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Chapter 1

Introduction

Structures are exposed to dynamic loadings from several sources, for instance earthquake
ground motion, wind gusts and severe sea states. Further to these natural actions moving
vehicles and other machines may also cause dynamic excitation.

When a structure is designed different arrangements can be made to take into account
the dynamic actions. One method of solution is to dimension the structure in such a
way that it can resist the dynamic actions. Another is obtained by making arrangements
which can reduce the response of the structure. The last-mentioned techniques may be
split up into two main groups :

1. Passive vibration suppression
2. Active vibration suppression

Considering civil engineering structures the design objectives have always been to obtain
an adequate safety of the structure, which during several centuries has been obtained
by making the dimensions of the different parts sufficiently large. Passive vibration sup-
pression for providing structural safety was seriously considered more than 50 years ago.
At that time the technique of creating a so- called "flexible first-storey” of a multistorey
building was suggested. If properly designed a flexibility of the first storey will provide an
isolation effect against large dynamic shear forces during earthquakes. Later the concept
has not been generally accepted because of an inherently large lateral motion required.

Recent research efforts have focused on a variety of base isolation systems as potential
improvements over the soft first-storey concept. One of the simplest concepts is to
mount the structure on horizontal pads which permit lateral slip between the base of the
structure and its foundation. These bearing pads may for instance be constructed as a
sandwich of a large number of alternating thin plates of steel and natural rubber.

Another arrangement used in attenuating the response of earthquake-excited structures
is the conventional linear auxiliary mass damper.

The above-mentioned techniques for passive vibration suppression are sometimes desig-
nated vibration isolation, because in principle there is no energy dissipation. However,
passive vibration suppression may also be due to absorption of mechanical energy from
the structure which for instance relies on dissipation in the material, interface slip be-
tween adjacent elements or plastic deformations, etc. The efficiency of the natural passive
energy absorption can be improved by putting on conventional passive viscous dampers.

Vibration isolators are only effective if the dominating frequencies in the spectrum of the
dynamic loading belong to fixed intervals. Therefore, in case of considerable uncertainty



in defining the dynamic loading, and if the loading is of a broad-banded character the
passive control systems may be inadequate.

Driven by economic disincentives such as increasing relative costs for materials and by
increasing economic viability of sophisticated analysis techniques the minimum weight
condition has become an important design requirement for many dynamically loaded
civil engineering structures and thereby, they are built increasingly more slender and
flexible. This, in turn, can lead to excessive vibrations which may need to be suppressed
to prevent the structure from oscillating beyond acceptable limits. On account of this
and the limitations in passive control automatic controls have been considered.

The prime objective of introducing active control to civil engineering structures is to
ensure their safety, which is usually governed by its response to an infrequent event
such as a severe earthquake. As a result, an active earthquake control system would
have to remain in standby mode for many years and perhaps several decades without
being activated. The reliability of infrequently used equipment then becomes a serious
liability. An additional concern for active control systems is that the time at which the
control power is most needed often coincides with the time at which failure of most utility
systems can be expected. For these and other reasons attention still has to be given to
passive control measures, but because of the evident possibilities reasonable efforts for
active control devices are still required.

A few tall buildings have already been built with automatic vibration suppression. The
actuators installed are mostly active tuned mass dampers, whose primary function is
to reduce wind-induced vibration in a few prominent modes, and they have operated
satisfactorily. An alternative control mechanism for active control of tall buildings is
the active tendons. The applicability of this system has been examined by experiments
on laboratory models subjected to base motions simulating seismic frame buildings, [L;
2]. Theoretically, both control systems for reduction of adverse effects of earthquake
and wind have been studied, using different control schemes showing varying degrees of
efficiency [3,4,5,6,7].

Active feedback control of large and massive civil engineering structures is of relatively
recent vintage, but it has been prominent in the aerospace, electrical, and mechanical
engineering fields. Many of the issues are the same, i.e. such topics as mathematical
modelling of structures, identification techniques, reduced-order models, modal trunca-
tion and controller interaction with residual modes, placement of controller and optimal
control techniques.

In active control of civil structures the most common methods for determining the feed-
back gains of the control signal are based on the optimal control techniques. These
methods are concerned with designing a system which is the best possible with respect
to a standard. While determining the feedback gains, the objective is to minimize a suit-
able objective function describing the level of the vibration and the control forces. This
optimal control problem has been treated in many papers, considering a variety of struc-
tures described by different mathematical models. Using distributed parameter models
the optimal control system has been designed for a beam with constant cross-section 8]
and with variable cross-section [9], a plate [10] and a membrane [11].

Structures can generally be represented by distributed-parameter systems, but consider-
ing large structures it is normally necessary to use a discrete model, since optimal control
of large distributed-parameter systems poses mathematical and design problems of con-
siderable difficulty. The structural system can be discretized either by a finite element



scheme or a finite difference scheme. In both cases the equations of motion are reduced to
ordinary, coupled differential equations. The resulting discrete model generally possesses
a large number of degrees of freedom. Designing an optimal feedback control law is then
a very difficult and time-consuming process.

As an approach the control scheme of independent modal space control is introduced,
which has been extensively developed by Meirovitch et al. [12,13]. In this method it is
assumed, that the coupled system of equations of motion can be decoupled by a modal
approach. Thus the controller is designed for each mode independently of other modes
of vibration and, consequently, the computational burden for determining state feedback
coefficients is considerably reduced. The control scheme of independent modal space
control has formed the basis of several other papers on the application of active control
devices [2,7,14,15,16].

The majority of the various control algorithms and control systems being proposed and
investigated, have been documented by analytical and simulation results. Further to
these results an extensive experimental study is necessary before any application could
be adopted. The practical problems include effects of time delay in data acquisition
and on-line calculation, unsynchronized application of control forces, interface between
controllers and structure, and interface between sensors and structure. Few studies deal
with experiments and they mainly deal with the effect of time delay [1,7].

