

Aalborg Universitet

The inflammatory response of the supraspinatus muscle in rotator cuff tear conditions

Frich, Lars Henrik; Fernandes, Livia Rosa; Schrøder, Henrik Daa; Hejbøl, Eva Kildall; Nielsen, Pernille Vinther; Jørgensen, Puk Hvirgel; Stensballe, Allan; Lambertsen, Kate Lykke Published in: Journal of Shoulder and Elbow Surgery

DOI (link to publication from Publisher): 10.1016/j.jse.2020.08.028

Creative Commons License CC BY-NC-ND 4.0

Publication date: 2021

Document Version

Version created as part of publication process; publisher's layout; not normally made publicly available

Link to publication from Aalborg University

Citation for published version (APA):

Frich, L. H., Fernandes, L. R., Schrøder, H. D., Hejbøl, E. K., Nielsen, P. V., Jørgensen, P. H., Stensballe, A., & Lambertsen, K. L. (2021). The inflammatory response of the supraspinatus muscle in rotator cuff tear conditions. Journal of Shoulder and Elbow Surgery, 30(6), e261-e275. https://doi.org/10.1016/j.jse.2020.08.028

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 05, 2025

The inflammatory response of the supraspinatus muscle in rotator cuff tear conditions.

Lars Henrik Frich, MD, PhD, Livia Rosa Fernandes, PhD, Henrik Daa Schrøder, DMSc, Eva Kildall Hejbøl, PhD, Pernille Vinther Nielsen, BSc, Puk Hvirgel Jørgensen, MSc, Allan Stensballe, PhD, Kate Lykke Lambertsen, PhD

PII: \$1058-2746(20)30710-2

DOI: https://doi.org/10.1016/j.jse.2020.08.028

Reference: YMSE 5352

To appear in: Journal of Shoulder and Elbow Surgery

Received Date: 24 April 2020 Revised Date: 14 August 2020

Accepted Date: 17 August 2020

Please cite this article as: Frich LH, Fernandes LR, Schrøder HD, Hejbøl EK, Nielsen PV, Jørgensen PH, Stensballe A, Lambertsen KL, The inflammatory response of the supraspinatus muscle in rotator cuff tear conditions., *Journal of Shoulder and Elbow Surgery* (2020), doi: https://doi.org/10.1016/j.jse.2020.08.028.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc. on behalf of Journal of Shoulder and Elbow Surgery Board of Trustees.

The inflammatory response of the supraspinatus muscle in rotator cuff tear conditions.

Lars Henrik Frich, MD, PhD^{1,2,3*}, Livia Rosa Fernandes, PhD⁴, Henrik Daa Schrøder, DMSc⁵, Eva

Kildall Heibøl, PhD⁵, Pernille Vinther Nielsen, BSc², Puk Hvirgel Jørgensen, MSc⁶, Allan

Stensballe, PhD⁶, Kate Lykke Lambertsen, PhD^{4,7,8}

¹ Department of Orthopaedics, Odense University Hospital. Odense, Denmark

² The Orthopaedic Research Unit, University of Southern Denmark, Odense, Denmark

³ Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark,

⁴Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern

Denmark, Odense, Denmark,

⁵ Department of Pathology, Odense University Hospital, Odense, Denmark

⁶ Department of Health Science and Technology, Aalborg University, Aalborg, Denmark

⁷ Department of Neurology, Odense University Hospital, Odense, Denmark

⁸ BRIDGE – Brain Research – Inter-Disciplinary Guided Excellence, University of Southern

Denmark, Odense, Denmark

*Corresponding author: Lars Henrik Frich, lars.henrik.frich@rsyd.dk, J.B. Winsloewsvej 4, DK-

5000 Odense C, Denmark.

Running title: Muscle inflammation and rotator cuff

Conflicts of interest: None

Acknowledgments

Ulla Damgaard Munk and Anni Petersen are acknowledged for skilled technical assistance. Peter Gaster and Søren Skødt Kristensen are acknowledged for their assistance with collecting tissue biopsies. Claire Gudex is acknowledged for proofreading.

Funding

We acknowledge the generous funding from the Danish Rheumatism Association (R150-A4380) and Odense University Hospital Research Fund (A3159). The Danish National Mass Spectrometry Platform for Functional Proteomics (PRO-MS: grant no. 5072-00007B) and the Svend Andersen Foundation are acknowledged for parts of this study.

Ethics

Ethical approval was granted by The Regional Committees on Health Research Ethics for Southern Denmark, J. No. S-20160037, and the study reported to The Danish Data Protection Agency (16/9714). The project was approved by the Orthopedic Research Board, Odense University Hospital.

1	The inflammatory response of the supraspinatus muscle in rotator cuff tear conditions.
2	Running title: Muscle inflammation and rotator cuff
3 4	Abstract
5	Background: Rotator cuff (RC) disorders involve a spectrum of shoulder conditions from early
6	tendinopathy to full-thickness tears leading to impaired shoulder function and pain. The pathology
7	of RC disorder is, nonetheless, still largely unknown. It is our hypothesis that supraspinatus (SS)
8	tendon tear leads to sustained inflammatory changes of the SS muscle along with fatty infiltration
9	and muscle degeneration, which are threshold markers for poor RC muscle function. The aim of this
10	study was to determine the extent of this muscle inflammation in conjunction with lipid
11	accumulation and fibrosis in RC tear conditions.
12	Methods: We used proteomics, histology, electrochemiluminescence immunoassay, and qPCR
13	analyses to evaluate inflammatory and degenerative markers and fatty infiltration in biopsies from
14	22 patients undergoing surgery with repair of a full-thickness supraspinatus (SS) tendon tear.
15	Results: Bioinformatic analysis showed that proteins involved in innate immunity, extracellular
16	matrix organization, and lipid metabolism were among the most upregulated whereas mitochondrial
17	electronic transport chain along with muscle fiber function were among the most downregulated.
18	Histological analysis confirmed changes in muscle fiber organization and the presence of
19	inflammation and fatty infiltration. Inflammation appeared to be driven by a high number of
20	infiltrating macrophages, accompanied by elevated matrix metalloprotease levels and changes in
21	transforming growth factor- β and cytokine levels in the SS compared to the deltoid muscle.
22	Conclusions: We demonstrated massive SS muscle inflammation after tendon tear combined with
23	fatty infiltration and degeneration. The regulation of tissue repair is thus extremely complex, and it
24	may have opposite effects at different time points of healing. Inhibition or stimulation of muscle

inflammation may be a potential target to enhance outcome of the repaired torn RC.

25

26	Level of evidence: Basic Science Study; Histology, Molcular and Cell Biology
27	Keywords: Shoulder disorder, muscle damage, proteomics, protein changes, extracellular matrix
28	degeneration, fatty infiltration
29	
30	Introduction
31	Rotator cuff (RC) lesions are some of the most common shoulder conditions in humans and can
32	lead to weakness, pain, and limited/reduced mobility. The prevalence of RC tears is age-dependent
33	and both partial and full-thickness RC tears increase markedly after 50 years of age ⁴⁸ . The etiology
34	of RC diseases is multifactorial with frequent involvement of the supraspinatus (SS) tendon ⁵ . Full
35	thickness SS tears do not heal spontaneously, and surgically repaired RC tears tend to heal poorly
36	^{15; 33} . A recent Cochrane review questioned whether repair of RC tears provides meaningful benefit
37	to patients with symptomatic RC tears ²⁴ . There is, therefore, a pressing need to better understand
38	the pathophysiology behind RC tear conditions in order to improve results after surgical repair of
39	RC tendon tears.
40	In full-thickness RC tears, increased numbers of immune cells have been demonstrated in the
41	synovial tissue adjacent to the SS tendon 1 and an increase in tear size correlated with a greater pro-
42	inflammatory response in the synovium ^{6; 45} . Recent data suggest that the RC muscles also become
43	inflamed in the presence of an RC tear 14, and results from experimental models suggest that acute
44	inflammation plays a detrimental role in the onset of chronic muscle damage following RC tears 16;
45	²⁹ . It is also generally agreed that chronic RC tendon lesion leads to degenerative muscle changes
46	in the form of fatty infiltration and fibrosis ¹⁰ .
47	Several animal studies have provided evidence of significant increases in inflammatory cytokines,
48	growth factors, and matrix metalloproteases (MMPs), indicating muscle inflammation following
49	experimental RC tendon tear ^{16; 29} . Changes in the biology of human RC muscles in tear conditions

50	remain poorly defined at the cellular level, however, and RC muscle as a target for inflammation
51	following RC tear is only sparsely understood ^{14; 23} .
52	The aim of this study was to provide a more robust understanding of the inflammatory environment
53	of human SS muscle in RC tear conditions. It is our hypothesis that inflammatory conditions
54	precede disturbances of the muscle architecture, and eventually lead to RC muscle fatty infiltration
55	and degeneration. To investigate this, we applied quantitative proteomics followed by histological,
56	multiplex chemiluminescence, and qPCR analyses of inflammation in SS and deltoid muscle
57	biopsies that were harvested from patients undergoing surgery for RC tears.
58	
59	Materials and methods
60	Patient cohort
61	Patients (n=22) with a relevant shoulder trauma and clinical signs of an RC lesion were recruited
62	(Supplementary Table 1). Median age of lesions was 3.3 months (IQR 2-14 months). Patients
63	underwent preoperative magnetic resonance imaging scan revealing SS tendon tear, and all tears
64	were confirmed at surgery. Informed written consent was obtained from all patients. The workflow
65	of the project is presented in Figure 1.
66	
67	Human tissue
68	The RC and musculotendinous junction of the SS muscle were gently débrided from fascia and
69	bursal tissue using a blunt shaver. SS tendon and muscle biopsies were harvested from the edge of
70	the tendon and approximately one centimeter medial to the tendon, respectively, under direct
71	visualization from the arthroscope. Comparative biopsies were taken from assumed healthy,
72	ipsilateral deltoid muscles. Biopsies were snap-frozen on dry ice and stored at -80°C or fixed in
73	10% neutral buffered formalin and embedded in paraffin.

