Aalborg Universitet AALBORG

UNIVERSITY

Automated Fault Tolerant Control Synthesis based on Discrete Games

Grunnet, Jacob Deleuran; Bendtsen, Jan Dimon; Bak, Thomas

Published in:
| E E E Conference on Decision and Control. Proceedings

DOl (link to publication from Publisher):
10.1109/CDC.2009.5400374

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Grunnet, J. D., Bendtsen, J. D., & Bak, T. (2009). Automated Fault Tolerant Control Synthesis based on Discrete
Games. | E E E Conference on Decision and Control. Proceedings, 8476 - 8481.
https://doi.org/10.1109/CDC.2009.5400374

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/CDC.2009.5400374
https://vbn.aau.dk/en/publications/1d745be0-5034-11de-a034-000ea68e967b
https://doi.org/10.1109/CDC.2009.5400374

Automated Fault Tolerant Control Synthesis based on Disdeames

Jacob D. Grunnet, Jan D. Bendtsen and Thomas Bak

Abstract— This paper focuses on how fault tolerant con- synthesis for piecewise-affine systems (see e.g. [9]-[13])
trollers can be designed based on discrete game abstract®nf Particularly the work builds upon computing discrete adstr
piecewise-affine hybrid systems (PAHS). The proposed metlo i s of Piecewise-Affine Hybrid System (PAHS) [14], which

aims at automatic generation of the controllers by convertig . b d trol to facet i f affi ¢
the discrete games to timed games, which can be solved byIS ased on control 1o facet properties of afliné systems on

the UppAal toolbox. Winning strategies to the games are then Simplices as established in [9], [15]. The ultimate goal is
refined to piecewise-affine control strategies which is a tywof to develop automated control synthesis procedures and the
gain scheduling. The feasibility of the method is shown throgh method proposed can be divided into 4 steps: Modelling the
the automated design of a fault tolerant controller for a sinple system including faults as a PAHS, computing a discrete
example. game abstraction, finding a winning strategy to the discrete
I. INTRODUCTION game and refining the resulting set of rules to control laws on

))) . the original system. In this paper the focus is on how to find

Controller design is basically an exercise in limiting,yinning strategies to discrete abstractions by mapping the

a systems behaviour to a desired subset of the possibjg,piem to existing tools. A demonstration of the method
behaviours as specified by the requirements. An addnmnaéing a simple example using double integrator dynamics
challenges lies in ensuring that the specifications ardl@dfi “and a single actuator fault is presented, showing the fully

while the system is influenced by e.g. unmodelled dynamicgiomated control synthesis based on a PAHS model of the
or unpredictable events such as component or subsystg%tem_

failures.
The effect of components malfunction on closed loop Il. METHODOLOGY

systems is often highly disruptive and can adversely affect |n this work we consider discrete abstractions of PAHS
the systems performance. The fact that it is very hargpresenting systems including failure modes. It is assume
to completely eliminate such failures has led to extensivhat discrete abstractions can be computed as shown in
research in Fault Tolerant Control (FTC) systems, see ef6], [17], but for the sake of completeness a very short

[1], [2]. Common for several of these strategies are that thentroduction to computing discrete game abstractionsiisryi
view the problem as a game, where the designed controllggre.