Encouraged by the many, still unanswered questions concerning active vibration control
of civil engineering structures this project was initiated.

The object is to study the feasibility of active control of structures under seismic ex-
citation. An optimal closed-loop control scheme using a quadratic performance index
is developed for a discretized and a reduced-order model under earthquake excitation.
Considering a reduced-order model just a few of the predominant modes are controlled
Jeading to the independent modal space control device. The control law is first set up for
the continuous time system, and next for the discrete time system including the effect of
time delay between measurement and the application of control forces.

Structural control experiments are carried out in the laboratory using a model structure.
The control experiments are performed using an active mass damper and closed-loop
modal control algorithms. The model is controlled by free vibrations and by forced
vibrations caused by a harmonic base excitation. Results of the experiments clearly
show that the closed-loop modal control algorithm can be implemented.ze



Chapter 2

Optimal Control of Discretized
and Reduced Order Systems

The purpose is to design a control system, which will be able to attenuate the vibrations
of a structure under seismic excitation. It will be designed according to the optimal
control techniques.

Tn order to design an optimal control system an equation of motion for the structure is
required. In the light of the equation of motion for a linear elastic distributed parameter
system the optimal control system for the associated discretized system will be designed
first and then the device of independent modal space control is introduced. By using
independent modal space control the so-called spillover effects occur, because it is not
possible to observe and control all modes. On the other hand this technique provides
relatively few calculations during control.

2.1 Equations of Motion

2.1.1 Distributed Parameter System

The equation of motion for a 3-dimensional linear elastic, distributed parameter system
subjected to a time-varying displacement of the base, and under active control, can be
described by the following partial differential equation

ou; 0%u; _ d (o)
5 + p(x)w = c(x)EUi (x,t) + filx,t) ,

V (x,t) € Q x ]0,00[ (2.1)

In (2.1) and below the index summation conventions will be applied to the indices ¢, ;.
Eq. (2.1) must be satisfied at every point x of the domain { denoting the structure.
u; = u;(x,1) is the absolute displacement of an arbitrary point x, L is a linear differential
self-adjoint operator of order 2, expressing the stiffness, ¢(x) and p(x) are the distributed
linear viscous damping and mass, and f;(x,t) are distributed control forces. Ui(o](x, t) is
assumed to be the quasi-static displacement caused by the base motion.

Lu; + e(x)

The displacement u;(x,t) is subjected to mechanical boundary conditions at the surface
T'; of the structure

Biu; = 0, V(X,t) e I'y X ]U,OO[ (2-2)
and geometrical boundary conditions at the surface I'
ui(x,t) = uwoi(t) , V(x,t) € Ty x ]0,00[ (2.3)

.



where ug;(t) describes the displacement of the base. In eq. (2.2) B is a differential
operator of order 1.

The initial conditions at £ = 0 are
ui(x,0) = 0, #(x,0) =0 , Vx € Q x I (2.4)

Ui(o)(x,t) is subjected to the boundary conditions

v® =0 , Y(x,t) € Qx]0,00] (2.5)
BU® =0 , V(x1t) € Iy x]0,00 (2.6)
U(x,t) = woi(t) , V(x,t) € Iy x]0,00] (2.7)

U,-(D) fulfils arbitrary initial conditions at time ¢ = 0.

In practice actuators tend to be discrete elements Fi(t), F3(2), ..., Fn,, (1), where Fy(t) is

the control force at the location xg: = [Za1,%a2,Taa) in a direction determined by the
unit vector € = [ex1,€a2,€aa], i-€.
Nm
fi(x,t) = D 8(x — Xa)eaiFult) (2.8)
a=1
where §(x — Xo) = (21 — 2a1)8(22 — Ta2)0(%3 — £43) is a spatial Dirac delta function.

2.1.2 Discrete Parameter System

Basicly, structures are distributed parameter systems and so their equation of motion
must be described by the partial differential equations (2.1). Performing optimal control
it is necessary to solve these equations of motion and this might be a quite complicated
problem for large structures. Hence, to simplify the solution a discretized model can be
introduced, so that the structural equations of motion are reduced to ordinary differential
equations.

In this section the equations of motion are set up for a discretized system, which for
instance could look like the model in fig. 2.1.

The differential operator L in (2.1) can be discretized either by a finite element scheme
or by a finite difference scheme. In both cases the boundary - and initial value problem
(2.1) - (2.4) is transformed into a system of ordinary differential equations. Using (2.8),
this yields

Mii+ Cu+ Ku = CU® + KU® + ;F(t) , ¢t>0 (2.9)
u(0)=0, u(0)=0

u is an n-dimensional vector of the absolute displacements and rotations in the n degrees
of freedom of the structure.

The structure is at rest at time ¢ = 0. U©) specifies the quasi-static displacements and
rotations in proportion to the reference configuration caused by the base motion.

M, C and K signify mass, damping, and stiffness matrices, respectively, all of dimension
n x n. M and K are symmetrical due to the Maxwell-Betti reciprocal theorem of linear
elasticity. M is positive semi-definite whereas K is positive definite. C is generally
non-symmetric and is positive definite for any dissipative system.
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Figure 2.1: Plane linear elastic frame with a movable base. Definition of absolute and
relative displacement.

FT(t) = [Fy(t), ... Fnn(t)] is an n,,-dimensional vector of control forces Fy(t) applied at
the point x, in the direction determined by the unit vector e,.

I, is a constant influence matrix of dimension n X n,,. Column « states the nodal loading
in the degrees of freedom u, when a unit force is applied at point X, in the direction e,.

u®T(t) = [ugo)(t),....,u,(o)(t)] is an I-dimensional vector of nodal motions at the base.
As it is shown in fig. 2.1 u{®)(¢) both contain translations and rotations.

