
Aalborg Universitet

Automated Fault Tolerant Control Synthesis based on Discrete Games

Grunnet, Jacob Deleuran; Bendtsen, Jan Dimon; Bak, Thomas

Published in:
I E E E Conference on Decision and Control. Proceedings

DOI (link to publication from Publisher):
10.1109/CDC.2009.5400374

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Grunnet, J. D., Bendtsen, J. D., & Bak, T. (2009). Automated Fault Tolerant Control Synthesis based on Discrete
Games. I E E E Conference on Decision and Control. Proceedings, 8476 - 8481.
https://doi.org/10.1109/CDC.2009.5400374

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/CDC.2009.5400374
https://vbn.aau.dk/en/publications/1d745be0-5034-11de-a034-000ea68e967b
https://doi.org/10.1109/CDC.2009.5400374

Automated Fault Tolerant Control Synthesis based on Discrete Games

Jacob D. Grunnet, Jan D. Bendtsen and Thomas Bak

Abstract— This paper focuses on how fault tolerant con-
trollers can be designed based on discrete game abstractions of
piecewise-affine hybrid systems (PAHS). The proposed method
aims at automatic generation of the controllers by converting
the discrete games to timed games, which can be solved by
the UppAal toolbox. Winning strategies to the games are then
refined to piecewise-affine control strategies which is a type of
gain scheduling. The feasibility of the method is shown through
the automated design of a fault tolerant controller for a simple
example.

I. I NTRODUCTION

Controller design is basically an exercise in limiting
a systems behaviour to a desired subset of the possible
behaviours as specified by the requirements. An additional
challenges lies in ensuring that the specifications are fulfilled
while the system is influenced by e.g. unmodelled dynamics
or unpredictable events such as component or subsystem
failures.

The effect of components malfunction on closed loop
systems is often highly disruptive and can adversely affect
the systems performance. The fact that it is very hard
to completely eliminate such failures has led to extensive
research in Fault Tolerant Control (FTC) systems, see e.g.
[1], [2]. Common for several of these strategies are that they
view the problem as a game, where the designed controller
plays against a malicious opponent controlling when and
which faults occurs. For instance [3] relies on a robust control
design methods which derive from the theory of dynamic
games [4]. The result is a passive design where the controller
guarantees stability and performance after the occurrenceof a
fault event. Other approaches e.g. [5] uses reconfigurationof
controllers based on real-time detection of faults commonly
referred to as Fault Detection and Isolation (FDI) [6].

The main task when designing strategies relying on recon-
figuration is synthesising controllers for all possible failure
modes. This synthesis can be carried out on-line for active
FTC strategies or for passive control strategies off-line where
a catalogue of controllers are computed a priori, see [7], [8].
On-line computation requires a fully automated synthesis
method and adequate computing power, whereas off-line
methods can only handle failure modes known at design time
and can lead to large controller catalogues if a high number
of faults and their combinations are to be handled.

This paper presents a passive FTC approach relying on
solutions to discrete games representing the system in ques-
tion. The method is based on recent advances in controller

J. Grunnet, J. Bendtsen and T. Bak are with the Department of Elec-
tronic Systems, Section for Automation and Control, Aalborg University,
Denmark.{grunnet,dimon,tb}@es.aau.dk

synthesis for piecewise-affine systems (see e.g. [9]–[13]).
Particularly the work builds upon computing discrete abstrac-
tions of Piecewise-Affine Hybrid System (PAHS) [14], which
is based on control to facet properties of affine systems on
simplices as established in [9], [15]. The ultimate goal is
to develop automated control synthesis procedures and the
method proposed can be divided into 4 steps: Modelling the
system including faults as a PAHS, computing a discrete
game abstraction, finding a winning strategy to the discrete
game and refining the resulting set of rules to control laws on
the original system. In this paper the focus is on how to find
winning strategies to discrete abstractions by mapping the
problem to existing tools. A demonstration of the method
using a simple example using double integrator dynamics
and a single actuator fault is presented, showing the fully
automated control synthesis based on a PAHS model of the
system.

