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AN INTRODUCTION TO POROELASTICITY

LARS ANDERSEN

ABSTRACT. In the following, the continuum model for a fully saturated porous material
is presented. The theory is mainly due to M.A. Biot [2, 3]. We shall only consider a two-
phase system consisting of a solid skeleton and a single pore fluid, e.g. water. The theory
for three-dimensional consolidation is developed. Anisotropic permeability of the material
is allowed, but for simplicity the analysis is restricted to isotropic linear clastic material
behaviour. However, the theory is easily extended to elastoplasticity. Finally, it will be
shown that the effective stresses in a porous material may in general not be calculated
as proposed by Terzaghi. Whereas highly accurate results are achieved for residual soils,
i.e. sand, silt and clay, poor results are obtained for cemented materials such as concrete
and rock. Here it is recommended to follow the stress approach proposed by Biot.

1. BASIC DEFINITIONS

A porous material, or matrix, with the total volume V' is considered. The material is
fully saturated, and the pores are assumed to be distributed randomly in space so that the
material on a macroscopic level may be described as a continuum. The volume is divided
into two parts,

V=V, +Vp, 1
where Vj is the volume of the solid phase, i.e. the grain skeleton, and V7 is the volume of
fluid. In geotechnical engineering, the subscript f is generally substituted by the subscript
w, since the pore fluid is usually water. In saturated porous materials, e.g. soil, a part of the
pore fluid is constrained. For example, a part of the water in clay is chemically bound to the
clay mineral, and in rock or granular soil some of the water may be trapped in cracks that
are not connected to the primary system of pores. This part of the fluid belongs to the solid
phase, i.e. to V, since it cannot move relatively to the solid matrix. Hence, only the volume
of interconnected voids is included in the definition of V7, cf. Fig. 1. Unfortunately, in real
soil or concrete etc. it may be difficult to determine which part of the pore fluid is free to
move relatively to the solid skeleton.

Vs 1-n

D Free fluid

FIGURE 1. Definition of the porosity, n, in a saturated porous material.
The volume of the free fluid in the interconnected pores is Vy = nV,
and the volume of the solid (including fixed fluid) is V; = (1 — n)V.

5



6 LARS ANDERSEN

The porosity of the porous material, or matrix, is defined as
n=V;/V, @

i.e. as the volume fraction taken up by interconnected pores. Occasionally, in the interna-
tional literature on porous materials, the porosity is denoted f, ¢ or ¢, but in the Danish
geotechnical literature the symbol n is usually applied. Given that the soil is fully saturated,
the mass density of the matrix material constituted by the solid and the fluid becomes

p=1-n)ps+npy, 3

where p; is the mass density of the solid phase, whereas p 5 is the mass density of the fluid
phase. In standard geotechnical engineering p s is most often the average density of the
minerals constituting the grains in the soil. This is not the case in the present formulation,
since any fluid that is not allowed to move freely between the grains is considered part
of the solid phase as illustrated in Fig. 1. In other words, n is the volume fraction of
interconnected pores. With this definition, n is occasionally referred to as the effective
porosity.

In the present theory, it is assumed that the pores are distributed randomly, so that
the matrix material may be considered homogeneous on a macroscopic level. Hence, in
accordance with Eq. (2) for a cross section with the total area A, the area A y = nA will
be constituted by the free pore fluid, whereas the solid phase (including fixed pore water)
constitutes the area A, = (1 — n)A.

Next, the pore pressure, p = p(x,t), is defines as the pressure in the free pore fluid.
Whereas the mean total stress, ¢ = o, is defined as positive in tension, the pore pressure
is positive in compression. This definition is common practice in geotechnical engineering.
The total stresses o;; are now divided into two parts,

Tij = 0’;]- - [}Jij. (4)

Here o}; are referred to as the effective stresses. While the pore pressure is present in both
the fluid and the solid phase, the effective stresses are carried solely by the solid skeleton.
Given that the solid phase only constitutes the fraction 1 — n of the entire matrix, the total
stress in the solid phase is actually o;/(1 — n) — pd;;, whereas the total stress in the
pore fluid is —pd;;, cf. Fig. 2. In Section 3 the definition of effective stresses is further
discussed, in particular with respect to the formulation of constitutive laws.