plays against a malicious opponent controlling when and
which faults occurs. For instance [3] relies on a robustimnt A. Computing Discrete Abstractions
design methods which derive from the theory of dynamic As shown in Fig. la the first step is to construct a
games [4]. The result is a passive design where the controli@odel of the system and itg), failure/operational modes,
guarantees stability and performance after the occurreiree N = {S),5,..., S0}, defined as a set of piecewise-affine
fault event. Other approaches e.qg. [5] uses reconfigurafion systems (PAS)S € M ,one for each mode. Each piecewise-
controllers based on real-time detection of faults commonlaffine system,S = (L', K, ') denotes a finite affine linear
referred to as Fault Detection and Isolation (FDI) [6]. simplicial switched system with control, whefé Cc L = R
The main task when designing strategies relying on recois a bounded polyhedral set (a polytope) of dimensign
figuration is synthesising controllers for all possiblelfee K = {A;},c; is a simplicial partition ofZ’ with a finite
modes. This synthesis can be carried out on-line for activadex set/ and F' = {f;}.c; is a family of affine linear
FTC strategies or for passive control strategies off-lilmere functions
a catalogue of controllers are computed a priori, see [T], [8)
On-line computation requires a fully automated synthesis /i : Vi XU — L, fi(z,u) =& = Az + Biu + Ci
method and adequate computing power, whereas off-liRgth 1; an open neighbourhood @¥; and with the input set
methods can only handle failure modes known at design timg — r™ a polytope.
and can lead to large controller catalogues if a high number The paSs are connected via the nEp M x E — M,
of faults and their combinations are to be handled. where E is a set of external events that can be thought
This paper presents a passive FTC approach relying @f as the occurrence faults if they are uncontrollable and
solutions to discrete games representing the system in qugs operational modes if they are controllable. The regyltin
tion. The method is based on recent advances in controllgystem is a PAHS with the possibility of uncontrollable
J. Grunnet, J. Bendtsen and T. Bak are with the Departmentlesf- E events as defined in [18], see Fig. 1b. It Shou_ld be n_Oted
tronic Systems, Section for Automation and Control, Aagbtmiversity, ~ that both guards and reset maps can be associated with the
Denmark.{gr unnet , di non, t b}@s. aau. dk transitions but for many systems this is not necessary e.g.

for faults the guards are typically always enabled and the 1 1a
reset maps are the identity map as the state spdces, 4 X » 4a X 2a
are identical for both PASs and no sudden change in the 3 3a
continuous state happens when a fault occurs. Notice thag i

a fault does not necessarily alter the system dynamics, but Neminal Fault

could alter the bounded input spabesignifying a loss of () Two piecewise-affine system) The system represented as a
each representing a failure mode. AMAHS with each failure mode in its
actuator performance.

- .)) affine system is defined on each sirawn location. The faults is an uncon-
By computing discrete abstractions for each PAS in thglex. trollable event (dashed arrows) which

PAHS and connecting the abstractions according to the triggers the transition
mode transitions a discrete abstraction of a PAHS can be - -
obtained. The discrete abstractions of PAS are found b
considering each simplex of a PAS as a discrete locatio
and computing the transitions between the locations. Fg. 1
and 1c illustrates the result when the reset maps are igentit _ _

. (c) The PAS abstracted to discrefd) The abstractions of the PAS are
maps and the discrete equivalents of simplices irNtbminal

A X games. Each simplex is here represnnected according to the failure
mode are therefore connected to the same simplex in thented by a discrete location. mode transitions.

Fault mode. _ . . . Fig. 1: Some essential steps for the FTC design procedure. Th
When computing the discrete equivalent of a simpleXast step shown is the discrete game abstraction for whiciming

A;, each facet is a potential transition with one of threstrategies are to be found.

properties:
Blocked A control law exists which can guaranteee uivalents) of a simplex in the state space whereas commit-
that the system will not leav4; through q . P P .
the facet. ted locations represents controller choices. No time cas pa

in a committed location whereas a normal location must be
in finite time unless all outgoing transitions belongjito
are controllable.

Uncontrollable The facet can not be blocked.

Controllable A control law exists which guarantees tha.k;ft
the facet can be blocked and conversely
that it is possible to leave tha, in finite ¢ Finding Winning Strategies

time possibly through that facet. The goal of this method is to be able to find winning

The conditions associated with blockability and Comro”astrategies to the discrete game abstraction and using the
bility can be described as LMIs [9]. Informally blockabylit - e thods from [16] to refine the result to control laws on the
of a facet can be described as the possibility to find inpui§qiiqual simplices of the PAHS. A winning strategy will
uj €U atallthej =1...n vertices of a facep € A; SUCh gngre that no matter which moves the environment takes

that the derivatives;, points into the hull ofA;. (which faults occur) the controller will be able to meet the
For controllability it must also be possible to find a”Othe‘?equirements.

