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Vibration based damage assessment of a cantilever using a neural network

P H.Kirkegaard

Department of Building Technology and Structural Engineering, Aalborg University, Denmark

A.Rytter
Rambgll, Hannemann & Hpjlund A/S, Denmark

ABSTRACT: In this paper the possibility of using a Multilayer Perceptron (MLP) network trained
with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and
quantify a damage in structures is investigated. Since artificial neural networks are proving to be an
effective tool for pattern recognition, the basic idea is to train a neural network with simulated values
of modal parameters in order to recognize the behaviour of the damaged as well as the undamaged
structure. Subjecting this trained neural network to measured modal parameters should imply in-
formation about damage states and locations. During the training phase the estimates of the modal
parameters are obtained by an FEM of the structure. A damage in the structure is modelled by a

fracture mechanical model. The basic idea of this

model is to model the crack zone of a structure by

means of a local flexibility matrix found from fracture mechanics. By investigating a cracked hollow
section straight steel cantilever beam the capability of the neural network approach is demonstrated.
The results show that a neural network trained with simulated data is available for detecting location
and size of a damage in the cantilevered beam when the network is subjected to experimental data.

1 INTRODUCTION

A sudden failure in a structure can be very costly
and may be catastrophic in terms of human life
and property damage. Many techniques of non-
destructive evaluation are currently available to
detect damage in structures. Such techniques in-
clude visual inspections, ultrasonic testing, acous-
tic emission, etc. However, most of these tech-
niques are inconvenient in many situations due
to the need for the investigator to have assess to
the structure. This inconvenience can be avoided
through the use of vibration-monitoring techniques.
During the last years major research efforts have
been directed toward developing techniques for
damage assessment based on changes in vibration
characteristics. One of the consequences of the
development of a crack is a decrease in local stiff-
ness which in turn results in a decrease in some
of the natural frequencies. The most commonly
applied vibration based inspection damage assess-
ment technique is based on changes of natural fre-
quencies only. This is attractive since natural fre-
quencies can be obtained from measurements at
a single point on the structure. If measurements
at several points are carried out the mode shapes
in discrete points of the structure corresponding
to the different natural frequencies may be es-
tablished. Recently, mode shape information has

also been used for damage assessment. However,
in order to be able to evaluate the deterioation
state of a structure by vibration based inspection
it is also necessary to estimate size and location
of the damage, damage assessment. A through-
out review of vibration based damage assessment
techniques can be found in Rytter 1],

The problem of damage assessment on the basis
of measured data is essentially one of the pattern
recognition. Measured data from an undamaged
structure must be distinguishable from measured
data from a damaged structure. Different pat-
tern recognition approaches have been proposed
in the literature, see e.g. Yin et al. [2], Samman
et al. [3]. In these papers pattern recognition
techniques are presented to estimate the damage
presence and location but not the magnitude of
the damage. However, recently, artificial neural
networks are proving to be an effective tool for
pattern recognition in a variety of applications,
see e.g Hertz et al. [4] and among these also for
damage assessment. The basic idea is to train

- a neural network in order to recognize the be-

haviour of the damaged as well as the undamaged
structure. Subjecting this trained neural network
to information from vibration tests should im-
ply information about damage state and location.
During the last years this neural network based
damage assessment approach has been proposed




in different papers. In Thomsen et al. [5] a neu-
ral network was implemented and trained to clas-
sify measured ultrasonic power spectra of com-
posite laminates, according to fabrication quality.
Kudva et al. [6] used a neural network to deter-
mine location and size of a damage in a struc-
ture from measured strain values at discrete lo-
cations. The neural network is trained by finite-
element data. Strain patterns are used as inputs
and the damage location and size as outputs to
train the neural network to a desired level of ac-
curacy. The trained network can then be used to
determine the location, size and effect of any un-
known damage using measured strain values( at
the same locations as before) as inputs to the neu-
ral network. The damage assessment approach
proposed in Kudva et al. [6] has also been used
in Worden et al. [7]. In an analytical study,
Wu et al. [8] demonstrate a damage detecting
network trained on measured frequency response
functions from the system. Elkordy et al. [9]
trained a neural network with analytically gener-
ated mode shape ratios in order to diagnose dam-
age states obtained experimentally from series of
shaking-table tests of a five-story steel frame. In
Kirkegaard et al. [10] a neural network is trained
with the relative change in natural frequencies
obtained by an FEM. The network is then used
to estimate location and size of a damage in a
beam from measured natural frequencies. In all
the papers, mentioned above, dealing with neural
network based damages assessment a basic Multi-
Layer Perceptron network trained with the back-
propagation algorithm was used.