The displacements of the grain skeleton and the fluid in the interconnected pores are
denoted u; and v;, respectively. In addition to the full displacement of the pore fluid, a
relative velocity is introduced in the form

X ow; ( du;  OJu;
w; = =n

At a Tf) v w=nlu-w). ®)

The quantity w; = w;(x,t) is referred to as the seepage velocity. Evidently, w); is the
average relative velocity of the fluid flow in the matrix including both the fluid and the
solid phase. Thus, in the particular case u; = 0 the definition 1; = g;/A applies, where ¢;
is the fluid flow, or flux, through the cross section area A in coordinate direction i, cf. Fig 3.
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FIGURE 3. Flow velocity over a cross section in a poroelastic medium.

2. CONSTITUTIVE LAWS IN POROELASTICITY

Firstly, an elastic material is considered. A linear relationship between the strain and
stress rates is assumed. Hence, the constitutive law may be expressed in terms of the
generalized Hooke's law,

Gij = Cijhi€ni. (6)
Here ¢ = é1,1(x, t) is the strain rate tensor,

. 1 /00 01U . Ou;
i = = | — —1, U = —. 7
) (f)xj + Ox; oot M
where u; = u;(x,t) denotes the displacement field. In general, the tangent stiffness tensor
Cijrt = Cijra (%, t) may account for elastoplastic material behaviour as well as rheological
and thermoelastic response [4]. However, in any case only the elastic strains will contribute
to the development of stresses, and for the present purpose an elastic model will suffice. In
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particular, for an isotropic and linear elastic material, the constitutive law simplifies to

Gij = AMA0ij + 2uéi;, (8)
where A, = As(x, t) is the dilation rate,
Jduy,
ST By )]
d;; is the Kronecker delta,
1 for i=j
‘5“‘_{0 for i3 i

and A = A(x) and p = p(x) are the so-called Lamé constants, which are related to Young’s
modulus £ = E(x) and Poisson’s ratio v = v(x) as

vE E

P e — = 11
Grna-2) *“20+» (1
The inverse relationships are given as
(33X +2p) A
E="—1-— =——. 12
Atp Y73 A+p) 2

The Lamé constant (4 is also identified as the shear modulus, which is often denoted G.

Secondly, in a porous material the effective stresses are provided by the constitutive
law for the matrix material, 7.e. the saturated grain skeleton. In the case of linear isotropic
material behaviour the stress—strain relationship is similar to Eq. (8). However, it must
be taken into consideration that a change in the pore pressure will lead to a change in the
volume of the solid constituent, i.e. the grains or the porous solid, which does not involve
a change in the effective stresses. Hence,

’
i)

1; . A
b1 = Aéldis + 2ue where ;= 6y — AN, Al= —I?. (13)

Here ¢;; are the components of the strain rate tensor given by Eq. (7), and A and p are the
Lamé constants of the matrix material. Note that these may be substantially different from
the Lamé constants A, and p, of the solid material as further discussed below. Finally,
A_f is the dilation rate in the solid phase due to the pore pressure (positive in expansion),
whereas K is the bulk modulus of the solid constituent. In a linear elastic isotropic ma-
terial the following relationship applies between K ; and the Lamé constants A, and p, of
the solid constituent, e.g. the grains or the rock mineral:
K :)\5+§u5. (14)
In granular materials such as residual soils, As and u, are typically much greater than
A and p, e.g. the Lamé constants of sand are much smaller than those of quarts crystal.
Hence, the reduction in the volume of the solid phase resulting from an increase of the
pore pressure is generally negligible. In this situation Ag may be disregarded and the
approximation e;j = ¢;; applies. On the other hand, in concrete, intact rock and similar
cemented materials the bulk modulus of the solid constituent, K , and that of the matrix
material, K, are typically of the same order of magnitude. Therefore, in these materials Ag
becomes significant, and the full definition provided by Eq. (13) applies. Finally, it is noted
that in the general nonlinear case, an additional contribution to the total strain rate ¢ ; 7, but
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not to ¢; j» stems from creep and thermoelastic behaviour. However, this irreversible term
is disregarded in the present theory.