set of inputsw; at the same vertices where the derivative The clock ¢ is used to ensure progress of the game

points out of the hull of the simplex and which ensures tha{§ that controller decisions in the committed locations is
any fixed point is outside the simplex. taken immediately. Because of this clock the discrete game
abstraction is in reality a timed game and any method used
to solve the game needs to be able to handle timed games
The discrete game abstraction used in this paper is inspired it must be possible to represent the effects of the time
by [19], [20] and is defined a® = {Q,Qo, W, E,T,c}, constraints in some way. This precludes using tools such
where () is a set of locations@, € 29 is a set of initial as TCT and Supremica [21], [22] as they have no way of
locations, ' is a set of events that can be either controllableepresenting eventuality. Instead UppAal Tiga [23] is @ros
or uncontrollable|/V : @ x E — @ is a set of transitions as it can analyse properties and synthesise controllera for
connecting locations]” : @ x E — @ is a special set of quite general class of timed games.
transitions triggered from external events which is inteeki Given a discrete abstraction the procedure now consists of
from the PAHS and: is a monotonically increasing clock. the 3 following steps.
The goal of the game is derived from the requirements on the 1) Converting the Discrete Game to UppAal Syntax:
original PAHS and is specified using path invariants. This iThe syntactical conversion of the discrete abstractionnto a
discussed in more detail in section II-C.2. UppAal representation of a timed game is quite straight
Transitions are either controllable or uncontrollable; unforward. All locations, transitions and clocks are conedrt
controllable transitions can be taken by the environment (alirectly to the equivalent objects of UppAal.
“opponent”) and has priority over controllable transifon To ensure that the semantics of the UppAal timed game
That is the environment always moves first. are the same as those defined for the discrete abstract®on it i
Locations are divided into two categoriemmmittedand necessary to add time invariants to the locations and guards
normallocations. Normal locations are abstractions (discret® the transitions as follows:

B. Discrete Game Definition

1) Add invariantc < 1 to all normal locations where at ?

least one outgoingl/-transition is uncontrollable. G Position

2) Add guarde < 1 to all outgoing controllablelV - _@

transitions from a normal location.

3) Add guarde =< 1 to all outgoing uncontrollabl&V -

transitions from a normal location.

4) Add actionc = 0 to all incoming transitions to a

normal location.

The location invariantl), ensures that only finite time is
spent in the location and the action on incoming transitions
4), ensures that clock is always reset when entering a normal
state. The guards?) and 3), ensure that no deadlocks
occur if the controller chooses to block all the controléabl
transitions by forcing the environment to choose one of the
uncontrollable outgoing transitions.)) o])

Lastly it is necessary to take special care of convertin@.g' 2: Tessellated velocity profile in a 2-dimensional estapace,

L - . . with initial location set marked as | and goal set as G.
the initial set as there can only be one initial location in
the UppAal syntax. This can be solved by adding an extra
location with tranS|t|or_1_s to all the states in the initiatédion as “the system will eventually reach a locati@without
set Q. If these transitions are all uncontrollable the corre-

) . . visiting any states inX". UppAal is then able to verify if
spon.dlmg controller must be able to fulfill the requwemen?uch a statement is true, and a control strategy ensuring the

. " lidity of the CTL-statement can be computed if it exists.
states the system starts in. The transitions can also be mal e
. . I . . able | shows a number of UppAal CTL specifications
controllable to investigate whether it is possible to find an

initial location from which the requirements specificagon felevant for use with PAHS control.