In this paper the aim is to investigate use of arti-
ficial neural networks for damage assessment of a
straight hollow section steel cantilever beam. In
this application, training of the network is per-
formed with patterns of the relative changes of
the natural frequencies that occur due to a dam-
age. This implies that each pattern represents
the computed changes of the natural frequencies
due to a crack of a particular size at a particular
location. The changes are estimated by using a
finite-element model. A damage is modelled by a
fracture mechanical model. The basic idea of this
fracture mechanical model is to model the crack
zone by means of a local flexibility matrix found
from fracture mechanics.

In section 2 a short description of artificial neu-
ral networks is given and a neural network based
damage assessment approach is proposed. In sec-
tion 3 the proposed damage assessment approach
is used in an example with a straight hollow sec-
tion steel cantilever beam. The damage assess-
ment approach is investigated with numerical data
as well as experimental data. At last in section 4
conclusions are given.

2 NEURAL NETWORKS

The past decade has seen an explosive growth
in the studies of artificial neural networks. In
part this was the result of technological advances
in personal and main-frame computing, enabling
neural network investigators to simulate and test
ideas in ways not readily available before 1980.

Artificial neural networks are computational mod-
els loosely inspired by the neuron architecture and
operation of the human brain. The pioneering
work in this field is usually attributed to McCul-
loch and Pitts in 1943. They developed a simpli-
fied model of a neuron. The brain is composed of
neurons of many different types, see McCulloch
et al. [11].

An artificial neural network is an assembly (net-
work) of a large number of highly connected pro-
cessing units, the so-called nodes or neurons. The
neurons are connected by unidirectional commu-
nication channels (”connections”). The strength
of the connections between the nodes is repre-
sented by numerical values which normally are
called weights. Knowledge is stored in the form
of a collection of weights. Each node has an
activation value that i1s a function of the sum
of inputs received from other nodes through the
weighted connections. The neural networks are
capable of self-organization and knowledge acqui-
sition, i.e learning. One of the characteristics
of neural networks is the capability of produc-
ing correct, or nearly correct, outputs when pre-
sented with partially incorrect or incomplete in-
puts. Further, neural networks are capable of
performing an amount of generalization from the
patterns on which they are trained. Most neu-
ral networks have some sort of ”training” rule
whereby the weight of connections are adjusted
on the basis of presented patterns. In other words
neural networks ”learns” from examples, just like
children learn to recognize dogs from examples
of dogs, and exhibit some structural capability
for generalization. Training consists of providing
a set of known input-output pairs, patterns, to
the network. The network iteratively adjusts the
weights of each of the nodes so as to obtain the
desired outputs (for each input set) within a re-
quested level of accuracy. Error is defined as a
measure of the difference between the computed
pattern and the expected output pattern.

For a more detailed description of neural net-
‘Evoi"ks, see e.g. Hertz et al. [4] and Hush et al.
12].

2.1 Multilayer Perceptron

Since McCulloch-Pitts in 1943 there have been
many studies of mathematical models of neural
networks. Many different types of neural net-




works have been proposed by changing the net-
work topology, node characteristics and learning
procedures. Examples of those are e.g. the Hop-
field network , Hopfield [13], the Kohonen net-
work, Kohonen [14] and the so-called multilay-
ered perceptron (MLP) network trained by means
of the back-propagation algorithm. The MLP
trained by the back-propagation algorithm is cur-
rently given the greatest attention by application
developers, see e.g. Kohonen [14]. The multilay-
ered perceptron network belongs to the class of
layered feed-forward nets with supervised learn-
ing. A multilayered neural network is made up
of one or more hidden layers placed between the
input and output layers, see fig. 1. Each layer
consists of a number of nodes connected in the
structure of a layered network. The typical ar-
chitecture is fully interconnected, i.e. each node
in a lower level is connected to every node in the
higher level. Output units cannot receive signals
directly from the input layer. During the train-
ing phase activation flows are only allowed in one
direction, a feed-forward process, from the input
layer to the output layer through the hidden lay-
ers. The input vector feeds each of the first layer
nodes, the outputs of this layer feed into each of
the second layer nodes and so on.

. first second
inputs hidden layer hidden layer

output layer

Fig. 1: Principle of a multilayer perceptron neu-
ral network.

Associated with each connection between node
and node j in the preceding layer I — 1 and fol-
lowing layer ! is a numerical value wy; ; which is
the strength or the weight of the connection. At
the start of the training process these weights are
initialized by random values. Signal pass through
the network and the jth node in layer I computes
its output according to

Nioa

ap = Z wyj,i%i-1,i + 015) (1)

for j = 1,..,Ny and | = 1,.., k, where x;; is the
output of the jth node in the lth layer. 6;; is

a bias term or a threshold of the jth neuron in
the lth layer. The kth layer is the output layer
and the input layer must be labelled as layer zero.
Thus Ny and N refer to the numbers of network
inputs and outputs, respectively. The function
f(+) is called the node activation function and is
assumed to be differentiable and to have a strictly
positive first derivative. For the nodes in the hid-
den layers, the activation function is often chosen
to be a so-called sigmoidal function

1

T5eF B>0 (2)

f(B) =

The activation function for the nodes in the input
and output layers are often chosen as linear.

During the training phase, representative exam-
ples of input-output patterns are presented to the
network. Each presentation is followed by small
adjustments of weights and thresholds if the com-
puted output is not correct. If there is any sys-
tematical relationship between input and output
and the training examples are representative of
this, and if the network topology is properly cho-
sen, then the trained network will often be able
to generalize beyond learned examples. Gener-
alization is a measure of how well the network
performs on the actual problem once training is
complete. It is usually tested by evaluating the
performance of the network on new data outside
the training set. Generalization is most heav-
ily influenced by three parameters: the number
of data samples, the complexity of the underly-
ing problem and the network architecture. Cur-
rently, there are no reliable rules for determining
the capacity of a feed-forward multilayer neural
network. Generally, the capacity of a neural net-
work is a function of the number of hidden layers,
the number of processing units in each layer, and
the pattern of connectivity between layers. How-
ever, it is shown in Cybenko [16] and Funahshi
[17] that one hidden layer is sufficient to approx-
imate all continuous functions.

2.2 Back-Propagation

The first stage of creating an artificial neural net-
work to model an input-output system is to es-
tablish the appropriate values of the connection
weights wy;; and thresholds ;;by using a learning
algorithm. A learning algorithm is a systematic
procedure for adjusting the weights in the net-
work to achieve a desired input/output relation-
ship, i.e. supervised learning. The most popular
and successful learning algorithm used to train
multilayer neural networks is currently the Back-
propagation routine, see Rumelhart [151]. The so-
called Back-propagation algorithm employs a gra-
dient descent search technique for minimizing an
error normally defined as the mean square differ-
ence between desired y; and actual outputs §j.




I.e. the error E is given as
Ni
E=05) (v =) (3)
i=1

If the error is considered small enough, the weights
and thresholds are not adjusted. If however, a sig-
nificant error is obtained the weights and thresh-
olds are adjusted in the negative gradient direc-
tion, so that the error criterion F is reduced. A

typical weight wyj,i, which could belong to any

layer, is adjusted from its old value w;’}ff to its

new value wi’}’ according to
|

w __ . old .
wiiy = wiji + Awigi (4)

where Awy;,; is given by, see e.g. Billings [18]

Awyji = nbrizi—1,i (5)

§1; is the error in the output of the ¢th node in
layer [ and 7 is termed a "learning rate”. The
error §j; is not known a priori but must be con-
structed from the known errors d;; at the output
layer. The errors are passed backwards through
the net and a training algorithm uses the error
to adjust the connection weights moving back-
wards from the output layer, layer by layer, hence
the name ”Back-propagation”. In practice the
"learning rate” 1 is chosen as large as possible
(0.01-0.9) without leading to intolerable oscilla-
tions. To overcome this problem, a momentum
term « is usually introduced into the update rule
implying

wi = w?]{?i +nbizi—1,i + aAw;’},‘f (6)
The thresholds are adjusted in the same way as
the weights. The process of computing the gra-
dient and adjusting the weights and thresholds is
repeated until a minimum of the error £ (or a
point sufficiently close to the minimum) is found.
However it is generally true that the convergence
of the Back-propagation algorithm is fairly slow.
Attempts to speed learning include variations on
simple gradient search, line search techniques and
second order techniques, see e.g. Hertz [4] and
Billings [18].

2.3 Use of Neural Networks for Damage Assess-
ment

The problem of damage assessment on the basis
of measured dynamic data is essentially a pattern
recognition problem. Since artificial neural net-
works are proving to be an effective tool for pat-
tern recognition the basic idea in a neural based

damage assessment approach is to train a net-
work with patterns of the changes in quantities
describing the dynamic behaviour that occur due
to a damage. This implies that each pattern rep-
resents the computed changes of e.g. the response
spectrum, natural frequencies, mode shapes etc.
due to a damage of a particular size at a particular
location. The patterns of the quantities describ-
ing the dynamic behaviour are used as inputs and
the damage location and size as outputs to train
the neural network. Then the trained network
subjected to measured patterns of the quantities
describing the dynamic behaviour can be used to
determine the location, size and of a damage. A
hierarchical, two step approach can also be used.
This implies that the patterns of the quantities
describing the dynamic behaviour are used as in-
puts and the location of the crack is used as out-
put in one network and size of the crack as output
in an other network, see Kirkegaard et al. [10].

The training of a neural network with appropri-
ate data containing the information about the
cause and effect is a key requirement of a neural
based damage assessment technique. This means
that the first step is to establish the training sets
which can be used to train a network in a way
that the network can recognize the behaviour of
the damaged as well as the undamaged structure
from measured quantities. Therefore, ideally, the
training sets should contain data of the undam-
aged as well as the damaged structure in various
damage states. These data can be obtained by
measurements, model tests or through numeri-
cal simulation, or through a combination of all
three types of data. This possibility of using all
obtained information, or only a part, in a neu-
ral network based damage assessment technique
is a capability which is not available in traditional
damage assessment techniques.

In order to verify how well a trained network has
learned the training cases the trained network is
tested by subjecting it to the training sets. The
important generalization capability of a neural
network damage assessment technique is tested
by subjecting the trained network to data not in-
cluded into the training sets. How well a trained
network is to generalize depends on the adequacy
of the selected network architecture and the infor-
mation about the damage as well as undamaged
structure included in the training sets.

3 EXAMPLE

In this example the proposed neural network ap-
proach for damage assessment is applied to a hol-
low section steel cantilever, see fig 2. The neu-
ral based damage assessment technique is investi-
gated by training a neural network with the rela-
tive change of the bending natural frequencies of
the 3 lowest modes.
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3.1 Analytical and Experimental Results

The experimental data are estimates of the low-
est three bending natural frequencies. Real line
cracks were obtained in the test beams by attach-
ing a sinus-varying load to the beams by means
of a shaker.” The frequency of the sinus was ei-
ther the actual first or second bending natural
frequency. The cracks lengths were measured by
means of a microscope mounted on an electrical
measurement rail. Two different crack locations
were considered. In one beam a crack was initi-
ated at z=1.0 m and in an other beam at z=0.1
m. The cracks were initiated as small narrow laser
cuts (width ~ 0.15 mm). The experimental deter-
mination of the bending natural frequencies was
obtained from free decays. The free decays were
introduced by removing a well-defined static load
from the beam momentary. The accelerations
were measured at z=0.5 m, z = 1.4 and z=2.0
m. A more throughout description of the exper-
imental procedure and the experimental results
can be found in Rytter et al. [1].

The neural network is trained by the relative change
of the bending natural frequencies due to a dam-
age. These changes are estimated by an FEM of
the beam. A damagein the beam is modelled by a
fracture mechanical model. The development of a
crack at a certain location of a beam corresponds
to a sudden reduction of its bending stiffness at
the same location. The crack divides the original
non-cracked beam into two shorter beams, con-
nected, at the crack location, by a very infinites-
imal portion of beam with different characteris-
tics. The characteristics in bending modes can be
modelled by a torsion spring. Estimation of the
spring stiffness by fracture mechanics has been
used by several authors, see e.g. Okamura[19)
and Gomes et al. [20]. The FEM was calibrated
by using experimental data from the non-cracked

beam. This calibration was performed to secure
that the FEM describes the beam in the best pos-
sible way. The quality of the predictions from
any technique of damage assessment is critically
dependent on the accuracy of the damage model,
see e.g. Rytter [1].

3.2 Training and Testing of Neural Network

The following results were obtained using a hi-
erarchical, two step approach. This implies that
the patterns of the quantities describing the dy-
namic behaviour and the location of the crack are
used as input and output, respectively, in one net-
work. In an other network the crack location and
the quantities describing the dynamic behaviour
are used as inputs and the size of the crack as
output. A hierarchical approach was used since
it was found in Kirkegaard et al. [10] that better
results could be obtained instead of using only
one big network. The training sets consisted of
the relative change of the bending natural fre-
quencies of the 3 lowest modes. The training sets
were generated for cracks located in intervals of
0.04 m between z = 0 m and z = 1.2 m, respec-
tively. The cracks depths, see figure 2, were in
intervals of 0.004 m between 0.02 m and 0.120 m.
By a trial-and-error approach it was found for
the first net that a 4 layers neural network with
3 input nodes, 8 nodes in each of the two hidden
layers and 1 output nodes gave the network with
the smallest output error. For the second net-
work it was found that a 4 layers neural network
with 4 input nodes, 8 nodes in each of the two
hidden layers and 1 output nodes gave the small-
est output error. The input and output nodes
were chosen as linear while the nodes used in the
hidden layers were of the sigmoidal type.

Figures 3 and 4 show results from the networks
trained with analytical data and subjected to ex-
perimental data obtained from two beams. One
beam with a crack located at z = 0.1 m and an
other beam with a crack located at z = 1.0 m.
Figure 3 shows the estimated locations while fig-
ure 4 shows the estimated crack sizes. The figures
show that it is possible to get reasonable esti-
mates of location and size of a crack in a hollow
section beam by subjecting experimental data to
a network trained with simulated data.

4 CONCLUSIONS

Results from an example with a hollow section
steel cantilever demonstrate that a diagnostic tech-
nique based on neural networks for detecting, lo-
cating and quantifying damages based on vibra-
tion measurements works. The damage assess-
ment technique relies on the measurements of small
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