74

75

76

77

78

79

Blood samples

Blood samples were obtained in EDTA coated test tubes immediately prior to surgery to estimate preoperative peripheral inflammation. Hemoglobin, C-reactive protein and white blood cell counts were analyzed. The patient cohort was also tested for presence of rheumatic factors (anti-nuclear, anti-cyclic citrullinated, and mitochondrial antibodies and rheumafactor).

80

81

82

83

84

85

86

87

88

90

91

92

93

94

95

Histology and Immunohistochemistry

SS or deltoid muscle tissue was sectioned into 2µm thick sections on a microtome.

Immunohistochemistry for CD68 was performed on the OMNIS platform (Dako/Agilent, Denmark)

using mouse anti-CD68 (1:50, Clone PG-M1) antibody and EnVisionTM FLEX as detection system,

while immunohistochemistry for FOXP3, CD3, and adipophilin was performed on a BenchMark

Ultra immunostainer (Ventana Medical Systems, AZ, USA) using mouse anti-FOXP3 (1:40, clone

236A/E7), rabbit anti-CD3 ("ready-to-use", clone 2GV6), and mouse anti-adipophilin (1:50, clone

AP125) antibodies and the OptiView-DAB detection system. Parallel sections were stained with

89 hematoxylin and eosin (HE).

Slides were scanned on a NanoZoomer 2.0 RS scanner (Hamamatsu Photonics, Visiopharm,

Denmark). To produce merged images, NDP view (Hamamatsu Photonics, version 2.6.17) was

applied to find identical regions on neighboring cells stained for FOXP3 and CD3, respectively.

The images were processed and merged using Photoshop C6 (Adobe Systems, CA, USA) and

ImageJ/Fiji. The area with muscle tissue in each biopsy was determined using the freehand region

function and the number of CD3 and FOXP3 within this area was manually counted at 20x

96 magnification.

97

98	Proteomics
99	Homogenization of tissue biopsies
100	Approximately 1mm ³ was cut from the frozen tendon and muscle biopsies and was homogenized by
101	bead beating using ss 0.9-2.0mm beads (Bullet blender Gold, Next Advance Inc, USA) in reducing
102	lysis buffer (5% sodium deoxycholate (SDC; Sigma Aldrich, USA), protease inhibitors (cOmplete,
103	Roche) in 50mM TEAB (Sigma Aldrich). Protein concentration in lysates was determined by
104	protein A280 and lysates stored at -80°C (DeNoviX, USA).
105	Samples were further processed using an optimized SDC filter-aided sample preparation protein
106	digestion (SDC-FASP) essentially as ⁴ using 100µg protein starting material in 10kDa molecular
107	weight cutoff spin-filters (Merch Millipore, Singapore). The lysates were reduced (10mM TCEP)
108	and alkylated (50mM Chloroacetamide) each for 15min in digestion buffer (5% SDC in 50mM
109	TEAB; Sigma-Aldrich). Overnight trypsin digestion at 37°C was performed by addition of 200μl
110	0.5% digestion buffer containing Trypsin 1:50 (v:v; Pierce, USA). Peptides were extracted by
111	acidification and phase-separation, where 3:1 (v/v) ethyl acetate of sample volume was added and
112	acidified by adding Trifluoroacetic acid (Sigma-Aldrich) to a final concentration of 1% (pH<2)
113	followed by centrifigation. The collected lower aqueous phase containing the peptides was dried in
114	a vacuum centrifuge and dissolved in 0.1M TEAB. Peptide concentration in lysates was determined
115	by protein A280 and lysates stored at -80°C (DeNoviX, USA).
116	iTRAQ labeling
117	A total of 5µg of each sample was labeled with a 4-plex iTRAQ kit (AB Sciex, USA) according to
118	manufacturer's instructions. Briefly, samples were re-dissolved to total volume of $25\mu L\ 0.1M$
119	TEAB, pH 8.5 while 290 μ L 96% ethanol were added to iTRAQ reagents. Next, 50 μ L of the
120	iTRAQ reagents was transferred to the samples, which were then labelled, mixed after 1h of

121	incubation at room temperature dried, and resuspended in 2% acetonitrile (AcN), 0.1% TFA
122	(Sigma-Aldrich).
123	iTRAQ sample analysis
124	Samples were analyzed per UPLC-TandemMS in technical duplicates. Labeled peptides were
125	separated by a nanoUPLC system (Thermo Scientific, USA) coupled online to a Q Exactive HF MS
126	(Thermo Scientific) using a reverse phase C18 trapping column setup with 75cm main column
127	(Thermo Scientific) with loading in 2% solvent B (0.1% FA in AcN) gradient and separated by
128	176min gradient from 11%B to 30%B with a constant flow rate at 250nL/min. MS was operated in
129	positive mode using Top10 data-dependent acquisition (MS1 m/z 375-1,500 at R 120,000) and
130	tandems sequencing using fixed m/z range at 110 and a MS2 resolution of 15,000.
131	Database searches
132	Raw data were processed using Proteome Discoverer v2.3.0.523 (Thermo Scientific). Sequest HT
133	was set as the search engine against the reviewed Uniprot Homo sapiens reference protein database
134	(09/2017). iTRAQ 4-plex labeling of N-terminal and lysine and carbamidomethylation (C) were set
135	as fixed modifications while oxidation (M), deamidation (N/Q) and protein N-terminal acetylation
136	were included as variable modifications. Precursor mass tolerance and fragment mass tolerance
137	were set at 10ppm and 0.05Da, respectively. PSMs were filtered using percolator with a strict false
138	discovery rate (FDR) of 1% and a relaxed FDR of 5%. Unique and razor peptides were used for
139	quantification, and iTRAQ channels were normalized to total peptide amount. Master proteins were
140	filtered for high protein FDR confidence. MS data have been deposited to the ProteomeXchange
141	Consortium via the PRIDE ³⁹ partner repository with the dataset identifier PXD014037.
142	Bioinformatics analyses and functional annotation of regulated proteins
143	Normalized abundances were used for further analyses of proteins identified with two or more
144	unique peptides. Data distribution was assessed with Perseus v.1.5.3.2 software and differentially

145	regulated features were selected using t-test with a post-hoc background-based adjusted p-
146	value<0.05 ³⁵ . Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny) was used to compare the
147	regulated proteins among the different comparisons. ToppGene Suite ⁸ was used for functional
148	enrichment of regulated proteins according to Gene Ontology (GO) terms and pathway analysis.
149	Enriched lists were further accessed by String app on Cytoscape v3.6.1 44.
150	
151	Reverse transcription quantitative PCR (RT-qPCR) analysis of FOXP3, MYOG, and MMP13
152	in SS and deltoid muscle tissue
153	RNA extraction
154	Muscle biopsies (n=18/group) were isolated using TRIzol® Reagent. Phase separation was
155	performed using chloroform and isopropyl alcohol was used to precipitate RNA. The RNA
156	concentrations and purities were determined using a Nanodrop Spectrophotometer (Thermo
157	Scientific).
158	cDNA synthesis
159	RNA samples were diluted to obtain a concentration of $250 \text{ng}/\mu\text{L}$, and reverse transcription was
160	performed using an Applied Biosystem kit according to the manufacturer's instructions. The
161	synthesis was performed using an MJ Research PTC-225 Gradient Thermal Cycler (Marshall
162	Scientific). cDNA samples were diluted to lower the concentrations to $\sim 50 \text{ng}/\mu\text{L}$.
163	RT-qPCR
164	RT-qPCR was performed using a CFX Connect Real-Time PCR Detection System (Bio-Rad) and
165	analyzed using SYBR green. Samples were run against standard curves generated from serial
166	dilutions from a pool of all samples. Values were normalized to $ACTB$ (β -actin) as the reference
167	gene and calibrated to a pool of cDNA obtained from one pectoralis and one subscapularis muscle
168	biopsy. Triplicates of all samples, standards, and negative controls were conducted. To ensure no

