

Aalborg Universitet

Verifying real-time systems against scenario-based requirements

Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian; Pusinskas, Saulius

Published in:
Lecture Notes in Computer Science

DOI (link to publication from Publisher):
10.1007/978-3-642-05089-3_43

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Larsen, K. G., Li, S., Nielsen, B., & Pusinskas, S. (2009). Verifying real-time systems against scenario-based
requirements. Lecture Notes in Computer Science, 5850, 676-691. https://doi.org/10.1007/978-3-642-05089-
3_43

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 08, 2021

https://doi.org/10.1007/978-3-642-05089-3_43
https://vbn.aau.dk/en/publications/c206a1d0-7c86-11de-9240-000ea68e967b
https://doi.org/10.1007/978-3-642-05089-3_43
https://doi.org/10.1007/978-3-642-05089-3_43

Verifying Real-Time Systems against

Scenario-Based Requirements

Kim G. Larsen, Shuhao Li, Brian Nielsen, and Saulius Pusinskas

Center for Embedded Software Systems (CISS)
Aalborg University

Selma Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark
{kgl, li, bnielsen, saulius}@cs.aau.dk

Abstract. We propose an approach to automatic verification of real-
time systems against scenario-based requirements. A real-time system is
modeled as a network of Timed Automata (TA), and a scenario-based
requirement is specified as a Live Sequence Chart (LSC). We define a
trace-based semantics for a kernel subset of the LSC language. By equiv-
alently translating an LSC chart into an observer TA and then non-
intrusively composing this observer with the original system model, the
problem of verifying a real-time system against a scenario-based require-
ment reduces to a classical real-time model checking problem. We show
how this is accomplished in the context of the Uppaal model checker.

1 Introduction

A model checker typically needs two inputs: a model M characterizing the state-
transition behaviors of a finite state concurrent system, and a temporal logic
formula P specifying the properties of interest. For real-time model checkers such
as KRONOS [20] and Uppaal [3], M might be a network of Timed Automata
(TA) [1], and P might be a formula of the TCTL logic [20] or a fragment of
the CTL logic [3]. While the enhanced versions of TA are relatively expressive
modeling formalisms, the TCTL or CTL logics appear to be property specification
languages of only limited capability, intuitiveness, and convenience:

– The atomic propositions can only be state propositions, where messages
(events) are not allowed to appear [20, 3];

– There is no means for specifying non-trivial quantitative timing constraints
(e.g., there is no time-bounded temporal operator like �[1,3]) [3].

These limitations imply that straightforward characterizations of event syn-
chronizations, causal relations, or scenarios such as “if process B sends message
m1 to process A, and C sends m2 to D (in any order), then B must send m3 to
C within 1 to 3 time units” as a query in KRONOS and Uppaal are not possible.

Essentially, the query languages of these model checkers describe only intra-
process properties, i.e., whether all states (�) or at least one state (�) along
all paths (A) or at least one path (E) of the individual processes or the product

process (i.e., the parallelly composed system model) satisfy some particular prop-
erties. In contrast, the inter -process properties describe how different processes
interact, collaborate and cooperate via message or rendezvous synchronizations.

Live Sequence Chart (LSC) [11] is a visual formalism for scenario-based spec-
ification and programming. It extends the classical Message Sequence Charts
(MSC) [13] by adding modalities1. The LSC language is unambiguous because it
has strictly defined semantics, e.g., the executable (operational) semantics [11]
and the trace-based semantics [7].

We envisage LSC as a nice complement to the intra-process property spec-
ification language of (real-time) model checkers in general and of Uppaal in
particular:

– Intuitiveness. LSC has the necessary language constructs to describe a va-
riety of causality and non-trivial scenarios. As a visual formalism, LSC is
more intuitive in capturing scenario-based user requirements than the CTL
fragment of Uppaal in its textual form;

– Expressiveness. It has been shown that a kernel subset [15] of LSC can be
embedded into CTL∗, provided that event occurrences can be used as atomic
propositions [15]. This indicates that LSC cannot always be encoded as CTL∗;

– Counterexample display. LSC provides the possibility of displaying coun-
terexamples also in the requirement specifications.

In this paper we capture a scenario that is to be verified using an LSC chart.
We obtain a behavior-equivalent observer TA from this chart by mapping the
LSC cuts and discrete advancement steps to TA locations and edges, respectively.
We let the observer TA spy on the relevant events of the original system via model
instrumentation, semaphore locking, and parallel composition. In this way, the
problem of verifying a real-time system against a scenario-based requirement
will be reduced to a classical model checking problem in Uppaal.

1.1 Related work

To model check real-time systems against complex properties or scenario-based
requirements, various approaches have been proposed.

One solution is the observer automata approach [4], i.e., to construct a num-
ber of auxiliary TA to capture the scenario-based requirements, and then par-
allelly compose them with the original TA models. While this method can be
practically useful [16], there are some limitations: (1) manual constructions of
observer TA could be labor-intensive and error-prone. To be composed with the
observer TA, the original system model may need to be modified; (2) the ob-
server TA and the original system engage in normal channel synchronizations,
thus specifying process interactions only liberally (i.e., no particular sending and

1 The existential and cold (resp. universal and hot) modalities represent the provi-
sional (resp. mandatory) requirements. For example, an existential (resp. universal)
chart specifies restrictions over at least one satisfying (resp. all possible) system runs;
a cold condition may be violated, whereas a hot one must be satisfied.

receiving process is specified for a message). In our verification framework, au-
tomatic construction of observers from LSC charts overcomes both problems.

Another line of research is first to capture the scenario-based requirements
using the assume-guarantee style visual formalisms such as Triggered MSC [19],
Template MSCs [10], or the even richer LSC [11], and then transform them
into directly verifiable formalisms. In particular LSCs can be translated into
Timed Büchi Automaton (TBA) [14], TA [17], temporal logic [14, 12, 15, 8, 6], or
sequences of LSC elements [18], and the verification problem can be converted
to a classical model checking problem [14], or solved directly [18].

In [14] an LSC chart is transformed into a TBA. To specify real-time require-
ments, timers [2, 13] and timing annotations (or delayed intervals) [2] are added
to the LSC charts. To enable the transformation, each location of the LSC chart
is equipped with a discrete (integer) clock. Since timers can only express timing
constraints within a single chart and within a single process, and delayed inter-
vals can only express the minimal and maximal delays between two consecutive
locations, these restrict the expression of timing constraints across processes and
across charts. Our LSC charts use TA-like real-valued clock variables. This fla-
vor of timing constraint agrees well with the original system model, and enables
smooth translation of timing information into the observer TA, and seamless
embedding of the observer TA into the Uppaal verification framework.

