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Bounds on Mutual Information for Simple Codes
Using Information Combining

Ingmar Land, Simon Huettinger, Peter A. Hoeher, and Johannes Huber

Abstract— For coded transmission over a memoryless channel,
two kinds of mutual information are considered: the mutual
information between a code symbol and its noisy observation
and the overall mutual information between encoder input and
decoder output. The overall mutual information is interpreted
as a combination of the mutual informations associated with
the individual code symbols. Thus, exploiting code constraints
in the decoding procedure is interpreted as combining mutual
informations. For single parity check codes and repetition codes,
we present bounds on the overall mutual information, which
are based only on the mutual informations associated with the
individual code symbols. Using these mutual information bounds,
we compute bounds on extrinsic information transfer (EXIT)
functions and bounds on information processing characteristics
(IPC) for these codes.

Index Terms— Mutual information, information combining,
extrinsic information, concatenated codes, iterative decoding, ex-
trinsic information transfer (EXIT) chart, information processing
characteristic (IPC).

I. INTRODUCTION

In digital communications, the information on channel in-
put symbols (code symbols) gained by observing the cor-
responding channel output symbols is expressed by mutual
information [1]. This concept was originally introduced for
communication channels, but it may also be applied to the
super-channel formed by encoder, communication channel,
and decoder. Then, mutual information is the information
gained about the encoder inputs given the decoder outputs.

Assuming memoryless channels, information on each code
symbol (the channel input) is provided by its noisy observation
(the channel output), independently of the observations of
the other code symbols. When redundant channel coding is
applied, the decoder combines the channel outputs so as to take
the code constraints into account. From an information theory
point of view, the decoder can be interpreted as processing
mutual information [2]. According to this interpretation, the
mapping from mutual information per channel-use to mu-
tual information between encoder input and decoder output
characterizes the behavior and the capability of a decoder, or
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indeed, the behavior of a whole coding scheme comprising
both encoder and decoder.

In this paper, we restrict ourselves to two recently intro-
duced concepts, which are both based on this information the-
oretic interpretation: the information processing characteristic
of coding schemes and the extrinsic information transfer chart
for iterative decoding.

The information processing characteristic (IPC) plots the
end-to-end mutual information of a coding scheme versus
the mutual information of the communication channel [3],
[4]. Thus, the focus is on the performance of the overall
coding scheme. Using mutual information, a common scale
can be used for all communication channels, and soft-values
computed by the decoder can be taken into account.

The extrinsic information transfer (EXIT) chart method
analyzes the behavior of constituent decoders involved in
iterative decoding [5], [6]. Each constituent decoder accepts
a priori values and computes extrinsic values. (Commonly,
probabilities or log-likelihood ratios are used.) The mutual
information between the encoder input or output (depending
on the role of the constituent decoder within the iterative
decoding structure) and the a priori values is called a priori
information; the mutual information between the encoder input
or output (same as above) and the extrinsic values is called ex-
trinsic information. The input-output behavior of a constituent
decoder is characterized by the EXIT function plotting the
extrinsic information versus the a priori information.

Though IPCs and EXIT functions plot input mutual infor-
mation versus output mutual information, they rely on the in-
put distributions, or equivalently, on the corresponding channel
models. One may ask whether it is possible to compute such
functions which are valid for a whole class of channel models.
In [7], this problem has been addressed for the first time.

Consider the system made of two binary-input symmetric
memoryless channels (BISMCs) having the same uniformly
distributed input; let I1 and I2 be their mutual informations.
The overall mutual information I of the channel between the
inputs of the channels and the outputs of both channels is
then a combination of I1 and I2. In [7], tight bounds on I are
presented which are based only on I1 and I2 and which are
valid for all BISMCs. This concept of computing I using I1
and I2 is called information combining. (Even though the mu-
tual information of a BISMC for uniformly distributed inputs
is equal to the channel capacity, we prefer the term “mutual
information” to emphasize that our focus is on “information”
processing.)

The present paper generalizes from two channels with the
same input, as discussed in [7], [8], to multiple channels with
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inputs that are subject to code constraints. We consider two
kinds of constraints: (a) The inputs are required to fulfill a
parity check equation; (b) the inputs are required to be equal.
The first case corresponds to a single parity check code, and
the second case corresponds to a repetition code. We restrict
ourselves to memoryless channels, so all code symbols may
also be transmitted over the same channel. Bounds on the IPCs
and on the EXIT functions are presented for both codes.

The paper is organized as follows: In Section II, the de-
coding model and the notation are introduced. In Section III,
definitions and properties are given for binary-input symmetric
memoryless channels. In Section IV, bounds on the combined
information are derived for single parity check codes and for
repetition codes. These results are applied in Section V to
give bounds on EXIT functions and on IPCs for these codes.
Finally, conclusions are drawn in Section VI.

II. DECODING MODEL AND NOTATION

Throughout this paper, random variables are denoted by
uppercase letters, and realizations are denoted by lowercase
letters. Vectors are written in boldface, and for subvectors of
a vector a = [a1, . . . , aJ ], we adopt the short-hand notation

a[i,j] := [ai, ai+1, . . . , aj−1, aj ],

a\i := [a1, . . . , ai−1, ai+1, . . . , aJ ].

Binary symbols, also called bits, are defined over B :=
{−1,+1} or, equivalently, over F2 := {0, 1}. For a binary
symbol a ∈ B, we write its equivalent representation over F2

as ā, and we use the convention

ā = 0 ⇔ a = +1,

ā = 1 ⇔ a = −1.

The representation over B is more convenient when the focus
is on the symmetry of a channel, whereas the representation
over F2 is more common when dealing with the constraints
of a linear code.

Consider a systematic binary linear code of length N with
equiprobable code words x = [x0, x1, . . . , xN−1] ∈ B

N . The
code bits are transmitted over independent binary-input sym-
metric memoryless channels (BISMCs), denoted by Xi → Yi,
offering the mutual information I(Xi;Yi) , i = 0, 1, . . . , N−1.
Channels of this kind are discussed in more detail in the
following section.

The generality of this model is illustrated in the following
two points:

• When the code is used as a constituent code of a concate-
nated coding scheme including an iterative decoder, the
channel Xi → Yi may be the communication channel. It
may also be the virtual channel between code bit Xi and
the soft estimate, provided by another constituent decoder
and interpreted as a priori value; this channel is called a
priori channel.

• The assumption of systematic codes is not a restriction,
because the channels associated with the systematic bits
may be interpreted as a priori channels. Rather, this
represents a straightforward method to include a priori
information on systematic bits in the decoding model.

This will be exploited in Section V, where EXIT func-
tions are discussed.

The mutual information between two random variables X
and Y is defined as the expected value

I(X;Y ) := E
{pX|Y (x|y)

pX(x)

}

,

see [9]. The functions pX(x) and pX|Y (x|y) denote the
probability distribution of X and the conditional probability
distribution of X given Y , respectively; to be precise, they de-
note probability mass functions for discrete X and probability
density functions for continuous X . Similarly, the conditional
mutual information between X and Y given a third random
variable J is defined as the expected value

I(X;Y |J) := E
{pX|Y,J (x|y, j)

pX|J (x|j)

}

,

where pX|J (x|j) and pX|Y,J (x|y, j) again denote the respec-
tive probability mass functions or probability density func-
tions.

