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Abstract

Signalized intersections are the capacity-determining points on roads in cities, and the signal settings are usually based on very
primitive algorithms which cause road users to experience a lot of unnecessary delay The work presented in this paper, show the
effect of deploying a controller based on the optimization software Uppaal Stratego in four signalized intersections on the same
road segment, the controller is fully distributed meaning there is no direct coordination between the intersections. The controller
is tested against the controller deployed in the intersections today. The controllers have been tested using the micro simulation
program VISSIM. The simulation shows that in comparison with the existing controller, this controller provides a reduction of
between 30% and 50% in average delays, queues and number of stops. The fuel consumption and total travel time of cars in the
coordinated section are reduced by about 20% in the simulation study. All these reductions are achieved without making the
situation worse for the side roads.
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1. Introduction

Signalized intersections are necessary to maintain good traffic performance and a high safety level on our roads,
but signal systems also generate several inconveniences for the road users and society in general. These include
operation and maintenance costs, stops in the traffic, increases in delays and high fuel consumption. The issues
caused by signal systems largely depend on the control system used [Lauritzen, 1994]. In Denmark, it is estimated
that the annual societal costs of a Signalized intersection amount to EUR 650,000 of which delay related costs
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represent 69% of this 2012 [Vejdirektoratet, 2012]. Therefore, Signalized intersections represent a great potential for
optimizing traffic flows.

A signalized intersection can be either time or traffic controlled. In addition, the system can be independent of
other intersections or coordinated with other intersections and the coordination can be simple or advanced — often
called adaptive signal management [Gautier, 2001]. The first adaptive signal systems were developed in the late
1970s and have since been further developed and new systems have been developed. SCOOT and SCATS are the
most common, and together they cover 80% of the market, but there are also systems such as SPOT and MOTION.
Common to the systems is that they are based on historical data or feedback from loops. Depending on the system,
changes in program, cycle length or offset time typically take one or more minutes, and in some cases, up to 10
minutes. [Kronborg & Davidsson, 2004; Lauritzen, 1994].

Reliable detection of traffic is important and detection can be carried out using many different detection methods.
Induction loops detects traffic in point and has always been the most widely used technology, but in recent years
traffic radar has become commonplace. The radar technology introduces the so-called Estimated Time of Arrival
(ETA) function, which continuously estimates the arrival time of cars to the stop line based on course, speed and
position. Most of today's systems do not use the continuous flow of ETA values from the radar, instead they emulate
virtual induction loops and thus translate the continuous flow of ETA values into discrete observations of ETA when
cars pass a virtual loop. [Jakobsen, 2015; Kildebogaard, 2015; Traffic Rader | Intersection Management, 2016].
Today's control of signal systems builds on a few simple signal controlling principles. Typical elements are
predetermined phase order fixed offset times, fixed maximum cycle times, and fixed maximum and minimum green
times. Even no binding regulation applies to these control elements strong traditions seems to influence the choice of
values to be used.

The starting point for this project is to use modern optimization techniques to optimize traffic flow in signalized
intersections. Others have done this before and examples of this are: [Mousavi, 2017] views traffic in intersections
as MDP with Reinforcement Learning and Deep Policy-Gradient and train a deep neural network for adaptive signal
control. The resulting controller was evaluated on a small example with respect to different metrics using synthetic
traffic load. No comparison to existing controllers were made, nor does the paper evaluate with respect to actual
traffic. [Genders, 2016] use Q-learning for off-line training of deep neural networks representation of traffic light
control policies for different optimization criteria. The resulting controllers are experimentally evaluation using the
simulation tool SUMO on a small synthetic intersection. [El-Tantawy, 2013] presents an extensive comparison of
different off-line learning methods (Q-learning, SARSA, TD) for traffic control based on MDP models based on
evaluation of different traffic scenarios from Toronto. [Balaji, 2010] applies Q-learning to off-line optimize green
timing in an urban arterial road network to reduce total travel time. The method was tested on simulation of traffic in
highly congested section of the Central Business District area in Singapore. [Sanchez-Medina, 2010] use genetic
algorithms and cellular-automata-based simulators for off-line training optimal traffic signal control. The resulting
controller was tested on simulation of contested scenarios for “La Almozara” in Saragossa, Spain. [Wei, 2018] build
a frame-work, where deep reinforcement learning is used to train a traffic controller off-line, the off-line training is
followed by an online learning phase, where the controller chooses it’s action according to an e-greedy strategy
combining exploration and exploitation. The controller is tested using real world data and shows an improvement in
delay of 19 %