An LSC-to-TA translation has been proposed in [17], which inspires our
current translation. Since we use LSC only as a property specification language,
and not also as a modeling language [17], we define a clearer semantics, according
to which there is no need to translate one LSC chart into multiple TA as in [17].

LSCs can also be translated into temporal logic formulas [12, 15, 8, 6]. For
the kernel subset of LSC in [15], it has been shown that existential charts can
be expressed using the CTL logic, and universal charts can be expressed using
(LTL∩CTL) [12, 15]. Similar results are achieved in [8]. However, these methods
do not handle explicit time in the charts, and the extraordinary size of the
resulting formula limits the scale of the charts that can be translated and verified.

In [18] properties are extracted from LSCs as sequences of LSC elements, and
algorithms have been developed to check whether these sequences are respected
by the FSM computation graph of the TA model that is exported from Uppaal.
However, simultaneous regions (simregions) in LSCs are used only to model
broadcast communications, and conditions cannot be a part of simregions. Our
notion of simregion uses the “[condition] [message]/[assignment]” pattern, thus
enables smooth translation into a TA edge.

1.2 Contributions

The contributions of this paper include: (1) we define a kernel subset of the
LSC language that is suitable for capturing scenario-based requirements of real-
time systems, and define a trace-based semantics; (2) we propose a behavior-
equivalent translation of an LSC chart into a TA; (3) we present a method of
embedding the translated TA into Uppaal, thus encoding the problem of verify-
ing systems against LSC requirements as a classical model checking problem.

2 Modeling and specification of real-time systems

In Uppaal, a real-time system is modeled as a network of TA. These TA com-
municate on shared global variables, or via handshaking on CCS-style synchro-
nization channels. Standard constructs of TA include locations, edges, clock con-
straints, clock resets, and location invariants. In addition, Uppaal has a number
of extensions [3] to the TA formalism such as urgent and committed locations2,
broadcast channels, data variables, variable constraints and updates, etc. Fig.
1(a)-1(d) give an example of a network of TA.

m4?

m2? x <= 5

x <= 5

m2!
x >= 3
m1!

m4!

m3!

m1?

m3?

m4?

(a) TA A (b) TA B (c) TA C (d) TA D (e) LSC chart L

Fig. 1. A real-time system model (network of TA) and its requirement (LSC chart).

Uppaal uses a fragment of the CTL logic as its property specification lan-
guage. Atomic propositions can only be state propositions. Properties can be
specified using a number of patterns: reachability (E�φ), safety (A�φ, E�φ),
and liveness properties (A�φ, φ � ϕ). In particular the leads-to or response
property φ�ϕ is a shorthand for A�(φ ⇒ A�ϕ), meaning that whenever φ is
satisfied, then eventually ϕ will be satisfied.

Although a lot of properties can be specified using these patterns, many
others still cannot. Consider a user requirement on the TA in Fig. 1: if we
observe that process B sends message m1 to process C when clock x is no less
than 3, then afterwards (and before m1 can be observed again) we must observe
that B sends m2 to A when x is no less than 2, and C sends m3 to D (in any
order). Clearly, this scenario cannot be specified as a Uppaal CTL formula.

However, the above scenario requirement can be easily captured using Live
Sequence Charts (Fig. 1(e)). For instance, the first block of diagrammatic ele-
ments {m1, x ≥ 3} means that: when m1 in the original model is observed, the
clock value of x should be no less than 3 at that time. If this is the case, then the
monitored execution continues; otherwise, it is a cold violation of the prechart3.

2 A committed location is a TA location where time is frozen, and the outgoing tran-
sitions have higher priority to be taken than those from non-committed ones.

3 A universal chart can optionally contain a prechart, which specifies the scenario
which, if successfully executed, forces the system to satisfy the scenario given in the
actual chart body (the main chart).

3 From LSC to Uppaal Timed Automata

3.1 Live Sequence Chart

We consider the following LSC elements: instance, location, message, clock vari-
able, condition, assignment, and simregion.

An LSC chart can have a role, a type, and an activation mode. In this paper
we consider the role of system property specification, i.e., a monitored chart will
just “listen to” the messages and read the clock variables in the original system
models, but never emit messages or reset those clocks. We consider the universal
type charts. Furthermore, we consider the invariant activation mode, i.e., the
chart will be activated whenever a minimal event (i.e., an event that is minimal
in the partial order induced by the chart) is matched, regardless of the state of
the main chart.

Each LSC chart L describes a particular interaction scenario of a set I of
processes (or instances, or agents). Along each instance line i ∈ I there are a
finite set of “positions” pos(i) = {0, 1, . . . , p maxi}, which denote the possible
points of communication and computation. We denote all locations of L as L =
{〈i, p〉|i∈I ∧ p∈pos(i)}.

Let Σ be the alphabet of messages (a.k.a. “channels” in Uppaal). A message
m = (〈i, p〉, σ, 〈i′, p′〉) ∈ L×Σ×L corresponds to instance i, while in position p,
sending σ to instance i′ at position p′. The (finite) set of all messages appearing
in L are denoted as M . We call σ the message label. We say that i and i′ are the
source (src) and destination (dest) instances, respectively. Messages are assumed
to be instantaneous (thus we use the terms message and event interchangeably).
Furthermore, messages are assumed to be of hot temperature, i.e., they never
get lost during transmission. This paper does not consider concurrent messages,
thus each location can be the end point of at most one message in the chart.

Let the finite sets of real-valued clock variables (ranging over R≥0) of L and
of the original system model S be CL and CS , respectively. The set of readable
clock variables in L will be C = CL ∪ CS . Since L is a monitored chart, only
clocks in CL can be reset in the chart.

A clock constraint is of the form x �� n or x − y �� n where x, y ∈ C, n ∈ Z,
and ��∈ {<,≤, =,≥, >}. A condition is a finite conjunction of clock constraints.
The set of conditions are denoted G. Conditions may be either hot or cold.

A clock reset is of the form x := 0 where x ∈ CL. An assignment a is a finite
set of clock resets. For simplicity it is denoted as a set a of clocks to be reset.
The set of all assignments is A = 2CL .

When there is a message m sent from one instance i1 to another instance
i2, the message anchoring point on i1 or i2 could be associated with a condition
g and/or an assignment a. The condition g is a predicate which is evaluated
immediately after the message has been observed, and the assignment is a reset
of the clocks in a providing that g evaluates to true. The message, condition
and assignment can be collectively viewed as an atomic step of LSC execution,
i.e., they take place at the same time, hence the notion of simultaneous region
(simregion), which is inspired by [14].