169 sign of primer dimer formation or contamination, a no amplification control (NAC), a no template 170 control (NTC), and a no reverse transcriptase (NRT) were included as controls. 171 RT-qPCR cycling conditions were as follows: 10min at 95°C, followed by 40 cycles of denaturing 172 at 95°C for 15 seconds, 30 seconds at annealing temperature, and extension at 72°C at 30 seconds. 173 Primer sequences were: ACTB, sense 5'-GGCCACGGCTGCTTC-3' and anti-sense 5'-174 GTTGGCGTACAGGTCTTTGC-3' (T_a 52°C and T_m 84°C), FOXP3, sense 5'-175 CCCGGATGTGAGAAGGTCTT-3' and anti-sense 5'-TTCTCCTTCTCCAGCACCAG-3' (Ta 57°C and T_m 82°C), MYOG, sense 5'-GCCCTGATGCTAGGAAGCC-3' and anti-sense 5'-176 CTGAATGAGGGCGTCCAGTC-3' (Ta 70°C and Tm 85°C), and MMP13, sense 5'-CGC CAG 177 ACA AAT GTG ACC CT-3' and anti-sense 5'-CAG GCG CCA GAA GAA TCT GT-3' (Ta 55°C 178 and T_m 77°C). Primer specificity was ensured by generation and evaluation of melting curves. 179 180 Primers were purchased from TAG Copenhagen. 181 182 **Electrochemiluminescence analysis** 183 Protein purification 184 Tendon and muscle samples were homogenized at 4°C in Mesoscale Lysis buffer containing 185 Phosphatase Inhibitor Cocktail 2 and 3 (Sigma-Aldrich) and Complete Mini EDTA-free Protease 186 Inhibitor (Roche). Protein content was measured by the bicinchoninic acid method using the Thermo Scientific Micro BCATM Protein assay Kit (Pierce Chemical Co) ⁴⁰. 187 188 Multiplex analysis 189 Protein concentrations in tendon and muscle samples were measured using an MSD human U-Plex 190 Biomarker Multip-Plex Kit, a U-PLEX human TGF-β Combo Kit, a human MMP 3-Plex Ultra-191 Sensitive Kit, and human TNF-RI and TNF-RII Ultra-Sensitive Kits (all from Mesoscale), using the 192 MSD QuickPlex (SQ120) Plate Reader (Mesoscale) according to the manufacturer's instructions.

193	ICAM-1 and VCAM-1 analyses were performed on SS and deltoid muscle tissue using V-PLEX
194	Vascular Injury Panel 2 (Mesoscale). Samples were run in duplex and diluted 2- or 4-fold in Diluent
195	41 prior to measurement. Data were analyzed using MSD Discovery Workbench software. The
196	lower limit of detection was a calculated concentration based on a signal 2.5 standard deviations
197	(SD) above the blank (zero) calibrator and coefficient of variation (CV) values below 25% were
198	accepted.
199	
200	Statistical analysis
201	To examine differences in protein expression between SS and deltoid muscle tissue, paired
202	Student's t-test was used. Correlation analyses between cytokine, MMPs, and growth factors versus
203	age of lesion used Spearman's test. To examine the correlation between the relative expression of
204	FOXP3, MYOG, and MMP13 in SS and deltoid muscles, a paired Wilcoxon test was carried out.
205	The outlier test ROUT was used to identify and remove outliers more than 2 SD from the dataset.
206	All statistical analyses were carried out using GraphPad Prism. P-values ≤0.05 were considered
207	statistically significant. Data are presented as mean±SD or median (25, 75 interquartile range,
208	IQR).
209	
210	Results
211	Mass spectrometry-based proteomics analysis shows protein regulation upon RC lesion
212	Using quantitative mass spectrometry (MS) proteomics, a total of 2,463 proteins were identified, of
213	which 1,895 had two or more unique peptides (Supplementary Table S2). Moreover, 417 quantified
214	proteins were shared by all tissues of all patients and could be assessed by principal component
215	analysis (PCA) (Supplementary Figure 1A), which showed a clear distribution pattern even in the
216	absence of well-delimited clusters.

217	To better understand protein regulation underlying RC pathology, SS muscle protein expression
218	pattern was compared to deltoid as a non-RC shoulder muscle control. A total of 239 proteins were
219	regulated. Of these, 114 were more highly expressed in the SS muscle (Figure 2A, Supplementary
220	Table S3). Gene ontology analysis showed 'extracellular matrix organization' and 'neutrophil
221	degranulation' among the most enriched biological processes (Supplemental Figure 2, Table S4)
222	while 'degradation of extracellular matrix', 'innate immune system' and 'neutrophil degranulation'
223	were among the enriched pathways of upregulated proteins (Figure 2B, Supplementary Figure 2,
224	and Supplementary Table S4). Interestingly, 'mitochondrial cellular localization', and 'muscle
225	system process' were among the enriched annotations of downregulated proteins (Figure 2B,
226	Supplementary Figure 3, and Table S4). A detailed list of regulated proteins involved in the above-
227	mentioned processes, along with experimental ratio, are provided in Figure 2C-K.
228	To address the molecular response of different RC tissues, the comparison between SS muscle and
229	SS tendon showed 139 differentially expressed proteins (Supplementary Table S5). Pathways or
230	gene ontologies related to immune response or inflammatory processes were not enriched among
231	these regulated proteins.
232	In contrast, pointing towards a common molecular signature between SS muscle and SS tendon in
233	RC disease, 38 proteins were regulated in both tissues when compared to deltoid muscle
234	(Supplementary Figure 1B, Supplementary Tables S6 and S7). Several of these proteins were
235	related to catalytic activity, with mitochondrial protein complex being the main cellular component
236	(Supplementary Figure 1C).
237	
238	RC lesion results in atrophy and lipid accumulation
239	Staining with hematoxylin & eosin revealed muscle fiber changes already 1½ months after tendon

lesion represented by internalization of nuclei and muscle fibers of varying size after the tendon tear

240

241	(Figure 3A). In addition, pathological infiltrating adipocytes were detected, as substantial fat
242	infiltration was seen together with arrays of intracellular myonuclei and varying fiber size,
243	suggestive of degeneration (Figure 3B,C).
244	Inflammatory changes appeared to be intensified from 1½ months to 6 months with abundant
245	stromal inflammatory phagocytic cells represented by the presence of CD68 ⁺ macrophages (Figure
246	3D and 3E). At 24 months, degeneration was clearly seen with a substantial proportion of muscle
247	cells replaced by fat cells indicative of muscle cell degeneration (Figure 3F). At 24 months, absent
248	or few CD68 ⁺ positive cells indicated decreased inflammation. The deltoid muscle did not
249	demonstrate similar inflammatory and degenerative changes (Figure 3G-L).
250	Adipophilin/perilipin-2 immunohistochemistry for detection of lipids in myofibers demonstrated
251	that adipophilin was localized to the surface of intra-cellular lipid droplets (Figure 4). The
252	expression varied both between patients (please compare Figure 4A and Figure 4C) and between
253	muscles from the same patient (please compare Figure 4A with Figure 4B). Regional differences
254	within muscles were also seen (Figure 4), and some individual fibers presented increased lipid
255	accumulation both as number and size of droplets.
256	
257	RC tendon tear leads to changes in inflammatory mediators in SS muscle
258	None of the patients showed any signs of peripheral inflammation as mean blood leukocyte counts,
259	hemoglobin, and C-reactive protein values were within normal ranges and all patients were negative
260	for rheumatic factors. Given the findings of significant changes in the proteome of SS compared to
261	deltoid muscle after RC tear, we investigated changes in a variety of pro- and anti-inflammatory
262	cytokines, chemokines, receptors, and growth factors (Figure 5 and Table 1). We found lower
263	CCL19 levels (Figure 5A) but higher CXCL5 levels (Figure 5B) in the SS compared to the deltoid
264	muscle. IL-1β (Figure 5C), IL-6 (Figure 5D), IL-8 (Figure 5E), and IL-33 levels (Figure 5F) were