Three kinds of mutual information may be associated with
each code bit Xi [10]: the intrinsic information, the extrin-
sic information and the complete information. The intrinsic
information on code bit Xi is defined as

Iint,i := I(Xi;Yi) (1)

and provides the mutual information between Xi and its
noisy observation. The intrinsic information is equal to the
mutual information of the channel over which the code bit
is transmitted. The extrinsic information on code bit Xi is
defined as

Iext,i := I(Xi;Y \i) (2)

and provides the mutual information between Xi and the
noisy observations of all other code bits. This kind of mutual
information follows the definition of extrinsic probabilities
or extrinsic log-likelihood ratios used in iterative decoding,
e.g., [11], [12]. Finally, the complete information on code
bit Xi is defined as

Icomp,i := I(Xi;Y ) (3)

and provides the mutual information between Xi and the
observations of all code bits. The complete information may
be formed by combining the intrinsic information and the
extrinsic information [10].

III. PROPERTIES OF BINARY-INPUT SYMMETRIC
MEMORYLESS CHANNELS

All channels in this paper are assumed to be binary-
input symmetric memoryless channels (BISMCs). Examples of
BISMCs are the binary symmetric channel (BSC), the binary
erasure channel (BEC), and the binary-input additive white
Gaussian noise (AWGN) channel. Some properties of BISMCs
are discussed in this section.

Let X → Y denote a BISMC with input X ∈ X := B

and output Y ∈ Y ⊆ R, where X and Y denote the input
and the output alphabet of the channel, respectively. The
input is assumed to be uniformly distributed if not stated
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otherwise. The transition probabilities of the channel are given
by pY |X(y|x), denoting the probability density function for
continuous output alphabets and denoting the probability mass
function for discrete output alphabets. In this paper, we call a
binary-input channel symmetric1 if

pY |X(y|x) = pY |X(−y| − x) (4)

for all x ∈ X and for all y ∈ Y. The mutual information of
the channel is denoted by

I := I(X;Y ).

As mentioned above, two examples of BISMCs are the BSC
and the BEC; they are depicted in Fig. 1 and Fig. 2. The BSC is
defined by the crossover probability ε, and the BEC is defined
by the erasure probability δ. The output alphabets are chosen
such that the symmetry condition (4) is fulfilled; the output
value Y = 0 corresponds to an erasure. Let

h(ξ) := −ξ log2 ξ − (1 − ξ) log2(1 − ξ)

denote the binary entropy function, where ξ ∈ [0, 1]; let further
h−1(η) denote the inverse of h(ξ) for ξ ∈ [0, 1/2], where
η ∈ [0, 1]. Then, the mutual information of the BSC is given
by

I = 1 − h(ε), (5)

and the mutual information of the BEC is given by

I = 1 − δ. (6)

+1 +1

X Y

1 − ε

1 − ε

ε

ε

−1 −1

Fig. 1. Binary symmetric channel (BSC) with crossover probability ε.

+1 +1

X Y0
δ

δ

1 − δ

1 − δ
−1 −1

Fig. 2. Binary erasure channel (BEC) with erasure probability δ.

In the following, we show that every BISMC can be
separated into strongly symmetric subchannels that are BSCs,
due to symmetry and binary input. For this separation, we use
the absolute value of the channel output.

1 This definition of symmetry implies a small, but not significant loss
of generality. For example, an AWGN channel with nonzero-mean noise
is not symmetric according to our definition, although it can be regarded
as symmetric, of course. The derivations based on the given definition of
symmetry can easily be extended to a more general definition, which may
follow the well-known one for channels with discrete output alphabets, see [9].

Let the random variable J be defined as the absolute value
of Y ,

J := |Y |,

where J ∈ J := {y ∈ Y : y ≥ 0}. The elements of the output
alphabet Y are now partitioned into subsets

Y(j) :=

{

{+j,−j} for j ∈ J\{0},

{0} for j = 0.

With these definitions, J indicates which output set Y(j) the
output symbol Y belongs to.

Due to the introduced partitioning, the random variable
J separates the symmetric channel X → Y into strongly
symmetric subchannels denoted by X → Y |J = j. Therefore,
J is called the subchannel indicator.

The subchannels for J > 0 are BSCs. The subchannel for
J = 0 is a BEC with erasure probability 1. For convenience,
we interpret also this channel as a BSC, namely as a BSC with
crossover probability 1/2. This interpretation does not restrict
generality, because the properties of this channel are not
changed. However, the following derivations become easier,
since now all subchannels are BSCs.

The probability distribution of the subchannels is given by

q(j) := pJ(j),

j ∈ J, where pJ (j) denotes the probability density function
for continuous output alphabets and the probability mass func-
tion for discrete output alphabets. The conditional crossover
probabilities ε(j) of the subchannels are defined as

ε(j) :=

{

pY |X,J (−j| + 1, j) for j ∈ J\{0},
1
2 for j = 0.

As all subchannels are BSCs, the mutual information of the
subchannel specified by J = j is given by

I(j) := I(X;Y |J = j) = 1 − h(ε(j)). (7)

Using the above definitions, the mutual information of the
BISMC can be written as the expected value of the mutual
information of its subchannels:

I = I(X;Y ) = I(X;Y, J)

= I(X; J) + I(X;Y |J)

= E
j∈J

{I(X;Y |J = j)}

= E
j∈J

{I(j)}. (8)

In the first line, we used the fact that J is a function of Y .
In the second line, the chain rule for mutual information [9]
has been applied. As X and J are statistically independent,
we have I(X; J) = 0.

This concept of separating of BISMCs into BSCs can easily
be generalized to include channels with vector-valued outputs.
Let X → Y denote a BISMC with input X ∈ X := B

and output Y = [Y1, Y2, . . . , Yn], with Yi ∈ Yi ⊆ R,
i = 1, 2, . . . , n. The set X denotes the input alphabet and
Y := Y1 × Y2 × · · · × Yn denotes the output alphabet of
the channel. The input is assumed to be uniformly distributed
if not stated otherwise. The transition probabilities of the
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channel are given by pY |X(y|x), denoting the probability
density function for continuous output alphabets and denoting
the probability mass function for discrete output alphabets.
The channel is assumed to be symmetric, i.e.,

pY |X(y|x) = pY |X(−y| − x)

for all x ∈ X and for all y ∈ Y (cf. Footnote 1).
The definition of an appropriate subchannel indicator for the

separation into BSCs is slightly more complicated than before.
Using J1 := {y ∈ Y1 : y ≥ 0} and

J := J1 × Y2 × Y3 × · · · × Yn,

we define the subchannel indicator J ∈ J as

J := j for y ∈ {j,−j}.