Definition 1 (simregion). A simregion s is a set of LSC message, condition,
and assignment, s ⊆ (M ∪ G ∪ A), which satisfy the following requirements:

– non-emptiness: ∃e∈(M ∪ G ∪ A).e∈s;
– uniqueness: ∀m, n∈M.(m ∈ s ∧ n ∈ s) ⇒ m = n; (similarly for condition

and assignment.)
– non-overlapping: for any two simregions s and s′, we have ∀e ∈ (M ∪ G ∪

A).(e ∈ s ∧ e ∈ s′) ⇒ s = s′. ��
We write a simregion as s = {m, g, a}, where m, g, and a represent the

message, condition, and assignment, respectively. The set of all simregions is
denoted S ⊆ 2(M∪G∪A).

A message spans across two instance lines. A condition spans across one or
more instance lines. In a simregion, the message, condition and assignment (if
any) have exactly one common anchoring point. If a simregion s has a message,
then the condition and/or assignment (if any) of s anchor either at the message
head, or at the message tail. If a simregion s has no message, then s consists
of a condition test, or an assignment, or both of them combined and anchored
together (possibly across multiple instance lines). In this case, s is called a non-
message simregion. For such a simregion, we adopt the As-Soon-As-Possible
(ASAP) semantics for its firing, i.e., the condition test (if any) will be evaluated
immediately after the previous simregion.

Fig. 1(e) is an example LSC chart, where there are three simregions s1 =
{m1, x ≥ 3}, s2 = {m2, x ≥ 2}, and s3 = {m3}.

3.2 Trace-based semantics

We define λ : L → S ∪ {nil} as a labeling function. For location l ∈ L, if
λ(l) ∈ S, then there is a simregion anchoring at l; if λ(l) = nil, then l represents
an entry/exit point of the prechart(Pch)/main chart(Mch).

Locations of an LSC chart are partially ordered. The partial order relation
�⊆ L × L is determined by the following rules:

– Along each instance line, if location l1 is above l2, then l1 � l2;
– All locations in the same simregion have the same order, ∀s ∈ S, ∀l, l′ ∈

L.(λ(l) = s) ∧ (λ(l′) = s) ⇒ (l � l′) ∧ (l′ � l).

Definition 2 (cut). A cut is a downward-closed set of locations that span
across all the instance lines. Downward-closure means that if a location l is
included in cut c, so are all of its preordered locations: ∀c ⊆ L, ∀l, l′ ∈ L.(l ∈
c ∧ l′ � l) ⇒ l′ ∈ c. ��

We define loc : (S ∪ 2L) → 2L to map a simregion s ∈ S to a set loc(s) of
locations that it anchors, and to map a cut c ∈ 2L to its frontier loc(c), which
is a set of locations that constitute the downward border line progressed so far.

Let c ⊆ L be a cut, and s ∈ S be a simregion that follows c immediately. A
cut c′ is an s-successor of c, denoted c

s→ c′, if c′ is achieved by adding the set of

locations that s anchors into c, or formally, c
s→ c′ ⇔ ∀l ∈ loc(s).(l /∈ c) ∧ (c′ =

c ∪ loc(s)).
A cut c is minimal (denoted �) if each location in c is a top location of

some instance line, and c is maximal (denoted ⊥) if the bottom locations of
all instance lines are included in c. A minimal or maximal cut represents a
compulsory synchronization for all involved instances. Thus the partial order
relation � on L is extended as follows:

– All locations in the same minimal or maximal cut have the same order,
∀c ∈ {Pch.�, P ch.⊥, Mch.�, Mch.⊥}.∀l, l′ ∈ loc(c).(l � l′) ∧ (l′ � l).

Specifically, we view the maximal cut of the prechart and the minimal cut of
the main chart as the same cut, i.e., Pch.⊥ = Mch.�.

If cut c has c′ = Mch.⊥ as its s-successor, then we override c′ as Pch.� (if
any) or Mch.�, which represents the situation where a universal chart goes back
to its initial state upon the successful completion of a round of monitoring.

We assume that all cuts have the hot temperature.
For instance in Fig. 1(e), the possible cuts are: {}, {s1}, {s1, s2}, {s1, s3},

{s1, s2, s3}, where e.g. {s1} is a shorthand for the cut where simregion s1 has
been stepped over. Clearly, cuts {s1, s2} and {s1, s3} are the s2-successor and
s3-successor of cut {s1}, respectively.

Definition 3 (configuration). A configuration of an LSC chart is a tuple
(c, v), where c is a cut, and v maps each clock variable to a non-negative real
number, v : CL → R≥0. ��

For d > 0, notation (v + d) : CL → R≥0 means that the function v is shifted
by d such that ∀x ∈ CL.v(x + d) = v(x) + d.

A configuration at the minimal cut � with all clocks assigned their initial
values (e.g., 0’s) is called the initial configuration.

An assignment a ∈ A can be viewed as a transformer for function v, thus
a(v) represents the new valuation after the assignment.

A configuration can be viewed as the “state” of an LSC chart. A universal
chart starts from the initial configuration, advances from one configuration to a
next one, until hot violation occurs, or until the chart arrives at the maximal
cut and then starts all over again (i.e., to begin a next round execution).

There are three kinds of valid advancement steps between two configurations:

– Synchronization step. Given a chart configuration (c, v), and a simregion s
which has a message m, and optionally a condition g, and/or an assignment
a. There is a synchronization step (c, v) m→ (c′, a(v)) if, c

s→ c′ and v |= g;
– Silent step. Given a chart configuration (c, v), and a simregion s which

optionally has a message m, and/or a condition g, and/or an assignment a.
There is a silent step (c, v) τ→ (c′, a(v)) if either
• (silent advancement). (�m ∈ M.m ∈ s), and v |= g, and c

s→ c′; or
• (premature termination). g.temp = cold, and v � |=g, and c′ = Pch.�;

– Time delay step. Given a chart configuration (c, v). There is a time delay
step (c, v) d→ (c, v + d) if there exists a simregion that follows cut c, and the
clock constraints in its conditions (if any) will be satisfied after delay d, i.e.,
∃s = {m, g, a}.(v + d) |= g.

Definition 4 (run). A run of a universal LSC chart is a sequence of config-
urations (c, v)0 · (c, v)1 · . . . that are connected by the advancement steps, i.e.,
∀i ≥ 0.∃ui ∈ (M ∪ {τ} ∪R≥0).(c, v)i ui→ (c, v)i+1. ��

The transition relation → as mentioned above each time consumes only a
single letter u ∈ (M ∪ {τ} ∪R≥0). We extend it to →∗ such that it consumes a
(finite or infinite) word w ∈ (M ∪ {τ} ∪R≥0)∗ ∪ (M ∪ {τ} ∪R≥0)ω.