265 higher in SS compared to deltoid muscle. IL-7 levels (Figure 5G), IL-15 (Figure 5H), IL-17A 266 (Figure 5I), and IFN-α2a levels (Figure 5J) were in SS compared to deltoid muscle. Despite comparable levels of TNF (Figure 5K), TNFR1 (Figure 5L) and TNFR2 (Figure 5M) levels were 267 268 changed in the SS muscle compared to the deltoid after RC tendon tear. G-CSF levels were lower in 269 SS muscle compared to the deltoid (Figure 5N). 270 We observed no significant correlation between age of lesion and CCL19 (r=-0.05, p=1), CXCL5 271 (r=-0.26, p=0.31), $IL-1\beta$ (r=-0.30, p=0.3), IL-6 (r=-0.48, p=0.07), IL-8 (r=-0.43, p=0.11), IL-33(r=0.16, p=0.54), IL-7 (r=0.35, p=0.39), IL-15 (r=0.07, p=0.79), IL-17A (r=0.09, p=0.76), IFN-272 273 α2a (r=0.39, p=0.3), TNF (r=-0.39, p=0.15), TNFR1 (r=-0.4, p=0.29), TNFR2 (r=-0.16, p=0.66), 274 or G-CSF (r=0.16, p=0.71). 275 Finally, several cytokine levels were similar in SS and deltoid muscle (Table 1). The concentration of most cytokines, chemokines, growth factors, and MMPs was high in the SS tendon 276 277 (Supplementary Table 8). 278 279 The regenerative potential appears to be impaired in the SS muscle after RC tendon tear 280 IL-17 production characterizes pro-inflammatory T helper 17 lymphocytes (Th17) and innate immune cells ¹¹. Th17 has been shown to have opposing effects in the immune response from 281 regulatory T cells (Treg) ⁴⁹, which is important in muscle regeneration (reviewed in ⁷) and whose 282 283 master gene is the transcription factor Forkhead box P3 (FOXP3). We found decreased IL-17A 284 levels in SS muscle compared to deltoid muscle (Figure 5G). Therefore, we next investigated 285 FOXP3 mRNA expression and found that FOXP3 mRNA levels were significantly lower in SS 286 muscle compared to deltoid muscle (Figure 6A). However, when we counted FOXP3⁺ cells (Figure 287 6B) and CD3⁺ T cells (Figure 6C) in SS and deltoid muscle tissue sections (Figure 6D), we did not observe any significant differences in the number of FOXP3⁺ cells/mm² or CD3⁺ T cells/mm². 288

289	Approximately 7.5% of all T cells in the SS muscle were FOXP3 Treg cells (overlay in Figure 6D,
290	upper panel), and approximately 13% of all T cells in the deltoid muscle were FOXP3 ⁺ Treg cells
291	(overlay in Figure 6D, middle panel). The number of T cells/mm ² were, however, quite variable
292	(Figure 6D).
293	To investigate gene expression levels involved in myogenesis, we estimated MYOG expression and
294	found the relative mRNA levels to be significantly decreased in the SS compared to the deltoid
295	muscle (Figure 6E).
296	
297	Changes in matrix metalloproteinases and transforming growth factors after RC tendon tear
298	As gene ontology analysis showed changes in proteins involved in 'extracellular matrix
299	organization', we investigated changes in the levels of 4 matrix metalloproteinases (MMPs) known
300	to be involved in the degradation of the extracellular matrix ³⁸ .
301	We did not observe any differences in MMP1 levels between SS and deltoid muscle (Figure 7A).
302	However, levels of MMP3 (that is known to degrade collagen types II-IV, IX, and X and to have
303	important regulatory functions such as activation of other MMPs) were significantly higher in SS
304	compared to deltoid muscle (Figure 7B). Furthermore, levels of MMP-9 (known to degrade
305	collagen fragments IV and V) were changed (Figure 7C) suggesting decreased MMP-9 levels in
306	deltoid compared to SS muscle.
307	MMP13 (known to degrade primarily collagen fragments II) mRNA gene expression was absent in
308	SS $(0.005 \pm 0.006, n=12)$ and deltoid $(0.002 \pm 0.002, n=16)$ muscle tissue, whereas MMP13 mRNA
309	gene expression was present in SS tendon tissue (4.95 \pm 5.33, n=4) in RC tear conditions.
310	A significant negative correlation was found between age of lesion and MMP9 levels (r=-0.61,
311	p=0.03). We found no significant correlation between age of lesion and MMP1 levels (r=0.05,
312	p=0.87) and a tendency of a correlation with MMP3 levels ((r=-0.46, p=0.08).

313	In line with previous findings in the SS enthesis (reviewed in ²²), we found that protein levels of
314	MMP-1 (known to specifically break down most subtypes of collagen, providing mechanical
315	strength to tissues) were higher in SS tendon than in muscle tissue (Supplementary Table 8). Also,
316	MMP-3 was high in the SS tendon (Supplementary Table 8).
317	We also investigated changes in transforming growth factors (TGF), known to be affected in SS
318	enthesis following RC tear (reviewed in 22) (Figure 7D-F). Levels of TGF β 1 (Figure 7D) and
319	TGFβ3 (Figure 7F) were higher in SS muscle, suggesting increased TGFβ1 and TGFβ3 levels in SS
320	muscle compared to deltoid muscle. We found no correlation between age of lesion and $TGF\beta 1$
321	$(r=0.12, p=0.7), TGF\beta2 (r=-0.07, p=0.83), or TGF\beta3 (r=-0.32, p=0.34).$
322 323	Discussion
324	In this study, we demonstrated massive SS muscle inflammation after tendon tear combined with
325	fatty infiltration and degeneration. Simultaneous changes in the innate immune response, cytokines,
326	and proteins related to extracellular matrix reorganization and mediation of fibrosis in the SS
327	musculature were also seen.
328	In line with previous experimental studies using mice ²⁸ and rats ^{12; 17; 18} we observed high numbers
329	of infiltrating monocytes/macrophages in SS muscle in early cases of tendon tear; this tendency
330	ceased after 24 months, however. Inflammation was (initially) driven by high numbers of
331	infiltrating $CD68^+$ macrophages, which are thought to be key sources of TGF- $\beta1$ linked to fibrosis
332	in chronically injured muscle ³⁰ .
333	Upregulated proteins in SS muscle compared to deltoid also showed 'neutrophil degranulation'
334	among the most enriched processes. Neutrophils have been identified as the main cells infiltrating
335	the muscle after injury 46, and neutrophil-derived oxidants extended tissue damage in a rabbit model
336	of stretch skeletal muscle injury ⁴⁷ . On the other hand, blocking cell infiltration compromised the
337	initial regenerative response, suggesting a role for neutrophils in muscle growth and repair by

338	removal of tissue debris and activation of satellite cells ⁴⁷ . Moreover, a recent study has shown that
339	neutrophil-secreted proteases can also have an immunoregulatory role by activating IL-33 ⁹ . IL-33
340	has been shown to be produced by fibro-adipogenic progenitor (FAP) cells, which are uniformly
341	present in the interstitial space in skeletal muscle and respond to muscle damage ²⁰ . Our
342	observation of higher IL-33 levels in SS muscle compared to deltoid muscle indicate an activation
343	of FAPs, which are the source of adipocytes in muscle fatty infiltration. Muscle Foxp3 ⁺ regulatory
344	T cells (Tregs) are characterized by high levels of expression of the IL-33 receptor, ST2, and are
345	known to potentiate regeneration in acute and chronic injury models ⁷ . Despite comparable numbers
346	of Foxp3 ⁺ Tregs/mm ² , we saw a significant decrease in <i>FOXP3</i> mRNA levels in SS muscle
347	compared to deltoid muscle following RC tear, suggestive of repressed gene expression in Tregs
348	located in SS muscle. Many cytokines and factors can negatively regulate FOXP3 gene expression,
349	including IL-6, IL-7, TGF- β , and G-CSF, ^{21; 32; 42} , all of which we observed to be different between
350	SS and deltoid muscle.
351	The expression of IL-15 has been shown to inhibit fatty infiltration and facilitate muscle
352	regeneration through regulation of FAP cells ²³ . In the present study, IL-15 levels were
353	significantly lower in the SS compared to the deltoid muscle, supporting our findings that
354	adipocytes appear in the SS and that the regenerative potential appears to be reduced in SS muscle
355	after RC tendon tear.
356	IL-17 is a pro-inflammatory cytokine secreted by activated CD4 ⁺ T-helper cells (Th17), which are
357	highly pro-inflammatory and induce severe autoimmunity (reviewed in ²⁷). IL-17 levels are
358	increased in early human tendinopathy, mediating inflammatory and tissue remodeling events ³⁴ ,
359	and IL-17 inhibits myoblast differentiation ²⁶ . In the present study, IL-17 levels were significantly
360	lower in SS than in deltoid muscle, but the exact relevance of decreased IL-17 levels remains to be
361	elucidated.

Our gene ontology analysis showed changes in 'extracellular matrix organization' and 'degradation
of extracellular matrix' especially due to the upregulation of CMA1, COL5A3, CTSS, ELN, and
MMP19 in SS compared to deltoid muscle. To our knowledge, no one has investigated MMP levels
in human SS muscle under tear conditions. MMPs are a large group or proteolytic enzymes
responsible for tissue remodeling and degradation of extracellular matrix. In our study, MMP-3 and
MMP-9 levels were significantly increased in SS compared to deltoid muscle. MMP-3 is one of the
primary activators of MMP-9 from its inactive proenzyme form ³⁶ . MMP-9 is produced by a variety
of cells, including fibroblasts. MMP-9 appears to be a regulatory factor in neutrophil migration
across the basement membrane ¹³ , and it also plays several important functions within neutrophil
action 27 such as degrading extracellular matrix, activation of IL-1 β , and cleavage of several
chemokines ³⁷ . In vitro studies have demonstrated that inhibition of MMP-9 reduced the levels of
active TGF- β 1 and reduced several TGF- β 1-driven responses such as fibroblast stimulation 25 . In
this context, MMP-9 appears to activate or stimulate the release of a number of cytokines and
growth factors, including TGF- $\beta 1$ 31 , which we found to be elevated in SS compared to deltoid
muscle. MMP-9 activity positively correlated to skeletal muscle atrophy in immobilized rats ⁴¹ ,
supporting a role in muscle atrophy. This is in line with our present findings of a positive
correlation between MMP-9 levels and age of RC lesion. Altogether, this suggests that MMP-9
plays an important role in SS muscle remodeling.
While only a few studies have applied a large-scale proteomics approach to address RC
pathophysiology, these studies combined found several markers indicative of tissue remodeling and
suggested an untapped potential for proteomics in tendon research (reviewed in ⁴³). A multi-omics
methodology applied to a rat RC injury model to study myosteatosis identified disrupted
mitochondrial function as one of the underlying mechanisms of lipid accumulation in muscle fibers
¹⁹ . In our study, we identified 32 downregulated mitochondrial proteins, 15 of which are associated

with mitochondrial electron transport chain. Mitochondrial dysfunction reduces energy production and the dysfunction of these organelles has been connected to the myosteatosis that is commonly reported following RC tendon injury ³. Our finding of steatotic adipophilin positive muscle fibers and changes in lipid metabolism and mitochondrial function supports this connection.

