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Log-Linear Model for Predicting the Lithium-ion
Battery Age based on Resistance Extraction from

Dynamic Aging Profiles
Søren B. Vilsen, Member, IEEE, Søren Knudsen Kaer Member, IEEE, and Daniel-Ioan Stroe, Member, IEEE

Abstract—In this work we propose a method for extracting,
modelling, and predicting the resistance of Lithium-ion batter-
ies directly from the battery dynamic mission profile. While
the extraction of the mainly relied on data manipulation and
bookkeeping, the modelling and subsequent prediction of the
resistance used a log-linear model. It is shown that the estimated
log-linear model can be used to create a posterior probability
distribution of the age of the battery, given an internal resistance
measurement and the SOC value at which it was measured. This
distribution was used calculate the expected age of the battery,
and the expected age was compared to weekly check-ups. At an
SOC of 80% a mean absolute error (MAE), between the weekly
check-ups and the expected age,of 5.83 weeks (706 FEC) was
achieved. Furthermore, it is shown that by introducing a decision
threshold the MAE could be reduced as far as 2.65 weeks (321
FEC). Lastly, a method is introduced for handling cases where
the SOC was not known exactly.

Index Terms—Lithium-ion battery, Resistance estimation, Bat-
tery Degradation, Dynamic aging profile, Log-linear model

I. INTRODUCTION

The internal resistance, together with the capacity, is one of
the parameters, which describes the performance and lifetime
behavior of Lithium-ion (Li-ion) batteries [1]. The internal
resistance is used to determine the power capability of batteries
[2], which is an important parameter in both renewable energy
storage applications and electric vehicle (EV) applications.
Thus, by having accurate knowledge about the internal re-
sistance, and subsequently, on the power capability, battery
systems can be optimally sized in order to meet both the
technical and economic requirements of a certain application.
Furthermore, the internal resistance is an important parameter
for battery electrical and thermal modeling, as it describes
the dynamic and heat generation behavior of the battery,
respectively [3], [4].

The internal resistance of Li-ion batteries is a very nonlinear
parameter, which is changing depending on the operating
temperature, load current, and on the battery state-of-charge
(SOC) [3], [5]. Moreover, the internal resistance of the battery
is age-dependent, increasing in time during long-term opera-
tion [6], [7]. Different methods for determining the internal
resistance of the Li-ion batteries exist [8]. However, most
of the time, the internal resistance is determined using the
current pulse technique, where a charging/discharging current
of a certain amplitude and length is applied to the battery
and the voltage response of the battery is registered [2], [6].
Then, the internal resistance is calculated using Ohm’s Law.

This method is successfully applied in laboratory conditions,
in order to determine the internal resistance of the battery at
different conditions and to track the changes of the internal
resistance during battery aging [6]. Nevertheless, a major
drawback of this method is represented by the fact that before
the resistance measurement, the battery has to be in idling
mode, for a certain amount of time (i.e., at least 15 minutes),
in order to reach thermo-dynamic stability. Consequently,
this requirement makes the method less suitable for real-life
applications, where downtime periods of the Li-ion battery
storage system is not technical and economic feasible.

As mentioned, if it is possible to perform reference mea-
surements during the aging of the battery, then the effects
of aging on the internal resistance can be easily estimated
using e.g. a power law function as illustrated in [9], [10].
However, identification of the internal resistance and esti-
mation of the subsequent degradation from a dynamic real-
life aging profile requires more sophisticated methods. These
methods are usually broken into two categories: online and
offline. The most common type of online estimation method
is by dual estimation of an equivalent electrical circuit (EEC)
based state-space model, and capacity and resistance using
a non-linear Kalman-filter variant (i.e. either an extended,
or unscented Kalman-filter) [11]–[13], or in some instances
the more general particle filters [14], [15]. While yielding
seemingly excellent results in some cases, this dual filtering
approach introduces too much flexibility into the system.
Therefore, the Kalman-filter governing the change in capacity
and resistance, is often substituted for a recursive least squares
fit with a lag larger than one, adding a higher dependence on
previous observations, thereby, providing added stability to the
system [16]. This approach can be further improved by basing
the state-space model on an Electrochemical model (EM),
however, this comes with added computational complexity
[17], [18]. Not all online methods are EEC or EM methods a
notable exception is the series resistance determination (SRD)
algorithm (also called the direct resistance estimation) [16],
[19], [20]. The SRD identifies large jumps in current and
voltage and uses Ohm’s law to calculate a resistance value
at the jump. This newly calculated resistance is then used to
update the Ohmic resistance by using an exponential moving
average. If this approach is to be used for real-life profiles,
then it would need to account for different temperatures, the
SOC, or the current, which are factors known to influence the
resistance. Offline methods are plentiful; they including, but
are not limited to, support vector machines (SVM), relevance
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vector machines (RVM), genetic algorithms (GA), particle
swarm optimisation (PSO), artificial neural networks (ANN, or
DNN if the network architecture contains many hidden layers),
and appropriate combination of these methods [21]–[27].
These are often called ’black box’ methods, because while
they are flexible and accurate, extracting how the results are
arrived at, is incomprehensible to the human mind. Therefore,
recent developments for the offline methods tries combine the
flexibility of ANN’s, and the stability and knowledge imbued
in the EEC framework [24], [25]. However, while the offline
methods produce incredibly accurate results, they all suffer
from the same restriction: they need large amounts of data to
obtain said accuracy.