The resulting subchannels X → Y |J = j are BSCs for J 6=
0. The subchannel for J = 0 is a BEC with erasure proba-
bility 1, and it is again interpreted as a BSC with crossover
probability 1/2.

The probability distribution q(j), the crossover probabil-
ity ε(j), and the mutual information I(j) for each subchannel
follow the above definitions for a BISMC with scalar output.
As before, the mutual information of the BISMC, I :=
I(X;Y ), can be written as the expected value of the mutual
information of its subchannels:

I = E
j∈J

{I(j)}. (9)

The described separation of a BISMC into binary symmetric
subchannels is utilized in the following sections.

IV. BOUNDS ON MUTUAL INFORMATION

Consider the decoding model introduced in Section II. Since
code bits are subject to the code constraints, the extrinsic
information on a particular code bit is a combination of the
intrinsic informations on the other code bits. Similarly, the
complete information on a code bit is a combination of the
intrinsic information and the extrinsic information on this code
bit. (Notice that intrinsic, extrinsic, and complete information
are mutual informations.)

If certain models are assumed for the channels over which
the code bits are transmitted, the extrinsic information and
the complete information can be computed precisely. This is
done in the EXIT chart method and in the IPC method. Often,
the binary-input AWGN channel, the binary erasure channel,
or the binary symmetric channel are used as channel models.
On the other hand, if only the intrinsic information on each
code bit is known, and not the underlying channel model, only
bounds on the extrinsic and on the complete information can
be given.

This section deals with bounds on the extrinsic information
for single parity check codes and for repetition codes and with
bounds on the complete information. The bounds correspond
to the cases where the individual channels are BSCs or BECs.

The main results are stated in Theorem 1, Theorem 2, and
Theorem 3. These theorems generalize the work presented
in [7] and [13]. Nevertheless, the proofs are based on the
same concepts, where the separation of BISMCs into BSCs

plays a central role. Motivated by the initial work in [7], [8],
the authors of [14] produced similar results, but used different
methods of proof. They also determined decoding thresholds
for low-density parity-check codes.

A. Extrinsic Information for the Single Parity Check Code

Consider a single parity check (SPC) code of length N ,
which is defined by the constraint

X̄0 ⊕ X̄1 ⊕ · · · ⊕ X̄N−1 = 0 (10)

on the code bits X̄i ∈ F2. (Note that the code bits may be
equivalently represented by Xi ∈ B, cf. Section II.) The code
constraint and the transmission channels Xi → Yi are shown
in Fig. 3 for N = 4. In the following, we consider only the
extrinsic information on code bit X0. Due to the symmetric
structure of the code, the expressions for the other code bits
are similar. In the following, we discuss first the case where
the channels for the code bits are all BECs, and then the case
where the channels are all BSCs.

X1

X2

X3

Y1

Y2

Y3

X0 Y0

Fig. 3. Single parity check code of length N = 4.

If the channels are all BECs, the value of code bit X0 can
be recovered with certainty if no erasure has occurred, i.e.,
if Yi 6= 0 for i = 1, 2, . . . , N − 1. (Note that an erasure
corresponds to Yi = 0.) This happens with probability (1 −
δ1)(1 − δ2) · · · (1 − δN−1). If we have one or more erasures,
no extrinsic information on code bit X0 is available. Using (6)
and the above probability, it can easily be seen that

IBEC
ext,0 = Iint,1Iint,2 · · · Iint,N−1. (11)

For the case where the channels are all BSCs, it is useful
to introduce the following function.

Definition 1
Let ξ1, ξ2, . . . , ξn ∈ [0, 1], n ≥ 1. We define the binary
information function for serial concatenation for n = 1 as

f ser
1 (ξ1) := ξ1,

for n = 2 as

f ser
2 (ξ1, ξ2) := 1 − h

(

(1 − ε1)ε2 + ε1(1 − ε2)
)

,

and for n > 2 as

f ser
n (ξ1, ξ2, . . . , ξn) := f ser

2

(

ξ1, f
ser
n−1(ξ2, ξ3, . . . , ξn)

)

,

where εi := h−1(1 − ξi) for i = 1, 2, . . . , n.

We have included the case n = 1, so that the following
formulas can be written in a more compact form.
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The function f ser
n (.) describes the mutual information of

the channel formed by a serial concatenation of n indepen-
dent BSCs. The input of the first channel is assumed to be
uniformly distributed. With I1, I2, . . . , In denoting the mutual
information of each BSC, respectively, the mutual information
between the input of the first BSC and the output of the last
BSC is given by f ser

n (I1, I2, . . . , In). This is explained in more
detail in Appendix I. The function defined above is now used
to express the extrinsic information.

Using the chain rule of mutual information [9], the extrinsic
information on code bit X0 can be written as

I(X0;Y [1,N−1]) =

= I(X0;Y [1,N−2]) + I(X0;YN−1|Y [1,N−2]). (12)

The first term is equal to zero, i.e., I(X0;Y [1,N−2]) = 0, as
X0 and Y [1,N−2] are independent if neither XN−1 nor YN−1

are known.
To determine the second term, we use the representation of

the code bits and the channel outputs over F2, written as X̄i

and Ȳi (cf. Section II). (Note that this does not change mutual
information, of course.) Let binary random variables Zi ∈ F2,
i = 0, 1, . . . , N − 1, be defined as

Z0 := X̄0,

Z1 := Z0 ⊕ X̄1,

Z2 := Z1 ⊕ X̄2,

. . .

ZN−2 := ZN−3 ⊕ X̄N−2,

ZN−2 = X̄N−1,

ZN−1 := ȲN−1.

Notice that the penultimate line is not a definition, but an
equality which results from the previous definitions and the
parity check equation (10). It follows from the definitions that
all Zi are uniformly distributed and that

I(X̄0; ȲN−1|Ȳ [1,N−2]) = I(Z0;ZN−1|Ȳ [1,N−2]). (13)

For the time being, assume Ȳ [1,N−2] = ȳ[1,N−2], where
ȳ[1,N−2] ∈ F

N−2
2 denotes an arbitrary but fixed realization

of Ȳ [1,N−2]. Then, the random variables Zi form a Markov
chain,

Z0 → Z1 → Z2 → · · · → ZN−3 → ZN−2 → ZN−1,

where each pair Zi → Zi+1, i = 0, 1, . . . , N − 2 can be
interpreted as a BSC. The mutual information of each BSC
is as follows:

• Z0 → Z1: The code bit X̄1 represents the error bit of this
BSC. The crossover probability of the channel X̄1 → Ȳ1

and that of the channel Ȳ1 → X̄1 are equal due to
the uniform distribution of X̄1. Thus, we have for the
crossover probability ε1 of the channel Z0 → Z1:

ε1 ∈
{

pX̄1|Ȳ1
(1|ȳ′) : ȳ′ ∈ F2

}

=

=
{

h−1(1 − Iint,1), 1 − h−1(1 − Iint,1)
}

.

The mutual information of this channel is then given by
I(Z0;Z1) = 1 − h(ε1) = Iint,1, which is independent
of ȳ1.