II. M ETHODOLOGY

In this work we consider discrete abstractions of PAHS
representing systems including failure modes. It is assumed
that discrete abstractions can be computed as shown in
[16], [17], but for the sake of completeness a very short
introduction to computing discrete game abstractions is given
here.

A. Computing Discrete Abstractions

As shown in Fig. 1a the first step is to construct a
model of the system and its,O, failure/operational modes,
M = {S1, S2, . . . , SO}, defined as a set of piecewise-affine
systems (PAS),S ∈ M ,one for each mode. Each piecewise-
affine system,S = (L′, K, F) denotes a finite affine linear
simplicial switched system with control, whereL′ ⊂ L = R

n

is a bounded polyhedral set (a polytope) of dimensionn,
K = {∆i}i∈I is a simplicial partition ofL′ with a finite
index setI and F = {fi}i∈I is a family of affine linear
functions

fi : Vi × Ui → L, fi(x, u) = ẋ = Aix + Biu + Ci ,

with Vi an open neighbourhood of∆i and with the input set
Ui ⊆ R

m a polytope.
The PASs are connected via the mapT : M × E → M ,

where E is a set of external events that can be thought
of as the occurrence faults if they are uncontrollable and
as operational modes if they are controllable. The resulting
system is a PAHS with the possibility of uncontrollable
events as defined in [18], see Fig. 1b. It should be noted
that both guards and reset maps can be associated with the
transitions but for many systems this is not necessary e.g.

for faults the guards are typically always enabled and the
reset maps are the identity map as the state spaces,L′,
are identical for both PASs and no sudden change in the
continuous state happens when a fault occurs. Notice that
a fault does not necessarily alter the system dynamics, but
could alter the bounded input spaceU signifying a loss of
actuator performance.

By computing discrete abstractions for each PAS in the
PAHS and connecting the abstractions according to the
mode transitions a discrete abstraction of a PAHS can be
obtained. The discrete abstractions of PAS are found by
considering each simplex of a PAS as a discrete location
and computing the transitions between the locations. Fig. 1d
and 1c illustrates the result when the reset maps are identity
maps and the discrete equivalents of simplices in theNominal
mode are therefore connected to the same simplex in the
Fault mode.

When computing the discrete equivalent of a simplex,
∆i, each facet is a potential transition with one of three
properties:

Blocked A control law exists which can guarantee
that the system will not leave∆i through
the facet.

Uncontrollable The facet can not be blocked.
Controllable A control law exists which guarantees that

the facet can be blocked and conversely
that it is possible to leave the∆i in finite
time possibly through that facet.

The conditions associated with blockability and controlla-
bility can be described as LMIs [9]. Informally blockability
of a facet can be described as the possibility to find inputs
uj ∈ U at all thej = 1 . . . n vertices of a facetp ∈ ∆i such
that the derivatives,̇xj , points into the hull of∆i.

For controllability it must also be possible to find another
set of inputswj at the same vertices where the derivative
points out of the hull of the simplex and which ensures that
any fixed point is outside the simplex.

B. Discrete Game Definition

The discrete game abstraction used in this paper is inspired
by [19], [20] and is defined asD = {Q, Q0, W, E, T, c},
whereQ is a set of locations,Q0 ∈ 2Q is a set of initial
locations,E is a set of events that can be either controllable
or uncontrollable,W : Q × E → Q is a set of transitions
connecting locations,T : Q × E → Q is a special set of
transitions triggered from external events which is inherited
from the PAHS andc is a monotonically increasing clock.
The goal of the game is derived from the requirements on the
original PAHS and is specified using path invariants. This is
discussed in more detail in section II-C.2.

Transitions are either controllable or uncontrollable; un-
controllable transitions can be taken by the environment (or
“opponent”) and has priority over controllable transitions.
That is the environment always moves first.

Locations are divided into two categories:committedand
normal locations. Normal locations are abstractions (discrete

(a) Two piecewise-affine systems
each representing a failure mode. An
affine system is defined on each sim-
plex.

