
Aalborg Universitet

Network Coding for Mobile Devices - Systematic Binary Random Rateless Codes

Møller, Janus Heide; Pedersen, Morten Videbæk; Fitzek, Frank; Larsen, Torben

Published in:
IEEE International Conference on Communications Workshops, 2009. ICC Workshops 2009

DOI (link to publication from Publisher):
10.1109/ICCW.2009.5208076

Publication date:
2009

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Møller, J. H., Pedersen, M. V., Fitzek, F., & Larsen, T. (2009). Network Coding for Mobile Devices - Systematic
Binary Random Rateless Codes. In IEEE International Conference on Communications Workshops, 2009. ICC
Workshops 2009 IEEE (Institute of Electrical and Electronics Engineers).
https://doi.org/10.1109/ICCW.2009.5208076

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/ICCW.2009.5208076
https://vbn.aau.dk/en/publications/e331ff40-0ef3-11de-82e6-000ea68e967b
https://doi.org/10.1109/ICCW.2009.5208076

Network Coding for Mobile Devices -
Systematic Binary Random Rateless Codes

Janus Heide
Dept. of Electronic Systems

Aalborg University
Email: speje@es.aau.dk

Morten V. Pedersen
Dept. of Electronic Systems

Aalborg University
Email: mvpe@es.aau.dk

Frank H. P. Fitzek
Dept. of Electronic Systems

Aalborg University
Email: ff@es.aau.dk

Torben Larsen
Dept. of Electronic Systems

Aalborg University
Email: tl@es.aau.dk

Abstract—In this work we consider the implementation of
Random Linear Network Coding (RLNC) on battery constrained
mobile devices with low computational capabilities such as;
sensors, mobile phones and Personal Digital Assistants (PDAs).
It is non-trivial to create an efficient implementation of RLNC
which is needed to ensure high throughput, low computational
requirements and energy consumption. As a consequence there
does not, to the best of our knowledge, exist any such implemen-
tation for mobile device that allow for throughput close to what
can be achieved in e.g. Wireless Local Area Network (WLAN).

In this paper we propose to base RLNC on the binary
Galois field and to use a systematic code. We have implemented
this approach in C++ and Symbian C++ and achieve synthetic
encoding/decoding throughput of up to 40/30 MB/s on a Nokia
N95-8GB mobile phone and 1.5/1.0 GB/s on a high end laptop.

Index Terms—Mobile devices, Network coding, Reliable Mul-
ticast.

I. INTRODUCTION

A large body of existing literature [1] treats the theoretical
benefits of Network Coding (NC). However, the costs of
implementing NC in terms computational overhead, memory
consumption or network usage is often not considered. In this
work we consider the implementation of RLNC on mobile bat-
tery constrained devices with low computational capabilities,
such as sensors, mobile phones or PDAs. The computations
performed using RLNC is based on finite fields arithmetic also
known as Galois fields. From a coding perspective the field
size, q, used should be large to ensure that coded packets are
linearly independent, additionally increasing the size of the
field elements is advantageous as this reduces the number of
operations needed to code a certain amount of data [2]. How-
ever as the field size grows it becomes difficult to construct an
efficient implementation of the necessary operations. Although
the attention towards practical implementation of NC has been
increased [3], [4], [5], some issues remains to be solved in
order to pave the way for successful deployment of NC.

In [6], [7] implementation problems are investigated with
focus on the computational complexity of coding operations.
An implementation using log and anti-log tables is constructed
and evaluated. Throughput up to 11 MB/s is measured on a
3.6 GHz dual core Intel P4 Central Processing Unit (CPU),
but performance decreases rapidly as the number of pack-
ets that are coded together increases. Different optimization
techniques are described and incorporated. Generated network