• Zi → Zi+1, i = 1, 2, . . . , N−3: Similar to Z0 → Z1, the
mutual information is given by I(Zi;Zi+1) = Iint,i.

• ZN−2 → ZN−1: This channel is identical to the channel
X̄N−1 → ȲN−1, and thus its mutual information is given
by I(ZN−2;ZN−1) = Iint,N−1.

Note that the mutual information of each BSC is independent
of ȳ[1,N−2].

We have a serial concatenation of BSCs and know the
mutual information of each one, and thus we can apply the
binary information function for serial concatenation according
to Definition 1:

I(Z0;ZN−1|Ȳ[1,N−2] = ȳ[1,N−2]) =

= f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1).

Since this mutual information is independent of ȳ[1,N−2], we
have

I(Z0;ZN−1|Ȳ[1,N−2]) =

= E
ȳ[1,N−2]∈F

N−2
2

{

I(Z0;ZN−1|Ȳ[1,N−2] = ȳ[1,N−2])
}

= E
ȳ[1,N−2]∈F

N−2
2

{

f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1)

}

= f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1). (14)

Using (14) in (13), we obtain

I(X̄0; ȲN−1|Ȳ [1,N−2]) = f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1).

After substituting this result into (12), we obtain the extrinsic
information on code bit X0 for the case where all channels
are BSCs:

IBSC
ext,0 = f ser

N−1(Iint,1, Iint,2, . . . , Iint,N−1). (15)

The two cases discussed (where either the channels are
all BECs or all BSCs) represent bounds on the extrinsic
information for a code bit, when only the intrinsic informations
for code bits are known, and not the underlying channel
models. This is proved by the following theorem.

Theorem 1 (Extrinsic Information for SPC Code)
Let X0, X1, . . . , XN−1 ∈ B denote the code bits of a single
parity check code of lengthN . LetXi → Yi, i = 1, 2, . . . , N−
1, denote N − 1 independent BISMCs having mutual infor-
mation I(Xi;Yi). Let the intrinsic information on code bit Xi

be defined by Iint,i := I(Xi;Yi), i = 1, 2, . . . , N − 1, and
let the extrinsic information on code bit X0 by defined by
Iext,0 := I(X0;Y \0). Then, the following tight bounds hold:

Iext,0 ≥ Iint,1Iint,2 · · · Iint,N−1,

Iext,0 ≤ f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1).

The lower bound is achieved if the channels are all BECs, and
the upper bound is achieved if the channels are all BSCs.

To prove this theorem, we use the following lemma.
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Lemma 1
The binary information function for serial concatenation (Defi-
nition 1) has the following two properties:

(a) f ser
n (ξ1, ξ2, . . . , ξn) is convex-∩ in each ξi, i =

1, 2, . . . , n;
(b) f ser

n (ξ1, ξ2, . . . , ξn) is lower-bounded by the product of
its arguments:

f ser
n (ξ1, ξ2, . . . , ξn) ≥ ξ1ξ2 · · · ξn.

The proof follows from Lemma 2 in [7] or Lemma 2 in [15]
by induction.

Theorem 1 can now be proved as follows.
Proof: The extrinsic information does not change if it is

written conditioned on the subchannel indicators J\0,

Iext,0 = I(X0;Y \0) = I(X0;Y \0,J\0)

= I(X0;J\0) + I(X0;Y \0|J\0)

= I(X0;Y \0|J\0),

since X0 is independent of J\0 (cf. (8) and corresponding
comments). Thus, we can write

Iext,0 = I(X0;Y [1,N−1]|J [1,N−1]) =

= E
j[1,N−1]

{

I(X0;Y [1,N−1]|J [1,N−1] = j[1,N−1])
}

=

= E
j[1,N−1]

{

f ser
N−1

(

Iint,1(j1), . . . , Iint,N−1(jN−1)
)

}

.

(16)

The argument in the second line corresponds to the case where
the channels are all BSCs, due to the conditions. Therefore,
this expression can be replaced by the function f ser

N−1(. . .)
according to Definition 1

Next, the two properties of the function f ser
N−1(. . .) given in

Lemma 1 are exploited. Using Lemma 1(b) in (16), we obtain

E
j[1,N−1]

{

f ser
N−1

(

Iint,1(j1), . . . , Iint,N−1(jN−1)
)

}

≥

≥ E
j[1,N−1]

{

Iint,1(j1) · · · Iint,N−1(jN−1)
}

=

= Iint,1Iint,2 · · · Iint,N−1,

where in the last line, (8) was used. On the other hand, due
to Lemma 1(a), Jensen’s inequality (e.g., [9]) can be applied
in (16), and we obtain

E
j[1,N−1]

{

f ser
N−1

(

Iint,1(j1), . . . , Iint,N−1(jN−1)
)

}

≤

≤ f ser
N−1

(

E
j1
{Iint,1(j1)}, . . .

. . . , E
jN−1

{Iint,N−1(jN−1)}
)

=

= f ser
N−1(Iint,1, Iint,2, . . . , Iint,N−1).

Thus, we have the two bounds.
According to (11) and (15), the lower bound and the upper

bound are actually achieved when the channels are all BECs
or all BSCs, respectively.

B. Extrinsic Information for the Repetition Code

Consider a repetition code of length N , which is defined by
the constraint

X0 = X1 = · · · = XN−1 (17)

on the code bits Xi. This code constraint and the transmission
channels Xi → Yi are shown in Fig. 4 for N = 4. In the
following, we consider only the extrinsic information on code
bit X0. Due to the symmetric structure of the code, the
expressions for the other code bits are similar. In the following,
we discuss first the case where the channels are all BECs, and
then the case where the channels are all BSCs.

X1

X2

X3

Y1

Y2

Y3

X0 Y0

Fig. 4. Repetition code of length N = 4.

If the channels are all BECs, the value of code bit X0

can be recovered with certainty provided that not all channel
outputs are erasures. (Note that an erasure corresponds to
Yi = 0.) Otherwise, no extrinsic information on code bit X0

is available. Using (6) and the probabilities of these events, it
can easily be seen that

IBEC
ext,0 = 1 − (1 − Iint,1)(1 − Iint,2) · · · (1 − Iint,N−1). (18)

For the case where the channels are all BSCs, we introduce
the following function.

Definition 2
Let ξ1, ξ2, . . . , ξn ∈ [0, 1], n ≥ 1. Let further r =
[r1, r2, . . . , rn], ri ∈ B. We define the binary information
function for parallel concatenation as

fpar
n (ξ1, ξ2, . . . , ξn) := −

∑

r∈Bn

ψ(r) log2 ψ(r)−

n
∑

i=1

(1−ξi)

with

ψ(r) :=
1

2

(

n
∏

i=1

ϕi(ri) +

n
∏

i=1

(

1 − ϕi(ri)
)

)

,

and

ϕi(ri) :=

{

εi for ri = +1,
1 − εi for ri = −1,

where εi := h−1(1 − ξi) for i = 1, 2, . . . , n.

Similar to Definition 1, we have included the case n = 1, so
that the following formulas can be written in a more compact
form.