\

Velocity

can be held. _ o [CTL-expression Specification |
2) Converting Reqwrement$pec.|f|cat|.oﬁ'sl'1e usual type E[not X A path exist potentially relying
of controller requirement specifications in the frequency o on uncontrollable transitions that
time domains can not directly be used for PAHS controller avoids statex.
design based discrete game abstractions. As the continu All ot X AL paths avodsX.
esign ase O_n) g S) Control: A<> G A control strategy exists such that
ous dynamics is being abstracted away it is only possible G is eventually reached
to describe requirements in terms of locations to reach, | Control: AJ not X A control strategy exists such that

. . e L. . . all paths avoidsX
stay in or avoid. The specification is thus done in the state —=or Al Tiot (X or Y) A control strategy exists such that

(phase) space with the tessellation acting as a quantisatio all paths avoidsX and Y
The possible requirements that can be described using thg Control: A[not XU G] A control strategy exists such that
discrete abstraction are therefore limited by the tessafia g{;t'z%hiz 2’:&?}2&””“' the goal
so the requirements specifications hence has to be congidere —
during the creation of the discrete abstraction. TABLE I: CTL specifications relevant for PAHS control

An example of the type of specifications that can be
expressed is shown in Fig. 2, which shows a desired velocity By combining these expressions it is possible to specify
profile in a 2-dimensional velocity/position state space- N that the state should reach a given set of simpliGesyhile
tice that the profile has been encapsulated by simplices traoiding othersX. For the rendezvous example in Fig. 2
cover the desired profile plus the acceptable error bounditige CTL expression to generate the controller would look
box. The goal of the control is to start in the initial set nedtk something like;Control: A[not X U G] for the initial set |
with | and to reach the goal set marked G while stayingndControl: A[] G for the initial set G, with X being the set
within the error bounds, shown with dashed lines. of simplices outside the error bound. The specification has

Notice that the specifications are absolute e.g. it is ndo be divided into two as UppAal does not support nested
possible to specify a maximum of 5% overshoot withou€TL expressions.
specifying the step size. This is due to the specifications The rendezvous example can be expanded to include
being moved to state space and the hybrid behaviour of tfi@ults. To represent actuator faults a PAS could be added
underlying PAHS. For fault tolerant control it is naturahth with an identical state space tessellation but with the dis-
faults can only be recovered from in certain areas of the statrete equivalents computed with respect to the fault mode
space and this is reflected nicely in this type of requiresientlynamics. The two fault modes can be linked as described
specification. in section II-A and the goal seG, should be a union of the

In UppAal the requirements are specified using a subsgbal set for the nominal mode and for the fault mode. The
of timed computational tree logic, T-CTL [20]. The basiccontroller generation would then proceed exactly as shown
property of CTL is that it can specify execution traces suchbove yielding a fault tolerant control strategy.

D. The Sliding Mode Problem Controller
Catalogue

During analysis of the properties of controllers generated
using the discrete game abstraction method it was discdvere ;

that it is possible for the controlled system to exhibit islgl
mode behaviour. u=Kx+g > |

Specifically for PAS this can occur on the boundary

between two simplices, i.e. on a facet. This behaviour can

have undesirable effects such as the state leaving a set of Observer/ | _

simplices through a vertex. The ability of the discrete game Sensor Fusion jf//ﬂ//
abstractions to accurately capture the dynamics of a PAS X

can thus be compromised and sliding modes must thus be FDI

avoided. The formal conditions and solutions to the sliding

mode prObI?m is out side the scope of this paper. Instead . e. 3: The controller structure resulting from the refinene

present a simple UppAal workaround found as part of thig;ocedure. Grey boxes are the controller, white boxes theafB

research. observers and hatched boxes represent the physical plduseasor
The UppAal workaround assures that no sliding modesystems.

will occur on codimension&ll facets e.g. lines when = 2

and triangles forn = 3. Facets with codimension greater

than one are very hard to hit as they have meaSwed are to a desired exit facet which is then unblocked. The res_]]]ltin

thus not considered. control law, as shown in fig 3, is a catalogue of controllers,