Thirdly, for the pore pressure, a constitutive equation equivalent to Eq. (13) is achieved
by consideration of the volumetric strain of the matrix, i.e. the dilatation. Making use of
Egs. (7) and (5), the total dilatation rate for the matrix, A, may be expressed as

duy, dwy, [ X vy,

, Ay e (15)

Defining K¢ as the bulk modulus of the fluid, the following constitutive laws are obtained
with regard to the volumetric strains of the solid and the fluid phase, respectively:

A, = (1- n)As + nAf = , Wwhere A, =

Ay, Iy, Ay,

1 ¢  p

. 3! . )
=1k K-S TAL o=k Ar=-L 6

3 Ky
Here ' is the mean effective stress rate, and the quantity ¢'/(1 — n) — p is identified as
the actual mean stress rate in the solid phase, given that the effective stresses are carried by
the solid skeleton alone as discussed above.

Insertion of Eq. (16) into Eq. (15) provides a relation which defines the pore pressure
rate in terms of the matrix material velocity %; and the seepage velocity w;,

A,

Quy, | 0wy, ¢ P P P
— =——(1-n —-N—_— & —N—. 1
B, By, B, e W T ™ e un

Note that only the volumetric strain rate, i.e. the dilation rate, occurs in Eq. (17), that is
the constitutive law for the pore fluid is independent of any shear deformations in the solid
constituent or the fluid. On the righthand side of Eq. (17) it has been assumed that the
volumetric strain rate in the solid phase is much smaller than the dilatation rate in the
pore fluid. This approximation is valid for most granular materials such as soil, given that
nK, > (1 — n)K;. This is the case for sand, where n is typically around 0.2 to 0.3 and
K, = 20K; (K; = 2 GPa for water). However, for rock-like materials n may be close to
zero, and in this case the contributions to the total dilatation from the solid phase and the
fluid phase may be of the same order of magnitude.

Ay =

3. ALTERNATIVE DEFINITION OF EFFECTIVE STRESSES—BIOT THEORY

The total stresses, ¢;;, may be divided into the pore pressure, p and the so-called effec-
tive stresses, 07;. According to Eq. (4)
0l = 0ij + pdij. (18)
This definition of effective stresses was proposed by K. Terzaghi, and the components o };
are occasionally referred to as the Terzaghi effective stresses. 1t is noted that p is positive
in compression, whereas the stresses are defined as positive in tension.
With the definition given by Eq. (18), the constitutive law for the effective stresses is
given in terms of “effective strains” according to Eq. (13). This implies that the volumetric
strain of the solid skeleton due to a change in the pore pressure will not provide any change

in the effective stresses. Alternatively, for an isotropic linear elastic material one may
define the rate of change in the effective stresses as

o = Nepafiz + 2pué45, (19)
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i.e. in terms of the total strain rate. A comparison of Egs. (13) and (19) implies that in the
general case a - ok U'”, and therefore a . # 0;; + pdij. Hence, Terzaghi’s definition of
effective stresses is invalid when the constltutlve equation is defined in terms of effective
stresses and total strains. In order to prove this, the mean effective stress rate 6/ is computed
from Eq. (13). Making use of the fact that § ., = 3, the following result is obtained:

1 1o o i 2, L.
¢ = gri';:,ﬂ = g/\eiidlm + guefe,ﬂ =Kéy, =K (e; K+ ?> (20)

Here K and K¢ are the bulk moduli of the matrix material and the solid constituent, re-
spectively,

2 2
K=\+ Fh K5=)\s+§u,,.. @n
Next, similarly to Eq. (20), the mean effective stress rate ¢” is found as
1 1 2 .
G = gf‘ffgk = ‘?;/\éiiiskle + g#éhk = Kégy. (22)

Comparison of Egs. (20) and (23) provides the result that 6" = ¢/ — (K/K,)p. Since a
change in p provides the same change in all normal stress components and no change in

the shear stress components,

. . K .
65 = 65 — 5ijEP-

(23)
Next, Eq. (23) is integrated over time in the interval 7 € [to, t], where 7 is the integration

variable. This leads to the equation

" K
O-Z (X, t) - '711'j (X, tO) = (ng (X7 t) - ”; (X tO) *+ ’sz] K, (X,t) - p(x, 1‘,0)) . (24)

Since ¢y may be chosen arbitrarily, the stresses at time ¢ must fulfill the equation

. K
ol = 0l = 0 =P (25
Thus, as an alternative to the Terzaghi effective stresses given by Eq. (23), one may

apply the definition

0';; =0y + /3[1(31']‘, g=1- I]X_z (26)
This formulation was originally proposed by Biot. A comparison of Egs. (13) and (19)
suggests that the Biot effective stresses lead to much simpler constitutive models than the
Terzaghi effective stresses which must be defined in terms of “effective” strains.