This function describes the mutual information of a channel
formed by a parallel concatenation of n independent BSCs,
i.e., BSCs having the same input. This input is assumed to be
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uniformly distributed. With I1, I2, . . . , In denoting the mutual
information of each BSC, respectively, the mutual information
between the (common) input and the vector of all channel
outputs is given by f par

n (I1, I2, . . . , In). Appendix II provides
further details.

As we are interested in the extrinsic information on code
bit X0, the given scenario can be interpreted as the transmis-
sion of code bit X0 over N − 1 BSCs (corresponding to code
bits X1, X2, . . . , XN−1). Thus, the extrinsic information on
code bit X0 can be written as

IBSC
ext,0 = fpar

N−1(Iint,1, Iint,2, . . . , Iint,N−1). (19)

The two cases considered above represent the bounds on the
extrinsic information on the code bit when only the intrinsic
information on code bits is known, and not the underlying
channel models. This is proved by the following theorem.

Theorem 2 (Extrinsic Information for Rep. Code)
Let X0, X1, . . . , XN−1 ∈ B denote the code bits of a repe-
tition code of length N . Let Xi → Yi, i = 1, 2, . . . , N − 1,
denote N − 1 independent BISMCs having mutual information
I(Xi;Yi). Let the intrinsic information on code bit Xi be
defined by Iint,i := I(Xi;Yi), i = 1, 2, . . . , N − 1, and let
the extrinsic information on code bit X0 by defined by Iext,0 :=
I(X0;Y \0). Then, the following tight bounds hold:

Iext,0 ≥ fpar
N−1(Iint,1, Iint,2, . . . , Iint,N−1),

Iext,0 ≤ 1 − (1 − Iint,1)(1 − Iint,2) · · · (1 − Iint,N−1).

The lower bound is achieved if the channels are all BSCs, and
the upper bound is achieved if the channels are all BECs.

Note that BSCs achieve the lower bound for the repetition
code, but the upper bound for the single parity check code.
For BECs, the reverse holds.

To prove this theorem, we use the following lemma.

Lemma 2
The binary information function for parallel concatenation of
two channels (Definition 2) has the following two properties:

(a) fpar
2 (ξ1, ξ2) is convex-∪ in ξ1 and ξ2;

(b) fpar
2 (ξ1, ξ2) is upper-bounded as

fpar
2 (ξ1, ξ2) ≤ ξ1 + ξ2 − ξ1ξ2.

The proof follows immediately by observing that

fpar
2 (ξ1, ξ2) = ξ1 + ξ2 − f ser(ξ1, ξ2)

and Lemma 1.
These two properties are now exploited in the proof of

Theorem 2.
Proof: Let a random variable Z ∈ B be defined as Z :=

X0. We use Z to write the constraint for the repetition code
given in (17) as

X0 = X1 = Z,

Z = X2 = X3 = · · · = XN−1.

The first line is now interpreted as the constraint of a repetition
code of length 3, where the code bits are X0, X1, and Z. The

channel Z → Y [2,N−1] can be considered as a channel with
vector-valued output, as described in Section III. It can easily
be seen that this channel is a BISMC. Let

IZ := I(Z;Y [2,N−1])

denote the mutual information of this channel, and let JZ ∈
JZ denote its subchannel indicator.

Following similar ideas as in the proof of Theorem 1, we can
write the extrinsic information using the binary information
function given in Definition 2:

Iext,0 = I(X0;Y [1,N−1]) = I(X0;Y [1,N−1]|J1,JZ)

= E
j1∈J1
jZ∈JZ

{

I(X0;Y [1,N−1]|J1 = j1,JZ = jZ)
}

= E
j1∈J1
jZ∈JZ

{

fpar
2

(

Iint,1(j1), IZ(jZ)
)

}

(20)

First, we prove the lower bound. Consider the expectation
with respect to j1. Using Lemma 2(a) and Jensen’s inequality,
we obtain

E
j1∈J1

{

fpar
2

(

Iint,1(j1), IZ(jZ)
)

}

≥ fpar
2

(

Iint,1, IZ(jZ)
)

,

where equality holds if |J1| = 1, i.e., if X1 → Y1 is a BSC.
Since the expectation with respect to jZ is independent of the
channel X1 → Y1, the extrinsic information is minimal with
respect to this channel if it is a BSC. This holds for all other
channels in a similar way, and thus the extrinsic information
is minimal if the channels are all BSCs. Together with (19),
this proves the lower bound.

To prove the upper bound, we determine first the extrinsic
information for the case where the channel X1 → Y1 is a BEC.
If Y1 6= 0, the information on code bit X0 is equal to one. If
Y1 = 0 (corresponding to an erasure), the information on code
bit X0 is equal to IZ . The first event happens with probability
1− δ1 = Iint,1, and the second event happens with probability
δ1 = 1−Iint,1, according to (6). Thus, the extrinsic information
can be written as

Iext,0 = Iint,1 · 1 + (1 − Iint,1) · IZ

= Iint,1 + IZ − Iint,1IZ .

On the other hand, the extrinsic information can be upper-
bounded using Lemma 2(b) in (20):

Iext,0 ≤ E
j1∈J1
jZ∈JZ

{

Iint,1(j1)+ IZ(jZ)− Iint,1(j1) · IZ(jZ)
}

=

= Iint,1 + IZ − Iint,1 · IZ .

When comparing the last two relations, we see that the upper
bound with respect to channel X1 → Y1 is achieved when this
channel is a BEC. Since the same reasoning can be applied to
the other channels, the extrinsic information is maximal if all
channels are BECs. Together with (18), this proves the upper
bound.
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C. Complete Information by Combining Intrinsic and Extrin-
sic Information

In the previous two sections, we have discussed bounds
on the extrinsic information. This section deals with bounds
on the complete information, which is a combination of the
intrinsic information and the extrinsic information.

Consider a code bit X0 on which we have intrinsic in-
formation Iint,0 and extrinsic information Iext,0. Furthermore,
consider a length 3 repetition code with code bits X ′

0, X ′
1, and

X ′
2, where the intrinsic information on code bits X ′

1 and X ′
2

is equal to Iint,0 and Iext,0, respectively. It can easily be seen
that the extrinsic information on code bit X ′

0 is equal to the
complete information on code bit X0.

Using this interpretation, we can immediately apply Theo-
rem 2 to bound the complete information on code bit X0:

Theorem 3 (Complete Information)
Let X0, X1, . . . , XN−1 ∈ B denote the code bits of a linear
code of length N . Let Xi → Yi, i = 1, 2, . . . , N − 1, denote
N − 1 independent BISMCs. Let the intrinsic information on
code bit X0 be defined by Iint,0 := I(X0;Y0), let the extrinsic
information on code bitX0 be defined by Iext,0 := I(X0;Y \0),
and let the complete information on code bit X0 be defined by
Icomp,0 := I(X0;Y ). Then, the following bounds hold:

Icomp,0 ≥ fpar
2 (Iint,0, Iext,0),

Icomp,0 ≤ 1 − (1 − Iint,0)(1 − Iext,0).