(b) The system represented as a
PAHS with each failure mode in its
own location. The faults is an uncon-
trollable event (dashed arrows) which
triggers the transition

(c) The PAS abstracted to discrete
games. Each simplex is here repre-
sented by a discrete location.

(d) The abstractions of the PAS are
connected according to the failure
mode transitions.

Fig. 1: Some essential steps for the FTC design procedure. The
last step shown is the discrete game abstraction for which winning
strategies are to be found.

equivalents) of a simplex in the state space whereas commit-
ted locations represents controller choices. No time can pass
in a committed location whereas a normal location must be
left in finite time unless all outgoing transitions belonging to
W are controllable.

C. Finding Winning Strategies

The goal of this method is to be able to find winning
strategies to the discrete game abstraction and using the
methods from [16] to refine the result to control laws on the
individual simplices of the PAHS. A winning strategy will
ensure that no matter which moves the environment takes
(which faults occur) the controller will be able to meet the
requirements.

The clock, c, is used to ensure progress of the game
and that controller decisions in the committed locations is
taken immediately. Because of this clock the discrete game
abstraction is in reality a timed game and any method used
to solve the game needs to be able to handle timed games
or it must be possible to represent the effects of the time
constraints in some way. This precludes using tools such
as TCT and Supremica [21], [22] as they have no way of
representing eventuality. Instead UppAal Tiga [23] is chosen
as it can analyse properties and synthesise controllers fora
quite general class of timed games.

Given a discrete abstraction the procedure now consists of
the 3 following steps.

1) Converting the Discrete Game to UppAal Syntax:
The syntactical conversion of the discrete abstraction to an
UppAal representation of a timed game is quite straight
forward. All locations, transitions and clocks are converted
directly to the equivalent objects of UppAal.

To ensure that the semantics of the UppAal timed game
are the same as those defined for the discrete abstraction it is
necessary to add time invariants to the locations and guards
to the transitions as follows:

1) Add invariantc ≤ 1 to all normal locations where at
least one outgoingW -transition is uncontrollable.

2) Add guardc < 1 to all outgoing controllableW -
transitions from a normal location.

3) Add guardc =< 1 to all outgoing uncontrollableW -
transitions from a normal location.

4) Add action c = 0 to all incoming transitions to a
normal location.

The location invariant,1), ensures that only finite time is
spent in the location and the action on incoming transitions,
4), ensures that clock is always reset when entering a normal
state. The guards,2) and 3), ensure that no deadlocks
occur if the controller chooses to block all the controllable
transitions by forcing the environment to choose one of the
uncontrollable outgoing transitions.

Lastly it is necessary to take special care of converting
the initial set as there can only be one initial location in
the UppAal syntax. This can be solved by adding an extra
location with transitions to all the states in the initial location
set Q0. If these transitions are all uncontrollable the corre-
sponding controller must be able to fulfill the requirements
specifications regardless of which of the possible initial
states the system starts in. The transitions can also be made
controllable to investigate whether it is possible to find an
initial location from which the requirements specifications
can be held.

2) Converting Requirement Specifications:The usual type
of controller requirement specifications in the frequency or
time domains can not directly be used for PAHS controller
design based on discrete game abstractions. As the continu-
ous dynamics is being abstracted away it is only possible
to describe requirements in terms of locations to reach,
stay in or avoid. The specification is thus done in the state
(phase) space with the tessellation acting as a quantisation.
The possible requirements that can be described using the
discrete abstraction are therefore limited by the tessellation
so the requirements specifications hence has to be considered
during the creation of the discrete abstraction.

An example of the type of specifications that can be
expressed is shown in Fig. 2, which shows a desired velocity
profile in a 2-dimensional velocity/position state space. No-
tice that the profile has been encapsulated by simplices that
cover the desired profile plus the acceptable error bounding
box. The goal of the control is to start in the initial set marked
with I and to reach the goal set marked G while staying
within the error bounds, shown with dashed lines.

Notice that the specifications are absolute e.g. it is not
possible to specify a maximum of 5% overshoot without
specifying the step size. This is due to the specifications
being moved to state space and the hybrid behaviour of the
underlying PAHS. For fault tolerant control it is natural that
faults can only be recovered from in certain areas of the state
space and this is reflected nicely in this type of requirements
specification.