U)(¢) is caused by the time-varying base motions u(®(¢). On account of the linearity,
we have

vO(t) = Lu®(@) (2.10)

I, is a constant influence matrix of dimension n x I. Column i states the displacement
in the degrees of freedom u, when ugo) is equal to 1, and the remaining components is
equal to 0. I is determined by statical methods.

The relative displacement v(t) with respect to the quasi-static displacement UO)(t) is
given by

v(t) = u(t) - UO@) (2.11)
Substituting (2.10) and (2.11) into (2.9) the equation of motion is

MV +Cv+Kv = —MLiO@®)+LF() , t>0

v(0) = —I,u®(0) , ¥(0) = ~La®)(0) (2.12)



2.2 Optimal Control of a Discretized System

The equation of motion (2.12) of a discrete-parameter structure under earthquake excita-
tion, i(°)(t), and active control forces, F(t), can be described in state space representation
as

Y(t) = A@)Y () + B1ialO(t) + B2F(2)

Y(to) = Yo (2.13)
where
v —I,u(®
=[] » Yo=[iow) 1)

0 E 0 0
A= [_M-—IK _M-1C 3 B, = [_12] ’ B; = |:M-—111:| (215)

i1O)(¢) is assumed to be the real earthquake accelerations in the degrees of freedom at
the base, for instance in the form of a measured or a simulated earthquake signal.

If i(®)() is not known a priori and has random characters, it is natural to use a stochastic
model. Here, @(®)(¢) is then interpreted as the derivative process with respect to time
{W(t),t € [0,00[} of a Wiener process {W(t),t € [0,00}. A Wiener process is a
Gaussian process for which W(t) = 0 with probability 1, and for which the component
processes { W;(t) , t € [0,00[ , i =1,2,....,m }, obey the incremental properties

E[dW;(£)] = 0 (2.16)

E[dm(tl)de(tg)]:{gt: :ij X E’f__ : (2.17)

Hence, {W(t),t € [0,00[} may be interpreted as a white Gaussian noise.

A more realistic stochastic model for the earthquake acceleration may be obtained by
describing @(®)(¢) as a filtered white noise process. If so the integrated system made up
of the equation of motion and the filter equation, given by an ordinary, linear differential
equation, can still be written in state space form as (2.13).

The optimal control system is designed in such a way that the vibration of the structure
is minimized, using "acceptable” levels of control forces. The level of the vibration and
the control forces is formulated mathematically by a so called performance indez or loss
function.

If i(9)(t) is deterministic the classical quadratic performance index is written as

J = J({F(t)’ te [tO,T[}’Y(tO)vtO)
= %YT (T)S(TYY(T) + % /t ' (YT(t)Q(t)Y(t)+FT(t)R(t)F(t)) dt (2.18)

S(T) and Q(t) are positive semidefinite symmetric weighting matrices and R(?) is a
positive definite symmetric weighting matrix. The time interval [to,T'[ is the period of
the ground motion excitation, i.e., for ¢ > T, ii®(t) = 0. The specification of the
performance index J = J({F(t), t € [to,T[}, Y(to),to) indicates that J is a functional
of F(t), and a function of the initial conditions Y(#o) and the starting time Zo.

If {iig(),t € [to, T} is a stochastic process, the expected value of the right hand side of
(2.18) is used.



2.2.1 Determination of the Control Forces

The optimal control {F*(t), t € [to,T[} is obtained as the loading history minimizing
(2.18). The minimum value of the functional (2.18) is

J= T(Y()t) = et 1D (%YT(T)S(T)Y(T)

4 % ]: (YT ()QUYY(®) + FT(OR(E()) dt) (2.19)

In addition the optimally controlled state Y*(t), caused by the optimal control force
F*(t), is going to be determined.

In eq. (2.18) to is considered as a variable.

The problem of finding the optimal function J*(Y (t),t) can be converted into a problem
of finding the solution to a system of partial differential equations. The theory for
deriving these equations is based on a generalization of the Hamilton-Jacobi theory. From
this theory, called dynamic programming, the following parabolic partial differential
equation is derived, ref. [17].

“% = Fo (1 Y70y + sFTOROF()
+ (%i*)T(A(t)y+B1ﬁ(°)(t) + B?‘“(”)) (220

This partial differential equation for J*(y, ) is called the Hamilton-Jacobi-Bellman equa-
tion, (HJB).

Minimum of the right hand side of (2.20) is obtained, when the partial derivative with
respect to F(¢) is equal 0. This leads to the condition

aJ*
dy

In the derivation of (2.21) it is used that R(t) is symmetric. Rearranging (2.21) the
optimal control force F* is seen to be

R(t)F*(t)+BI— =0 (2.21)

F*(1) = R—l(t)BT o (2.22)

Substituting (2.22) into (2.20) we have

_6‘;* _ 1 TQ() _—(%?) BQR_I(f)BT(%‘;*)

% @i) Ay + (%)TBlﬁ“’)(r) (2.23)

The final condition to the partial differential equation (2.23) is found by setting to =T’
in (2.18)

1
Ty, T)=5y"Sry , Sr=8(T) (2.24)

which is to be fulfilled for all values of y.



Eq. (2.23) is solved by assuming a solution given by
1
T (y,t) = 5y  S(t)y + T (t)y + V(®), (225)

where S(t) is an unknown symmetric matrix, T(t) is an unknown vector and V/(#) is an
unknown scalar. The necessary condition that the assumed solution exists is found by
substituting (2.25) into (2.23),

%yT (S(t) + S(A(®) + AT(1)S(t) - S(1)B2R 7 ()BZ S(2) + Q( D)y
+ TT(t)Blﬁ(o)(t) + V(t) - %TT(t)BzR_l(t)BgT(t) _ 0 (2.96)

Since (2.26) holds for all states y, we require that the quadratic term in y, the linear
term, and the terms not involving y must balance individually. Therefore,

S+ S(t)A(t) + AT(1)S(t) — S(1)B;R1(t)BIS(t) + Q(t) = 0 (2.27)
T(t) + AT(t)T(t) — S(t)B.R1($)BIT(t) + S(1)B1i () = 0 (2.28)
'Wﬂ+T%ﬂBﬁwmy—%ﬁﬁﬂhR*@B?ﬂﬂ:O (2.29)

(2.27) is a matrix Ricatli equation.