The lower bound is achieved if the intrinsic channel X0 → Y0

and the extrinsic channel X0 → Y \0 are BSCs. The upper
bound is achieved if the intrinsic and the extrinsic channel are
BECs.

V. APPLICATIONS

In this section, we consider the extrinsic information transfer
(EXIT) functions [5], [6] and the information processing
characteristics (IPCs) [2] for single parity check codes and
repetition codes. The EXIT function and the IPC both describe
properties of a coding scheme, including encoder and decoder,
using the mutual information as a measure. In the following
section, we shortly revise these two concepts.

A. EXIT Function and Information Processing Characteristic

The EXIT function describes the behavior of a constituent
decoder involved in iterative decoding. This function is defined
in the following, using the notation introduced in Section II.
We assume that the observations Yi of code bits Xi are either
outputs of the communication channel, called channel values,
or soft values (commonly, probabilities or LLRs) provided by
other constituent decoders, called a priori values. (If both a
channel value and an a priori value is available for a code bit,
we may (conceptually) extend the code with a replica of this
bit and associate the channel value with the original code bit
and the a priori value with the replica.)

Let I := {0, 1, . . . , N − 1} denote the index set of all code
bits. Let further Ich ⊆ I denote the index set of all code bits for
which channel values are available, and let Iapri ⊆ I denote

the index set of all code bits for which a priori values are
available. Last, let Isyst denote the index set of the systematic
code bits, and let K := |Isyst| denote its cardinality. Thus, the
code rate is given by R := K/N .

The channel between a code bit and its channel value is
called the communication channel, and it is assumed to be the
same for all code bits in Ich. The mutual information of the
communication channel is called the channel information, and
it is denoted by

Ich := I(Xi;Yi), (21)

for i ∈ Ich.
The virtual channel between a code bit and its a priori

value, called the a priori channel, is assumed to be the same
for all code bits in Iapri. The mutual information of the a priori
channel is called the a priori information, and it is denoted
by

Iapri := I(Xi;Yi), (22)

for i ∈ Iapri.
Assume an optimal symbol-by-symbol decoder computing

the extrinsic log-likelihood ratio (LLR) wi for code bit Xi as

wi := ln
Pr(Xi = +1|Y \i = y\i)

Pr(Xi = −1|Y \i = y\i)
,

i ∈ Iapri. Notice that extrinsic values are usually computed
only for code bits, for which a priori values are available; this
a priori value may represent no knowledge (corresponding to
an a priori LLR that is equal to zero) before the first iteration.
It can be shown that

I(Xi;Wi) = I(Xi;Y \i), (23)

which corresponds to the optimality of the decoder with
respect to maximal symbol-wise mutual information [16].

The virtual channel between a code bit and its extrinsic LLR
is called the extrinsic channel. It can easily be seen that it is
a BISMC. The extrinsic information is the average mutual
information of the extrinsic channels corresponding to code
bits in Iapri,

Iext :=
1

|Iapri|

∑

i∈Iapri

I(Xi;Wi)

=
1

|Iapri|

∑

i∈Iapri

Iext,i, (24)

where (2) and (23) were used. The EXIT function plots
the extrinsic information versus the a priori information. If
channel information (in the sense of mutual information, as
introduced above) is available, it is used as the parameter.

The IPC describes the behavior of the whole coding scheme.
This is discussed in the sequel, using the notation introduced
in Section II. We assume that channel information (again in the
sense of mutual information, as introduced above) is available
for all code bits. The IPC plots the mutual information between
the inputs of the encoder and the outputs of the decoder
versus the channel information. In the following, we consider
the IPC for optimal symbol-by-symbol decoding and the IPC
for optimal word-decoding (optimal with respect to maximal
mutual information).
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Consider first an optimal symbol-by-symbol decoder com-
puting a posteriori LLRs for each systematic code bit Xi,

li := ln
Pr(Xi = +1|Y = y)

Pr(Xi = −1|Y = y)
,

for i ∈ Isyst. Similar to (23), it can be shown [16] that

I(Xi;Li) = I(Xi;Y ). (25)

It can easily be seen that the virtual channel between a
systematic code bit and its a posteriori LLR is a BISMC.
The complete symbol-wise information is the average mutual
information between a code bit and its a posteriori LLR,

Icomp :=
1

K

∑

i∈Isyst

I(Xi;Li)

=
1

K

∑

i∈Isyst

Icomp,i, (26)

where (3) and (25) were used. The IPC for optimal symbol-
by-symbol decoding is defined as the function mapping the
channel information to the complete symbol-wise information.

Consider now an optimal word-decoder computing the a
posteriori probability of each code word. The resulting mutual
information between encoder input and decoder output is
called the complete word-wise information per systematic bit,
and it is denoted by IW,comp. Since it is equal to the mutual
information between a code word and the vector of outputs of
the communication channel, we can define it as

IW,comp :=
1

K
I(X;Y ). (27)

The IPC for optimal word-decoding is defined as the function
mapping the channel information to the complete word-wise
information per systematic bit.

The IPC of a coding scheme of code rate R is upper-
bounded by min{Ich/R, 1}, as shown in [3]. This corresponds
to the IPC of an ideal coding scheme defined as a coding
scheme leading to the minimum error rate for a communication
channel with given channel information Ich.

EXIT functions and IPCs are valid for certain models for the
communication channel and for the (virtual) a priori channel.
They may be computed using the efficient and convenient
method proposed in [16]. If only the channel information and
the a priori information are given, and not the underlying
channel models, we can still give bounds on those functions.
This is done for the single parity check code and for the
repetition code in the sequel. (Notice again that a priori
information, extrinsic information, and complete information
are mutual informations.)

B. Single Parity Check Code

Consider a single parity check code as defined in Section IV-
A. For this code, we present first bounds on the EXIT function
and then bounds on its IPCs.

Initially, we assume that a priori information is available
for all code bits and there is no channel information for any
code bit, i.e., |Iapri| = N and |Ich| = 0. This corresponds to the
decoding operation for a check node in the iterative decoder for

a low-density parity-check code, see [17]–[19]. It also applies
in the case where a single parity check code is used as an
outer code in a serially concatenated coding scheme.

Then, the extrinsic information on code bit X0 can be
bounded according to Theorem 1. Since the extrinsic infor-
mation according to (24) is equal to the extrinsic information
on code bit X0, we have the bounds

Iext ≥ (Iapri)
N−1,

Iext ≤ f ser
N−1(Iapri, Iapri, . . . , Iapri).

These bounds are illustrated in Fig. 5.

I e
x
t

Iapri

N = 2
N = 4
N = 8
N = 16

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Fig. 5. Bounds on the EXIT functions for single parity check codes of several
code lengths N . (Upper bounds: solid line; lower bounds: dashed line. Mutual
information is given in bit/use.)