In this paper, the feasibility of tracking the degradation
of the internal resistance directly from a real-life mission
profile, which is used to age the battery over a period of 38
weeks, was analysed. The internal resistance is extracted, in
a similar fashion to the idea behind the SRD algorithm [16],
[19], by keeping careful track of the beginning and length of
current pulses. The logarithm of the extracted resistance was
assumed to follow a normal distribution, where the mean was
a non-linear function of the battery’s SOC. The parameters
of the internal resistance model were estimated on a week-
by-week basis, allowing for the tracking of the changes to
the resistance over time. Using the estimated parameters and
making assumptions about the prior probability of the SOC
and week values, the exact distribution of the battery’s age
given a new internal resistance value and the SOC at which this
was measured can be calculated using Bayes’ rule [28] and the
law of total probability [28]. Finally, the results, obtained with
the proposed method are compared with results obtained from
resistance measurement using the traditional method, which
were carried out after each week of battery aging.

II. EXPERIMENT

A. Lithium-ion battery under test

In this work a cylindrical Li-ion battery cell with a nominal
capacity of 2.5 Ah and a nominal voltage of 3.3 V was
used. The cell is based on a graphite anode and a lithium
iron phosphate (LFP) cathode and it was designed for high
power application being able to be continuously charged and
discharged with current up to four times the nominal current.

B. Aging condition and internal resistance measurement

The Li-ion battery was aged using the current profile pre-
sented in Fig. 1, which has a length of one week. Furthermore,
A particularity of the current profile is represented by the
fact that in more than 95% of the occurrences a 4C-rate
(i.e., 10 A) current was applied for both charging/discharging.
When applied to the tested battery cell, the current profile
resulted into the battery SOC profile, presented in Fig. 2,
which varies in the interval 10% - 90% SOC. The aging profile
presented in Fig. 1, containing 121 full equivalent cycles
(FECs), was applied for a period of 38 weeks, considering
an aging temperature of 25oC. During all 38 weeks aging the
current and voltage of the cell was recorded every second. For

more details about the aging profile, the reader is referred to
[29].

After each week of aging tests, the resistance of the bat-
tery was determined using the current pulse technique; the
measurements were carried out at 20%, 50% and 80% SOC,
considering a current pulse of 4C-rate (i.e., 10 A), which was
applied for a length of 18 seconds. Before the current pulse
was applied, the battery was in idling mode for 15 minutes, in
order to reach thermo-dynamic stability. The obtained increase
of the battery resistance during the 38 weeks of cycling is
presented in Fig. 3. As one can observe, for the considered
aging period, the resistance has increased only by 8.7%, even
though the battery cell’s capacity decreased by more than 15%
in comparison to the value measured at the beginning of life,
as it is presented in Fig. 4.

III. METHODOLOGY

Extracting the internal resistance of the battery from a
dynamic profile, as the one presented in Fig. 1, requires
keeping track of the current, I , and of the voltage right before
the beginning of the current pulse, Vs. If the current and
voltage at a time t, and Vs, were given in advance, one could

Fig. 1. One-week current profile used for aging the LFP-based Li-ion battery

Fig. 2. The battery cell’s SOC profile corresponding to one week of aging.
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easily calculate the resistance at time t by Ohm’s law, Eq. (1),
for any given point along a current pulse (i.e. as long as
It 6= 0).

Ri,t =

∣∣∣∣Vt − VsIt

∣∣∣∣ (1)

Thus, what remains to be determined is when and how to
update Vs. Focusing on the changes of the current from one
point in time t, to the next point, t + 1, the three following
situations can be distinguished:

(1) The current changes from zero (i.e., the battery is idling)
to a non-zero value (i.e., the battery is either charging or
discharging).

(2) The current changes from one non-zero value to another
non-zero value.

(3) The current does not change, i.e. the value at time t and
t+ 1 are equivalent (within some small difference δ).

In the following, a brief description of the procedure for
updating Vs on each of the three aforementioned situations
will be given.
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Fig. 4. The capacity fade behavior of the battery cell during the aging test.

∆I

S :−1−1 0 1 2 3 4 −1−1−1 0 1 2 3 4 −1−1

V : − Vs V0 V1 V2 V3 V4 − − Vs V0 V1 V2 V3 V4 − −

Fig. 5. A simple sketch of the two current pulses with a period of relaxation
between pulses (top), and the resulting voltage (bottom).