This study has certain inherent limitations related to the variability of disease severity and duration and the sample size, and the results are biased towards patients with RC tears who chose to undergo surgery. The enrolled patients comprised four smokers and seven patients who received pain killers on a daily basis. The adverse consequences of smoking and mild anti-inflammatory drug intake on the inflammatory response was not assessed due to lack of statistical power. Another limitation inherent in muscle biopsy studies is the difficulty of ensuring uniform biopsy procedures, which are important to secure reproducibility and to account for regional variations in protein composition. In this study, biopsies were obtained close to the musculotendinous junction of the SS muscle in all patients using an all-arthroscopic approach from the bursal side, limiting possible location-dependent variations.

The rationale for using the deltoid muscle for comparison could be challenged as it may be asymptomatically affected. The ipsilateral deltoid has been used as a standard of reference in a number of studies ^{2:13}, also justifying the use of paired statistics and increasing the power of the

Conclusions

analyses.

This study demonstrated massive muscle changes after SS tendon tear characterized by high numbers of inflammatory macrophages in lesions less than three months old and overall changes in cytokine levels, MMP levels, and growth factors. Our proteome analysis demonstrated that proteins

410	involved in inflammation, extracellular matrix reorganization, and lipid metabolism were among the
411	most enriched. Knowing that massive inflammation with infiltration of immune cells into the RC
412	musculotendinous lesion disrupt normal muscle regeneration, this implies that intervention with
413	repair of the tendon lesion and concomitant target-specific adjuvant treatment of the inflammatory
414	state of the SS muscle could be key to improving RC muscle recovery.
415	
416 417	Figure legends
418	Figure 1. Schematic workflow applied to the study of molecular pathways involved in the RC
419	lesion. Biopsies of supraspinatus tendon and supraspinatus and deltoid muscle biopsies from ten
420	patients undergoing surgery for partial or full-thickness RC were evaluated.
421	
422	Figure 2. Proteomics of muscle biopsies. (A) Differentially regulated protein pattern between SS
423	and deltoid muscles from patients with RC lesion (FDR 5%). Downregulated proteins are
424	represented in blue and upregulated in red. Dotted lines highlight proteins at least 2 times
425	overrepresented in each tissue. (B) Protein-protein network of SS vs deltoid muscle-regulated
426	proteins grouped according functional enrichment. Underrepresented proteins in SS muscle are
427	shown in blue while overrepresented are shown in red. (C-K) Levels of upregulated (red) or
428	downregulated (blue) proteins involved in Leukocyte mediated immunity (C), Immune effector
429	process (D), Immune system (E), Positive regulation of lipid metabolic processes (F), Metabolism
430	of lipids (G), Electron transport chain (H), Muscle structure development (J), Extracellular matrix
431	organization (I), and Striated muscle contraction (K) as measured by proteomics (n=10 muscles per
432	group). Abbreviations: ADAR, double-stranded RNA-specific adenosine deaminase; ADIPOQ,
433	adiponectin; ALDH5A1, succinate-semialdehyde dehydrogenase, mitochondrial; ANKRD1,
434	ankyrin repeat domain-containing protein 1; ANKRD2, ankyrin repeat domain-containing protein 2;
435	AP1B1, AP-complex subunit beta-1; APOA1, apolipoprotein A-1; APOA2, apolipoprotein A-2;
436	APOA4, apolipoprotein A-4; APOE, apolipoprotein E; CMA1, chymase; COL5A3, collagen alpha-
437	3(V) chain; COX6A1, cytochrome c oxidase subunit 6A1; COX6A2, cytochrome c oxidase subunit
438	6A2; COX6B1, cytochrome c oxidase subunit 6B1; CTSA, cathepsin A; CTSC, cathepsin C; CTSS,
439	cathepsin S; DNM1, dynamin-1; DNM2, dynamin-2; EEF1A2, elongation factor-1 alpha; ELN,

440	elastin; ENG, endoglin; F2, prothrombin; FABP4, fatty acid-binding protin; FASN, fatty acid
441	synthase; FBN1, fibrillin-1; FDXR, NADPH:adrenodoxin oxidoreductase, mitochondrial; FITM2,
442	fat storage-inducing transmembrane protein 2; GGH, gamma-glutamyl hydrolase; GLRX5,
443	glutaredoxin-related protein 5, mitochondrial; GNS, N-acetylglucosamine-6-sulfatase; GSR,
444	glutathione reductase, mitochondrial; HEXA, beta-hexosaminidase subunit alpha; HLA-A, HLA
445	class I histocompatibility antigen, A-31 alpha chain; HPGDS, hematopoietic prostaglandin D
446	synthase; HUWE1, E3 ubiquitin-protein ligase; ICAM1, intercellular adhesion molecule 2;
447	LGALS1, galectin-1; MFAP4, microfibril-associated glycoprotein 4; MMP19, matrix
448	metalloproteinase-19; MYH3, myosin-3; MYH7, myosin-7; MYL2, myosin light chain 2; MYL3,
449	myosin light chain 3; MYL6B, myosin light chain 6B; MYOZ2, myozenin-2; ND4, NADH-
450	ubiquinone oxidoreductase chain 4; NDUFA4, cytochrome c oxidase subunit NDFUA4; NDUFA9,
451	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial; NDUFAB1,
452	acyl carrier protein, mitochondrial; NDUFB3, NADH dehydrogenase [ubiquinone] 1 beta
453	subcomplex subunit 3; NDUFC2, NADH dehydrogenase [ubiquinone] 1 subunit C2; NDUFS5,
454	NADH dehydrogenase [ubiquinone] iron-sulfur protein 5; NDUFS7, NADH dehydrogenase
455	[ubiquinone] iron-sulfur protein 7, mitochondrial; NUP62, nuclear pore glycoprotein p62; OSTF1,
456	osteoclast-stimulating factor 1; PLIN1, perilipin-1; PON2, serum paraoxonase/arylesterase 2; PPT1,
457	palmitoyl-protein thioesterase 1; PRDX4, peroxiredoxin-4; PTPRC, receptor-type tyrosine-protein
458	phosphatase C; PYCARD, apoptosis-associated speck-like protein containing a CARD; SACM1L,
459	phosphatidylinositide phosphatase SAC1; SERPINB12, serpin B12; SLC25A1, tricarboxylate
460	transport protein, mitochondrial; SNRPA1, U2 small nuclear ribonucleoprotein A; SORBS1, sorbin
461	and SH3 domain-containing protein 1; TNNI1, troponin I, slow skeletal muscle; TNNT1, troponin
462	T, slow skeletal muscle; UCHL1, ubiquitinin carboxyl-terminal hydrolase isozyme L1; UQCR11,
463	cytochrome b-c1 complex subunit 10; VCAM1, vascular cell adhesion protein 1.
464	
465	Figure 3. Histological analysis of SS muscle. (A-C) H&E-stained tissue sections of SS muscle
466	biopsies from representative patients at 1½ months (A), 6 months (B), and 28 months (C) after RC
467	tendon tear demonstrating the presence of muscle fibers with internal nuclei (arrows) and nuclear
468	chains (arrow heads). (D-F) Immunohistochemical staining of SS muscle biopsies from
469	representative patients at 2½ months (D), 6 months (E), and 28 months (F) demonstrating the
470	presence of a high number of CD68 ⁺ macrophages (arrows) within the first 6 months after RC
471	tendon tear. Please note the presence of massive fatty cell infiltration (*, asterisks) between muscle