Assume now that channel information on code bit XN−1

and a priori information on all other code bits are available,
i.e., |Iapri| = N − 1 and |Ich| = 1. This is the case if single
parity check codes are used as inner codes in serially concate-
nated coding schemes, and only the parity bits are transmitted
over the communication channel. Using Theorem 1, we obtain
the bounds

Iext ≥ Ich · (Iapri)
N−2,

Iext ≤ f ser
N−1(Ich, Iapri, . . . , Iapri).

These bounds are illustrated in Fig. 6. Obviously, the
extrinsic information cannot become larger than the channel
information, even if the a priori information is equal to 1. This
makes this code unattractive as the inner code of a serially
concatenated coding scheme, because iterative decoding can
never achieve mutual information of 1, i.e., be without errors.

Consider now the IPC, assuming that we have channel
information on all code bits. The complete information on
code bit X0 is a combination of the intrinsic information
Iint,0 = Ich and the extrinsic information Iext,0, and it can be
bounded according to Theorem 3. The extrinsic information
on code bit X0 is bounded as

IN−1
ch ≤ Iext,0 ≤ f ser

N−1(Ich, . . . , Ich),
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Fig. 6. Bounds on the EXIT functions for single parity check codes of
length N = 4 for several values of channel information Ich. (Upper bounds:
solid line; lower bounds: dashed line. Mutual information is given in bit/use.)

according to Theorem 1. Using the lower bound on the
extrinsic information in the lower bound on the complete
information, we obtain

Icomp,0 ≥ fpar
2 (Ich, I

N−1
ch ). (28)

Similarly, using the upper bound on the extrinsic information
in the upper bound on the complete information, we obtain

Icomp,0 ≤ 1 − (1 − Ich)(1 − f ser
N−1(Ich, Ich, . . . , Ich)). (29)

In contrast to the bounds on the extrinsic information, the
above bounds on the complete information are not tight, since
we “mixed” channel models. The extrinsic information is
minimal if the channels are BECs; in this case, the resulting
“extrinsic channel” is also a BEC. On the other hand, the
formula for the lower bound of the combined information
holds with equality if both channels are BSCs. Due to this
contradiction, the lower bound on the complete information is
not tight. In a similar way, we can argue for the upper bound.

It can easily be seen that the complete information is
the same for each systematic bit. Therefore, bounds on the
complete symbol-wise information, defined in (26), are given
by

Icomp ≥ fpar
2 (Ich, I

N−1
ch ),

Icomp ≤ 1 − (1 − Ich)(1 − f ser
N−1(Ich, Ich, . . . , Ich)).

(30)

Thus, we have bounds on the IPC for optimal symbol-by-
symbol decoding.

These bounds are plotted in Fig. 7. For each code length N ,
a large gap between the upper bound and the bound given by
the ideal coding scheme can be observed. This gap becomes
smaller if word-decoding is applied. We now consider this
case.
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Fig. 7. Bounds on the IPC for optimal symbol-by-symbol decoding for
single parity check codes of several code lengths N . (Upper bounds: solid
line; lower bounds: dashed line; ideal coding scheme: dash-dotted line. Mutual
information is given in bit/use.)

We can apply the chain rule for mutual information and
write the complete word-wise information as

I(X;Y ) = I(X0;Y ) + I(X1;Y |X0) +

+I(X2;Y |X [0,1]) +

+I(X3;Y |X [0,2]) +

+ · · · + I(XN−2;Y |X [0,N−3])

= I(X0;Y ) + I(X1;Y [1,N−1]|X0) +

+I(X2;Y [2,N−1]|X [0,1]) +

+I(X3;Y [3,N−1]|X [0,2]) +

+ · · · + I(XN−2;Y [N−2,N−1]|X [0,N−3]).

(31)

In the latter expression, we have omitted observations for
given code bits, because they do not contribute to the mutual
information.

The first term in this sum is identical to the complete
symbol-wise information on code bit X0, Icomp,0. The second
term corresponds to the complete symbol-wise information on
a code bit for a single parity check code of length N − 1,
because the code bit X0 is known. Proceeding in a similar
way, it can be seen that the term I(Xi;Y [i,N−1]|X [0,i−1])
corresponds to the complete symbol-wise information on a
code bit for a single parity check code of length N − i,
i = 0, 1, . . . , N − 3. Thus, we can apply the bounds given
in (28) and (29).

The last term corresponds to a single parity check code
of length 2. Thus, I(XN−2;YN−2) and I(XN−1;YN−1)
represent the intrinsic and the extrinsic information on
code bit XN−2, respectively. The complete information,
I(XN−2;Y [N−2,N−1]|X [0,N−3]), can then be bounded using
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Theorem 3:

fpar
2 (Ich, Ich) ≤

≤ I(XN−2;Y [N−2,N−1]|X [0,N−3]) ≤

≤ 1 − (1 − Ich)(1 − Ich)).

When applying these bounds in (31), we get bounds on the
IPC for optimal word-decoding:

IW,comp ≥
1

K

N−2
∑

i=0

fpar
2 (Ich, I

N−1−i
ch ),

IW,comp ≤
1

K

N−2
∑

i=0

(

1 − (1 − Ich) ·

·(1 − f ser
N−1−i(Ich, . . . , Ich)

)

=

= 1 − (1 − Ich) ·

·
(

1 −
1

K

N−2
∑

i=0

f ser
N−1−i(Ich, . . . , Ich)

)

.

(32)

(Note that K = N − 1.)
These bounds are plotted in Fig. 8. When comparing the

results to Fig. 7, we see that the gap to the bound given by
the ideal coding scheme is now relatively small as long as the
channel information is smaller than about half the code rate.
On the other hand, the upper bound (solid line) is slightly
above the IPC of the ideal coding scheme. This shows that
this bound is not tight.
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Fig. 8. Bounds on the IPC for optimal word decoding for single parity check
codes of several code lengths N . (Upper bounds: solid line; lower bounds:
dashed line; ideal coding scheme: dash-dotted line. Mutual information is
given in bit/use.)

C. Repetition Code

Consider a repetition code as defined in Section IV-B. For
this code, we present first bounds on the EXIT function and
then bounds on the IPCs.

Initially, we assume that a priori information is available for
all code bits and there is no channel information for any code
bit, i.e., |Iapri| = N and |Ich| = 0. This is the case if repetition
codes are used as outer codes in serially concatenated coding
schemes, e.g., in repeat accumulate codes [20], [21] or DRS
codes [22], [23]. Then, the extrinsic information on code
bit X0 can be bounded according to Theorem 2. Since the
extrinsic information according to (24) is equal to the extrinsic
information on code bit X0, we have the bounds

Iext ≥ fpar
N−1(Iapri, Iapri, . . . , Iapri),

Iext ≤ 1 − (1 − Iapri)
N−1.

These bounds are depicted in Fig. 9 for several code lengths.
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Fig. 9. Bounds on the EXIT functions for repetition codes of several code
lengths N . (Upper bounds: solid line; lower bounds: dashed line. Mutual
information is given in bit/use.)