overhead as a consequence of utilizing NC is commented
and sought to be minimized. Furthermore the concepts of
aggressiveness and density and its impact of performance are
presented. In [8] a coding throughput of 44Mb/s is measured
using an implementation based on a simple full-size look-up
table. This is achieved on an 800 MHz Intel Celeron CPU
when 32 packets, g=32, of 1500 B are coded together. The
observed throughput is approximately 10 times higher than
that reported in [6] at similar settings. The authors conclude
that deployment is not a problem, however it is mentioned
that throughput for g=32 is the best case, unfortunately no
performance for g>32 is presented. In [9] tables are not used
for Galois field multiplication, instead the authors implement a
loop based approach. In combination with Single Instruction,
Multiple Data (SIMD) instructions this approach provides
a performance increase of over 500% compared to a base-
line implementation. The implementation is further optimized
through parallelization and encoding speeds up to 43 MB/s is
measured on a 2.8 GHz quad core Intel P4 CPU. Although
these results show promising coding throughputs most were
achieved at maximum CPU utilization, which is not acceptable
on non-dedicated machines. Additionally these results are not
in general valid for mobile phones or wireless sensors, as the
hardware resources available on such devices are considerably
lower than those of the desktop computers used to obtain these
results. In [2] we present the results of a basic log and anti-log
table implementation running on a Nokia N95 with a 332 MHz
ARM 11 CPU. We achieved the maximum coding throughput
of 117 KB/s for a GF(216), which indicates that before NC
can be deployed on mobile devices, more efficient algorithms
or hardware acceleration is needed.

In this work we propose to use the binary field to re-
duce the computational complexity of RLNC and to use a
systematic [10] approach to reduce the amount of coding
needed. Furthermore we provide an analysis of this approach
for different generation sizes and compare its performance to
network coding with a higher field size.

This work is organized in the following sections. Section III
describes the scenario under investigation. Section II presents
an analysis of the proposed network coding approach. In
Section IV we introduce our implementation using GF(2) and
coding throughputs obtained with this implementation. The
final conclusions are drawn in Section V.

978-1-4244-3437-4/09/$25.00 ©2009 IEEE

II. SCENARIO & SOLUTION

We consider a scenario where a source s wants to reli-
ably transmit the same data to one or more nearby sinks
t1, t2, . . . , tN via a wireless link. This basic scenario is given
in Figure 1.

X1

X2

X1

X2

X
1X

2

1 2 N

Fig. 1: One source s transmitting data to N receivers
t1, t2, . . . , tN .

As all receivers are requesting the same data, broadcast
provides an efficient utilization of the wireless channel, as all
packets are delivered to all nodes simultaneously. To ensure
that the links are reliable some form of retransmission is
required, to correct packet losses at the individual nodes.
In current networks this is done by letting the individual
nodes acknowledged received packets. Thus retransmissions
of multiple different packet sets are required unless all nodes
lose exactly the same packets.

To ensure reliability with a low overhead we will instead use
RLNC to correct packet errors. This is done by transmitting
the data in two stages, in the first stage the source, s, transmits
all packets uncoded. This makes sense as all packets received
by the individual nodes will contain useful new information.
In the second stage we wish to correct packet losses which
have occurred during the first stage. Due to the uncorrelated
nature of packet losses the nodes will now hold disjoint
sets of packets. Therefore to maximize the number of nodes
for which a packet is useful, the source will create and
send random linearly combinations of the original data. By
using this approach one coded packet carries information
which can potentially correct different errors at different nodes
simultaneously. To retrieve the full data set a node now has
to receive as many linear independent coded packets as it lost
during the first stage.

III. ANALYSIS

In this section we analyze single-source multiple-sinks
reliable transmission using Markov chains. The main objective
is to determine the expected number of transmissions E[tx]
needed for transmitting a packet from a source s to N sinks
t1, t2, . . . tN . We assume an i.i.d. Packet Error Probability
(PEP) p and consider unicast, broadcast, pure and systematic

network coding. We note that the analysis also holds for
unicast and RLNC when the channels are not independent, but
that broadcast will perform better if the erasures are correlated.
Unicast is not designed for this type of transmission however
it is interesting as a reference.