This project is based on [Eriksen, 2017] which use Uppaal Stratego for online synthesis of optimal control for a
signalized intersection. Uppaal Stratego is an optimization program that combines machine learning and model
checking techniques to synthesize at run-time a near-optimal control strategy for signal management [David, 2015].
Importantly, and in contrast to above-mentioned applications of Reinforcement Learning to signal controlling, there
is no training phase (say for training a Neural Network). In fact, our method will immediately adapt to any changes
in the pattern of traffic, and will allow instantaneous change of optimization criteria. We use as a case a road
segment from Hobrovej, Aalborg with four signalized intersections. The aim of the project is to develop a new
controller based on real time optimization of the signal setting from continuous radar information, with a minimum
of restrictions on phase order and minimum/maximum green times. For evaluation we compare the difference
between the existing controller and the new controller.
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2. Method

The project is based on a section in the street Hobrovej in Aalborg, Denmark with four signalized intersections,
see Figure 1, the intersections at each end of the section are only used to send cars into the simulation model. The
route is an important entry road to the city of Aalborg and has an AADT of 20,000-30,000 vehicles [Mastra, 2017].
Three of the intersections are today pre-timed operated and coordinated in a green wave with partial traffic control
and the last intersection — named Sendre Skovvej - is fully traffic controlled. The four intersections are optimized in
relation to today's standard for the regulation of respectively coordinated intersections with partial traffic control and
full traffic-controlled intersections in Denmark today.

Skelagervej
3 " &, Provstejorden ? - ;
AT ; . Ny Keervej Thele g ? > @
T ppicier 340 s Mglleparkvej Sgntire
3 m- "'"'""-"."'f-f-..,- = ¢ .
.- 280m @ e, SKOVVE]  gictre Alle
290 m ol — _
P 260m Jy TTmEs

Figure 1 - The six signalized intersections in the street Hobrovej and the distance between the intersections.© OpenStreetMap contributors.
2.1. Traffic modelling

The project uses the VISSIM microsimulation program. This program allows modelling traffic, thus enabling
comparing traffic flow with the current controller and the controller developed in this project. VISSIM is used to
measure delays, queue lengths, number of stops, fuel consumption and total traveling time on the main road. [PTV
VISSIM, 2017].

2.2. Data Collection and Processing

As input to VISSIM we used intersection counts from all six intersections in the morning peak hours from 7:00 to
9:00. The counts were made in 15-minute intervals. Pedestrians and cyclists are not included in this project.

2.3. The Controller

In the paper we have developed a controller, which optimizes the signal setting based on reinforcement learning
using continues input information about all cars within 200 meters of the intersections stop line. The control strategy
is synthesises using the software Uppaal Stratego [David, 2015]. We used the micro simulation tool VISSIM to
generate the input traffic and evaluate the effect of the control strategy. In this we only use a single optimization
criterion namely the overall delay in each of the four intersections, we will see later in the results that even though
we only optimize for average delay the derived effects on all measures are positive.
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Figure 2 - The communication between Vissim, Python and Uppaal Stratego.

Data equivalent to radar data is extracted from VISSIM through the COM-interface, which is available in the
programming language Python, see Figure 2. The data is filtered and partitioned into four subparts one for each
intersection. For each intersection we track the ETA (Estimated Time of Arrival) of all cars within 200 meters of the
intersection each second. We then run Uppaal Stratego for each intersection with the car information and signal
setting that belongs to that intersection. Uppaal Stratego uses this data to build an abstract MDP model from
which a near-optimal signal setting for the intersection. is then generated. The signal setting is then read in Python
and effectuated in VISSIM. This communication pattern is repeated each second.