A. Situation in item (1)

In the first situation, Vs is updated using the voltage of the
last instance when the current was zero (i.e. if |It| < ε, and
|It+1| > ε), thus, Vs will be equal to Vt. This approach is
dependent on the relaxation time between the current pulses,
for the battery voltage to reach (or at least get close to)
the open circuit voltage (OCV) , i.e. ideally the current
profile is shaped as in Fig. 5. The longer the relaxation time
between pulses, the more accurate the estimation of the battery
resistance.

B. Situation in item (2)

The second case is more complex, but a potential solution
will be outlined in the followings. If the time since the
battery was idling (i.e. there was no current flowing through
the battery) is relatively short (should be optimised), then
the currently stored Vs value should be accurate enough for
determining the battery resistance. However, the longer the
time since the last idling period, the more inaccurate this value
is going to be, as sketch in Fig. 6. However, in order to get a
model which is as accurate as possible, resistances extracted
in this case will be ignored in the remainder of this paper. That
is, only the cases where Vs was updated when no current was
flowing through the battery were considered. With that said,
two possible solutions to this problem could be:

(1) Instead of considering the change in the current from
zero, we could consider the change in current from its
present value. Consequently, the second situation reverts
to the first situation, as seen in Fig. 5. That is, if |It −
It−1| < ε, and |It+1 − It| > ε, then we set Vs = Vt.

(2) If the battery SOC is known and a model of the relation-
ship between the OCV and SOC is available, then the
accuracy of the internal resistance estimation can easily
be increased using this relationship to update Vs.
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Fig. 6. A simple sketch of the current jumping from one C-rate of ∆I to 2∆I
amperes, with no relaxation between the two C-rates (top), and the resulting
voltage (bottom).

C. Situation in item (3)

In the third case, if the current does not change from time
t to t + 1, i.e. |It − It+1| ≤ δ, then Vs does not have to be
updated. Therefore, we calculate the resistance at time t + 1
using (1), and move on to the next iteration.

D. Relaxation period

The internal resistance is largely dependent on the length
of the current pulse, as it is presented in [5]. Furthermore,
after the current has been interrupted, it takes time for the
battery to reach thermo-dynamic stability. Therefore, it is
useful to also track the length of the previous pulse, L, and the
length of any previous relaxation period T . Thus, it may be
beneficial to restrict ourselves to resistances, which had longer
relaxation times before updating Vs such that the voltage has
time to stabilise. The effect of the relaxation period on the
performance of the extraction method was investigated by
comparing the results of: (1) resistance identification requiring
that the relaxation period has to be at least as long as the
previous current pulse (i.e. where T ≥ L), and (2) resistance
identification requiring only one second of relaxation (i.e.
where T ≥ 1). The internal resistance extracted in the two
cases will be denoted as Ri and R̃i, respectively.

E. The characteristics of the estimated internal resistance

As the internal resistance was measured after each week of
aging using a pulse length of 18 seconds, then the internal
resistance extracted using the proposed methodology was de-
fined as the resistance value after 18 seconds, i.e. Ri = Ri,18s.
Furthermore, the considered dynamic aging profile, presented
in Fig. 1, is characterized by many changes of the current
all of the same C-rate amplitude. Thus, the internal resistance
of the battery was estimated only for current values in the
interval 9.5 A – 10.5 A, which allowed for (1) isolating the

dependence of the internal resistance on the current, and (2)
an unbiased validation of the proposed method.

IV. RESULTS

A. Internal resistance variation with SOC
By isolating the effects of the temperature, current (i.e., C-

rate), and pulse length, the internal resistance of the tested
battery cell, varies only with the SOC and increases while the
battery is aging.

Based on previous studies [3], [5], it is well known that the
internal resistance of the battery increases when approaching
very low and very high SOCs. Thus, the dependence of the
internal resistance on the SOC was expressed using:

Ri(SOC) = a · SOCb(1− SOC)c, (2)

where SOC takes values between 0 (fully discharged battery)
and 1 (fully charged battery), and a > 0, while b, c ≤ 0.
Furthermore, considering the logarithm of (2), the relation-
ship becomes linear in the parameter space, which is highly
desirable for parameter estimation. Therefore, it is assumed
that the logarithm of the battery resistance for a given aging
week w, is:

log(Ri) = β0,w + β1,w · log(SOC)

+ β2,w · log(1− SOC) + ε,
(3)

where ε follows a normal distribution with mean zero vari-
ance σ2. Furthermore, it is assumed that the variance does
not change from week-to-week. The parameters in (3) are
estimated by maximum likelihood [28] under the assumption
that β1,w and β2,w are both smaller than, or equal to, 0.

The internal resistance model, described by Eq. (3), does
not account for the direction of the current, i.e. charging or
discharging the model does not change. This is not necessarily
desirable if there is a large difference in the internal resistance
between charging and discharging. The model can be extended
to account for the current direction, by forcing the three
parameters, describing the expected internal resistance (i.e. β),
to be direction dependent. This comes at the cost of more
parameters (a total of 7 parameters instead of the 4 needed in
the model not accounting for direction), and it requires that the
internal resistance can be extracted across a SOC domain for
both charging and discharging. Preliminary analysis showed
that the difference in the extracted internal resistance between
charging and discharging was minimal given the estimated
variation of the model. Therefore, in the remainder of the
paper, when referring to the resistance model will imply the
model described in Eq. (3).