One sufficient condition to avoid sliding is not to reenteone for each simplexy; = K,z + g;, leading to a piecewise-
a simplex that was just left. Intuitively this makes sensé as affine control law. It is assumed that an observer exists liwhic
precludes the system from switching multiple times betweefgn detect failures (FDI) and notify the controller when a
two simplices which is a behaviour usually required fofacetis crossed. Furthermore the designed controlletsneq
sliding modes when implemented on real/simulated systenfslll state observability so the controller design relies on
The requirement to not reenter a simplex can be impldh€e super-positioning principle i.e. that the controllees
mented in UppAal adding an observer. The observer has i designed independently of the observers. This limits the
locations; one initial location indicating that no viokati controller to handle faults in the plant while the observer
of the constraint has occurredps. init and one location Must handle any faults in the sensory subsystem.
indicating that a violation has occurredbs. violated The m
transition between these two locations is guarded by a kigna
h, which is broadcast once the violation has been detected.To show the feasibility of the method a simple double
To detect the violation a bounded integer variabtec integrator example with two modes is studied (1).
[0,..., Rimaz|, is added to the UppAal model wheRg,, .. is ; [0 1} - H y

. EXAMPLE

(1)

the number of simplices in the original PAHS. On exit from 0 0 1

a location representing a simpleX;,, r is assigned the index

i. On each transition into a location representing a simple "€ two modes are the nominal mode and a failure mode,
A;, if = j then the constraint has been violated and thwhere the fault considered is an actuator fault. In the nainin

signalh is broadcast. mode v € [2;—2] and for the fault modeu € [2;—1],

To ensure that control strategies found with UppAal ddvhereas the dynamics remain the same.
not violate this constraint the CTL specification has to bg Obtaining the Discrete Abstraction
amended such that the set of states to be avokledee

table I, X=XUobs. violated The first step in obtaining a discrete abstraction of the

system is to get the system on the form of a PAHS. The state
E. Refinement of the Winning Strategy space of the two modes is partitioned using the simplicial

The strategy obtained from UppAal contains a choice dfomplex shown in fig 5 and the resulting PAS are connected
discrete equivalent for each committed location and amacti Via an uncontrollable transition from the nominal mode ® th
for each reachable normal location. The action is on the forfRilure mode, similar to Fig. 1b. Since the fault can happen

of either blocking all possible transitions or trying to ¢ai &t @any time there is no guard on the transition and the reset
specific transition. map is the identity map as the actuator fault does not affect

These actions can be transformed in to continuous contréle State. . o
laws on the individual simplices using the refinement tonls i Figure 5 also shows the requirements used in this example.
the PAHSCTRLtoolbox [17]. For each simplex the choice of he goal of the game is starting from the light grey simplex,
discrete equivalent determines which facets to block aed th0 réach and stay in one of the two grey simplices while

transition chosen in the winning strategy is directly tiates avoiding the black simplices. Notice that in the failure raod
there are fewer simplices to avoid, i.e. the requiremerdgs ar

1A facet of codimensiork belongs to a subspace bfof dimensiomm—k& relaxed if the fault occurs such that the controller has more

. S . Fail
freedom. Note this specification has no relation to a real ailure mode

3r [Goal
problem but is designed to show some of the capabilities of A oid
the method. 0.2f @ Start
The model is implemented in Matlab and a discrete ol M_Path
abstraction is found using tHeAHSCTRLtoolbox [17]. In ' * End
Fig. 4 the discrete abstraction is shown as it looks after of
conversion to UppAal. As can be seen there are many
states with each mode having 18 simplices and each simple 01y
potentially having multiple discrete equivalents. Thisais
reflection of the computational complexity of the discrete
abstraction step, which is worst case exponential with the -0.3}

number of continuous states. This is somewhat mitigatec

S

as the computation of discrete equivalents of the simplices 05 1 15 2 25 3 35 4 45
are independent and it is thus possible to perform these
computations in parallel. (a) Traces of the simulation in the failure mode. The faullyarccurs

- . . in two of the simulations and the third simulation thus leave trace
Notice that there are fewer discrete equivalents per state, e failure mode.

in the failure mode, which reflects that the input space is

smaller and thus there are fewer possible control actions. 0 Nominal mode _Jinit
Goal
B. UppAal Setup 02l =AVoid
As described in section II-C.2 it is necessary to specify two @ Start
discrete games and combine the results if the requirement i 0.1r — Path
to reach a goal set and stay there. Below are the two CTL % Event

specifications used in this example.