In UppAal the requirements are specified using a subset
of timed computational tree logic, T-CTL [20]. The basic
property of CTL is that it can specify execution traces such

Fig. 2: Tessellated velocity profile in a 2-dimensional state space,
with initial location set marked as I and goal set as G.

as “the system will eventually reach a locationG without
visiting any states inX”. UppAal is then able to verify if
such a statement is true, and a control strategy ensuring the
validity of the CTL-statement can be computed if it exists.

Table I shows a number of UppAal CTL specifications
relevant for use with PAHS control.

CTL-expression Specification

E[] not X A path exist potentially relying
on uncontrollable transitions that
avoids stateX.

A[] not X All paths avoidsX.
Control : A<> G A control strategy exists such that

G is eventually reached
Control : A[] not X A control strategy exists such that

all paths avoidsX
Control : A[] not (X or Y) A control strategy exists such that

all paths avoidsX and Y
Control : A[not X U G] A control strategy exists such that

all paths avoidsX until the goal
stateG is reached.

TABLE I: CTL specifications relevant for PAHS control

By combining these expressions it is possible to specify
that the state should reach a given set of simplices,G, while
avoiding others,X. For the rendezvous example in Fig. 2
the CTL expression to generate the controller would look
something like;Control : A[not X U G] for the initial set I
andControl : A[] G for the initial set G, with X being the set
of simplices outside the error bound. The specification has
to be divided into two as UppAal does not support nested
CTL expressions.

The rendezvous example can be expanded to include
faults. To represent actuator faults a PAS could be added
with an identical state space tessellation but with the dis-
crete equivalents computed with respect to the fault mode
dynamics. The two fault modes can be linked as described
in section II-A and the goal set,G, should be a union of the
goal set for the nominal mode and for the fault mode. The
controller generation would then proceed exactly as shown
above yielding a fault tolerant control strategy.

D. The Sliding Mode Problem

During analysis of the properties of controllers generated
using the discrete game abstraction method it was discovered
that it is possible for the controlled system to exhibit sliding
mode behaviour.

Specifically for PAS this can occur on the boundary
between two simplices, i.e. on a facet. This behaviour can
have undesirable effects such as the state leaving a set of
simplices through a vertex. The ability of the discrete game
abstractions to accurately capture the dynamics of a PAS
can thus be compromised and sliding modes must thus be
avoided. The formal conditions and solutions to the sliding
mode problem is out side the scope of this paper. Instead we
present a simple UppAal workaround found as part of this
research.

The UppAal workaround assures that no sliding modes
will occur on codimensional1-1 facets e.g. lines whenn = 2
and triangles forn = 3. Facets with codimension greater
than one are very hard to hit as they have measure0 and are
thus not considered.

One sufficient condition to avoid sliding is not to reenter
a simplex that was just left. Intuitively this makes sense asit
precludes the system from switching multiple times between
two simplices which is a behaviour usually required for
sliding modes when implemented on real/simulated systems.

The requirement to not reenter a simplex can be imple-
mented in UppAal adding an observer. The observer has two
locations; one initial location indicating that no violation
of the constraint has occurred,obs. init and one location
indicating that a violation has occurred,obs. violated. The
transition between these two locations is guarded by a signal,
h, which is broadcast once the violation has been detected.
To detect the violation a bounded integer variable,r ∈
[0, . . . , Rmax], is added to the UppAal model whereRmax is
the number of simplices in the original PAHS. On exit from
a location representing a simplex,∆i, r is assigned the index
i. On each transition into a location representing a simplex,
∆j , if r = j then the constraint has been violated and the
signalh is broadcast.

To ensure that control strategies found with UppAal do
not violate this constraint the CTL specification has to be
amended such that the set of states to be avoidedX, see
table I, X=X∪obs. violated

E. Refinement of the Winning Strategy

The strategy obtained from UppAal contains a choice of
discrete equivalent for each committed location and an action
for each reachable normal location. The action is on the form
of either blocking all possible transitions or trying to take a
specific transition.

These actions can be transformed in to continuous control
laws on the individual simplices using the refinement tools in
thePAHSCTRLtoolbox [17]. For each simplex the choice of
discrete equivalent determines which facets to block and the
transition chosen in the winning strategy is directly translated

1A facet of codimension-k belongs to a subspace ofL of dimensionn−k

Fig. 3: The controller structure resulting from the refinement
procedure. Grey boxes are the controller, white boxes the FDI and
observers and hatched boxes represent the physical plant and sensor
systems.

to a desired exit facet which is then unblocked. The resulting
control law, as shown in fig 3, is a catalogue of controllers,
one for each simplex,ui = Kix+gi, leading to a piecewise-
affine control law. It is assumed that an observer exists which
can detect failures (FDI) and notify the controller when a
facet is crossed. Furthermore the designed controllers require
full state observability so the controller design relies on
the super-positioning principle i.e. that the controllerscan
be designed independently of the observers. This limits the
controller to handle faults in the plant while the observer
must handle any faults in the sensory subsystem.

III. E XAMPLE

To show the feasibility of the method a simple double
integrator example with two modes is studied (1).

ẋ =

[

0 1
0 0

]

x +

[

0
1

]

u (1)

The two modes are the nominal mode and a failure mode,
where the fault considered is an actuator fault. In the nominal
mode u ∈ [2;−2] and for the fault modeu ∈ [2;−1],
whereas the dynamics remain the same.

A. Obtaining the Discrete Abstraction

The first step in obtaining a discrete abstraction of the
system is to get the system on the form of a PAHS. The state
space of the two modes is partitioned using the simplicial
complex shown in fig 5 and the resulting PAS are connected
via an uncontrollable transition from the nominal mode to the
failure mode, similar to Fig. 1b. Since the fault can happen
at any time there is no guard on the transition and the reset
map is the identity map as the actuator fault does not affect
the state.

Figure 5 also shows the requirements used in this example.
The goal of the game is starting from the light grey simplex,
to reach and stay in one of the two grey simplices while
avoiding the black simplices. Notice that in the failure mode
there are fewer simplices to avoid, i.e. the requirements are
relaxed if the fault occurs such that the controller has more

freedom. Note this specification has no relation to a real
problem but is designed to show some of the capabilities of
the method.

The model is implemented in Matlab and a discrete
abstraction is found using thePAHSCTRLtoolbox [17]. In
Fig. 4 the discrete abstraction is shown as it looks after
conversion to UppAal. As can be seen there are many
states with each mode having 18 simplices and each simplex
potentially having multiple discrete equivalents. This isa
reflection of the computational complexity of the discrete
abstraction step, which is worst case exponential with the
number of continuous states. This is somewhat mitigated
as the computation of discrete equivalents of the simplices
are independent and it is thus possible to perform these
computations in parallel.

Notice that there are fewer discrete equivalents per state
in the failure mode, which reflects that the input space is
smaller and thus there are fewer possible control actions.

B. UppAal Setup

As described in section II-C.2 it is necessary to specify two
discrete games and combine the results if the requirement is
to reach a goal set and stay there. Below are the two CTL
specifications used in this example.

/∗ Spec 1 : CTL s p e c i f i c a t i o n t o g e t from
i n i t i a l s t a t e t o goa l s e t ∗ /

c o n t r o l : A[no t (obs . v i o l a t e d | | DA. b l a c k
| | DA. X) U DA. goa l]

/∗ Spec 2 : CTL s p e c i f i c a t i o n t o s t a y i n
t h e goa l s e t ∗ /

c o n t r o l : A [] (no t (obs . v i o l a t e d | |
DA. b l a c k | | DA. X)) && (DA. s t a r t | |
DA. goa l)

DA.black is the unpartitioned state space,DA.goal is
the goal set,DA.X is the set of forbidden simplices e.g.
DA.X = DA.c 1 9 || DA.c 1 17 || DA.c 1 14 || DA.c 2 14.

For each of the CTL specifications a solution is found and
the resulting control laws are merged. This is possible as the
first specification uses the initial set given in the requirements
while the second specification uses the goal set as the initial
set. The first specification brings the system to the goal set
and the second ensures that once the goal set is reached that
the state stays in it.

Solutions to both specifications are found by UppAal,
and it is thus possible to generate controllers fulfilling the
requirements. It should be noted that if the requirements are
not relaxed in the failure mode then no solution to the game
exists.

With the solutions found they can be converted into a
controller catalogue using thePAHSCTRLtoolbox.

C. Simulation

Three simulations of the controlled system has been
performed using thetrap 101 ODE solver [24], which is
especially designed for hybrid and switching systems. In the

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Failure mode

 Goal

Avoid

Start

Path

End

(a) Traces of the simulation in the failure mode. The fault only occurs
in two of the simulations and the third simulation thus leaves no trace
in the failure mode.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Nominal mode

Init

Goal

Avoid

Start

Path

Event

(b) Traces of the simulation in nominal mode.

Fig. 5: Three simulations of the controlled system, two of them
with faults occuring.

first simulation the fault occurs att = 4s, in the second
simulation the fault occurs att = 8s and in the third
simulation no faults occurs. Each simulation is run for50s

and the controller catalogue for each run are identical. In
Fig. 5 the three simulations are shown as a path in the
nominal mode jumping to the failure mode when a fault
occurs. The behaviour of the controlled system can be seen
to vary greatly depending on when and if the fault occurs,
which is mainly due to the relaxed requirements when the
system is in the failure mode. This is particularly evident in
the simulation with the fault att = 4s where the controller
takes the opportunity to take a “short cut” through a simplex
which must be avoided in the nominal mode.

IV. CONCLUSION

In this paper, a method for automatic generation of fault
tolerant controllers was given. The design procedure is based
on finding winning strategies for discrete abstractions of a
PAHSs using UppAal. This involves converting the discrete
abstraction to an UppAal timed game and constructing a
corresponding CTL specification based on the controller

c_1_11 c_1_12c_1_10c_1_9

c_1_16c_1_13 c_1_15c_1_14 c_1_17

c_1_2 c_1_3c_1_1

black

c_1_8c_1_7

c_1_4 c_1_6c_1_5

start c_2_13 c_2_14

c_2_12c_2_11c_2_10

c_2_18c_2_15 c_2_17c_2_16

c_1_18

c_2_3 c_2_4c_2_2c_2_1

c_2_9c_2_8

c_2_5

c_2_7

c_2_6

Fig. 4: Discrete game abstraction of the double integrator example. White locations belong to the nominal mode and grey locations belong
to the failure mode. Locations marked with c are committed states, one for each simplex.

requirements. By parsing the UppAal output in Matlab and
using the refinement procedures in thePAHSCTRLtoolbox
a catalogue of continues time controllers along with a
corresponding switching strategy can be found. This was
all illustrated by simulations of an automatically generated
controller for a double integrator with a possible actuator
failure.

When implementing controllers based on the discrete
abstraction method sliding modes can occur on facets shared
by simplices, and to combat this behaviour a UppAal
workaround based on a location observer was presented. The
formal conditions for solutions to the sliding behaviour are
currently being investigated.

In summary the results confirm the feasibility of au-
tomating fault tolerant controller design. It is hoped that
this work can serve as the basis for further automation
of controller design, but there are still many challenges
remaining, especially concerning methods for partitioning of
the state space and the related specifications, optimal control
and robustness with respect to noise and modelling errors.

REFERENCES

[1] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J.Schröder,
Diagnosis and Fault-Tolerant Control. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006.

[2] R. Iserman, Fault-Diagnosis Systems: An Introduction from Fault
Detection to Fault Tolerance. Springer-Verlag, 2005.

[3] H. Niemann and J. Stoustrup, “Passive fault tolerant control of
a double inverted pendulum - a case study,”Control Engineering
Practice, vol. 13(8), pp. 1047–1059, Aug. 2005.