The internal resistance values extracted based on the con-
sidered aging profile and using the methodology presented in
the previous section are illustrated in Fig. 7 and Fig. 8, for
three different degradation levels of the battery cell. The results
presented in Fig. 7 were obtained requiring a relaxation period
T equal to the length of the previous current pulse, while the
results presented in Fig. 8 were obtained requiring a relaxation
period T equal to one second.
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Fig. 7. The internal resistance obtained during the periodic check-ups (traditional approach) and the internal resistance extracted from the dynamic profiles
(investigated approach) against the SOC, shown as red points ( • ) and black points ( • ), respectively. The extracted internal resistance was obtained considering
a relaxation period at least as long as the previous current pulse (unlike Fig. 8 where only 1 second of relaxation is required). While the relationship between
the internal resistance and the SOC was depicted at three levels of ageing: 4 weeks (left), 16 weeks (center), 38 weeks (right). The internal resistance model
was fitted to the red and black points, illustrated by the red line ( ) and blue line ( ), respectively. The shaded area bounded by the dashed blue lines
( ) is a 95% confidence interval of the expected internal resistance (for the model fitted to the extracted internal resistance).
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Fig. 8. The internal resistance obtained during the periodic check-ups (traditional approach) and the internal resistance extracted from the dynamic profiles
(investigated approach) against the SOC, shown as red points ( • ) and black points ( • ), respectively. The extracted internal resistance was obtained considering
a relaxation period of 1 second from the previous current pulse (unlike Fig. 7 where a relaxation period at least as long as the previous pulse is required). While
the relationship between the internal resistance and the SOC was depicted at three levels of ageing: 4 weeks (left), 16 weeks (center), 38 weeks (right). The
internal resistance model was fitted to the red and black points, illustrated by the red line ( ) and blue line ( ), respectively. The shaded area bounded
by the dashed blue lines ( ) is a 95% confidence interval of the expected internal resistance (for the model fitted to the extracted internal resistance).

The internal resistance values estimated using the proposed
methodology (black dots in Fig. 7 and Fig. 8) have been fitted
using the model (2), where the blue line is the exponential of
the expected log-resistance and the shaded area represents the
95% confidence interval. Furthermore, the red dots and the
red dashed lines represent the internal resistance values ex-
tracted from the weekly check-ups and the model fitted to the
extracted resistances at that corresponding week, respectively.

B. Comparing relaxation times

Comparing the results obtained for the two considered
relaxation periods, it can be observed that while the number
of internal resistance values is reduced by more than half,
when imposing a stricter relaxation period requirement, the
variation is also drastically reduced. This is clearly seen in
Fig. 9, which shows histograms of the standard deviation of
the models fitted to the resistance extracted with the stricter
relaxation requirement on the left, and only one second of
relaxation shown on the right.

In order to verify the accuracy of the proposed methodology
for extracting the battery internal resistance from a dynamic
mission profile, two approaches are considered:
(1) The absolute percentage error (APE) between the ex-

pected internal resistance of the weekly check-ups at the
end aging period, µ∗, and internal resistance extracted

from the dynamic profile using the proposed methodolo-
gies, y:

APE =

∣∣∣∣µ∗ − y
µ∗

∣∣∣∣ , (4)

The expected internal resistance, µ∗, is the red curve seen
in Fig. 7 and 8. While y represents log(Ri) or log(R̃i)
and is seen as the black points in Fig. 7 or 8, respectively.

(2) The integrated squared error (ISE) between the expected
internal resistance of the weekly check-ups at the end
aging period, µ∗, and the expected internal resistance
extracted from the dynamic profile using the proposed
methodologies, µ̂:

||µ∗ − µ̂||2 =

(∫ 1

0

(µ∗(S)− µ̂(S))
2
dS

)(1/2)

(5)

The expected internal resistances, µ̂, correspond to the
blue lines in Fig. 7 and 8, dependent on if the relaxation
time was restricted to being at least as long as the
previous pulse, or a single second, respectively.

The values of the median APE for the 38 weeks are
shown for both considered relaxation periods in Fig. 10. By
comparing the obtained median APE’s for the two relaxation
periods, one can observe that the added restriction on the
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relaxation period, yields smaller median APE, as expected due
to the smaller variance (see Fig. 9). Furthermore, it has to be
highlighted that the median APE presented on the left panel
of Fig. 10 is smaller than 4.5% in all but three cases. These
results strongly suggest that the proposed internal resistance
identification method can be used as an alternative approach
for the traditional method, which needs the battery to be
on stand-by for at least 15 minutes before the resistance
measurement.