Using the assumption @(®)(T) = 0, (2.24) and (2.25) result in the following final condi-
tions for S(t), T(t) and V(1)

S(T) = Sr
T™(T) = 0
Vir) = 0 (2.30)

The condition @(®)(T") = 0 provides that (2.28) fulfils (2.30) for ¢ = T.
The partial derivative of (2.25) with respect to y is given by
aJ*

= 5(t 31
o =Sy +T() (231)
The optimal control force then follows by inserting (2.31) into (2.22),
F*(t) = -R7(t)B]S(1)Y(¢) - R1(#)BIT(2) (2.32)

The first term in (2.32) represents the closed-loop control, i.e. the term depending on
the current state Y(t). The second term represents the open-loop control, which is
independent of the vibration of the structure, but it depends on the external loading
through T. The closed-loop control force is designated F((t), whereas the open-loop
control force is designated F(°)(t). Thus, eq. (2.32) is written in the form

F*(t) = FO() + FO)(1) (2.33)

Using closed-loop control and open-loop control, respectively, the response is designated
Y()(t) and YO(2).
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Closed-loop control is only optimal if T(t) = 0. Hence, it follows from (2.28) and the
final condition T(t) = 0 that @(®)(¢) = 0,t € [to, T has to be valid, corresponding an
autonomous system of the structure and controllers.

In what follows closed-loop control is also used to control structures subjected to external
loading. This is an applicable control device, when the first term on the right hand side
of (2.32) is dominating in relation to the last term. However, if the motion is relatively
small, measured by any norm of Y(2), it is not valid. In this case open-loop control ought
to be employed. Using closed-loop control, the control system becomes instable when
the motion is damped out. This phenomenon appears from an example in chapter 4.

A feedback gain G(t) is defined as

G(t) = R7'(1)B] S(¥) (2.34)
Then for the case of closed-loop control one has

FO®U) = —G@) YO (2) (2.35)

Applying closed-loop control the motion can be obtained by substituting (2.35) into
(2.13)

Y@ = (A(t) - BgG(t)) YO@) + B1uO(t), YO (1) = Yo (2.36)

Under closed-loop control the motion Y(¢)}(¢) is obtained by solving (2.36) numerically
given the initial state Yo. This procedure is used by numerical simulations of the control
system. In practice Y(?)(¢) is measured and inserted directly into (2.35) to obtain the
closed-loop control force.

In order to determine the cost, J(Y(%),%0) of controlling the structure in the interval
[to, T'[ the following identity is used

YT (T)S(T)Y(T) — Y (t0)S(to) Y (to)

_ ftT % (YIS Y () d

T T '
= [ ((A0Y®+Bia®®) +BF W) SOY() + Y SOV
+YT()S(t) (A@)Y () + B1i®(t) + B,F(1)) ) dt (2.37)

In the context of closed-loop control the cost is obtained by substituting (2.27), (2.34),
(2.35) and (2.37) into (2.18). After rearranging, this yields

JOYOt0),10) = SYOT()S(10)YOt0)+ 5 [ ( WBISOYO

to

+ YT (t)S(t)Bliig(t)) at (2.38)

Let u(®(2) be a white noise process and equation (2.13) be an Ito-differential equa-
tion. The increment dW(t) = W(t + dt) — W(t) of the Wiener process and YO)(t)
then becomes stochastically independent, since Y(?)(¢) only depends on the stochas-
tic variables {W(7), T € [to,%[}. Hence it follows that E[dWT()B;S()Y)(2)] =
E[dWT(¢)]B;S(t)E[Y(°)(2)] = 0. Performing the expectation on both sides of (2.38), the
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stochastic integral then vanishes. Consequently, the loss function in case of white noise
processes yields

1
E[JO(Y(to),t0)] = 5 Y (t0)S(t0) ¥ (to) (2.39)
In (2.39) it is assumed that the initial condition Y(°)(tp) = Yy is deterministic.

2.2.2 The Steady-State Solution to the Ricatti Equation

In what follows a constant feedback gain G will be proposed for application to a constant
system matrix A and weighting matrices Q, R.

The solution, S(t), to the Ricatti equation (2.27) may under certain conditions converge
to a limiting symmetric matrix S(oo), when (T —t) — oo. If so, the corresponding
steady-state feedback gain, G, can be written

G(o0) = R7!B7S(00) (2.40)

Applying the limiting feedback gain, G(00), as well in the transient phase, the closed-loop
control law then is

FO(t) = —G(c0)YO(2) | (2.41)

If S(t) does converge, then (T - gm_’ o S = 0, which in the limit results in a quadratic
equation, cf. (2.28).

ATS + SA -SB;R7!BIs+Q = o, (2.42)

Generally, more than one solution exist to (2.42), called a Lyapunov equation. Each
solution is obtained with different initial conditions S(fo) to (2.27). Indeed, the solution
space R™*™ is split up into disjoint subspaces, where every initial condition S(tp) € R™*"
belonging to the same subspace, leads to a solution S(t), which is attracted to one and
the same solution to (2.42).

Some of the solutions to (2.42) may be eliminated by requiring that S is positive definite,
[17].

On the assumption that a system is controlled considerably longer than the duration of
the external loading, we have Y(¢)(T) = 0. Hence, it follows that (2.63) is the control
law for the infinite horizon performance index

J©(00) = % /: (YOT(1)QY© (1) + FOT()RFE(1)) de (2.43)

According to [9], the efficiency of a control system is not affected, when the Ricatti matrix
is approximated by the steady-state matrix, as long as the control period is longer than
the earthquake duration. In [9] this conclusion is based on investigations concerning an
eight storey building under earthquake excitation.