472	fibers already early after RC tendon tear. (G-I) H&E-stained tissue sections of deltoid biopsies from		
473	representative patients at 1½ months (G), 6 months (H), and 24 months (I) after RC tendon tear. (J		
474	L) CD68 immunohistochemical staining of deltoid muscle biopsies biopsies from representative		
475	patients at 1½ months (J), 6 months (K), and 24 months (L) after RC tendon tear. Scale bar: 100µm		
476			
477	Figure 4. Immunohistochemical staining for adipophilin. (A,B) Adipophilin expression in SS		
478	(A) and deltoid (B) muscle fibers in a patient with a 6-month-old RC lesion, showing higher		
479	adipophilin expression in the SS muscle compared to the deltoid. Adipophilin is seen as a granular		
480	staining in the muscle fiber cytoplasm and due to its localization to the surface of lipid vacuoles, it		
481	visualizes the distribution one of intracellular lipid. (C,D) Adipophilin expression in SS and deltoid		
482	muscle fibers from patient with a >72-month-old RC tear (C) and another patient with a 7-month-		
483	old RC lesion (D). Please note that the distribution of adipophilin can be uneven with different		
484	expression in neighboring fascicles in both the SS and deltoid muscles. Scale bar: 100µm.		
485			
486	Figure 5. Cytokine and TNF receptor protein expression in SS and deltoid muscle tissue in		
487	RC tear conditions. (A-N) Electrochemiluminescence immunoassay analysis of CCL19 (A),		
488	CXCL5 (B), IL-1β (C), IL-6 (D), IL-8 (E), IL-33 (F), IL-7 (G), IL-15 (H), IL-17A (I), INF-α2a (J),		
489	TNF (K), TNFR1 (L), TNFR2 (M), and G-CSG (N) protein levels in SS and deltoid muscle		
490	biopsies from patients with RC tendon tear. ***p<0.001, **p<0.01. *p<0.05, Student's t-test (n =		
491	22/group). Samples with CV values above 25% were excluded in individual analyses.		
492			
493	Figure 6. FOXP3 and MYOG mRNA expression is lower in SS muscle than in deltoid muscle		
494	tissue in RC tear conditions. (A) FOXP3 mRNA levels in SS and deltoid muscle biopsies		
495	demonstrated significantly lower expression levels in SS compared to deltoid muscle. **p<0.01,		
496	paired Student's t-test (n=18/group). Two outliers in the SS muscle and two outliers in the deltoid		
497	muscle group were removed according to ROUT's outlier test. (B-C) The number of FOXP3+ Treg		
498	cells/mm² (B) and the total number of CD3+ T cells (C) were comparable between SS and deltoid		
499	muscle in RC tear conditions. (D) Representative FOXP3 and CD3 immunohistochemically stained		
500	tissue sections from SS and deltoid muscle demonstrating overlay between subsets of FOXP3 ⁺ and		
501	CD3 ⁺ T cells, representing the presence of Treg cells (arrows) in both SS and deltoid muscle in RC		
502	tear conditions. Scale bars: 50µm (top and middle panels) and 100µm (bottom panel). (E) MYOG		

- 503 mRNA levels in SS and deltoid muscle biopsies demonstrated significantly lower expression levels
- in SS compared to deltoid muscle. **p<0.01, paired Student's t-test (n=18/group).

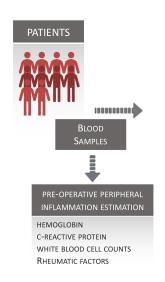
505

- 506 Figure 7. Matrix metalloprotease and transforming growth factor-β protein expression in SS
- and deltoid muscle tissue under RC tear conditions. (A-F) Electrochemiluminescence
- 508 immunoassay analysis of MMP-1 (A), MMP-3 (B), MMP-9 (C), TGFβ1 (D), TGFβ2 (E), and
- TGFβ3 (F) protein levels in SS and deltoid muscle biopsies from patients with RC tendon tear.
- p<0.05, Student's test (n = 22/group). Samples with CV values above 25% were excluded in
- 511 individual analyses.
- 512 References
- 1. Abrams GD, Luria A, Carr RA, Rhodes C, Robinson WH, Sokolove J. Association of synovial inflammation and inflammatory mediators with glenohumeral rotator cuff pathology. J Shoulder Elbow Surg 2016;25:989-997. 10.1016/j.jse.2015.10.011
- 2. Ashry R, Schweitzer ME, Cunningham P, Cohen J, Babb J, Cantos A. Muscle atrophy as a consequence of rotator cuff tears: should we compare the muscles of the rotator cuff with those of the deltoid? Skeletal Radiol 2007;36:841-845. 10.1007/s00256-007-0307-5
- 3. Bedi A, Dines J, Warren RF, Dines DM. Massive tears of the rotator cuff. J Bone Joint Surg
 Am 2010;92:1894-1908. 10.2106/JBJS.I.01531
- 5. Benson RT, McDonnell SM, Knowles HJ, Rees JL, Carr AJ, Hulley PA. Tendinopathy and tears of the rotator cuff are associated with hypoxia and apoptosis. J Bone Joint Surg Br 2010;92:448-453. 10.1302/0301-620X.92B3.23074
- 527 6. Blaine TA, Kim YS, Voloshin I, Chen D, Murakami K, Chang SS et al. The molecular 528 pathophysiology of subacromial bursitis in rotator cuff disease. J Shoulder Elbow Surg 529 2005;14:84S-89S. 10.1016/j.jse.2004.09.022
- 7. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y et al. A special population of regulatory T cells potentiates muscle repair. Cell 2013;155:1282-1295. 10.1016/j.cell.2013.10.054

- 8. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment
- analysis and candidate gene prioritization. Nucleic Acids Res 2009;37:W305-311.
- 535 10.1093/nar/gkp427
- 9. Clancy DM, Sullivan GP, Moran HBT, Henry CM, Reeves EP, McElvaney NG et al.
- Extracellular Neutrophil Proteases Are Efficient Regulators of IL-1, IL-33, and IL-36
- Cytokine Activity but Poor Effectors of Microbial Killing. Cell Rep 2018;22:2937-2950.
- 539 10.1016/j.celrep.2018.02.062
- 10. Cofield RH, Parvizi J, Hoffmeyer PJ, Lanzer WL, Ilstrup DM, Rowland CM. Surgical repair
- of chronic rotator cuff tears. A prospective long-term study. J Bone Joint Surg Am
- 542 2001;83:71-77.
- 543 11. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat
- Rev Immunol 2010;10:479-489. 10.1038/nri2800
- 12. Davies MR, Lee L, Feeley BT, Kim HT, Liu X. Lysophosphatidic acid-induced RhoA
- signaling and prolonged macrophage infiltration worsens fibrosis and fatty infiltration
- 547 following rotator cuff tears. J Orthop Res 2017;35:1539-1547. 10.1002/jor.23384
- 13. de Witte PB, Werner S, ter Braak LM, Veeger HE, Nelissen RG, de Groot JH. The
- Supraspinatus and the Deltoid not just two arm elevators. Hum Mov Sci 2014;33:273-283.
- 550 10.1016/j.humov.2013.08.010
- 14. Gibbons MC, Singh A, Anakwenze O, Cheng T, Pomerantz M, Schenk S et al. Histological
- Evidence of Muscle Degeneration in Advanced Human Rotator Cuff Disease. J Bone Joint
- 553 Surg Am 2017;99:190-199. 10.2106/JBJS.16.00335
- 15. Gladstone JN, Bishop JY, Lo IK, Flatow EL. Fatty infiltration and atrophy of the rotator
- cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am
- J Sports Med 2007;35:719-728. 10.1177/0363546506297539
- 16. Gumucio J, Flood M, Harning J, Phan A, Roche S, Lynch E et al. T lymphocytes are not
- required for the development of fatty degeneration after rotator cuff tear. Bone Joint Res
- 559 2014;3:262-272. 10.1302/2046-3758.39.2000294
- 17. Gumucio JP, Davis ME, Bradley JR, Stafford PL, Schiffman CJ, Lynch EB et al. Rotator
- cuff tear reduces muscle fiber specific force production and induces macrophage
- accumulation and autophagy. J Orthop Res 2012;30:1963-1970. 10.1002/jor.22168