i

/+ Spec 1: CTL specification to get from 01
initial state to goal setx/ —o0.2l
control: A[not (obs.violated || DA.black
|| DA.X) U DA.goal] -0.3r
. . . -0. : : : : : : :)
/+ Spec 2: CTL specification to stay in 65 1 15 2 25 3 35 4 45
the goal set «x/ _ o _
control: A[] (not (obs.violated || (b) Traces of the simulation in nominal mode.
DA.black || DA.X)) & (DA.start || Fig. 5: Three simulations of the controlled system, two cénth
DA. goal) with faults occuring.

DA.black is the unpartitioned state spacBA.goal is
the goal set,DA.X is the set of forbidden simplices e.g.first simulation the fault occurs at = 4s, in the second
DA.X =DA.c19 || DA.c1.17 || DA.c114 || DA.c2.14 simulation the fault occurs at = 8s and in the third

For each of the CTL specifications a solution is found andimulation no faults occurs. Each simulation is run 50
the resulting control laws are merged. This is possible as ttand the controller catalogue for each run are identical. In
first specification uses the initial set given in the requigats Fig. 5 the three simulations are shown as a path in the
while the second specification uses the goal set as thel inititominal mode jumping to the failure mode when a fault
set. The first specification brings the system to the goal setcurs. The behaviour of the controlled system can be seen
and the second ensures that once the goal set is reached tbatary greatly depending on when and if the fault occurs,
the state stays in it. which is mainly due to the relaxed requirements when the

Solutions to both specifications are found by UppAalsystem is in the failure mode. This is particularly evident i
and it is thus possible to generate controllers fulfilling th the simulation with the fault at = 4s where the controller
requirements. It should be noted that if the requiremergs atakes the opportunity to take a “short cut” through a simplex
not relaxed in the failure mode then no solution to the gamehich must be avoided in the nominal mode.
exists.

With the solutions found they can be converted into a
controller catalogue using tHRAHSCTRLtoolbox. In this paper, a method for automatic generation of fault
tolerant controllers was given. The design procedure isdbas
on finding winning strategies for discrete abstractions of a

Three simulations of the controlled system has beelRAHSs using UppAal. This involves converting the discrete
performed using thdérap_101 ODE solver [24], which is abstraction to an UppAal timed game and constructing a
especially designed for hybrid and switching systems. é&n thcorresponding CTL specification based on the controller

IV. CONCLUSION

C. Simulation

7

“ o
o g

—=

start

7 St S

Fig. 4: Discrete game abstraction of the double integratample. White locations belong to the nominal mode and govegtlons belong
to the failure mode. Locations marked with ¢ are committedest, one for each simplex.

requirements. By parsing the UppAal output in Matlab and[9]
using the refinement procedures in tRARHSCTRLioolbox

a catalogue of continues time controllers along with a
corresponding switching strategy can be found. This wgso]
all illustrated by simulations of an automatically genecht
controller for a double integrator with a possible actuatof q;
failure.

When implementing controllers based on the discre 2
abstraction method sliding modes can occur on facets shared]
by simplices, and to combat this behaviour a UppAal
workaround based on a location observer was presented. Tha
formal conditions for solutions to the sliding behavioue ar
currently being investigated.

In summary the results confirm the feasibility of au-
tomating fault tolerant controller design. It is hoped thatis)
this work can serve as the basis for further automation
of controller design, but there are still many challengeﬁs]
remaining, especially concerning methods for partitignim
the state space and the related specifications, optimaiotont

. ; . 17]
and robustness with respect to noise and modelling erroré.

[14]

[18]
REFERENCES

[1] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, andSthroder, [19]
Diagnosis and Fault-Tolerant Control Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006. [20]

[2] R. Iserman, Fault-Diagnosis Systems: An Introduction from Fault

Detection to Fault Tolerance Springer-Verlag, 2005.