[4] R. Isaacs,Differential Games: A Mathematical Theory with Applica-
tions to Warfare and Pursuit, Control and Optimization. Courier
Dover Publications, 1965.

[5] M. Mahmoud, J. Jiang, and Y. Zhang,Active Fault Tolerant Control
Systems: Stochastic Analysis and Synthesis, ser. Lecture Notes in
Control and Information Sciences. Springer, 2003, vol. 287.

[6] R. J. Patton and J. Chen,Robust Model-Based Fault Diagnosis for
Dynamic Systems. Kluwer Academic Publishers, 1999.

[7] C. Hajiyev and F. Caliskan,Fault Diagnosis and Reconfiguration in
Flight Control Systems. Kluwer Academic Publishers, 2003.

[8] G. Tao, S. Chen, X. Tang, and S. M. Joshi,Adaptive Control of Systems
with Actuator Failures. Springer, 2004.

[9] L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen,“Reach-
ability and control synthesis for piecewise-affine hybrid systems on
simplices,”IEEE Transactions on Automatic Control, vol. 51, pp. 938–
948, 2006.

[10] R. Wisniewski and J. A. Larsen, “Combinatorial vector fields for
piecewise affine control systems,” inProc. of the 17th IFAC World
Congress, 2008.

[11] L. Rodrigues and J. P. How, “Synthesis of piecewise-affine controllers
for stabilization of nonlinear systems,” in42nd IEEE Conference on
Decision and Control, 2003, pp. 2071–2076.

[12] L. Rodrigues and J. How, “Automated control design for apiecewise-
affine approximation of a class of nonlinear systems,” inIEEE
American Cotrol Conference, 2001, pp. 3189–3194.

[13] S. LeBel, L. Rodrigues, and A. Ng., “Piecewise-affine controller syn-
thesis for a model of 2d orbital path following,” inIEEE Conference
on Control Applications, 2005, pp. 571–576.

[14] J. D. Grunnet, T. Bak, J. D. Bendtsen, and J. A. Larsen, “Discrete
game abstraction for fault tolerant control synthesis,” inProc. of IEEE
CACSD ’08, 2008.

[15] L. Habets and J. H. van Schuppen, “Control to facet problems for affine
systems on simplices and polytopes - with applications to control of
hybrid systems,” inProc. 44th IEEE CDC, 2005.

[16] J. D. Grunnet, T. Bak, and J. D. Bendtsen, “PAHSCTRL - a control
synthesis toolboox for piecewise-affine hybrid systems,” in Proc. of
ECC ’09, 2009, accepted.

[17] J. D. Grunnet, “PAHSCTRL - a matlab toolbox for control
of piecewise-affine hybrid systems,” 2009. [Online]. Available:
http://www.control.aau.dk/∼grunnet/pahsctrl

[18] J. D. Grunnet, J. A. Larsen, T. Bak, and R. Wisnievski, “Apiecewise
affine hybrid systems approach to fault tolerant satellite formation
control,” in Proc. of the 3rd International Symposium on Formation
Flying, Missions and Technologies, 2008.

[19] T. A. Henzinger, “The theory of hybrid automata,” inProc. of the 11th
Annual IEEE Symposium on Logic in Computer Science, 1996.

[20] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,”
International Journal on Software Tools for Technology Transfer
(STTT), vol. 1, pp. 134–152, 2004.

[21] L. Feng and W. Wonham, “TCT: A computation tool for supervisory
control synthesis,” inProc. of the 8th International Workshop on
Discrete Event Systems, 2006.

[22] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica an
integrated environment for verification, synthesis and simulation of
discrete event systems,” inProc. of the 8th International Workshop on
Discrete Event Systems, 2006.

[23] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime,CONCUR
2005 - Concurrency Theory. Springer Berlin / Heidelberg, 2005, ch.
Efficient On-the-Fly Algorithms for the Analysis of Timed Games, pp.
66–80.

[24] J. H. T. . D. Kebede, “Modeling and simulation of hybrid systems in
matlab,” in Proc. of IFAC World Congress, SF, 1996, 1996.