The ISE’s for all 38 weeks and both relaxation methods are
summarised as a histogram in Fig. 11. The figure shows that
the ISE between the expected resistance during the weekly
check-ups and the expected extracted resistance were almost
identical irrespective of the two relaxation requirements. That
is, if the only thing of interest is the expected behaviour of the
resistance (i.e. the mean function), then using either relaxation
method will yield almost equivalent results. However, this
model is going to be used to predict battery age; therefore,
it will be beneficial to keep the variance as small as possible,
as it will make it easier to distinguishing the resistance at
different stages of aging, and at different SOCs. Thus, from
this point forward, when referring to the extracted resistance,
or parameters of the corresponding log-linear model, it will
always be in reference to the resistance extracted using a
relaxation time at least as long as the previous pulse.

C. Estimated parameters over time

Fig. 12 shows the change in the estimated parameters of
the log-linear resistance model over time. The figure shows
that over time the β parameters decrease, while the standard
deviation of the model decreases in the beginning, but steadily
increase from around week 9 (1089 FEC). The decrease in
β1,w and β2,w results in an increased (expected) internal
resistance towards the edges of the SOC domain (i.e. close
to 0 or 1). The smaller the parameter, the faster, and more
drastic, the increase in the internal resistance. Thus, the figure
shows that the resistance increases faster as the SOC tends
towards 1 (as β2,w is smaller than β1,w) compared to the
SOC tending towards 0. The β parameters together are used
to control the minimum expected internal resistance (at a SOC
of 0.5). This, as seen in Fig. 7, stayed fairly consistent across
time. Thus, if β1,w and β2,w decrease over time resulting in
an increased internal resistance, then β0,w has to decrease to
keep the minimum expected internal resistance consistent.

D. Prediction of the battery age

Based on the model described in the previous section, the
battery internal resistance can be accurately predicted, given a
SOC value and the battery age (i.e., the week value). However,
estimating the battery’s age (i.e., week) knowing the resistance
value and the SOC at which it was determined is also of
interest; to be more precise, the probability distribution of
P(w|Ri,SOC) has to be determined. In order to evaluate this
distribution, something has to be assumed about the probability
distribution of the SOC, the week, and the joint distribution of
resistance, SOC, and week. Starting with the joint distribution,
by the definition of conditional probabilities [28] and under the

assumption that the SOC and week are independent (which
must be true), it can be written:

P(log(Ri), SOC,W ) =

P(log(Ri)|SOC,W )P(SOC)P(W ).
(6)

Thus, the joint distribution can be split into three parts,
P(log(Ri)|SOC,W ), P(SOC), and P(W ). The conditional
distribution of the internal resistance given the SOC and week,
P(log(Ri)|SOC,W ), is the model described in the previous
section. Furthermore, the marginal distributions of the SOC
and week, P(SOC) and P(W ), respectively, have to be defined.
In this context, these distributions should be interpreted as
a priori information. That is, if any prior information about
the distribution of SOC or week are known, they should be
considered at this point. However, in this paper, it will be
assumed that any value of SOC and week is equally likely
a priori. Consequently, it is assumed that the battery SOC
follows a continuous uniform distribution on the unit interval
and the week will follow a discrete uniform distribution
over the set of possible weeks. Following this reasoning, the
posterior distribution of the weeks, given the battery resistance
and SOC can be calculated using:

P(W | log(Ri),SOC) =

P(log(Ri)|SOC,W )P(SOC)P(W )
#no. total weeks∑

w=1

P(log(Ri)|SOC, w)P(SOC)P(w)

(7)

The posterior distribution (7) follows from the application
of Bayes rule and the law of total probability to (6). The exact
distribution of the battery cell week will be summarised by its
weighted median and high posterior density region (HPD). A
95% HPD region represents the smallest possible combination
of regions with a combined probability (area beneath the
curve) of 95%.

Fig. 13 shows the exact posterior probability of the week,
given an internal resistance of 15 mΩ measured at SOC’s of
20, 50, and 80%, respectively. These figures, in general, show
a very consistent posterior probability across weeks, at around
2-4%. In particular, given a resistance of 15 mΩ, the posterior
distributions at 20 and 80% SOC are almost identical, although
we see that it is slightly more likely that the battery was 35
weeks (or older) if the resistance was measured at 20% SOC,
than at 80% SOC. These sound like small probabilities, but
looking at Fig. 7, we see that by drawing a line at 0.015 Ω
on the ordinate axis, it would be almost exactly in the middle
of all three confidence intervals. This can also be observed by
the weighted median which ranged 17.4 – 24.7 weeks, and
the 95% HPD regions, the blue shaded area of the figures,
which stretches over the entire considered aging period (i.e.,
weeks 1 to 38) in all three figures – making the HPD useless
for interpretation in this case. This is to be expected, as the
battery’s internal resistance only increased by 8.7% during
the 38 weeks of aging, as seen in Fig. 3. Furthermore, the
difference between the posterior distributions at 20 and 80%
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Fig. 9. Histogram of the estimated standard deviation of the log-linear resistance model fitted to every week of the extracted resistance. In the left panel a
relaxation period at least as long as the previous current pulse was required, while the resistances extracted for the right panel only required a single second
of relaxation.
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Fig. 10. Histogram of the median APE of every week for the extracted resistance. On the left panel a relaxation period at least as long as the previous current
pulse was required, while on the right panel only required a single second of relaxation.
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Fig. 11. Histogram of the integrated squared difference of every week, between the expected resistance of the weekly check-ups, and the expected extracted
resistance. On the left panel a relaxation period at least as long as the previous current pulse was required, while on the right panel only required a single
second of relaxation.