The control of each intersection is performed in a distributed manner meaning that there is no communication or
coordination between any of the intersection. In Uppaal Stratego we can optimize for any number of parameters, for
example queue length, number of stops and delay. In this paper the signal setting is optimized to minimize the
overall delay of all cars.

2.4. The Uppaal Stratego Controller

The optimal signal setting is decided on-the-fly using the optimization tool Uppaal Stratego: Every second an
abstract (MDP) model is initialized using the current traffic situation in the intersection. The information used to
make the model are the vehicles detected by the radars, as well as estimates of how well the traffic is moving based
on the previous traffic. As an example, we model and optimize a simplified intersection seen in Figure 3 in Uppaal
Stratego: This intersection only has two lanes one from East to West and one from South to North. In the current
situation, 4 vehicles are waiting from East and 2 from South. Based on previous traffic, the arrivals of vehicles from
both East and South are assumed to be exponentially distributed with rates 1, i.e. 15 = 1z = 1. In the current
situation, the signal setting is green from east to west.

We also have parameters in the model describing how fast the traffic moves away from the intersection. Here the
rates of this model are 1, = —4 (ry = —5), meaning that when the signal is green in East-West direction (South-
North direction) the traffic moves away from the intersection at these rates.
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Figure 3: Overview of the example intersection.

The signal setting may be changed every second and the underlying mathematical model is a Markov Decision
Process (MDP) [Puterman, 1994]. An MDP is illustrated in Figure 4.
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Figure 4 - Example of an MDP. (x,y) indicates the configuration with x cars
waiting from East and y cars waiting from South

As we know our current configuration at time T = i, we will have a distribution of states we can end up in
depending on the choice we make. Our choices in this model is to extend green time or give green to the other
direction. Faced with this MDP we can now find an optimal control strategy, which optimizes the objective the
model is given. E.g. total delay of all vehicles. To solve the problem, we use Reinforcement Learning which
performs an iterative simulation of the MDP-model with the goal to learn the optimal control strategy. We model the
choice of phases in Uppaal Stratego using a state machine augmented with timing constraints, expressed using
limitations on local clocks (a so-called timed automata). This enables us to guarantee things like minimal green
times. In the state machine in Figure 5 x is a local clock, which is reset every time we change the signal setting. The
test x >= 4 ensures that we only change the setting after four or more seconds. If this test is replaced by the
constraint x == 4, then we describe a pre-timed operated system where the setting is changed after exactly four
seconds. The test y == 1 on the local clock y ensures that phase changes may take place every second.
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Figure 5 — Uppaal Stratego model of the intersection seen in Figure 3.
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In Figure 6, we see a simulation in Uppaal Stratego of a pre-timed operated system over 100 seconds. In the
figure we see the two queue lengths as functions of time and the blue curve shows (as 0 or 1) the signal setting. As
we see the setting changes after exactly four seconds. An estimate of the accumulated total queue length over 100
seconds is 1411+42.38.

Qsimulate 1[<=100] {E, S, LightEW} - | X
Simulations (1)
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8
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Figure 6 — A simulation of the example intersection using a pre-timed operated system.

For comparison, we show in Figure 7 a simulation of a trained optimal control strategy. As we can see the system
is not pre-timed operated, but controlled by the actual traffic in the system. An estimate of the total queue length
over 100 seconds is 829+14.57 which means a reduction of 41%.
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Figure 7 — A simulation of the example intersection using a learned optimal controller.

Above we calculated (learned) the optimal signal setting using Uppaal Stratego based on a model of a snapshot of
the intersection, which means we only have information on the vehicles up to 200 meters from the intersection. It is
clear that the situation can change significantly in a given horizon (e.g. 20 or 100 seconds). This means that more or
less vehicles than expected compared to the assumptions could arrive in the intersection. To combat this problem we
introduce a rolling horizon. The rolling horizon gives the opportunity to continuously adapt the model and by that
the signal setting to the actual traffic, see Figure 8. This means the decision about the signal setting will be updated
once every second

T,: optimal signal setting
: 'll’llllllllllllll’

T,: optimal signal setting

) o H
Iy I B IS EEEEEEEEENE llllllll*
T,: optimal signal setting H
I i B I EEEEEEEEEEEEEEEER (B llll'
—

