). These and all the following simula-
tion results are obtained on the basis of realizations of a length of 1.2-10°
seconds. Corresponding results are also shown for a = 4/06 = 2.674. Here
(17) and (18) are used to estimate v.

b)
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Figure 6. Mean outcrossing rates. X : simulation results, a: JONSWAP,
b: Pierson-Moskowitz.
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Figure 7. First-passage density for uy =2,a2=0,and b =2, JONSWAP
spectrum. : simulation, — — —: (13) with v0,D given by the exact
result (9), —--—--—: (13 with vy p = Vo D’ (11). Vertical cross lines in-
dicate 95% confidence intervals.
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For the Pierson-Moskowitz spectrum we obtain o; = 2.124 and oy =
10.71, i.e. higher values than for the JONSWAP spectrum. In figure 6b re-
sults corresponding to figure 6a are shown. The same trends are seen to
hold true here.

Estimates of the first-passage density based on the Poisson process
approximation (13) are in the following compared with simulation results,
(28). In figures 7 and 8 results for the JONSWAP spectrum with a =0 (i.e.
only drag forces), b = 2 and 3.5 are shown, and in figures 9 and 10 results
fora=4/oy,b = 2, and the JONSWAP and Pierson-Moskowitz spectra are
shown. The accuracy of the simulation estimates is indicated in figure 8
by 95% confidence intervals. It is seen that the estimates are rather precise.

As expected the Poisson approximation (13) and the simulation esti-
mates are rather close for relatively high barriers, but for small barriers
there is some difference, especially in the first seconds. The Gaussian ap-
proximation is very non-conservative for high barriers.

i v(t)

0.008 1

0.004 1 T~

0.000 T - T T T T - l’

25 50 75 100 125 150 175 200
Figure 8. First-passage density for uy =2,a =0, and b = 2, JONSWAP
spectrum. : simulation, — ——: (13) with 0,0 given by (9), —--—--—:
(18) with vg p =v§ p, (11).

yr®)

0.04 1 \§

0.02

0.00 =t

5 10 15 20 25 30 35 40
Figure 9. First-passage density for uy =2, a =4/03, b =2, JONSWAP
spectrum. : simulation, (28) with v estimated by (29): —— —: (13)
with v given by (17), —--—--— : 13) with y = vg, (18).
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hv(t)
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Figure 10. First-passage density for uy =2, a = 4/0;, b = 2, Pierson-Mos-
kowitz spectrum. : simulation, (28) with v estimated by (29), ——:
(13) with v given by (17), —--—--— : (13) with vy = V&D’ (18).

The results in figures 9 and 10 show some difference between the re-
sults obtained by modelling the wave elevation by a JONSWAP and a Pier-
son-Moskowitz spectrum. The latter model gives the highest first-passage
density in the first seconds.

When a increases, i.e. when the inertia term becomes more and more
dominant, then the Gaussian approximation will be increasingly better,
because in the limit the wave load will be Gaussian.

6. CONCLUSIONS

A model of the wave load on slender members of offshore structures is
described. Exact and approximate results for the mean outcrossing rates
of a time independent safe area are presented. It is assumed that the wave
elevation can be modelled by a Gaussian stationary stochastic process.
Further some approximate results for the first-passage density are given.
These assume that the events that the wave load exceeds a critical value
are rare.

A new simulation procedure to obtain rather precise estimates of the
first passage density function is described. The simulation method assumes
that the wave elevation can be modelled by a Gaussian Markov process. It
is described how this approximation can be made quite accurate.

The simulation results show that for relatively low critical values of
the wave load the approximate estimates of the failure probability are
non-conservative. Further the choice of wave spectrum is seen to have
some influence on the failure probability.

The results described in this paper can be used in reliability analysis of
offshore platforms when Morison’s equation is valid.
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