Let Π be the alphabet of all possible advancement steps in the original
system model, which subsumes (M ∪ {τ} ∪ R≥0) and can in addition include
other messages not ever appeared in M .

Definition 5 (satisfaction of a prechart/main chart). A finite timed trace
γ ∈ Π∗ satisfies an LSC prechart or main chart C if its projection γ|(M∪{τ}∪R≥0)

has a prefix μ which is the accepted word of a run that starts from the initial
configuration and ends in a maximal cut configuration of C, i.e., γ |= C ⇔ ∃μ, ξ ∈
(M ∪ {τ} ∪R≥0)∗.(γ|(M∪{τ}∪R≥0) = μ · ξ) ∧ ∃v′.(�, v0)

μ

−→∗ (⊥, v′). ��
If a universal chart L has no prechart Pch, then it is treated as being satisfied

by an empty word.
We define � to denote that a finite trace γ ∈ Π∗ satisfies chart C exactly:

γ � C ⇔ (γ |= C) ∧ ∀α, μ, β ∈ Π∗.(α · μ · β = γ) ∧ (α �= ε ∨ β �= ε) ⇒ (μ � |= C).
We define � to denote that chart C is satisfied by the prefix of a trace

γ ∈ Π∗∪Πω: γ � C ⇔ ∃α ∈ Π∗, β ∈ Π∗∪Πω.(α · β = γ) ∧ α � C.
Now we define the satisfaction relation for a full universal chart:

Definition 6 (satisfaction of universal LSC chart). A timed trace γ ∈ Πω

satisfies a universal chart L iff, whenever a subtrace of γ matches the prechart,
then the main chart is matched immediately afterwards, γ |=L ⇔ ∀α, μ ∈ Π∗, β ∈
Πω.(α · μ · β = γ) ∧ (μ|(M∪{τ}∪R≥0) � Pch) ⇒ β|(M∪{τ}∪R≥0) �Mch. ��

A timed language Lang ⊆ Πω satisfies L, denoted Lang |= L, iff, ∀γ ∈
Lang.γ |= L. Clearly, Lang characterizes the system behaviors that respect L.

For a network S of timed automata, we use S |= L to denote that the timed
traces (language) of S satisfy LSC L.

3.3 LSC to TA translation

For each LSC chart L, we construct a Uppaal TA OL. The basic idea is that
for each cut of the LSC, we assign a TA location in Uppaal; for each discrete
advancement step (i.e., a simregion) that connects two consecutive cuts, we
assign a TA edge. The translation is conducted incrementally based on the partial
order relation �.

3.3.1 Determining the partial order on LSC simregions
By analyzing the graphical layout of the LSC chart, the partial order � on the
set L of locations is determined according to the rules given in Section 3.2.

Since an advancement of a cut is caused by stepping over a simregion, the
partial order � on L can thus be lifted to �′ on S ∪{Pch.�, Mch.�, Mch.⊥} as
follows: ∀s1, s2 ∈ (S ∪ {Pch.�, Mch.�, Mch.⊥}).(s1 �′ s2 ⇔ ∃l1 ∈ loc(s1), l2 ∈
loc(s2).l1 � l2).

For instance in Fig. 1(e), the partial order �′ among the three simregions s1

(middle), s2 (left), and s3 (right) is: s1 �′ s2, and s1 �′ s3.

3.3.2 Translating LSC cut into TA location
The initial cut of an LSC chart is the minimal cut � of the prechart (if any)
or of the main chart (otherwise). While respecting �′, the cut advances towards
Mch.⊥ by stepping over simregions. Each time a simregion is stepped over, a
new cut is reached.

If we view all the instances of an LSC chart collectively as a whole system,
then a cut can be viewed as a “location” of the TA of this whole system. For
the minimal cut of the prechart (if any) and the minimal and maximal cuts of
the main chart, we assign the TA locations lpmin, lmin, and lmax, respectively.
Note that lmax is a committed location, which will be connected to lpmin (if any)
or lmin via an edge of internal action transition, meaning that a next round of
monitoring will begin immediately. The lpmin, lmin, and lmax locations are three
mandatory synchronization points for all the instances in the chart.

Time can elapse while staying in an LSC cut just like in a TA location.
Specifically, a cut that is followed by a non-message simregion corresponds to a
committed TA location. In that cut time is frozen and cannot elapse.

Since there are only finitely many instances and finitely many simregions in
an LSC chart, the number of cuts will also be finitely many.

3.3.3 Translating LSC simregion into TA edge
If s is a message-simregion, then we map the message, condition (if any) and
assignment (if any) of s into one edge of the TA. See Fig. 2(a)-2(b).

x >= 3 &&
(A -> B)
m1?
y := 0

x >= 1
y := 0

(a) A message-simregion (b) The TA edge (c) A non-msg. simregion (d) The TA edge

Fig. 2. From simregion to TA edge.

Due to the restriction of Uppaal that broadcast channels cannot be guarded
by timing constraints, in the TA of Fig. 2(b), m1 cannot be simply treated as
a broadcast channel. Instead, some spying techniques will be adopted such that
the translated TA will be notified of each message synchronization in the original
system immediately after its occurrence (cf. Section 4.1).

In an LSC chart, a message m is sent from one particular instance to another
one (e.g., from A to B). To preserve this sender/receiver information in the
translated TA, the TA edge will be further guarded by the predicate A → B
(shorthand for “src = A && dest = B”). See Fig. 2(b).

If s is a non-message simregion, then the ASAP semantics is adopted. To
enforce the ASAP semantics, the source location of the translated TA edge will
be marked as a committed location. See Fig. 2(c)-2(d) for an example.

3.3.4 Incremental construction of the TA
The LSC to TA translation is carried out incrementally. Assume that a TA loca-
tion l has already been created for the current LSC cut (see Fig. 3(b), location
l, and Fig. 3(a), cut {s1}). Following that cut there could be a number of simre-
gions that can be stepped over. Each of them should correspond to an outgoing
edge from TA location l. Without loss of generality, we assume that there are
two such immediately following simregions s2 and s3.