Effectuated signal setting

0 1 2 3 4 5 6 7 8 o & 20 21 22 secC

Figure 8 We learn a strategy up to a horizon, we then after a second learn a new strategy using the updated information from the
radar.
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3. Results

The effect of the new controller is documented by comparing the simulation results from the existing controller
with the simulation results from the new controller. The evaluation measures the average delay, mileage, fuel
consumption and number of stops made in the individual intersection. In addition, the total travel time at Hobrovej is
also measured see Figure 1. Detailed data for the individual traffic flows are presented for the intersection
Hobrovej/Ny Kervej, this is the largest of the intersections.

We see on Figure 9 that the new controller has a significant effect for all the measured parameters in all the four
intersections. The average delay is reduced between 27 % and 54 %, the queue lengths are reduced 42-64 %, the
number of stops 20-59 % and the fuel consumption 19-28 %. In addition to this the total travel time for the whole
segment of Hobrovej through the four intersections is reduced by 29% and 16% for respectively the north and south
bound directions.

% B Average delay [l Queue M Stops MFuel consumption B Travel time

70

60

50

40

30

20

o o
Hobrovej / Hobrovej / Hobrovej / Hobrovej / o§ 5
Sendre Skovvej Melleparkvej Ny Kaervej Provstejorden $

Figure 9 — Summarized results for all intersections. The graph shows the percentwise reduction in the measures using the
new controller.

From Table 1 we observe that the controller reduces the average delay for all directions. This shows that the
controller can exploit the observed flow of the traffic better than the existing controllers in the four intersections.
This means the new controller has reduced the average delay for all streams, and that it does not just moved the
delay from the main roads to the side roads.
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Table 1 - Average delay in the respective legs with existing controller and new controller, as well as the absolute and relative effects for the
intersection of Hobrovej/Ny Karvej/Vestre Allé.

Traffic flow Existing New Number Effect
controller controller
From To [sec./veh.] [sec./veh.] [veh.] [sec./veh.] [%]
Hobrovej S Hobrovej N 14 5 1819 -8 -60
Ny Keervej Vestre Allé 30 16 340 -14 -46
Ny Keervej Hobrovej S 35 22 174 -13 -36
Vestre Allé Ny Keervej 46 17 411 -28 -63
Vestre Alle Hobrovej S 48 14 139 -34 =71
Vestre Allé Hobrovej N 50 27 147 -23 -46
Ny Keervej Hobrovej N 29 15 333 -15 -50
Hobrovej S Ny Kervej 13 5 290 -9 -65
Hobrovej S Vestre Allé 21 13 159 -8 -37
Hobrovej N Ny Keervej 26 18 252 -8 -31
Hobrovej N Vestre Allé 9 5 95 -5 -50
Hobrovej N Hobrovej S 9 5 1,337 -5 -49
Weighted average 20 9 5,495 -11 -53

To capture the new controller’s performance with respect to the green wave the travel time on the main road is
captured for both controllers this is shown in Figures 10 and 11.
The results shows that the highest performance difference is when the congestion is at its highest. This result

shows that the new controller is able to constantly avoid being in a state where the intersection is fully congested.
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Figure 11 — The northbound travel time
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4. Discussion and Conclusion

Through microsimulation with VISSIM, we have demonstrated that a new Uppaal Stratego based controller
makes traffic significantly more effective than the existing controller for the metrics average delay, queue length,
number of stops, fuel consumption and overall travel time. All parameters were improved in the four intersections
and in addition, the total travel time in the previously coordinated route was also significantly improved. The
controller reduces the measured parameters for all streams, it does not just move capacity from the side roads to the
main direction.

As mentioned earlier, in this project, we only use a single optimization criterion, the overall delay in each of the
four intersections. However, with the methods we have used, we can include any other measurable criteria in the
optimization - for example a criterion that the queue length in a turning lane must not exceed the length of the
turning lane. Another example could be to prioritize the public transport in the optimization, and even include the
number of passengers in the bus in the optimization. It is also possible work with dynamic constraints in the
optimization, for example, that the maximum red time depends on traffic density so that it rises when traffic rises.
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