Assume now that the channel information on code bit XN−1

and a priori information for all other code bits are available,
i.e., |Iapri| = N − 1 and |Ich| = 1. This corresponds to the
decoding operation for a variable node in the iterative decoder
for a low-density parity-check code. It is also the case for
repetition codes used in systematic repeat accumulate codes,
see, e.g., [21]. Using Theorem 2, we obtain the bounds

Iext ≥ fpar
N−1(Ich, Iapri, . . . , Iapri),

Iext ≤ 1 − (1 − Ich)(1 − Iapri)
N−2.

These bounds are depicted in Fig. 10. In direct contrast to
the curves for the single parity check codes in Fig. 6, these
curves start with Iext = Ich (at Iapri = 0) and end with Iext = 1
(at Iapri = 1) for increasing a priori information. The latter
makes these codes particularly suitable for iterative decoding.

Consider now the IPC, assuming that we have channel
information on all code bits. It is sufficient to discuss the
complete information on code bit X0, as it is identical to both
the complete symbol-wise information and the complete word
information.

Computing the complete information on code bit X0 is
equivalent to computing the extrinsic information on a code
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Fig. 10. Bounds on the EXIT functions for repetition codes of length N = 4

for several values of channel information Ich. (Upper bounds: solid line; lower
bounds: dashed line. Mutual information is given in bit/use.)

bit of a repetition code of length N + 1, where the intrinsic
information of all other code bits is equal to the channel
information. Thus, we can apply Theorem 2 to obtain bounds
on the complete symbol-wise information:

Icomp ≥ fpar
N (Ich, . . . , Ich),

Icomp ≤ 1 − (1 − Ich)
N .

Due to IW,comp = Icomp, the same bounds hold for the
complete word-wise information. Thus we have bounds on
the IPC for optimal decoding.

These bounds are plotted in Fig. 11. As was the case for the
bounds for the single parity check code in Fig. 7, we observe
a large gap between the upper bound and the IPC of the ideal
coding scheme, unless the channel information is very small
or very large.

VI. CONCLUSIONS

In this paper, we have presented bounds on functions which
map mutual information per channel-use to mutual information
between encoder input and decoder output.

Based on the separability of binary-input symmetric mem-
oryless channels (BISMC) into BSCs, we have proved bounds
on the extrinsic information for single parity check codes and
for repetition codes and bounds on the combination of extrinsic
and intrinsic information. These bounds are achieved when the
channels are BSCs or BECs.

Using these results, we have bounded EXIT functions and
information processing characteristics (IPCs) for single parity
check codes and for repetition codes. As opposed to the
original EXIT functions and IPCs, these bounds are not only
valid for specific channel models, but for all BISMCs.

The present paper extends the principle of information
combining presented in [2], and also it extends the bounding
of combined information presented in [7]. For future research,
two aspects may be of special interest: first, the generalization
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Fig. 11. Bounds on the IPC for repetition codes of several code lengths N .
(Upper bounds: solid line; lower bounds: dashed line; ideal coding scheme:
dash-dotted line. Mutual information is given in bit/use.)

to nonbinary channels, and second, the generalization to more
complicated codes.

APPENDIX I
CAPACITY OF SERIALLY CONCATENATED BINARY

SYMMETRIC CHANNELS

Consider n binary symmetric channels (BSCs) Xi → Yi,
X,Yi ∈ B, i = 1, 2, . . . , n, which are serially concatenated
such that Yi = Xi+1 for i = 1, 2, . . . , n − 1. The input
of the first channel is assumed to be uniformly distributed.
The mutual information of each individual channel is denoted
by Ii := I(Xi;Yi), i = 1, 2, . . . , n. The end-to-end mutual
information between the input of the first and the output of
the last channel is denoted by I := I(X1;Yn).

It is now shown that the end-to-end mutual information is
given by the binary information function for serial concatena-
tion according to Definition 1, i.e.,

I = f ser
n (I1, I2, . . . , In). (33)

As the serially concatenated channel X1 → Yn is symmetric,
the mutual information I is equal to the channel capacity.

We start with the case n = 2. It can easily be seen that
the serially concatenated channel X1 → Y2 is also a BSC.
Let ε12 denote its crossover probability. We have an error on
this channel if an error occurs either on the first or on the
second channel. With ε1 = h−1(1 − I1) and ε2 = h−1(1 −
I2) denoting the crossover probabilities of the two individual
channels, we can compute the crossover probability of the
serially concatenated channel as

ε12 = (1 − ε1)ε2 + ε1(1 − ε2).

Thus, its mutual information is given by

I(X1;Y2) = 1 − h(ε12)

= 1 − h
(

(1 − ε1)ε2 + ε1(1 − ε2)
)

,
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and we have the proof of (33) for n = 2.
The general case can easily be shown by induction.

APPENDIX II
CAPACITY OF PARALLEL CONCATENATED BINARY

SYMMETRIC CHANNELS

Consider n binary symmetric channels (BSCs) X → Yi,
X,Yi ∈ B, i = 1, 2, . . . , n, that have the same input X . Fol-
lowing the accepted practice for parallel concatenated codes,
see, e.g., [24], we call these channels parallel concatenated.
The input is assumed to be uniformly distributed. The mutual
information of each channel is denoted by Ii := I(X;Yi),
i = 1, 2, . . . , n. The vector of channel outputs is written
as Y := [Y1, Y2, . . . , Yn]. The overall mutual information
between the input and the vector of channel outputs is denoted
by I := I(X;Y ).

It is now shown that the overall mutual information is given
by the binary information function for parallel concatenation
according to Definition 2, i.e.,

I = fpar
n (I1, I2, . . . , In). (34)

As the parallel concatenated channel X → Y is symmetric,
the mutual information I is equal to the channel capacity.

To start with, we write the overall mutual information as

I = I(X;Y ) = H(Y ) −H(Y |X). (35)

The first term can be computed using the joint probabilities
of the channel outputs,

H(Y ) = E
{

− log2 pY (y)
}

= −
∑

y∈Bn

pY (y) · log2 pY (y)

with

pY (y) =
∑

x∈B

pX,Y (x,y)

=
∑

x∈B

pX(x) · pY |X(y|x)

=
∑

x∈B

pX(x) ·

n
∏

i=1

pYi|X(yi|x).

In the last line, we used the conditional independence of the
channel outputs for a given channel input. Due to the uniform
input distribution, we have pX(x) = 1/2. The transition
probabilities of each channel can be expressed using its mutual
information:

pYi|X(yi|x) ∈ {εi, 1 − εi}

with
εi := h−1(1 − Ii),

i = 1, 2, . . . , n. Thus, the joint probability of a vector of
channel outputs y can be obtained according to

pY (y) =
1

2

( n
∏

i=1

ϕi(yi) +

n
∏

i=1

(

1 − ϕi(yi)
)

)

,

with

ϕi(yi) :=

{

εi for yi = +1,
1 − εi for yi = −1.

The second term in (35) can be written as

H(Y |X) =

n
∑

i=1

H(Yi|X) = =

n
∑

i=1

(1 − Ii),

where again, the conditional independence of the channel
outputs for a given channel input was used.

By substituting the above equations into (35), we have the
proof of (34).
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