If s2 and s3 are both message-simregions (Fig. 3(a)), then the two new TA
edges will be concatenated to location l. Let the two new edges be (l1, l2) and
(l3, l4), respectively. Then l1 and l3 will be superposed on l. See Fig. 3(b).

l4l2

l (l1, l3)

C -> D
m3?

x >= 2 &&
(B -> A)
m2?

x >= 3 &&
(B -> C)
m1?

l4

l2 (l3)

l (l1)

C -> D
m3?

u >= 1

x >= 3 &&
(B -> C)
m1?

l4l2

l (l1, l3)

u != 0u >= 1

x >= 3 &&
(B -> C)
m1?

(a) The simregions (b) case #1 (c) case #2 (d) case #3

Fig. 3. TA edge construction for two subsequent simregions.

If in Fig. 3(a) s2 is replaced by a non-message simregion, then according to
the ASAP semantics, the edge (l1, l2) will be executed immediately, and edge
(l3, l4) will follow, but cannot be the other way around. When concatenating
these two edges to the TA, we mark l1 as a committed location, and superpose
it on l. There is only one possible interleaving where edge (l3, l4) follows (l1, l2).
See Fig. 3(c).

If in Fig. 3(a) s2 and s3 are both non-message simregions, then according
to the ASAP semantics, both (l1, l2) and (l3, l4) will be executed immediately,
therefore the executions will be interleaved. See Fig. 3(d).

3.3.5 Implicitly allowed behavior
In addition to the explicitly specified behaviors in the chart, there are also im-
plicitly allowed behaviors that are due to: (1) unconstrained events, (2) cold
violations, and (3) prechart pre-matching.

Let Chan be the set of channels of S, and Chan′ ⊆ Chan be the set of
channels of L. Clearly, channels in (Chan\Chan′) are not constrained by L. For
each message m whose label belongs to (Chan\Chan′), we add an m?-labeled
self-loop edge to each non-committed location l of the translated TA OL. For
readability they are not shown in Fig. 4.

According to the LSC semantics, cold violations of prechart or main chart
are not failures. Instead, they just bring the chart back to the minimal cut. To
model this, for a cut c and each following simregion s that has a cold condition
g, we add edges from the corresponding TA location l to lpmin (if Pch exists) or
lmin (otherwise) to correspond to the ¬g conditions (of DNF form). Similarly,
given a cut c in the prechart, for each message m that occurs in L but does not
follow c immediately, we also add an m?-labeled edge (l, lpmin). See Fig. 4.

Errlmax

lmin

lpmin

A -> B
m1?

C -> D
m2?

B -> C
m3?

C -> D
m2?

A -> B
m1?

B -> C
m3?

B -> C
m3?

B -> C
m3?

A -> B
m1?

C -> D
m2?

C -> D
m2?

A -> B
m1?

(a) An LSC chart (b) The translated TA

Fig. 4. Prechart matching.

According to the LSC semantics, under invariant mode the prechart will be
continuously monitored. Thus for instance in Fig. 4(a), the sequence m1 ·m1 ·m2

will match the prechart. To enforce this semantics, for each message m that
appear in the chart, we add an m?-labeled self loop to location lpmin.

3.3.6 Undesired behavior
The construction of the TA so far considers only the legal (or admissible) behav-
iors. When the current configuration (c, v) is in the main chart, if an observed
message m is not enabled at cut c, or the hot condition of the simregion that
immediately follows c evaluates to false under v, then there will be a hot viola-
tion. In this case, we add a dead-end (sink) location Err in the TA, and for each
such violation we add an edge to Err.

3.3.7 Complexity
Let the number of simregions appearing in L be n. In the worst case, the number
of locations in the translated TA OL is 2n + 1. This happens when L consists of
only the prechart or the main chart, and the messages in L are totally unordered.

The number of outgoing edges from a location l of OL depends on: (1) the
number of unconstrained events, ue; (2) the number of the following simregions
in the corresponding cut c of L, fs; (3) the length of the condition (in case
the condition evaluates to false), lc; and (4) the number of messages that cause
violations of the chart, cv. Therefore, the number of outgoing edges from a TA
location is at the level O(ue + fs + lc + cv).

3.4 Equivalence of LSC and TA

Since all the clocks in the original system model S are also visible to the LSC
chart L, we extend the configuration of L from CL to CL ∪ CS .

If in the translated OL we ignore the undesired and implicitly allowed behav-
iors, i.e., we ignore the edges that correspond to hot violations, unconstrained
events, cold violations, and prechart pre-matching, then we have:

Lemma 1. If a configuration (c, v) of L corresponds to a semantic state (l, v)
of OL, then: (1) each simregion s that follows (c, v) in L uniquely corresponds
to an outgoing edge (l, l′) in OL, and (2) the target configuration (c′, v′) of s in
L uniquely corresponds to the target semantic state (l′, v′) in OL. ��
Theorem 1. For any trace tr in OL: tr |= L ⇔ (OL, tr) |= (lmin � lmax). ��

Proofs of the lemmas and theorems can be found at the authors’ webpages.
The prechart pre-matching mechanism does introduce undesired extra behav-

iors and non-determinacy. For instance in Fig. 4(b), tr = m1 · m2 · m1 · m2 · m3

could be an accepted trace in OL. But since its prefix tr′ = m1 · m2 ·m1 can be
rejected, thus tr does not really satisfy L. It coincides that the particular trace
tr in the model OL does not satisfy the property (lmin � lmax).

Theorem 1 indicates that OL has exactly the same set of legal traces as L.

4 Embedding into Uppaal

4.1 Synchronizing with the original system

When composing OL with S, we want OL to “observe” S in a timely and non-
intrusive manner. To this end, for each channel ch ∈ Chan, we make the follow-
ing modifications:

(1) In S (e.g., Fig. 5(a)-5(b)), for each edge (l1, l2) that is labeled with ch!,
we add a committed location l′1 and a cho!-labeled edge in between edge
(l1, l2) and location l2. Here cho is a dedicated fresh channel which aims to
notify OL of the occurrence of the ch-synchronization in S. The location
invariant (if any) of l2 will be copied on to l′1. Furthermore, we use a global

boolean flag variable (or a binary semaphore) mayFire to further guard the
ch-synchronization. This semaphore is initialized to true at system start. It
is cleared immediately after the ch-synchronization in S is taken, and it is
set again immediately after the cho-synchronization is taken. See Fig. 5(d).

(2) In OL, each synchronization label ch? is renamed to cho?. See Fig. 5(c), 5(e).

l2 Inv1

l1

g1
ch!
a1

l4 Inv2

l3

g2
ch?
a2

g3
ch?
a3

l2 Inv1

l1’ Inv1

l1

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

g3
cho?
a3

(a) emt. edge (b) recv. edge (c) obs. edge (d) mod. emt. edge (e) mod. obs. edge

Fig. 5. Edge modifications in the original system model S and the observer TA OL.