2.3 Independent Modal Space Control

In this section the device of independent modal space control is presented. The basis is
the distributed parameter system described in section 2.1.

Consider the associated homogeneous kinematical boundary conditions of (2.3),

wi(x,t) = 0 , V(x,¢) € Tyx]0,00] (2.44)
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Since U‘-(o)(x,t) fulfils the nonhomogeneous boundary conditions (2.7), it follows that

ui(x,1) - Ui(ﬂ)(x,t) fulfils the homogeneous boundary conditions (2.2) and (2.44). Con-
sequently, the solution to (2.1)-(2.4) can be given in the form

wi(x,1) = U,-(D)(x,t) + i d@l(m)(x)qm(t) (2.45)

where (Ibfm) are the linear eigenmodes and g, () are the modal coordinates. ng) are
obtained from the linear eigenvalue problem

L@Em)(x) - wfnp(x)@gm)(x) =0, Yxe  , m=12,.. (2.46)
Bid™ =0 , VxeTly , m=12,.. (2.47)
™ =0,Vxel, , m=12.. (2.48)
w?, w?, ... are the cyclical eigenfrequencies. Assuming L is self-adjoint and positive

definite, all cyclical eigenfrequencies are real and positive. Further, the eigenfunctions
fulfil the following orthogonality properties

(m) (1 (™) _J0 m#n
fn p(x)®;" (%), (x) dV = { it 5= m (2.49)
f«ﬁ‘.m)(x)m(”)(x) v =149% el (2.50)
q ¢ : wWiMpn, m = n '
M, signifies the modal mass defined as
My = f p(x)BM ()M (x) AV, m=1,2,... (2.51)
Q

Introducing (2.45) and (2.8) into (2.1), and employing the orthogonality properties (2.49)
and (2.50), we obtain

. . — wn My "
Gm + 2wnm (m Im + Cmn dn + W.?n dm
W,

= am(t) + pu(t) , m = 12,0, t €]0,00] (2.52)

where the modal external loadings caused by the displacements at the bound I'; are
given by

_ L [ am 9 0 _
anll) = —31 fﬂ M (x)p(x0) 5500 AV, m o= 1,2, (2.53)
and the modal control forces can be written as
pm(t) = Eﬂ%;b%F(t) i 2 BB (2.54)
2™ (x1)er; | [ Fi(t) T
(™ (xy)es: Fy(1)
b,, = . R(l} = . (2.55)

L Qfm) (xﬂm )emni_ "an (t) -
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The damping ratio {m in the mth mode is defined as

(m) (m)
Zho fp 8008 x) (2.56)

Cm =

The coefficients (m, determine a coupling in the system caused by linear viscous struc-
tural damping. They are given by

o = T a2 () av
" 24/wmtwn M My,

In the absence of feedback control forces (2.52) represents a coupled system of differential
equations. This coupling is referred to as internal. If feedback control forces are present,
however, and the modal feedback control forces p,(t) depend on all modal coordinates
q1,G2,-... and their velocities ¢1, g2, ...., i.e.

(2.57)

Pm(t) = Pml@1, 92,5 G152y -00) (2.58)

then equations (2.52) are ezternally coupled.

According to (2.57) a necessary and sufficient condition for internal decoupling is

3
Z/ (x)3Mx)eM(x)dV = 0 , Ymmn = 1,2, m#En (2.59)
Q

=1
A sufficient condition for (2.59) is, that c(x) is proportional with p(x), cf. (2.49).

In the special case of external decoupling the modal control force in the mth mode pp, ()
only depends on ¢, and g, i.e.

Pakl) = DulGusdn) 5 ™M = 1250 (2.60)

(2.59) and (2.60) imply that the control system can be designed for each mode separately,
where the design takes place in modal space. This is the essence of the independent modal
space control,

Assuming egs. (2.52) are both internally and externally decoupled, we have an infinite
set of decoupled second order differential equations

Ejm + 2‘-‘-’r.n,Crqu'm. + W;Qm = am(t) + pm(Qmsq"m), me=ly st E]Oa 00[ (261)

The equation of motion in the mth mode can be written in state form as

Yoult) = AmYo(t) + B ((am(t) ! pm(Ym)) (2.62)
el el bl e[l

2.3.1 Closed-Loop Modal Space Control

Let us consider optimal independent modal space control. In this case the performance
index is taken in the form

Fomr 31, (2.64)
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where J,,, is the modal loss function chosen as
1 (T 2
T = Moy ]t (YA()Qu Y1) + rmph(t)) dt (2.65)
1]
n, is the number of controlled modes. Q,, is a positive semidefinite weighting matrix of

dimension 2 X 2. 7, is a positive weighting coefficient.

A logical choice for Q,, is

w2 0
Qm = [ ; 1] (2.66)
so that the first term in (2.65) represents the total mechanical energy associated with
the mth mode.

Due to the modal decoupling the minimization of the performance index J can be
achieved by minimizing each and every modal cost function J independently. The
minimization of J,, leads to the modal feedback force, cf. (2.35)

PR (1) = ~Gu(YR(®) (2:67)

Gm(t) is a1 x 2 modal feedback gain matrix given by, cf. (2.42)
1

Gn(t) = T_Bgzsm(t) = [g1,m(t) g2,m(1)] (2.68)

gim(t) = 2m) (2.69)

g2,m(t) = -33;“—(” (2.70)
where

Sn(t) = [0 s2m() 2.71)

S2.m(t) s3m(t)

The optimal closed-loop modal controls can then be written in the form

PO1) = —g1.mB)am — g2m(B)dm » m = 1,2,.,m0 (2.72)

The associated closed-loop equations are obtained by substituting (2.72) into (2.61),

G+ (QWmCm + gZ,m(t)) Gm + (‘-’-’En, + gl,m(t)) 4m = am(t),
m=1,2,..,n t €]0,00] (2.73)