- 18. Gumucio JP, Korn MA, Saripalli AL, Flood MD, Phan AC, Roche SM et al. Aging-
- associated exacerbation in fatty degeneration and infiltration after rotator cuff tear. J
- Shoulder Elbow Surg 2014;23:99-108. 10.1016/j.jse.2013.04.011
- 19. Gumucio JP, Qasawa AH, Ferrara PJ, Malik AN, Funai K, McDonagh B et al. Reduced
- mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. FASEB J
- 568 2019;33:7863-7881. 10.1096/fj.201802457RR
- 20. Hejbol EK, Hajjaj MA, Nielsen O, Schroder HD. Marker Expression of Interstitial Cells in
- Human Skeletal Muscle: An Immunohistochemical Study. J Histochem Cytochem
- 571 2019;67:825-844. 10.1369/0022155419871033
- 572 21. Heninger AK, Theil A, Wilhelm C, Petzold C, Huebel N, Kretschmer K et al. IL-7 abrogates
- suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows
- expansion of alloreactive and autoreactive T cells. J Immunol 2012;189:5649-5658.
- 575 10.4049/jimmunol.1201286
- 576 22. Jensen PT, Lambertsen KL, Frich LH. Assembly, maturation, and degradation of the
- 577 supraspinatus enthesis. J Shoulder Elbow Surg 2018. 10.1016/j.jse.2017.10.030
- 578 23. Kang X, Yang MY, Shi YX, Xie MM, Zhu M, Zheng XL et al. Interleukin-15 facilitates
- muscle regeneration through modulation of fibro/adipogenic progenitors. Cell Commun
- 580 Signal 2018;16:42. 10.1186/s12964-018-0251-0
- 581 24. Karjalainen TV, Jain NB, Heikkinen J, Johnston RV, Page CM, Buchbinder R. Surgery for
- rotator cuff tears. Cochrane Database Syst Rev 2019;12:CD013502.
- 583 10.1002/14651858.CD013502
- 584 25. Kobayashi T, Kim H, Liu X, Sugiura H, Kohyama T, Fang Q et al. Matrix
- metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen
- gels. American journal of physiology Lung cellular and molecular physiology
- 587 2014;306:L1006-1015. 10.1152/ajplung.00015.2014
- 588 26. Kocic J, Santibanez JF, Krstic A, Mojsilovic S, Ilic V, Bugarski D. Interleukin-17 modulates
- myoblast cell migration by inhibiting urokinase type plasminogen activator expression
- through p38 mitogen-activated protein kinase. Int J Biochem Cell Biol 2013;45:464-475.
- 591 10.1016/j.biocel.2012.11.010
- 592 27. Kotake S, Yago T, Kawamoto M, Nanke Y. Role of osteoclasts and interleukin-17 in the
- pathogenesis of rheumatoid arthritis: crucial 'human osteoclastology'. J Bone Miner Metab
- 594 2012;30:125-135. 10.1007/s00774-011-0321-5

- 595 28. Krieger JR, Tellier LE, Ollukaren MT, Temenoff JS, Botchwey EA. Quantitative analysis of
- immune cell subset infiltration of supraspinatus muscle after severe rotator cuff injury.
- 597 Regen Eng Transl Med 2017;3:82-93. 10.1007/s40883-017-0030-2
- 598 29. Kuenzler MB, Nuss K, Karol A, Schar MO, Hottiger M, Raniga S et al. Neer Award 2016:
- reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a
- poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model. J Shoulder Elbow Surg
- 601 2017;26:733-744. 10.1016/j.jse.2016.11.009
- 30. Liu X, Joshi SK, Ravishankar B, Laron D, Kim HT, Feeley BT. Upregulation of
- transforming growth factor-beta signaling in a rat model of rotator cuff tears. J Shoulder
- 604 Elbow Surg 2014;23:1709-1716. 10.1016/j.jse.2014.02.029
- 31. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases
- 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 2002;110:625-632.
- 607 10.1172/JCI15334
- 32. Maruyama T, Konkel JE, Zamarron BF, Chen W. The molecular mechanisms of Foxp3 gene
- regulation. Semin Immunol 2011;23:418-423. 10.1016/j.smim.2011.06.005
- 33. Matthews TJ, Hand GC, Rees JL, Athanasou NA, Carr AJ. Pathology of the torn rotator cuff
- tendon. Reduction in potential for repair as tear size increases. J Bone Joint Surg Br
- 612 2006;88:489-495. 10.1302/0301-620X.88B4.16845
- 34. Millar NL, Akbar M, Campbell AL, Reilly JH, Kerr SC, McLean M et al. IL-17A mediates
- inflammatory and tissue remodelling events in early human tendinopathy. Scientific reports
- 615 2016;6:27149. 10.1038/srep27149
- 35. Navarro P, Trevisan-Herraz M, Bonzon-Kulichenko E, Nunez E, Martinez-Acedo P, Perez-
- Hernandez D et al. General statistical framework for quantitative proteomics by stable
- isotope labeling. Journal of proteome research 2014;13:1234-1247. 10.1021/pr4006958
- 36. Ogata Y, Enghild JJ, Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the
- precursor for the human matrix metalloproteinase 9. J Biol Chem 1992;267:3581-3584.
- 37. Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S et al.
- Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol
- 623 2001;69:851-859.
- 38. Pasternak B, Aspenberg P. Metalloproteinases and their inhibitors-diagnostic and
- therapeutic opportunities in orthopedics. Acta Orthop 2009;80:693-703.
- 626 10.3109/17453670903448257


- 39. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ et al.
- The PRIDE database and related tools and resources in 2019: improving support for
- quantification data. Nucleic Acids Res 2019;47:D442-D450. 10.1093/nar/gky1106
- 40. Petersson SJ, Christensen LL, Kristensen JM, Kruse R, Andersen M, Hojlund K. Effect of
- testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in
- muscle of aging men with subnormal bioavailable testosterone. Eur J Endocrinol
- 633 2014;171:77-88. 10.1530/EJE-14-0006
- 41. Reznick AZ, Menashe O, Bar-Shai M, Coleman R, Carmeli E. Expression of matrix
- metalloproteinases, inhibitor, and acid phosphatase in muscles of immobilized hindlimbs of
- rats. Muscle & nerve 2003;27:51-59. 10.1002/mus.10277
- 42. Rutella S, Pierelli L, Bonanno G, Sica S, Ameglio F, Capoluongo E et al. Role for
- granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells.
- 639 Blood 2002;100:2562-2571. 10.1182/blood-2001-12-0291
- 43. Sejersen MH, Frost P, Hansen TB, Deutch SR, Svendsen SW. Proteomics perspectives in
- rotator cuff research: a systematic review of gene expression and protein composition in
- human tendinopathy. PLoS One 2015;10:e0119974. 10.1371/journal.pone.0119974
- 44. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. Cytoscape: a
- software environment for integrated models of biomolecular interaction networks. Genome
- Res 2003;13:2498-2504. 10.1101/gr.1239303
- 45. Shindle MK, Chen CC, Robertson C, DiTullio AE, Paulus MC, Clinton CM et al. Full-
- thickness supraspinatus tears are associated with more synovial inflammation and tissue
- degeneration than partial-thickness tears. J Shoulder Elbow Surg 2011;20:917-927.
- 649 10.1016/j.jse.2011.02.015
- 46. St Pierre Schneider B, Brickson S, Corr DT, Best T. CD11b+ neutrophils predominate over
- RAM11+ macrophages in stretch-injured muscle. Muscle & nerve 2002;25:837-844.
- 652 10.1002/mus.10109
- 47. Toumi H, F'Guyer S, Best TM. The role of neutrophils in injury and repair following muscle
- 654 stretch. J Anat 2006;208:459-470. 10.1111/j.1469-7580.2006.00543.x
- 48. Yamaguchi K, Ditsios K, Middleton WD, Hildebolt CF, Galatz LM, Teefey SA. The
- demographic and morphological features of rotator cuff disease. A comparison of
- asymptomatic and symptomatic shoulders. J Bone Joint Surg Am 2006;88:1699-1704.
- 658 10.2106/JBJS.E.00835

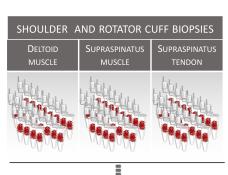

659	49. Zhao L, Qiu DK, Ma X. Th17 cells: the emerging reciprocal partner of regulatory T cells in
660	the liver. J Dig Dis 2010;11:126-133. 10.1111/j.1751-2980.2010.00428.x

Table 1. Cytokine analysis in patients with RC tear.

	SS muscle (pg/mg)	Deltoid muscle (pg/mg)	P-value
IL-1α	2.44 ± 1.38 (n=13)	2.21 ± 1.72 (n=15)	0.83
IL-1Ra	46.83 ± 20.24 (n=14)	34.40 ± 12.94 (n=15)	0.33
IL-2	0.64 ± 0.47 (n=4)	0.41 ± 0.24 (n=5)	0.50
IL-2Ra	93.08 ± 56.28 (n=8)	99.11 ± 76.81 (n=7)	0.87
IL-4	0.04 ± 0.07 (n=6)	0.07 ± 0.08 (n=6)	0.53
IL-9	1.12 ± 0.72 (n=16)	1.10 ± 0.62 (n=17)	0.98
IL-12/IL-23p40	14.35 ± 29.01 (n=15)	14.64 ± 7.71 (n=18)	0.78
IL-12p70	0.23 ± 0.07 (n=6)	0.39 ± 0.32 (n=7)	0.55
IL-13	2.76 ± 2.25 (n=3)	4.35 ± 3.68 (n=3)	0.31
MIF	28,656 ± 18,419 (n=9)	26,617 ± 19,295 (n=8)	0.36
IFN-β	46.08 ± 27.05 (n=8)	34.05 ± 37.80 (n=7)	0.56
IFN-γ	2.23 ± 3.48 (n=5)	2.92 ± 2.11 (n=4)	0.95
FLT3L	14.29 ± 5.13 (n=5)	15.01 ± 8.78 (n=4)	0.93
TRAIL	54.41 ± 23.81 (n=17)	47.00 ± 17.70 (n=19)	0.50
CXCL1/GROα	2.63 ± 2.05 (n=9)	3.92 ± 3.37 (n=8)	0.16
CXCL10/IP-10	8.73 ± 4.00 (n=7)	8.69 ± 2.94 (n=9)	0.86
CXCL11/I-TAC	6.74 ± 2.02 (n=15)	7.78 ± 3.00 (n=19)	0.28
CCL2/MCP1	4.03 ± 2.38 (n=8)	4.83 ± 2.17 (n=9)	0.33
CCL3/MIP-1 α	4.58 ± 2.35 (n=5)	4.01 ± 4.05 (n=2)	-
CCL4/MIP-1β	5.17 ± 1.62 (n=9)	6.35 ± 1.54 (n=8)	0.29
CCL7/MCP-3	4.92 ± 2.59 (n=8)	4.03 ± 3.41 (N=6)	0.33
CCL8/MCP-2	1.52 ± 0.76 (n=8)	1.71 ± 1.11 (n=4)	0.48
CCL13/MCP4	15.64 ± 11.80 (n=8)	9.57 ± 7.33 (n=7)	0.24
CCL17/TARC	3.05 ± 1.01 (n=7)	3.40 ± 0.59 (n=8)	0.41
M-CSF	5.45 ± 3.46 (n=9)	6.27 ± 3.39 (n=6)	0.84
GM-CSF	0.13 ± 0.14 (n=3)	0.10 ± 0.11 (n=7)	0.33
LT-α	1.60 ± 0.79 (n=6)	1.67 ± 0.61 (n=9)	0.41
YKL-40/CHI3L1	121.40 ± 37.64 (n=5)	340.80 ± 274.40 (n=9)	0.18
VEGF-A	93.36 ± 31.19 (n=7)	134.40 ± 53.22 (n=9)	0.19