If L has non-message simregions, then OL has committed locations. If in a
certain state both OL and some TA in S are in committed locations (e.g., lm+1

in Fig. 6(c), l2 in Fig. 6(a)), there will be a racing condition. But according to the
ASAP semantics of L, the (internal action) edge in OL has higher priority. To
this end, for each edge (li, li+1) in OL, if li+1 is a committed location, then we add
“NxtCmt := true” to the assignment of the edge, otherwise we add “NxtCmt
:= false”. Here the global boolean flag variable (or semaphore) NxtCmt denotes
whether the observer TA will be in a committed location. This semaphore is
initialized to false at system start. See Fig. 6(d). Accordingly, for each ch-labeled
edge (li, li+1) in S where ch ∈ Chan and li is a committed location, we add
“NxtCmt == false” to the condition of the edge, see Fig. 6(b).

l5

l2 Inv1

l1’ Inv1

l1

g5 && (mayFire == true)
ch2!
a5, mayFire := false

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

l5

l2 Inv1

l1’ Inv1

l1

g5 && (mayFire == true)
&& (NxtCmt == false)
ch2!
a5, mayFire := false

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

lm+2

lm+1

lm

g4
a4

g3
cho?
a3

lm+2

lm+1

lm

g4
a4, NxtCmt := false

g3
cho?
a3, NxtCmt := true

(a) emitting edge (b) modified emitting edge (c) in obs. TA (d) in modified obs. TA

Fig. 6. Edge modifications when there are committed locations in the obs. TA.

Our method of composing the observer TA OL with the original model S
is similar to that of [9]. While their method works only when the target state
of a communication action is not a committed location in the original model,
in our method, due to the first locking mechanism (using mayFire), we have
no restrictions on whether a location in S is a normal, urgent or committed
one. Broadcast channels can be handled the same way as binary synchronization
channels in our method. Furthermore, due to the second locking mechanism
(using NxtCmt), we guarantee the enforcement of the ASAP semantics in OL.

Since our method involves only syntactic scanning and manipulations, the
method is not expensive. For each ch ∈ Chan, we need to introduce a dedicated
fresh channel cho. For each occurrence of the emitting edge ch!, we need to
introduce a fresh committed location in S. Moreover, we need two global boolean
flag variables (mayFire, NxtCmt) as the semaphores.

4.2 Verification problem

After the modifications, the original system model S becomes S′, and the ob-
server TA OL for chart L becomes O′

L. Let the minimal and maximal cuts of
the main chart of L correspond to locations lmin and lmax of O′

L, respectively.
Recall that the Uppaal “leads-to” property (φ � ϕ) stands for A�(φ ⇒ A� ϕ),
where φ, ϕ are state formulas.

Lemma 2. If OL has no committed location, and all ch ∈ Chan are binary
synchronization channels, then S |= L ⇔ (S′||O′

L) |= (lmin � lmax). ��
In a more general form, we have:

Theorem 2. S |= L ⇔ (S′||O′
L) |= (lmin � lmax). ��

Theorem 2 indicates that the problem of checking whether a system model S
satisfies an LSC requirement L can be equivalently transformed into a classical
model checking problem (“φ leads-to ϕ”) in Uppaal.

5 An example

We put things together by using the example in Fig. 1. The original system S
consists of timed automata A, B, C, and D, having channels m1, m2, m3, m4,
and clock variable x. The scenario-based requirement L is given in Fig. 1(e).

After modifying S and the translated observer TA OL, we get the newly
composed network of TA (S′||O′

L), see Fig. 7 and Fig. 8.
For this newly composed model, we check in Uppaal the property (lmin �

lmax), and it turns out to be satisfied. This indicates that S does satisfy the
requirements that are specified in L.

If in L the condition of m2 is changed from x ≥ 2 to e.g. x ≥ 4, then the
property will not be satisfied. There will be a counterexample, e.g., when O′

L
has to synchronize on the channel m2o in location L2 of Fig. 8, but the value of
clock x falls in [3, 4), then it gets stuck there.

m4?

m2?
dest := A x <= 5

x <= 5 m2o!
mayFire := true

m1o!
mayFire := true

mayFire == true
m2!
mayFire := false,
src := B

x >= 3 &&
(mayFire == true)
m1!
mayFire := false,
src := B

m4o!
mayFire := true

m3o!
mayFire := true

mayFire == true &&
NxtCmt == false
m4!
mayFire := false

mayFire == true
m3!
mayFire := false,
src := C

m1?
dest := C

m3?
dest := D

m4?

(a) TA A′ (b) TA B′ (c) TA C′ (d) TA D′

Fig. 7. The modified model S ′ of the original system in Fig. 1(a)-1(d).

6 Conclusions

This paper deals with the verification of real-time systems against scenario-based
requirements by using model transformation and event spying techniques. Since
both the LSC to TA translation and the non-intrusive composing method are
automatic steps, our approach can be fully automated.

Based on previous work [17], the translation algorithms in this paper have
been implemented as a prototype LSC-to-TA translator, which has been in-
tegrated into the Uppaal GUI and verification server. Experiments with some
non-trivial examples showed the effectiveness of this method and tool.

Future work includes: (1) empirical evaluations for studying the applicability
and scalability of this approach; (2) to support the translations of more chart
elements such as subchart, if-then-else structure, loop, forbidden and ignored
event, co-region, symbolic instances, and other chart modes; (3) to consider
multiple charts for system modeling as well as for property specification; (4) to
specify interaction scenarios for timed game solving and controller synthesis.

Acknowledgements. We thank Sandie Balaguer and Alexandre David for
(re-)implementing the translation algorithms and tool, and integrating them
into Uppaal. This research has received funding from the EuropeanCommunity’s
Seventh Framework Programme under grant agreement no. 214755.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS, 126: 183–235 (1994)
2. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts.

Software Concepts and Tools, 17(2): 70–77 (1996)
3. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: SFM’04 (2004)
4. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Lec-

tures on Concurrency and Petri Nets 2003, Springer, 87-124 (2003)
5. Bontemps, Y.: Relating Inter-Agent and Intra-Agent Specifications: The Case of

Live Sequence Charts. PhD thesis, University of Namur (2005)

lmax

Err

L1 L2

lmin

lpmin

x < 3
m1o?

NxtCmt := false

!(src == B &&
dest == A)
m2o?

!(src == C &&
dest == D)
m3o?

!(src == C &&
dest == D)
m3o?

!(src == B &&
dest == C)
m1o?

!(src == B &&
dest == A)
m2o?

!(src == B &&
dest == C)
m1o?