2.3.2 The Ricatti Equation by Independent Modal Space Control

The symmetric weighting matrix S,,(t) satisfies the matrix Ricatti equation, cf. (2.27)
. 1
Sm + SmAm(t) + AL()S,, — rsmBmBgsm +Qn=0 (2.74)

Inserting (2.63), (2.66) and (2.71) into (2.74) results in the following three coupled 1.order
differential equations

5 1
$1.m(t) — 2w§132,m(t) — T—S%,m(t) +wl =0 (2.75)
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S2,m(t) + 81,m() — 20mwmS2,m(t) — Wi s3.m(t) — Tisz,m(t)s3,m(t) =0 (2.76)

. 1
$3.m(t) + 282,m(t) — 4(mwWmsam(t) — T—sg,m(t) +1=0 (2.77)

(2.75)-(2.77) can only be solved numerically. The steady-state solution, however, is easy
to obtain. Letting $; m(f) = $2.m(t) = $3,m(t) = 0, three nonlinear algebraic equations
are obtained. These can be solved to give

38 S
_ 2 2,m°3,m
S$1m = 2Cm‘-"m~92,m +w;,83m + —_,7" 2
m

1
m =Wt [ £ [1 -1 2.78
83, W, T ( + i ) ( )
f ].-I- 282,m
83,m = 2memrm (:I: 1 + m e 1)

In order that S,, can be positive semi-definite it is required that s1,, > 0, $3,» > 0, and
51,m83,m > .s%lm. By this the negative solutions in (2.78) may be eliminated for s3 ., and
83,m, leading to

S 8
81,m = 2mWmS2.m + W2, 83,m + L
Tm
5 1
oo G P 1+ — -7 (2.79)
wmrm

_ / 1+ 282.m
8$3m = 2mem7'm ( Lo 4C12nw,2-nrm 1)

Finally, the steady-state feedback gains g1, and g2, are obtained by inserting (2.79)
into (2.69) and (2.70), respectively. The modal controls are then determined.

2.3.3 Spillover

In practice implementation of the independent modal space control scheme described
above induces control and observation spillover problems. These phenomena are ex-
plained in this section.

The modal control forces p,,(t) determined from (2.72) are only abstract forces. The
actual control forces are synthesized from the modal control forces by solving (2.54).
These equations only have a unique solution provided the number of actuators n., is
equal to the number of controlled modes, n.. Further, equations (2.54) imply that the
actual control forces F(t), excite every single mode. Of course, these forces are selected
so that the vibratory motion of the controlled modes is suppressed. In the process, the
uncontrolled modes are also excited, the phenomenon that has come to be known as
control spillover.

The importance of control spillover may not be too great, if the number of controlled
modes is large. This is due to the placement and regulation of the controllers, whose
spatial locations are generally chosen so as to optimize their effect on the controlled
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modes. Hence, they tend to act in a "random” fashion on the uncontrolled modes and
cancel each other’s effect. For the same reason most of the energy in the frequency
spectrum for the controllers is concentrated about the eigenfrequencies of the controlled
modes. Hence, the effect of control spillover is less, the more the eigenfrequencies of
controlled and uncontrolled modes differs. Evidently, two modes with closely related
eigenfrequencies both have to be controlled, or both left uncontrolled.

Consider the energy level of the mth mode given as

En=g (@t @) M (2:80)

(2.80) can be used to reduce the effect of control spillover. If the modal energy in some of
the uncontrolled modes exceeds that of the controlled modes, the actuators are switched
to control these high energy modes in order to damp their vibration.

In what follows the phenomenon of observation spillover is explained.

ZT(t) = [Z1(t), ...y Zn (t)] is assumed to be an n.-dimensional vector of discrete measure-
ments. Z,(t) determines the displacement of the point with the reference coordinates
xg; = [To1,%a2, T3] in a direction given by the unit vector eg: = [ea1,€a2,€a3)- The
displacement field u(x,t) is given by (2.45). By this,

Zo(t) = eEUO(x,,8) + 3 el @M (x0)gn(t) , @ =1, (2.81)

m=1

If only n. modes are controlled, one obtains

2 eI U (xy,1) Dy - -+ Dig, a1
S S T I | B A
L Zn, er. U (%, 1) Dna + + Duen.d Lan,
Q1 7 eTUO)(xy,1)
| =D |- (2.82)
L gn. Zo, er, U (xy,,1)
where the components in D are given by
D;; = ef 8 (x;) (2.83)
It is seen from (2.83) that the time derivatives of the modal coordinates are
il 7 e UO)(xy,1)
| = DA | - : (2.84)
dn. Zne el UO(xn, 1)

By the experiments the accelerations Z(t) are measured. Z(t) and Z(t) are then obtained
by numerical integration of the acceleration signals. Next, the components (gm,4m),
m = 1,....,n., contained in the modal control law (2.67) are determined from (2.82) and
(2.84).

The observable spillover AZ4(t) is the difference between the real displacements (2.81)
and those determined from the ”truncated” measurements (2.82) and (2.83)

Nc
AZo(t) = Zoft) — eTUO (x4,1) — 3 eZ @M (x4 )gm(t), @ = 1, mc (2.85)

m=1
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Eqs. (2.85) contain modal coordinates calculated from (2.82). Truncating the series
(2.81) they will always be an approximation of the exact modal coordinates in (2.81).
When the control forces are determined on the basis of (2.82) and (2.83) an inferior
control is obtained than if the correct modal coordinates had been used. Hence, the
observation spillover expresses the error caused by truncating the series (2.81) and the
employment of the estimated coordinates in the truncated series.



Chapter 3

Discrete Time Systems

In the preceding chapter active vibration control of continuous time systems was consid-
ered. The control analysis was performed on the following implicit assumptions

¢ The state vector containing displacement- and velocity components is available for
continuous time and noise free measuring.

e The control forces Fi,(t), @ = 1,..,ny, can be calculated on the basis of the measured
state variables at the time ¢ and applied to the structure at the same time.