It is worthwhile to note that for both granular soil and clay saturated with water, the
bulk modulus of the minerals constituting the solid part of the material is much greater
than the bulk modulus of the matrix, i.e. K > K. In particular, for normally or under
consolidated clayey soil with large water contents 3 = 1, see Table 1. Hence, the Biot and
the Terzaghi effective stresses are equivalent.

Finally, in saturated porous rock and concrete, K and K ; are of the same order of
magnitude, and values of /J as low as 0.5 may be expected. This fact is often neglected
in geotechnical engineering practice. Here Eqs. (18) and (19) are usually applied with the
erroneous assumption that o/, ¢ =0 ;- Unfortunately, the Terzaghi effective normal stresses
provided by Eq. (18) are smaller than, or equal to, the Biot effective normal stresses given
by Eq. (26). Therefore, elastoplastic constitutive laws based on Terzaghi effective stresses
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TABLE 1. Compressibility of soil, rock and concrete [5].

Bulk Modulus® (MPa)

Material K K B=(1-K/K)
Quartzitic Sandstone 17,000 37,000 0.54
Quincy Granite (30 m deep) 13,000 52,000 0.75
Vermont Marble 5,600 71,000 0.92
Concrete (approximately) 5,000 40,000 0.88
Dense Sand 56 36,000 0.9985
Loose Sand 11 36,000 0.9997
London Clay (over consolidated) 13 50,000 0.99975
Gosport Clay (normally consolidated) 1.7 50,000 0.99997

“ Bulk moduli at p = 98 kPa (atmospheric pressure); water: Ky = 2040 MPa.

and total strains will generally provide an overestimation of the shear strength of saturated
granular materials such as soil, and in particular rock, below the phreatic surface.

4. THREE-DIMENSIONAL CONSOLIDATION IN SOIL AND Rock

A poroelastic continuum is considered. Disregarding any inertia forces, the incremental
form of the equilibrium equation for the matrix material may be put as
(2l ij 001’
— +pg;i =0, gy =it
2 g 9i = 50

3 )

where g; = g;(x, t) are the specific body forces. In soil mechanics g; is usually the gravity
field. Further, p = p(x) is the mass density of the matrix material, cf. Eq. (3).
In a similar manner, the equilibrium for the fluid phase is provided by the equation
i = ki (o + 0395 ) (28)
where ; is the seepage velocity, cf. Eq. (5), and k;; = k;;(x) is a second order tensor
with the SI units (m3-s-kg~!) representing the permeability of the material. In the general
case k;; is fully populated and asymmetric. However, in orthotropic materials only the
diagonal terms have none-zero values. Typically, in stratified soil k11 = kas # kas, that
is the vertical permeability is different from the horizontal permeability. In the particular
simple case of isotropic porous materials k;; = d;;k. Thus, the permeability is defined by
a single parameter, .

Equation (28) is identified as the generalized Darcy’s law for fluid flow in a porous
medium. It is observed that a gradient in the pore pressure, p, which is not counterbalanced
by gravitation forces, will lead to seepage with the velocity ;. The speed of the fluid flow
increases with the permeability of the matrix. Further, in anisotropic materials the flow
may not necessarily be in the opposite direction of the gradient. This is evidently the case
for isotropic and orthotropic materials, since k;; only contains diagonal terms.

In contrast to the hydraulic conductivity, x = gp sk, with ST units (m-s~1), the parame-
ter k is independent of the fluid density and the gravitational acceleration, g. However, the
components of k;; still depend on the dynamic viscosity of the pore fluid, 4 7, with the SI
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TABLE 2. Permeability of various soil and rock materials [1].

Relative Pervious Semi-Pervious Impervious

Permeability

Unconsolidated Well Sorted Well Sorted Sand Very Fine Sand, Silt

Sand & Gravel Gravel or Sand & Gravel Loess, Loam

Unconsolidated Peat Layered Clay Fat / Unweathered Clay

Clay & Organic

Consolidated Highly Fractured Rock Oil Reservoir Fresh Fresh Fresh

Rocks Rocks Sandstone Limestone, Granite
Dolomite

x (cm?) 103 104 105 10% 107 10% 10% 1070 10" 1072 1073 1074 1015

x (milli-darcies) 108 107 106 10° 10* 10° 100 10 1 01 001 103 10%

units (kg:-m~'-s71). An alternative measure of the permeability that only depends on the

geometry of the soil skeleton may be defined as

k= psk. (29)
This parameter is coined the permeability coefficient and has the SI units (m?), but it is
usually measured in darcy (d), or more commonly milli-darcy (md) (1 darcy ~ 10 ~12 m?).
Typical values for soil and rock are listed in Table 2.

Finally, mass balance of the flow is ensured by Eq. (17). Making use of Egs. (7) and
(28), the balance equation (17) may in turn be written

, , .7 . .
a—‘i— {kij (j—;’] +pfgj) } + % — [ n)% - n[?—f —A,=0, (30
where ¢ is the effective mean stress rate, cf. Eq. (20), and A, is the dilation rate in the
solid phase, cf. (15).
Next, for the purpose of analysing consolidation in a fully saturated porous elastic ma-
terial it is useful to divide the total pore pressure p(x, t) into the steady state pore pressure
ps = ps(x) and the excess pore pressure p. = pe(x, t), that is

P =DPs + Pe- (€3]
In the steady state, the volume of pore fluid inside a give control volume will be constant,
i.e. independent of time. Therefore, according to Eq. (28),

i o f, (ops N
= E {]u” <0_CI‘J' +pfg]>} =0. (32)

dx;
Inserting this result into Eq. (30), the governing equation for the development of the excess
pore pressure, p., over time is achieved in the form
; 3. o . :
%{/J;}’T’]}+; —(1—71)-]‘2;—2—71%—A5=0, (33)
where use has been made of the fact that ps = 0, i.e. p = Pe.

Equation (33) may be solved simultaneously with the equation of equilibrium (27). For
complicated geometries, the coupled equations (27) and (33) may be discretized over the
volume and solved by means of, for example, the finite difference or the finite element
method. Initial values must be provided for the displacement field and the seepage over

steady state
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(a) L o

FIGURE 4. Poroelastic domain, €2, with division of the boundary, I, for
the definition of boundary conditions concerning (a) force equilibrium,
and (b) seepage.

the entire volume. Further, Dirichlet or Neumann conditions must be supplied for both
the displacement and the seepage velocity along the boundary T, cf. Fig. 4. Thus, for the
equilibrium equation (27) the boundary conditions must be given in the form:

u; =1u; for xely,

a =7 for xef‘,—} where T, U, =T A T[,nIl,=0, 34)

where 7; = Ugjnj defines the surface traction and (@;, 7;) denote the prescribed values.
Here n; = n;(x) are the components of the unit outward normal to the boundary I
Similarly, for the seepage velocity

pi =p; for xel

6 =g fu XEFq} where T, Ul =0 A Ip,nl,=0, (35)

Here g; = dw;/0x; n; is the flux of pore water through the boundary. Along impermeable
surfaces, the flux is ¢; = 0, i.e. there is no flow of pore fluid through the boundary. On the
other hand the pore pressure will be known along free surfaces. Finally it is noted that in
general there is no relation between the boundary subsets (I',, '+ ) and (', I';). However,
since the traction and the pore pressure are likely to be described along the same part of
the boundary, e.g. at a free surface, mostoftenI', = I', andT',, = T',,.

5. DRAINED AND UNDRAINED CONDITIONS

As indicated in Table 2, the permeability of highly fractured rock and well sorted sand
and gravel is very high. Therefore, the pore water drains away almost immediately when
the matrix material is subjected to stress. In other words, there is no excess pore pressure,
i.e. p. = pe = 0, and the pore pressure p = p, is governed by Eq. (32). Clearly, the steady
state pore pressure is decoupled from the displacements of the skeleton. Thus, p may be
calculated first, and subsequently the displacement field u is computed by solution of the
equation

o 2]- _ dp
Ar; Oy

< K
+ pgi =0, O';j = /\Ek]g()ij + 2;&61‘3' -+ deij (36)
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with known p. For the analysis of nonlinear behaviour of the soil skeleton, Eq. (36) may
instead be solved in incremental form. Here it may be utilized that p = 0, that is the entire
stress increment is carried by the soil skeleton as effective stresses.