!(src == B &&
dest == C)
m1o?

!(src == C &&
dest == D)
m3o?

!(src == B &&
dest == A)
m2o?

!(src == B && dest == C)
m1o?

m3o?

m2o?

src == B &&
dest == A
m2o?

src == B &&
dest == C
m1o?

src == B &&
dest == C
m1o?

src == C &&
dest == D
m3o?

src == B &&
dest == C
m1o?

m4o?m4o?

m4o?

m4o?

src == C &&
dest == D
m3o?
NxtCmt := true

x >= 2 && src == B
&& dest == A
m2o?
NxtCmt := truesrc == C &&

dest == D
m3o?x >= 2 && src == B

&& dest == A
m2o?

x >= 3 && src == B
&& dest == C
m1o?

Fig. 8. The translated and modified observer TA O′
L of the chart in Fig. 1(e).

6. Bontemps, Y., Schobbens, P.-Y.: The computational complexity of scenario-based
agent verification and design. J. Applied Logic 5(2): 252–276 (2007).

7. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design, 19(1): 45–80 (2001)

8. Damm, W., Toben, T., Westphal, B.: On the Expressive Power of Live Sequence
Charts. In: Program Analysis and Compilation 2006: 225–246 (2006)

9. Firley, T., Huhn, M., Diethers, K., Gehrke, T., Goltz, U.: Timed Sequence Diagrams
and Tool-Based Analysis - A Case Study. In. Proc. UML’99: 645-660 (1999)

10. Genest, B., Minea, M., Muscholl, A., Peled, D.: Specifying and Verifying Partial
Order Properties Using Template MSCs. In: Proc. FOSSACS’04: 195-210 (2004)

11. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Spinger (2003)

12. Harel, D., Kugler, H.: Synthesizing State-Based Object Systems from LSC Speci-
fications. Int. J. of Foundations of Computer Science, 13(1), 5–51 (2002)

13. ITU: Z.120 ITU-TS Recommendation Z.120: Message Sequence Chart 2000. (1999)
14. Klose, J., Wittke, H.: An Automata Based Interpretation of Live Sequence Charts.

In: TACAS’01, Springer, 512–527 (2001)
15. Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal Logic for

Scenario-Based Specifications. In: TACAS’05, Springer, 445–460 (2005)
16. Lahtinen, J.: Model checking timed safety instrumented systems. Research Report

TKK-ICS-R3, Helsinki University of Technology, Espoo, Finland (2008)
17. Pusinskas S.: From Live Sequence Charts to Uppaal. PhD thesis (forthcoming)
18. Rye-Andersen J.G., Jensen M.W., Goettler R., Jakobsen M.: PEEL: Property Ex-

traction Engine for LSCs. Master thesis, Aalborg University (2004)
19. Sengupta, B., Cleaveland, R.: Triggered Message Sequence Charts. In: FSE (2002)
20. Yovine S.: Kronos: A verification tool for real-time systems. STTT, 1(1/2): 123-

133, Springer-Verlag (1997)

Appendix: Proofs or lemmas and theorems

Lemma 1. If a configuration (c, v) of L corresponds to a semantic state (l, v) of
OL, then: (1) each simregion s that follows (c, v) in L uniquely corresponds to
an outgoing edge (l, l′) in OL, and (2) the target configuration (c′, v′) of s in L
uniquely corresponds to the target semantic state (l′, v′) in OL. ��
Proof. For each simregion s in L that immediately follows (c, v) w.r.t. the partial
order �′ of L, according to Section 3.3.3, s uniquely corresponds to an outgoing
edge (l, l′) from l in OL. Since the valuation function v is the same in (l, v) as
in (c, v), and the condition in s is straightforwardly copied onto the TA edge
(l, l′), the simregion s can be stepped over if and only if the TA edge (l, l′) can
be taken. Moreover, the assignment (if any) in s is also straightforwardly copied
onto the edge (l, l′). This indicates that the valuation function in the LSC target
configuration will be still the same as in the TA target semantic state. Therefore,
(c′, v′) uniquely corresponds to (l′, v′).

Specifically, if s is a non-message simregion that immediately follows (c, v)
in L, then according to the ASAP semantics, s will be stepped over immedi-
ately from (c, v). Accordingly, the source location l is a committed location, and
the other outgoing edges that correspond to message-simregions will not be ap-
pended to l. All these ensure that the TA edge that corresponds to s is taken
immediately from state (l, v). ��

Theorem 1: For any trace tr in OL: tr |= L ⇔ (OL, tr) |= (lmin � lmax). ��
Proof. Let the initial cut of L be c0. According to Section 3.3.2, c0 corresponds
to the initial location l0 of OL. Since in the beginning all the clocks in L have
the same initial values as in OL, the initial configuration (c0, v0) of L uniquely
corresponds to the initial semantic state (l0, v0) of OL.

Only the legal behaviors (admissible traces) of OL will be considered. We
consider the following cases:

(1) OL has only explicitly specified behaviors. By Lemma 1, each simregion
that immediately follows (c0, v0) uniquely corresponds to an outgoing edge from
TA location l0, and the target configuration (c′, v′) in L uniquely corresponds
to the target semantic state (l′, v′) in OL. On the other hand, in (c0, v0) of L,
there could be a time delay d if and only if (l0, v0) of OL can have the same time
delay d.

By recursively applying Lemma 1 and the above result, we can conclude that
any timed trace tr in OL is also a timed trace in L.

Since OL has only explicitly specified behaviors, we know that there is no
undesired behavior in OL. If tr |= L, then by definition this particular tr in OL
also satisfies the path formula (lmin � lmax), i.e., (OL, tr) |= (lmin � lmax).
Therefore, we have tr |= L ⇒ (OL, tr) |= (lmin � lmax).

The reverse implication is proved similarly.
(2) OL include behaviors of unconstrained events or cold violations. In this

case, each unconstrained event m at a particular cut c in L uniquely corresponds

to an m?-labeled self-loop edge at a corresponding location l in OL, and each
cold violation uniquely corresponds to an edge leading to lpmin (if any) or lmin

(otherwise). The two-way implications are proved similarly.
(3) OL include behaviors of prechart pre-matching. In this case, the semantics

of tr |= L says whenever tr matches the prechart Pch, the main chart Mch will
be matched afterwards (and must before Pch begins a next matching process).
Considering that in OL, the locations lmin and lmax are two rendezvous points,
thus tr |= L means exactly the satisfaction of (lmin � lmax) by tr.