Paired Student's t-test

PROTEOMICS

HISTOLOGY AND IMMUNOHISTOCHEMISTR

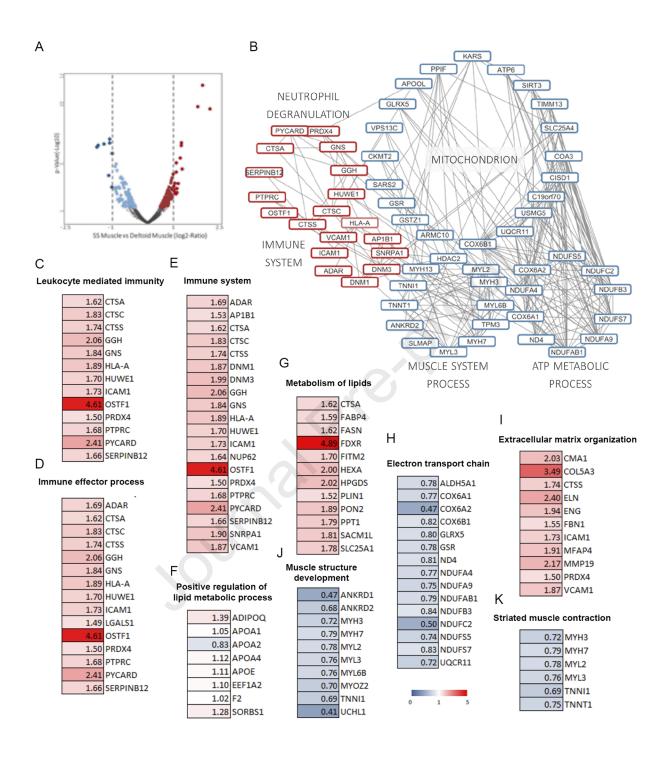
Y

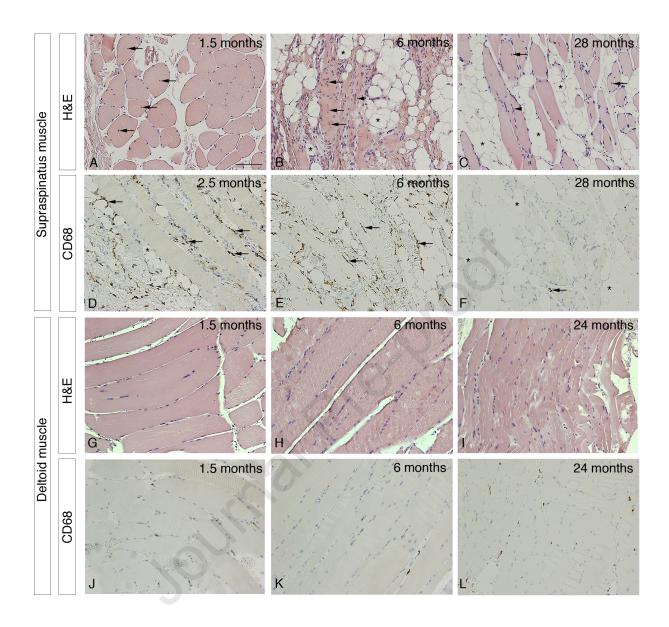
PROTEIN EXTRACTION CD68

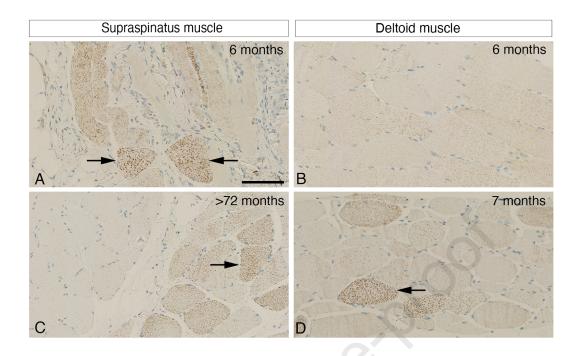
FILTER ASSISTED DIGESTION CD3

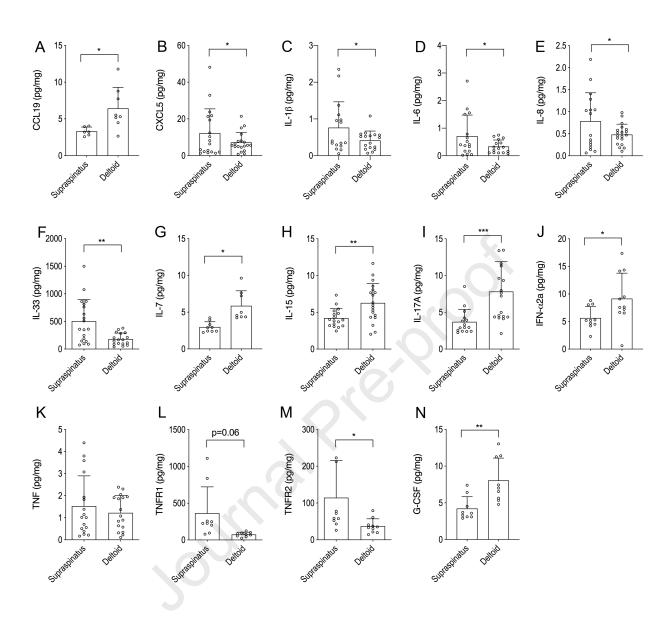
ITRAQ LABELING FOXP3

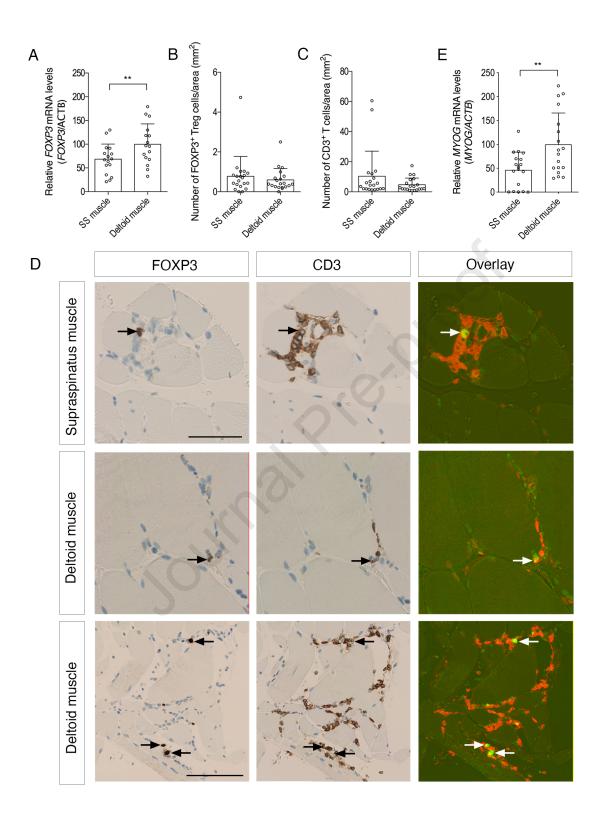
LC-MS/MS ANALYSES HEMATOXYLIN


EOSIN


BIOINFORMATIC ANALYSIS


QPCR


MULTIPLEX ANALYSIS


RNA EXTRACTION
CDNA SYNTHESIS
FOXP3
MYOG
MMP-13
QUANTIFICATION
STATISTICAL ANALYSIS