SOC should also be expected because the parameter β2,w
decreases faster than β1,w, as seen in Fig. 12.

Fig. 14 shows the exact posterior probability of week, when
the internal resistance was increased from 15 mΩ to 20 mΩ,
and the SOC was kept at 20, 50, and 80%, respectively. Similar
with an internal resistance of 15 mΩ, the posterior probability
distributions at 20 and 80% SOC are almost identical. The
HPD regions show that the batteries have a 95% probability of
being older than 22.8 and 27.5 weeks given that the internal
resistance of 20 mΩ was measured at 20% and 80% SOC,
respectively. This is also seen from the blue shaded area in
the corresponding figures. In both cases, the mode of the
distribution (its highest point) is at 38 weeks with a probability
larger than 0.2, and the weighted median week is around 35.

This is also reflected in the posterior distribution at 50% SOC,
with a mode at 38 weeks where the probability is slightly
larger than 0.15. However, at 50% SOC we also see a higher
probability around weeks 1-10, as seen from the 95% HPD
which is the union of [1; 12] and [23; 38]. This is caused
by an initial decrease in the internal resistance, measured
at around 50% SOC, during the first few weeks of aging.
Furthermore, this phenomenon is magnified by the fact that
the internal resistance does not increase as much at 50% SOC,
when compared to 20% and 80% SOC – this is also seen by
comparing the trajectories of the curves corresponding to each
of the three SOC values, which can be seen in Fig. 3.

Lastly, the periodic check-ups performed at the end of each
week will be used to illustrate how these distributions could be
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Fig. 13. The posterior distribution of the battery ageing week given an internal resistance of 15 mΩ, and a SOC of 20, 50, and 80%, shown on the left, in
the middle, and on the right, respectively.
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Fig. 14. The posterior distribution of the battery ageing week given an internal resistance of 18 mΩ, and a SOC of 20, 50, and 80%, shown on the left, in
the middle, and on the right, respectively.

used to predict the FEC. Two measures will be used to evaluate
the performance of the predictions made using probability
distribution in Eq. (7):

(1) The percentage of cases where the week of the check-up
is within the 95% HDR of the distribution (which should
be approximately 95%).

(2) The mean absolute error (MAE) between the expected
week of the distribution and the week of the check-
up. Where the expected week, ŵ, of a given probability

distribution, is given by:

ŵ =

#no. total weeks∑
w=1

w · pw, (8)

where pw is the probability of week w, seen in Eq. (7).

The percentage of cases the week of the periodic check-
up was within the 95% HDR of its constructed distribution
was 94.6%, and the MAE between the expected and check-up
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weeks were 937.75 FEC (7.75 weeks). While the HDR result is
adequate, the MAE leaves something to be desired. However,
if the MAE is split on a SOC-by-SOC basis, the MAE at 20,
50, and 80% is 976.47, 1122.88, and 705.43 FEC, respectively
(corresponding to 8.07, 9.28, and 5.83 weeks). That is, most
of the error is created at 20 and 50%. The reason for the large
error is due to the flatness of the probability distribution, as
seen in Fig. 13 for distributions corresponding to 20 and 80%
SOC. If the distribution is horizontal line, the probability (i.e.
the height) would have to be 1/38 (≈ 0.026). This statement
can be reversed, i.e. if the largest probability is around 2.6%,
the resulting curve would have to be almost entirely flat. A flat
curve further implies a ŵ value close to the average number of
weeks. This leads to a lot of predictions around 1633.5 FEC
(13.5 weeks), increasing the prediction error.

However, a threshold could be introduced requiring that the
largest probability of the distribution is larger than 5%. If
only using cases where the probability is above this threshold,
would mean avoiding making predictions in cases where there
is no definitive answer, at the cost of making less predictions.
Setting the threshold at 5%, the MAE for 20, 50, and 80%
SOC are 534.82, 2084.83, and 320.65 FEC, respectively
(corresponding to 4.42, 17.23, and 2.65 weeks). However, the
number of cases where the largest probability was above the
threshold was 4, 2, and 17, for the internal resistance values
found at 20, 50, and 80% SOC, respectively.

E. Prediction of the battery age with unknown SOC

Predicting the battery’s age using Eq. (7) has one obvious
flaw: it requires exact knowledge of the SOC at the time the
resistance is measured. Under laboratory conditions, this is
not an issue, as simple methods (i.e., Coulomb counting, open
circuit voltage measurement), which are considering certain
assumptions, can be successfully applied; however, in real-
life applications, the proposed SOC estimation methods are
still subjected to errors and/or increased computational burden.
Thus, it would be desirable to estimate the battery age, without
knowing the SOC at which the battery resistance is measured.
This becomes possible by considering a small modification to
Eq. (7) to account for the added uncertainty on the location
of the SOC:

P(W | log(Ri)) =∫ 1

0

P(log(Ri)|S,W )P(S)P(W )dS

#no. total weeks∑
w=1

∫ 1

0

P(log(Ri)|S,w)P(S)P(w)dS

, (9)

i.e. the uncertainty can be accounted for by specifying a
distribution of the SOC (representing the uncertainty of the
location), and integrating both numerator and denominator
over the domain of the SOC. The uncertainty associated with
the prior distribution represents the measurement error of the
SOC estimate. Furthermore, given an SOC estimate and a
desired precision, a prior distribution can easily be constructed.
As an example, assume the SOC is estimated to be 0.8, and

it is very likely within the interval [0.75; 0.85], two possible
choices of prior distribution (out of many) could be:

(1) A uniform distribution on the interval [0.75; 0.85]. This
will ensure that the SOC can not take values outside the
interval (i.e. there is 100% chance the SOC is within
the interval). However, it weights every choice of SOC
within the interval equally, i.e. the additional information
that the SOC is estimated at 0.8 is not used.

(2) A beta distribution with mean 0.8 and variance 0.001.
This says that the expected SOC is 0.8, but that there is
a 95% probability of the SOC being within [0.74; 0.85].
Thus, incorporating the additional information of the
expected location of the ’true’ SOC. Note: that using this
prior distribution implies that the SOC could technically
be anywhere between 0 and 1, but that the probability of
it being less than 0.75, and larger than 0.85 is 5%.
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Fig. 15. Density of the a priori knowledge on the location of the SOC.

Fig. 15 shows contains three examples of prior distributions
on the SOC, in the form of density functions: (1) a uniform dis-
tribution on the entire unit interval, (2) a posterior distribution
of the SOC learned from the aging data (in a similar manner
to Eq. (7) and (9)), and (3) a beta distribution with a mean of
0.8 and a variance of 0.001. The uniform, posterior, and beta
distributions are shown in red, blue, and green, respectively.
The interpretation of the uniform distribution is simply that the
SOC is entirely unknown, i.e. it could be anywhere between
0 and 1. The posterior SOC distribution is not much better,
but it takes into account the previous usage of the battery cell.
That is, from the density in Fig. 15, the battery is operated
on the interval [0.2; 0.8], and the majority of that time is
spend in [0.25; 0.75]. Both intervals are very large, and will
increase the uncertainty of any prediction made using these
prior distributions. The beta distribution, as mentioned above,
states that the SOC is most likely 0.8, and is a 95% certainty
within 0.74 and 0.85. Note that both the uniform distribution
on the entire unit interval and the learned posterior SOC
distributions are only really useful if nothing is known about
the SOC.

The effect of the added variability (added by not knowing
the ’true’ location of SOC) on the posterior distribution of
the battery’s age, are shown in Fig. 16 for the three SOC
distributions shown in Fig. 15, given internal resistances of
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Fig. 16. The posterior distribution of the battery aging week given an internal resistance and a distribution over the SOC. The distributions uniform on [0; 1],
beta with mean 0.8 and variance 0.01, and the posterior SOC (learned from the aging data), shown in red, green, and blue, respectively. Furthermore, the
posterior distributions are shown for a measured resistance of 18, 20, and 25 mΩ, shown from left to right.

18, 20, and 25 mΩ, are shown in Fig. 16 for the three
SOC distributions shown in Fig. 15. As it was illustrated
in Fig. 13 and 14, the point at which the SOC is measured
has a large influence on the posterior probability distribution.
Fig. 16 shows that if the location of the SOC is entirely
unknown (i.e. the SOC distribution is entirely uniform) the
posterior distribution is almost a flat line, i.e. the battery
could be any age, even for very large resistance values. The
SOC distribution learned from the data, shows slightly better
results are achieved (when the left most panel of Fig. 16 is
compared to the three panels of Fig. 14), if the guess of the
SOC’s location is limited to the way the battery has been used
until this point. Lastly, the green line showing the posterior
distribution, when assuming the SOC is located around 80%
(using a beta distribution), should resemble the right-most
panel of Fig. 14, when the variance is small. However, the
left-most panel clearly shows that having a variance of 0.001
(resulting in a 95% credibility interval of [0.74; 0.85]), is to
much to confidently determine the probability of the battery’s
age at a resistance of 18 mΩ. It requires a much larger
resistance value to get a high mode of the posterior probability
of the battery age.