To sum up, we conclude that for any trace tr in OL, we have tr |= L ⇔
(OL, tr) |= (lmin � lmax). ��

Lemma 2. If OL has no committed location, and all ch ∈ Chan are binary
synchronization channels, then S |= L ⇔ (S′||O′

L) |= (lmin � lmax). ��

Proof. Let (l̄, v) be a semantic state of the network of TA of S, where l̄ is a
location vector, and v is the valuation of all clock variables. For each binary
synchronization channel ch ∈ Chan, we have a transition (l̄, v) ch→ (l̄′, v′) if in
two different processes of S, there are two edges (li, li+1) and (lj , lj+1) labeled
with ch! and ch?, respectively, such that:

– v |= gi ∧ gj, where gi and gj are guards of the two edges, respectively;
– l̄′ = l̄[li+1/li, lj+1/lj];
– v′ = aj(ai(v)), where ai and aj are the assignments of the two edges, respec-

tively;
– v′ |= Invi+1 ∧ Invj+1, where Invi+1 and Invj+1 are the location invariants

of the target locations of the two edges, respectively;
– either (li or lj or both are committed locations), or no other location in l̄ is

committed.

We need to show that the modifications of the original system model S and
the observer TA OL do not affect their legal (or admissible) behaviors (traces),
i.e., the event notification mechanism and the locking mechanisms neither in-
crease nor decrease the behaviors (traces) in S and OL. To this end, we prove
that each synchronization in S uniquely corresponds to a pair of consecutive
synchronizations in (S′||O′

L).

⇒):
By S |= L we know that the original system model S satisfies the require-

ments that are specified in the LSC chart L. It follows that the observer TA OL
does not restrict the (legal) behavior of S.

If at a semantic state (l̄, v) of S there is a synchronization (l̄, v) ch→ (l̄′, v′),
where ch ∈ Chan, we let the two coupling edges that carry ch! and ch? be
(li, li+1) and (lj , lj+1), respectively. Clearly, they satisfy all the five require-
ments as listed above. According to the rules for modifying S, edges (li, li+1)
will correspond to two edges (li, l′i) and (l′i, li+1) in S′, where l′i is a newly added

committed location. Also according to the rules, the semaphore mayFire eval-
uates to false only when the current control is in a newly added committed
location (see Fig. 5(d)). Now that the control is in li in S′, the semaphore may-
Fire should evaluate to true. This together with the item v |= gi∧gj in the above
requirements indicate that the guards for (li, l′i) and (lj , lj+1) in S′ to synchro-
nize on ch are both satisfied. Besides, items 3-5 in the above requirements also
apply to the ch-synchronization at (li, l′i) and (lj , lj+1). Therefore, there exists a

transition (l̄, v) ch→ (l̄′′, v′) in S′ with (li, l′i) and (lj , lj+1) as the coupling edges,
where l̄′′ = l̄′[l′i/li, lj+1/lj].

The second edge (l′i, li+1) in S′ will be immediately coupled with a corre-
sponding edge in O′

L. By the assumption S |= L, we know OL does not restrict
the behavior of S via its own conditions (e.g., via g3 in Fig. 5(e)). This means
that the cho-synchronization between S′ and O′

L will not get stuck there due to
the restrictions of O′

L. Since after this synchronization, the clock variables in S′

remain unchanged, we know that the location invariant Invi+1 on li+1 of S′ will
still be satisfied. After this synchronization, the two target locations in S′ will
be li+1 and lj+1, thus coinciding with the corresponding target locations li+1

and lj+1 in S. Therefore, we can conclude that given a trace tr in S, there exists
a unique trace tr′ in (S′||O′

L) such that tr′ and tr correspond.
By the definition of S |= L (see Section 3.2), we know that if a timed trace

μ in S arrives at the minimal cut of the main chart of L, then μ must always be
able to reach the maximal cut of that main chart. By Theorem 1 and Section
3.3, we know that if μ arrives at location lmin of O′

L, then μ must always be able
to reach location lmax of O′

L.
Since each trace μ in S can be equivalently mapped to a trace μ′ in (S′||O′

L),
clearly, if any μ′ arrives at location lmin of O′

L, then that μ′ must always be able
to reach location lmax of O′

L.
Since lmin and lmax are two locations in (S′||O′

L), the above requirement can
thus be formulated as a Uppaal property (S′||O′

L) |= (lmin � lmax).

⇐):
Similarly, we need to prove that each trace tr′ in (S′||O′

L) uniquely corre-
sponds to a trace tr in S such that tr′ and tr are equivalent.

Assume that in (S′||O′
L) there is a synchronization (l̄, v) c→ (l̄′, v′).

If c ∈ Chan, then after removing “mayFire == true” from the condition
and removing “mayFire := false” from the assignment of the emitting edge (see
Fig. 5(d)), the edge becomes exactly the corresponding edge in S. Note that
the invariant (if any) at the target location of this emitting edge is irrelevant
of the semaphore mayFire. This indicates that the synchronization between the
corresponding edges in S can also fire.

If c ∈ {cho|ch ∈ Chan}, then the source location of the c!-emitting edge in
S′ must be a newly added committed location. This c! will be synchronized with
a c?-receiving edge in O′

L. And it will bring the control in S′ from the committed
location to the target location, which coincides with the corresponding target

location in S. Due to the use of semaphore mayFire, no other synchronizations
in (S′||O′

L) can preempt the execution of this c-synchronization.
The rest of the transitions in (S′||O′

L) are just the same as those in S. There-
fore we can conclude that a trace tr′ in (S′||O′

L) uniquely corresponds to a trace
tr in S such that tr′ and tr are equivalent. Now that (S′||O′

L) |= (lmin � lmax),
according to the semantics of LSC chart satisfaction, we have S |= L. ��

Theorem 2. S |= L ⇔ (S′||O′
L) |= (lmin � lmax). ��

Proof. This theorem is a generalization of Lemma 2 by canceling the restrictions.
If ch ∈ Chan is a broadcast channel, the semantics of ch-synchronization is

a little different. Since the modifications of the emitting edges in S do not affect
the receiving edges in S, we can still have a one-to-one mapping between the
traces in S and in (S′||O′

L).
If there are committed locations in O′

L, then we use the second semaphore
NxtCmt to guarantee the non-interrupted execution at those committed loca-
tions in O′

L. Since an edge (l, l′) starting from a committed location l in O′
L

represents an internal action (local) transition, it needs no synchronization with
S′. Thus the edge does not affect the behavior of S′.

To sum up, there is a one-to-one mapping of the traces in S and (S′||O′
L),

even in the presences of broadcast channels in S and committed locations in OL.
Thus we have S |= L ⇔ (S′||O′

L) |= (lmin � lmax). ��

