

Aalborg Universitet

Body surface mapping of the mechanical cardiac activity

Munck, Kim; Hansen, Bolette Dybkjær; Jacobsen, Nina; Pilgaard, Louise Pedersen; Schmidt, Samuel E.; Sørensen, Kasper; Struijk, Johannes J.

Published in: Computing in Cardiology

DOI (link to publication from Publisher): 10.22489/CinC.2016.193-348

Creative Commons License CC BY 4.0

Publication date: 2016

Link to publication from Aalborg University

Citation for published version (APA): Munck, K., Hansen, B. D., Jacobsen, N., Pilgaard, L. P., Schmidt, S. E., Sørensen, K., & Struijk, J. J. (2016). Body surface mapping of the mechanical cardiac activity. *Computing in Cardiology*, *43*, 661-664. Article 193-348. https://doi.org/10.22489/CinC.2016.193-348

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 06, 2025

BODY SURFACE MAPPING OF THE CARDIAC ACTIVITY

KIM MUNCK, BOLETTE DYBKJÆR HANSEN, NINA JACOBSEN, LOUISE PEDERSEN PILGAARD, SAMUEL SCHMIDT, KASPER SØRENSEN, JOHANNES JAN STRUIJK

Background

- Chest surface Measurement shows potentials in diagnosing heart failure [1]
 - Heart valve sounds
 - Murmurs
 - SeismoCardioGraphy (SCG)

- Body Surface Mapping (BSM) of heart sound
 - Indicator for diagnosis of sleep aphnoea [2]
 - Origin of heart sounds and murmurs [3]

- . Hu Y, Kim EG, Cao G, Liu S, Wu Y. "Physiological acoustic sensing based on accelerometers: A survey for mobile healthcare", Annals of Biomedical Engineering 2014
- 2. Rendón DB, Ojeda JLR, Foix LFC, Morillo DS, Fernández MA. "Mapping the human body for vibration using an accelerometer", IEEE EMBS 2007;23–26
 - Durand MCLG, Guardo R. "Development of a cardiac acoustic mapping system", Med Biol Eng Comput 1998

Aim

- BSM of the mechanical cardiac activity
 - Low frequency (<0.25 Hz)
 - Mapping the displacement of the chest area
 - Finding identifiers between the cardiac events and the map

- Aim:
 - Evaluate BSM for exploration of the mechanical cardiac activities

Method – Experimental setup

AALBORG UNIVERSITY
DENMARK

Signal sampling, filtering and transformation

- 5x6 spatial resolution
- 1-20 Hz filtering (low frequency)
- Velocity to displacement

Segmentation and re-alignment by cross-correlation

Results

Results - quantifiable

- Identifiers across subjects
- Identifiers features
 - Latency (S1 heart sound)
 - Spatial position (X,Y)
 - Amplitude (Z)

Table 1: Feature values of identifiers as mean±std, where time is relative to the S1 heart sound and position is relative to the sternum and the lowest point of the grid.

Event	Time	Position (mm)	
Event	(ms)	Transverse	Longitudinal
Maximum positive velocity	50±40	-2.9±30	98±95
Maximum positive displacement	68±46	50±17	180±68
Maximum negative displacement	160±61	64±32	135±56

Discussion

- Relate identifiers to cardiac events
 - Maximum Positive Velocity
 - End of isovolumetric contraction [4]
 - Agrees with O'Rourke et al. [5]
 - Maximum Positive Displacement
 - End of rapid ejection [5]
 - Maximum Negative Displacement
 - Left ventricular retraction [5]
 - Well before S2 heart sound
 - Opposite displacements
 - Rotation [4,5]

Ejection

 Isovolumetric relaxation

Further studies and conclusion

- Further studies
 - Better understanding of the LDV vs Accelerometer
 - Doppler Monte Carlo Model
 - Measuring grid points simultaneous
 - Substituting the LDV
 - Larger population
 - Diagnosed subjects
 - Cardiac event reference (ECHO, arterial pressure)
- Conclusion
 - Results was reproducible
 - Concordance with existing evidence
 - Further studies are needed

Total correla	Systole refined mean segment day 2						
	0.85	0.93	0.93	0.88	0.91		
	0.92	0.82	0.83	0.87	0.71		
	0.85	0.69	0.94	0.92	0.87		
	0.91	0.97	0.92	0.94	0.94		
	0.96	0.97	0.95	0.94	0.93		
1							

No correlation

0.92

Systole refined mean segment day 1 *

References

- 1. Hu Y, Kim EG, Cao G, Liu S, Wu Y. "Physiological acoustic sensing based on accelerometers: A survey for mobile healthcare", Annals of Biomedical Engineering 2014
- 2. Rendón DB, Ojeda JLR, Foix LFC, Morillo DS, Fernández MA. "Mapping the human body for vibration using an accelerometer", IEEE EMBS 2007;23–26
- 3. Durand MCLG, Guardo R. "Development of a cardiac acoustic mapping system", Med Biol Eng Comput 1998
- Luo X, Cao T, Li Z, Duan YA "Preliminary study on the evaluation of relationship between left ventricular torsion and cardiac cycle phase by twodimentional ultrasound speckle tracking imaging" Int J Cadiovase Imaging, May 2009, 25(6): 559-568
- 5. O'Rourke R A, Shaver J A, Silverman M. E, "Hurst's The Heart", The McGraw-Hill Companies, 2008: 215-293