H. Niemann and J. Stoustrup, “Passive fault tolerant trmbnof

a double inverted pendulum - a case studgfntrol Engineering

Practice vol. 13(8), pp. 1047-1059, Aug. 2005.

R. Isaacs Differential Games: A Mathematical Theory with Applica- [22]

tions to Warfare and Pursuit, Control and Optimization Courier

Dover Publications, 1965.

M. Mahmoud, J. Jiang, and Y. Zhandctive Fault Tolerant Control

Systems: Stochastic Analysis and Synthesés. Lecture Notes in

Control and Information Sciences. Springer, 2003, vol..287

R. J. Patton and J. CheRobust Model-Based Fault Diagnosis for

Dynamic Systems Kluwer Academic Publishers, 1999.

C. Hajiyev and F. CaliskanFault Diagnosis and Reconfiguration in [24]

Flight Control Systems Kluwer Academic Publishers, 2003.

G. Tao, S. Chen, X. Tang, and S. M. Joshilaptive Control of Systems

with Actuator Failures Springer, 2004.

[3] [21]

(4
(5] 231
(6]
(7]
(8]

L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schupfeeach-
ability and control synthesis for piecewise-affine hybrigtems on
simplices,”|EEE Transactions on Automatic Contrebl. 51, pp. 938—
948, 2006.

R. Wisniewski and J. A. Larsen, “Combinatorial vectoeldis for
piecewise affine control systems,” iroc. of the 17th IFAC World
Congress 2008.

L. Rodrigues and J. P. How, “Synthesis of piecewiseafftontrollers
for stabilization of nonlinear systems,” #i2nd IEEE Conference on
Decision and Contrgl2003, pp. 2071-2076.

L. Rodrigues and J. How, “Automated control design fquiecewise-
affine approximation of a class of nonlinear systems,” IEEE
American Cotrol Conference2001, pp. 3189-3194.

S. LeBel, L. Rodrigues, and A. Ng., “Piecewise-affinenttoller syn-
thesis for a model of 2d orbital path following,” iEEE Conference
on Control Applications2005, pp. 571-576.

J. D. Grunnet, T. Bak, J. D. Bendtsen, and J. A. Larseris¢i2te
game abstraction for fault tolerant control synthesisPmc. of IEEE
CACSD '08 2008.

L. Habets and J. H. van Schuppen, “Control to facet mwid for affine
systems on simplices and polytopes - with applications tutrob of
hybrid systems,” inProc. 44th IEEE CDC 2005.

J. D. Grunnet, T. Bak, and J. D. Bendtsen, “PAHSCTRL - atad
synthesis toolboox for piecewise-affine hybrid systems,Proc. of
ECC '09 2009, accepted.

J. D. Grunnet, “PAHSCTRL - a matlab toolbox for control
of piecewise-affine hybrid systems,” 2009. [Online]. Asile:
http://www.control.aau.dk/grunnet/pahsctrl

J. D. Grunnet, J. A. Larsen, T. Bak, and R. Wisnievski,giecewise
affine hybrid systems approach to fault tolerant satelldemftion
control,” in Proc. of the 3rd International Symposium on Formation
Flying, Missions and Technologie2008.

T. A. Henzinger, “The theory of hybrid automata,” Broc. of the 11th
Annual IEEE Symposium on Logic in Computer Scied€96.

K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nelish
International Journal on Software Tools for Technology rnster
(STTT) vol. 1, pp. 134-152, 2004.

L. Feng and W. Wonham, “TCT: A computation tool for swisory
control synthesis,” inProc. of the 8th International Workshop on
Discrete Event System2006.

K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supremica an
integrated environment for verification, synthesis andusation of
discrete event systems,” Proc. of the 8th International Workshop on
Discrete Event System2006.

F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. LIGNCUR
2005 - Concurrency Theory Springer Berlin / Heidelberg, 2005, ch.
Efficient On-the-Fly Algorithms for the Analysis of Timed @Gas, pp.
66-80.

J. H. T. . D. Kebede, “Modeling and simulation of hybrigsgems in
matlab,” in Proc. of IFAC World Congress, SF, 1996996.