Finally, clay subject to rapid loading is almost fully undrained. Thus, k;; = 0 (see
Table 2) and according to Eq. (28) the seepage velocity is 1; = 0. Hence, by Egs. (7) and
(17) it follows that

=

K

. . K
n) i +n£ = p= —%ékk 37

_fkk:(l_'z X

In the approximation it has been assumed that the bulk modulus of the solid phase is very
high compared with the other quantities. This is realistic for clay minerals.
Now, by Egs. (4) and (13) the total stress in the matrix material may be written as

K R
Gij = Néplij + 2ué;; + (? - 1) P (38)

Inserting the pore pressure defined by Eq. (38), the governing equation for the undrained
poroelastic material is expressed in terms of total stresses and strains:
9645
Oz

. . . . Ky
+pgi =0, Gij = Mppdij + 2péi; + Ffﬁkk‘sij- (39

Here, it has been assumed that Ky > K. As discussed above, this is a fair approximation
for clay with a high porosity; but for intact rock the first term in the parenthesis in Eq. (38)
has to be included. However, the approximation in Eq. (37) may still be valid.

6. CONCLUSIONS

The theory for a saturated poroelastic material has been presented. Firstly, the defi-
nition of effective stresses has been discussed, and it has been shown that the stress ap-
proach originally proposed by K. Terzaghi is accurate for clay, sand and similar residual
soils. However, constitutive models for saturated rock and concrete are better formulated
in terms of the effective stress measure proposed by M.A. Biot. Secondly, the theory for
the consolidation process in three dimensions has been explained. Based on Darcy’s law
for the quasi-static flow in a porous medium, the governing equations for the develop-
ment of excess pore pressure have been derived. Finally, the equilibrium equations for the
particular cases of perfectly drained and undrained behaviour have been presented.
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EXERCISE: THE LIGHTHOUSE ON THE ROCK

An old lighthouse stands on a small granite rock in the Atlantic Sea near Stavanger,
Norway. The rock raises 25 metres above the seabed and as indicated on Fig. 5 it is per-
meable and fully saturated with seawater—also above the phreatic level. Four triaxial
compression tests have been carried out on a dry intact cylindrical specimen of the rock.
The chamber pressure o3 in the four tests is equal to 100, 200, 300 and 400 kPa, respec-
tively. Note that compression is defined as positive. In each test, the chamber pressure is
kept constant while the piston pressure, g1, is increased. This results in a stress deviation
q = 01 — o3 which will eventually lead to failure in the material. The stress—strain curves
obtained in the four compression tests are plotted in Fig. 6 along with the volumetric strain
history. Since the specimen is dry, all stresses in the triaxial test are effective, e.g. ¢ = q’.

Question 1. Based on the triaxial compression tests, determine F and v for the matrix
material, i.e. the rock. Further, verify that the bulk modulus K & 15 GPa. Do you get the
same result from the hydrostatic step and the triaxial compression step?

Question 2. Failure in the rock is assumed to be governed by the Mohr-Coulomb criterion.
In terms of the effective stress deviation, ¢’ = o{ — %, and the effective confining pressure,
3, the failure criterion takes the form (compressive stresses are defined as positive):

¢ (1 —sing) — 20%sing — 2ccosd = 0.

Determine the value of the cohesion, ¢, and the angle of friction, ¢, from Fig. 6.

Mmoo i Sy

FIGURE 5. A lighthouse on a nearly cylindrical rock.
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FIGURE 6. Stress—strain curves and volumetric strain recorded in tri-
axial compression tests for different values of the chamber pressure o 3.

The rock is simplified as a circular cylinder with the diameter 10 m. It is fully saturated
and extends 5 metres above the phreatic level and 20 metres below. It is assumed that the
vertical normal stresses are distributed uniformly over a horizontal cross section and that
no effective stresses are developed in the horizontal directions, i.e. o, = o4 = 0. Further,
the lighthouse has the total weight G, and the solid granite has the bulk modulus K ¢ = 50
GPa and the density ps = 2700 kg/m>. Finally, the porosity is n = 0.05.

Question 3. Sketch the pore pressure and the total vertical normal stress in the rock as
functions of the depth below the sea level. The actual values cannot be determined at this
stage, since the weight of the lighthouse, G, is yet unknown.

Question 4. Plot the vertical Terzaghi effective normal stress, o1, as function of the depth
beneath the sea level. What is the maximum possible weight of the lighthouse before the
rock collapses based on o} and o5?

Question 5. Plot the vertical Biot effective normal stress, 7, as function of the depth
beneath the sea level. Determine the maximum possible weight of the lighthouse G on the
basis of o{' and o5. Compare and discuss the results of Questions 4 and 5.
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