The state machine of a single sink that receive one packet is
illustrated on Figure 2. Either the node has received the packet
and is in state zero, or it has not received the packet and is in
state one. The number of the state thus indicates the number
of erroneous or missing packets.

0

1

1
1-p

p

Fig. 2: Markov chain for a single node receiving a single
packet

In the transmission matrix state zero corresponds to column
zero and state one to column one. When s transmits the packet
t1 will receive it with probability 1 − p and not receive it
with probability p. This yields the transition matrix T. When
transmission commences the node have not received the packet
and thus is in state one. It is convenient to define a matrix that
indicates the starting probabilities, S.

T =
[

1 0
1 − p p

]
S =

[
0 0
0 1

]

A. Unicast

The probability distribution of a sink after i transmissions
from s is given by the last row in Pi, in this case row one
denoted by Pi

(1,:), where.

Pi = S × Ti (1)

The probability that the sink has received the packet after
i transmissions is Pi

(1,0) which is the index row one, column
zero in Pi. Thus the probability that the sink has not received
the packet is 1 − Pi

(1,0). In unicast transmission is performed
serially and thus we multiply with the number of sinks N .

E[tx] = N ·
∞∑

i=0

1 − Pi
(1,0) (2)

B. Broadcast

In broadcast the probability distribution for one node is the
same as for unicast but all nodes receive packets in parallel.
Thus the probability that all sinks have received the packet
after i transmissions is the probability that one node have
received the packet to the power of the number of sinks,
(Pi

(1,0))
N .

E[tx] =
∞∑

i=0

1 −
(

Pi
(1,0)

)N

(3)

C. Pure Network Coding

In network coding data to be transferred from the source to
the sinks is divided into packets of length m. The number of
original packets over which encoding is performed is typically
refereed to as the batch size or generation size and denoted g.
Thus the g original data packets of length m are arranged in
the matrix M = [m1m2 . . . mg], where mi is a column vector.

In pure network coding to generate one coded data packet
x, M is multiplied with a randomly generated vector g of
length g, x = M × g. In this way we can construct X =
[x1x2 . . . xg+r] that consists of g + r coded data packets and
G = [g1g2 . . . gg+r] that contains g + r randomly generated
encoding vectors, where r is redundant packets. In order for
a sink to successfully recreate the original data packets, it
must receive g linear independent coded packets and encoding
vectors. All received coded packets are placed in the matrix
X̂ = [x̂1x̂2 . . . x̂g] and all encoding vectors are placed in the
matrix Ĝ = [ĝ1ĝ2 . . . ĝg]. The original data M can then be

decoded as M̂ = X̂ × Ĝ
−1

.
All operation are performed over a Galois field of size

q. Thus the probability that the source generates a linear
dependant combination becomes an important factor. This
probability depends on q and g′ = g−g̃, where g̃ is the number
of linear independent packets received by the sink and g′ thus
is the number of needed packets at the sink. The following
bound for linear independence is assumed in an alternative
form in [11], [12] and is said to hold when q is high .

P ≤ 1 − 1
qg′ (4)

We provide the following intuitive interpretation, where G̃
is a matrix of dimension g̃×g that contains all received linear
independent encoding vectors at the sink. The problem of
drawing an encoding vector gi that is linear independent of
all other g̃ linear independent rows in G̃ is equal to drawing a
linear independent combination of length g′. This is because
the degrees of freedoms of any gi can be reduced to at most g′,
alternatively at most g′ indices of any gi are non zero when all
pivot elements in G̃ is subtracted from gi. For the remaining
sequence of length g′ to be dependent it must consist of all
zeros which have the probability 1

qg′ .
However we consider cases where q is low and thus we need

to estimate to what extend the bound holds for low values of
q. To achieve this we have generated a large number, 100.000,
square matrices of dimension g consisting of Galois elements
with GF (2) and GF (28) and tested how many of these was
linear independent. For given q and g the probability that a
generated combination is linear dependent can be written as:

1 −
g∏

i=1

(
1 − 1

qi

)
(5)

Although the results in Table Ib does not necessarily guar-
antee equality the empirically obtained values is very close

g calculated empirical
2 62.5 62.6
4 69.2 69.3
8 71.0 70.9
16 71.1 71.2
32 71.1 71.0
64 71.1 71.1

(a) GF (2)

g calculated empirical
2 3.92E-3 3.99E-3
4 3.92E-3 3.67E-3
8 3.92E-3 3.87E-3
16 3.92E-3 3.78E-3
32 3.92E-3 3.84E-3
64 3.92E-3 3.88E-3

(b) GF (28)

TABLE I: Calculated and empirical determined probability of
generating a linear dependent matrix of size g.

to the calculated and therefore this approximation, if any, is
acceptable in the following analysis.

The state machine of a single sink receiving g packets has
g+1 states depicted in Figure 3.

0 1 2 g

p00 p11 p22 pgg

p10 p21 p32 pgg−1

Fig. 3: Markov Chain for a single node that receives g packets.

The probability that a packet is useful at a sink is the
probability it is received multiplied with the probability that
it is independent

Pi→(i−1) = (1 − p)
(

1 − 1
qi

)
The probability that it is not useful is therefore the proba-

bility that it was not received plus the probability that it was
received but was dependent.

Pi→i =1 − (1 − p)
(

1 − 1
qi

)
= 1 − 1 +

1
qi

+ p − p
1
qi

=p + (1 − p)
1
qi

These probabilities form the transition matrix C.

C =⎡
⎢⎢⎢⎣

1 0 · · · 0

(1 − p)(1 − 1
q1) p + (1 − p) 1

q1

...

...
. . .

. . . 0
0 · · · (1 − p)(1 − 1

qg) p + (1 − p) 1
qg

⎤
⎥⎥⎥⎦

TABLE II: Transmission matrix for coding.

Qi = S × Ci (6)

Thus the expected number of transmissions for one packet
of the total g packets can be found by:

E[tx] =
1
g

∞∑
i=0

1 −
(

Qi
(g,0)

)N

(7)

D. Systematic Network Coding

Systematic RLNC consists of two phases. In the first phase
all packets g in the generation are broadcasted uncoded. In the
second phase coded packets are broadcasted and thus each
node can be in g + 1 one states, where state zero indicates
that no packets are missing and state g that all packets in the
generation are missing. Uncoded packets can be perceived as
coded packets with a trivial encoding vector where a single
element in the encoding vector gi is one and all other, g − 1,
elements is zero. Thus we can generate an uncoded packet
y from its trivial encoding vector h, y = M × h. In this
way we can construct Y = [y1y2 . . . yg] that consists of g
uncoded data packets and H = [h1h2 . . . hg] that contains
the g independent trivial encoding vectors. Furthermore we
construct X = [x1x2 . . . xr] that consists of r coded data packet
and G = [g1g2 . . . gr] that contains r randomly generated en-
coding vectors. For a sink to successfully recreate the original
data packets, it must receive g linear independent packets and
encoding vectors. Thus g received uncoded and coded packets
are placed in the matrix [ŶX̂] = [ŷ1ŷ2 . . . x̂(g−i) x̂1x̂2 . . . x̂i]
and the g corresponding encoding vectors are placed in the
matrix [ĤĜ] = [ĥ1ĥ2 . . . ĥ(g−i) ĝ1ĝ2 . . . ĝi]. The original data
M can then be decoded as M̂ = [ŶX̂] × [ĤĜ]−1.

In phase one the transition matrix for a single sink is
identical to that of broadcast, however here we consider the
transmission of g packets instead of one packet, thus the
transition matrix have g + 1 states:

T =

⎡
⎢⎢⎢⎣

1 0 · · · 0

(1 − p) p
...

...
. . .

. . . 0
0 · · · (1 − p) p

⎤
⎥⎥⎥⎦

TABLE III: Transmission matrix for broadcasting.