The SOC priors were chosen to illustrate the general concept
of the method; in reality most SOC estimation methods are
within ±1% [30]. As a result in order to show any real change
in the probability distributions, the internal resistance values
had to be fairly large. Thus, the values 18, 20, and 25 mΩ are
not directly related to the analysed battery cell. With that said,
they are well within the realm of possible values for further
degradation of the battery.

F. Generalization of the proposed model

If the model should be used in an application with variable
temperature and C-rate, the model needs to be extended to
account for changes in to these variables. The simplest possible
case assumes that both temperature and C-rate do not interact
with SOC, or each other, and their relationship with the
resistance is additive on a log-scale (multiplicative on a linear-
scale).

If the relationship between temperature and the resistance is
similar to a Arrehnius relationship, then the model accounting

for SOC and temperature could look as follows:

log(Ri(SOC, T )) = β̃0 + β1 log(SOC)

+ β2 log(1− SOC)

+ β3
1

T
+ ε̃.

(10)

The β̃0 no longer has the same interpretation as for the
model presented in the paper (hence the added tilde), as it now
contains both the β0 from the model in the paper, and the pre-
exponential factor of a Arrhenius equation. With that said, the
parameter β3 could be interpreted as the ratio of the activation
energy and the universal gas constant (or equivalently the
Boltzmann constant). Furthermore, the noise component ε̃,
would also differ from the one presented in the paper, as the
variance induced by this component would be different.

If the relationship between the resistance and C-rate is
assumed to follow an exponential decay function with equal
decay rate for both charging and discharging, then the model
in Eq. (10) can be extended to:

log(Ri(SOC, T, I)) =
˜̃
β0 + β1 log(SOC)

+ β2 log(1− SOC)

+ β3
1

T
+ β4|I|+ ˜̃ε.

(11)

As above ˜̃
β0 does not have the same interpretation contains

the β0 from the model in the paper, the pre-exponential
factor of a Arrhenius equation, and an scaling factor from the
exponential decay. The same is true for the noise component ˜̃ε.
The current, I , in the equation above could be substituted for
C-rate (i.e. I/Qnorm, where Qnorm is the nominal capacity)
to introduce some stability and generalisability to the model.
Furthermore, the current direction can also be accounted for
in a similar fashion as described in Section IV(A). The model
shown in Eq. (11) only represents a first order relationship
between the current (or C-rate) and the internal resistance,
however, extension to the model accounting for higher order
relationships should be possible.

If the relationship between the internal resistance and the
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variables SOC, temperature, and current cannot be assumed
to be additive on a log-scale, then parameter estimation gets
a lot more complicated (even if the relationship is additive on
the linear-scale – a relatively simple alternative).

However, without the necessary data, accepting, or rejecting,
the model in Eq. (11) is impossible. As would be the derivation
of a more complicated model. Therefore, these extensions are
only presented, and not validated in this paper.

V. CONCLUSIONS

In this paper, a methodology was proposed for identifying
the battery internal resistance and model its degradation be-
havior directly from a dynamic aging profile. The resistance
was extracted by keeping careful track of the changes to the
current profile and, then, calculating the resistance of any given
point in time, using Ohm’s law. The internal resistance was
defined as the resistance extracted after 18 seconds of con-
sistent charging, and further limited to resistances calculated
following a period of relaxation at least as long as the previous
current pulse.

The extracted internal resistance for a given week, was then
modelled as a log-linear function of SOC. The model fitted to
the extracted internal resistance was extremely consistent with
the internal resistance obtained by a traditional method, and
could easily be incorporated into a framework for finding the
posterior probability distribution of battery cell being w weeks
old, given an internal resistance measured at a SOC value. The
analysis showed that the extracted internal resistance was fairly
stable across weeks in, and around, 50% SOC, when compared
to 20 and 80% SOC, where the internal resistance increased
at a much higher rate. This was in complete concordance with
the internal resistance obtained by traditional methods. The
constructed probability distributions were used to predict the
expected age of the battery, given SOC and internal resistance,
and the performance was quantified by using the weekly
check-ups. The resulting MAE for 20 and 50% SOC were
both above 968 FEC (8 weeks), while the MAE at 80%
SOC was slightly smaller than 726 FEC (6 weeks). However,
if a threshold was introduced, then the MAE at 80% SOC
was reduced to (2.65 weeks), but it reduced the number of
useful measurements from 32 to 17. The introduction of a
threshold is not ideal. In an ideal world the variance of the
extraction process should be reduced, in order to achieve better
performance.

The presented framework was then extended to cases where
the SOC was not known precisely, but a probability distribu-
tion over its possible location of the SOC could be specified.
It was shown that this distribution needed to have a narrow
95% credibility interval to achieve results comparable to when
an exact SOC value was available. Lastly, this framework
lends itself readily for an extension to estimating the battery’s
remaining useful life (RUL), as the posterior probability dis-
tribution of the week values can be directly translated to the
RUL of the battery. However, this is left for future research.
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