Consider the case, where the measured signal is an acceleration, designated Zol1). Z5lt)
and Z,(t) can then be calculated by numerical integration. When Z(t) and Z4(t) are
determined in this way they are encumbered with errors because of measurement er-
rors in Z, and local truncation errors in the employed numerical integration scheme,
respectively. Indeed, Za(t) can only be measured at discrete equidistant instants t=kh,
k =0,1,... These limitations are the same concerning sampling of the earthquake exci-
tation {a®(t), t € [to, T[}.

In practice there will be a time delay between the measured variables Z,(t) and the
application of the corrective forces, F,,(t). The time delay is due to on-line calculations
such as numerical integration of the acceleration signals and calculation of control signals.
Further, inertia in the moving parts of the actuators results in time delay.

In this chapter it is assumed that the total time delay caused by on-line calculations
and inertia in the actuators is less than one sampling period h. In chapter 4 a control
algorithm is described in which the time delay is longer than one sampling period h, and
the on-line calculations are less than h.

In active control a common situation is that the measurements are received by a computer
via an A-D converter, and the control signals are transmitted from the same computer
via an D-A converter. Normally, the D-A converter is constructed so that it holds the
analog signal constant until a new conversion is commanded. Hence, the control signal
is also specified at discrete times.

Subsequently, an optimal control law taking into account the above-mentioned practical
problems is developed. The optimal discrete time control problem is first formulated
and solved on the basis of the continuous time problem in chapter 2. Next, the problem
concerning time delay and measuring noise is treated.

18
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3.1 Discrete Time Optimal Control

Discrete time control can be carried out by discretization of the state space equation
(2.13) and the Ricatti equations (2.27)-(2.29) using a difference scheme. Hereby, errors
are introduced in the control law caused by local truncation errors in the difference
operator. In what follows the exact difference equations for the state space - and Ricatti
equations are set up on the assumption of constant earthquake excitations and control
forces between the sampling instants.

The external excitations and the control signals are specified by discontinuous functions
with the convention that they are continuous from the right, i.e. @(®(2) = @(©(to+kh)
and F(t) = F(to+kh) in the interval t € [to+kh,to+(k+1)A[.

The interval [to, T is split up into N equivalent intervals with the length h. Given the
state at the sampling time t; the state at some future time ¢t > o+ kh is obtained by
solving (2.13)

t
Y(t) = O(t, to+kh)Y (to+kh) + / e(t,r) (Blﬁf‘?)(f) 4 BgF(T)) dr  (3.1)
to+kh
where ©(t,7) is the fundamental matrix of (2.13) satisfying
Lo(t,r) = AWe(Lr), 1>7, O(rr)=F (3:2)

Assuming that the earthquake excitations and the control signals are constant between
the sampling instants, one obtains

Y(t) = O(t,to+kh)Y(to+kh) + bi(t, to+kh) a0 (o +kh)

+ ba(t,to+kh)F(to+kh), t€ Jto+kh,to+(k+1)h] (3.3)
where
t
ba(t, o+ kh) = j e(t,7)Bdr (3.4)
to+kh

t
ba(t, o+ kh) = ]

to+k

©(1,7)Bydr (3.5)

The states at the next sampling time ¢ = to+(k+1)h are thus given by

Y(to+(k+1)h) = O(to+(k+1)h,to+kh)Y (to+kh)
+ by (to+(k+1)h, to+kh)i© 1o+ kh)
+ ba(to+ (k+1)h,to+kh)F(to+kh) (3.6)

(3.6) constitutes the difference scheme searched for.

3.1.1 Determination of the Optimal Control Forces

The performance index (2.18) can be written in the form

N—1

J(Y(to),t0) = %YT(to+Nh)s(fo+Nh)Y(to+Nh) + % AL (3.7)
k=0
where
to+(k+1)h
JE = jm;; (YT(T)Q(T)Y(T)-E— FT(T)R(T)F(T)) dr (3.8)
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Using (1.3) in (1.8) gives
JB = YT (14 kR)QEY (to+kR) + FT (to+kh)RS) F(to+kh)
+ 6OT (14 k) QO (2o + kh) + 2YT (t0+kR) QY 5O (to + kh)
+ 2YT (to+ kR)QE F(to+kR) + 2607 (to+kh)QY F(to+kh)  (3.9)

where
(k) to-i—(k-l—l)h T
Q) - / O (r, to+ kh)Q(r)O(7, to+ kh)dT (3.10)
tot+kh
(%) to+(k+1)h T
Q® = / bT (7, t0+kh)Q(7)b1(r, to+kh)dr (3.11)
to+kh
(k) to+(k+1)h -
Q¥ = / b7 (, to+ kh)Q(r)ba(7, to+ kh)dr (3.12)
to+kh
(k) to+(k+1)h T
Q¥ = /t Ot kR)Q(b(r to kh)dT (3.13)
0
(k) to+(k+1)R .
QW = ft L OT(r o+ kR)Q(r)ba(r tok kh)dT (3.14)
o+
to+(k+1)k
RY = /t " (] (r, to+ kR)Q(r)ba(r, to +kh) + R(7)) dr (3.15)
0

Then the performance index is

J = J(Y(to),t0)
= %YT(tU-{-Nh)S(tg-l-Nh)Y(to+Nh)
1 N—
+ 5 E
k=0
+ 6O (104 kR)QP 5O (1o + kh) + 2YT (to+kh) QY ia(to+kR)

+ 2Y7T (to+kR)QEF (10 + kh )1+ zﬁ(O)T(to+kh)Q§‘;)F(to+kh)) (3.16)

(YT(t0+kh)Qg’g)Y(t0+kh) + FT (to+ kR)REF (to+ kh)

The objective is to determine the control sequence {F*(to+kh), k¥ = 0,..,N—1} to min-
imize (1.16). Next, the state sequence {Y*(to+kh), k = 0,..,N—1} is determined from
(1.6).