The probability distribution of the first phase is the input
to the transition matrix of the second phase and thus the
probabilities in any of the two phases can be calculated as:

Ri =

{
S × Ti for 0 ≤ i ≤ g

S × Tg × Ci for g < i
(8)

Thus the expected number of transmissions can be found
by:

E[tx] =
1
g

∞∑
i=0

1 −
(

Ri
(g,0)

)N

(9)

We note that the performance of systematic network coding
is equal or better than that of pure network coding. For the
trivial coded packets in systematic coding the probability of
linear dependencies is zero, for pure network coding the prob-
ability is non-zero but very small, see Equation 5. For the non-
trivially coded packets the probability of linear independence
is identically for systematic and pure network coding.

E. Results

Here we compare the performance of RLNC with unicast
and broadcast. We assume p=0.3 as we have previously
observed such p [13]. In Figure 4 the performance of unicast,
broadcast and network coding at different settings is plotted
for an increasing number of sinks.

10
0

10
1

10
2

10
3

10
4

10
5

1.4

2

3

4

5

6

7
8
9

10

Sinks

E
xp

ec
te

d
tr

an
sm

is
si

on
 s

lo
ts

Unicast
Broadcast
GF(2) g=64
GF(28) g=64

GF(232) g=64
GF(∞) g=∞

Fig. 4: Expected number of transmission per packet, p = 0.3.

Unicast is not designed to perform this type of transmission
and therefore it is not surprising that it performs the worst.
Broadcast performs better, however, as the number of sinks
increases it suffers from the fact that all sinks must receive all
original packets and thus retransmissions of packets become
necessary. For RLNC this is not the case, instead all sinks only
have to receive a number of any independent coded packets
and can then decode the original data. When g is fixed RLNC
with GF(2) performs the worst of the RLNC approaches and
GF(28) and GF(232) performs the same, therefore we do not
consider GF(232) in the following.

10
0

10
1

10
2

10
3

10
4

10
5

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Sinks

E
xp

ec
te

d
tr

an
sm

is
si

on
 s

lo
ts

GF(2) g=64
GF(28) g=64
GF(2) g=128
GF(28) g=128
GF(2) g=256
GF(28) g=256

Fig. 5: Expected number of transmission per packet, p = 0.3.

In Figure 5 we see that network performance improves when
either the field or generation size is increased. When the field
size increases the probability of linear dependency decreases
and when the generation size increase the uncertainty of how
many packets will be lost at each sink decreases. Generally
the benefit of doubling g is greater than going from GF(2)
to GF(28) and additionally the performance benefit of moving
from GF(2) to GF(28) decreases as g increases. The reason
is that for high values of g linear dependency becomes less
important because only the very last packet will have a
low probability of being linear independent. Thus when g is
increased the ratio of packet that have low probability of being
linear independent decreases.

Thus if the throughput that can be achieved with GF(2)
allows for a substantially higher value of g compared to an
implementation with GF(28), it may be beneficial to use the
small field in some cases.

IV. IMPLEMENTATION

To get a feel for the achievable encoding and decoding
throughput we implemented RLNC based on GF(2). In GF(2)
adding two packets simplifies to the XOR operation. Encoding
a packet in GF(2) can be performed in two simple steps. First
the encoding vector is generated as a random bit vector, where
the indices in the vector corresponds to packets in the original
data set i.e. index one corresponds to packet one. The second
step is performed by iterating over the encoding vector and
adding packets where the corresponding index in the encoding
vector is 1. The following listing shows the encoding algorithm
in pseudo code, where M is the data buffer containing all
original packets, g is an encoding vector and x is the resulting
encoded packet.

1: procedure ENCODEPACKET(M,x,g)
2: x = 0
3: for each bit b in g do
4: if b equal 1 then
5: i = position of b in g
6: x = XOR(x, M[i])
7: end if
8: end for
9: end procedure
Decoding is performed on the run in two steps with a

slightly modified Gauss-Jordan algorithm. Note that this ap-
proach is different from what is typically done in implemen-
tations for higher field sizes where the encoding matrix is
inverted and then subsequently multiplied with the data matrix.
Thus the received data at the sink is always decoded as much
as possible and the load on the CPU is distributed evenly.
In the first step we reduce the incoming encoded packet by
performing a forward substitution of already received packets.
This is done by inspecting the elements of the encoding vector
from start to end and thus determining which original packets
the coded packet is a combination of. If an element is 1 and
we have already identified a packet with this element as a
pivot element we subtract that packet from the coded packet
and continue the inspection. If an element is 1 and we have

not already identified a packet where this element is a pivot
element we have identified a pivot packet and continue to
the second stage of the decoding. Note that if we are able
to subtract all information contained in the received encoded
packet, it will contain no information useful to us and can be
discarded.

In the second step we perform backward substitution with
the newly identified pivot packet. We do this by subtracting
the pivot packet from previously received packets for which
the corresponding encoding vector indicates that the particular
packet is a combination of the pivot packet. The following
listing shows the decoding algorithm in pseudo code, where
M̂ is the packet decode buffer of packets received and decoded
so far and Ĝ is the corresponding encoding vector buffer, x̂ is
a newly received encoded packet and ĝ is the newly received
encoding vector.

1: procedure DECODEPACKET(M̂,Ĝ,x̂,ĝ)
2: pivotposition = 0
3: pivotfound = false
4: for each bit b in ĝ do � Forward Substitution
5: if b equal 1 then
6: i = position of b in ĝ
7: if i’th packet is in M̂ then
8: ĝ = XOR(ĝ,Ĝ[i])
9: x̂ = XOR(x̂,M̂[i])

10: else
11: pivotfound = true
12: pivotposition = i
13: end if
14: end if
15: end for
16: if pivotfound equal false then
17: Exit procedure � The packet was linear dependant
18: end if
19: for each packet j in M̂ do � Backward Substitution
20: k = Ĝ[j]
21: if bit at pivotposition in k equal 1 then
22: Ĝ[j] = XOR(Ĝ[j],ĝ)
23: M̂[j] = XOR(M̂[j],x̂)
24: end if
25: end for
26: Ĝ[pivotposition] = ĝ
27: M̂[pivotposition] = x̂
28: end procedure

The algorithm can also be used unmodified in a systematic
coding approach, in which case we only have to ensure that
uncoded packets are treated as pivot packets. Based on these
algorithms we have implemented a coding library designed
to deliver high throughput and optimized through assembly
and SIMD instructions. Subsequently the implementation was
ported to Symbian to allow for tests on a mobile platform. All
implementations are single threaded. We used the following
platforms for the tests.

1) Nokia N95-8GB, ARM 11 332 MHz CPU, 128 MB ram,
Symbian OS 9.2.

2) Lenovo T61p, 2.53 GHz Intel Core2Duo, 2 GB ram,
Kubuntu 8.10 64bit.

We tested the performance of the implementation by en-
coding and decoding without transmission over any network
at different generation sizes from 16 to 256. First a large file,
5 MB for the phone and 128 MB for the PC, was divided
into packets of 1500 Bytes. These packets were then split
into generations of size equal to the specified generation size.
From each of these generations packets were generated and
saved. Then packets from each generation were read and
decoded until the original data was recreated. Encoding and
decoding time were measured and from this the throughput
was calculated.

16 32 64 128 256
0

5

10

15

20

25

30

35

40

Generation size [Packets]

T
hr

ou
gh

pu
t [

M
B

/s
]

Encoding pure
Decoding pure
Encoding systematic
Decoding systematic

Fig. 6: Encoding and Decoding throughput on a mobile phone.

16 32 64 128 256
0

100
200

400

600

800

1000

1200

1400

1600

Generation size [Packets]

T
hr

ou
gh

pu
t [

M
B

/s
]

Encoding pure
Decoding pure
Encoding systematic
Decoding systematic

Fig. 7: Encoding and Decoding throughput on a laptop.

Both encoding and decoding throughput is considerably
higher than any other reported result known to the authors and
the throughput is approximately a first order function of the
generation size. Note that for the systematic approach 70% of
the packets where uncoded and 30% coded. In a real wireless
scenario the ratio of coded vs. uncoded packets depends on the
error probability of the link. In the pure approach all packets
are coded, thus the throughput for the pure approach is equal
to the worst case throughput of the systematic approach.

V. CONCLUSION

In this paper we have proposed to base RLNC on the
binary Galois field in order to decrease the computational
complexity. Additionally we have proposed techniques for
reducing the amount of coding needed, which can help to
increase throughput and decrease energy consumption of NC
implementations. The proposed approach have been analyzed
from a network point of view. The approach have been
implemented and we have demonstrated that high encoding
and decoding throughputs can be achieved on both mobile
phones and laptops.

VI. ACKNOWLEDGEMENT

We would like to thank Ralf Koetter for an interesting
discussion in the Biergarten and Muriel Medard for the dis-
cussion on network coding and cooperative wireless networks.
Furtheremore, we would like to thank Nokia for providing
technical support and mobile phones. Special thanks to Mika
Kuulusa, Gerard Bosch, Harri Pennanen, Nina Tammelin, and
Per Moeller from Nokia. This work was partially financed
by the X3MP project granted by Danish Ministry of Science,
Technology and Innovation.

REFERENCES

[1] “The network coding home page.” https://hermes.lnt.e-technik.
tu-muenchen.de/DokuWiki/doku.php?id=network coding:bibliography
for network coding. Extensive (250+) but incomplete list of
publications related to Network Coding.

[2] J. Heide, M. V. Pedersen, F. H. Fitzek, and T. Larsen, “Cautious view on
network coding - from theory to practice,” Journal of Communications
and Networks (JCN), 2008.

[3] J.-S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Medard, “Codecast: a
network-coding-based ad hoc multicast protocol,” Wireless Communica-
tions, IEEE [see also IEEE Personal Communications], vol. 13, no. 5,
pp. 76–81, October 2006.

[4] D. Nguyen, T. Nguyen, and B. Bose, “Wireless broadcasting using
network coding,” in Third Workshop on Network Coding, Theory, and
Applications, January 2007.

[5] L. Popova, A. Schmidt, W. Gerstacker, and W. Koch, “Network coding
assisted mobile-to-mobile file transfer,” in Australasian Telecommunica-
tion Networks and Applications Conference (ATNAC), December 2007.

[6] M. Wang and B. Li, “How practical is network coding?,” Quality of
Service, 2006. IWQoS 2006. 14th IEEE International Workshop on,
pp. 274–278, June 2006.

[7] M. Wang and B. Li, “Lava: A reality check of network coding in peer-
to-peer live streaming,” in INFOCOM, pp. 1082–1090, 2007.

[8] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” SIGCOMM Comput.
Commun. Rev., vol. 37, no. 4, pp. 169–180, 2007.

[9] H. Shojania and B. Li, “Parallelized progressive network coding with
hardware acceleration,” Quality of Service, 2007 Fifteenth IEEE Inter-
national Workshop on, pp. 47–55, June 2007.

[10] M. Xiao, T. Aulin, and M. Médard, “Systematic binary deterministic
rateless codes,” in Proceedings IEEE International Symposium on In-
formation Theory, 2008.

[11] D. E. Lucani, M. Stojanovic, and M. Mdard, “Random linear network
coding for time division duplexing: When to stop talking and start
listening,” CoRR, vol. abs/0809.2350, 2008. informal publication.

[12] A. Eryilmaz, A. Ozdaglar, and M. Medard, “On delay performance gains
from network coding,” Information Sciences and Systems, 2006 40th
Annual Conference on, pp. 864–870, March 2006.

[13] J. Heide, M. V. Pedersen, F. H. Fitzek, T. V. Kozlova, and T. Larsen,
“Know your neighbour: Packet loss correlation in ieee 802.11b/g mul-
ticast,” in The 4th International Mobile Multimedia Communications
Conference (MobiMedia ’08), (Oulu, Finland), July 7-9 2008.