The initial time ¢ is considered as a variable. The optimal performance index J*(T'—kh),
k = 1,..,N is determined stage-by-stage from the final time 7. For ¢ = T the final
condition is given according to (2.24)

J*(Y(T),T) = %YT(T)STY(T) (3.17)
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Assume that the minimum cost of the process J*(y,T—(k—1)h), k = 1,.., N, starting at
t = T—(k—1)h is known for all values of the state vector y € R". Hence, for t = T'—kh
the optimal performance index can be written as

J* = J(Y(T—kh),T—kh)
min 1
= F(T—kh) (gYT(T—kh)Qg_k)Y(T—kh)

¥ —21—FT (T—kh)RY P F(T—kh) + %ﬁ(D)T (T—kR)QY ™ aO(T—kh)
+ YT (T -kR) QU PaO(T-kh) + YT (T-kh)QY ™M F(T—kh)

+ WOT(T - kR)QUPE(T—kh) + J*(Y (T~ (k= 1)h), T~ (k- 1)h))

(3.18)
Eq. (1.18) is solved by assuming a solution for arbitrary y € R", given by
J* = J*(y,T—kh)
= %yTS(T—kh)y + yIT(T—kh) + V(T—kh), k=0,..,N (3.19)

where S, T and V are an n X n positive definite symmetric matrix, an n X 1 vector, and
a scalar, respectively. They will be selected so as to force (1.19) to satisfy (1.18).

First (1.19) is inserted into the right hand side of (1.18), and next (1.6) is used to
eliminate Y(7' —(k—1)h). Since there are no restrictions on F(7 —kh), the minimizing
F(T —kh) is then found by setting the gradient with respect to F(T'—kh) equal to zero.
After some calculations this yields

F{(T-kh) = -Q§™ ((Qé?”“” +bI(T—(k—1)h, T~ kh)
S(T—(k—1)h)O(T— (k- 1)h,T—kh)) Y(T—kh)
n ( (N-RT 4 bT(T = (k—1)h, T—kh)S(T - (k—1)h)
bl(T—(k—l)h,T—kh)) (T -kh)
bg"(T—(k—l)h,T—kh)T(T—(k—l)h)) (3.20)
where
g = (Rf«g_k) + b3 (T—(k—1)h,T—~kh)

S(T—(k—l)h)bg(T—(k—l)h,T—kh))_1 (3.21)

After rearranging and simplifying, this gives
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It o=

+

J*(y, T—kh)

v ((Q‘N"“’ + ©T (T—(k—1)h, T=kh)S(T—(k=1)h)O(T—(k-1)h, T—kh))

(Qg;’—‘“) + ©T (T—(k—1)h, T—kh)S(T—(k-1)h)by(T—(k~1)h, T—kh)) (N—H)
( (VKT | BT (T—(k=1)h, T—kh)S(T—(k-1)h)®(T—(k-1)A, T_kh)))

4 (((Qgﬁ""“) % @T(T—(k-—l)h,T—kh)S(T—(k—l)h)bl(T—(k—l)h,T—kh))
(N-F)

(Qm"“) + ©7 (T—(k=1)h, T-kh)S(T—(k=1)h)ba( T—(k-1)h, T—kh))

(Q(N—k-)T bg‘(T._(k_l)h,T—kh)S(T—(k—l)h)b1(T—(k—l)h,T—kh))) ﬁ(o)(T—kh)

(@T(T—(k—l)h,T—kh) - ( )
@T(T—(k—l)h,T—kh)S(T—(k—l)h)bz(T-—(k—l)h,T—kh))

(NR T (T—(k—1)h, T—kh))) T(T—(k—l)h))

%fi(ﬂ)’f (T—kh) (( (NH) L wT(T—(k=1)h, T—kh)S(T—(k=1)h)by(T—(k—1)h, T—kh))
(Q(N_k) 4 BT (T—(k=1)h, T—kh)S(T=(k=1)R)bo(T—(k=1)h, T—kh)) (3-4)

(Q(N—k)T + b (T—~(k-1)h, T-kh)S(T—(k-1)h)by(T—~(k-1)h, T—kh))) iO)(T—kh)

aOT(T—kh) ( (N=F) 4 BT (T—(k—1)h, T—kh)S(T—(k—1)R)bo(T—~(k-1)h, T—kh))
QUPBT (T (k—1)h, T—kh) — bT(T—(k-1)h, T»kh)) T(T—(k-1)h)

§TT (T—(k=1)h)by(T—(k=1)h, T—kh)QS P b (T—(k—1)h, T-kh)T(T—(k~1)h)
V(T—(k-1)h) (3.22)

Substituting (3.19) into (3.22) and equating the left-hand and right-hand sides, the as-
sumed form for J*(y,T—kh) can be forced to be the solution for all y € R™ by requiring
that the quadratic terms, the linear terms, and the terms not involving y all balance
individually. This requires
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S(T—kh) =
(Q(N*) + ©T(T—(k-1)h, T_kh)s(T—(k—uh)@(T—(k—l)h,T—kh))
( (V) 1 @T(T—(k—1)h, T—kh)S(T—(k—1)h)ba(T—(k-1)h, T—k'h)) 22

( (N-OT | pT(7_(k-1)h, T—kh)S(T—(k-—l)h)@(T—(k—l)h,T—kh)) (3.23)

T(T—kh) =
((Q(N—k) + ©T(T—(k-1)h, T_kh)s(T_(k_l)h)bl(T—(k—l)h,T—kh))
(N-k)

(Qoﬁ’ + O (T—(k=1)h, T—kh)S(T—(k-1)h)by(T—(k-1)h, T—kh)) 4

( (NRT 4 BT (T—(k=1)h, T—kh)S(T—(k—l)h)bl(T—(k—l)h,T—kh))) a©(T—kh)

(@T(T—(k—l)h, T—kh) — ( (PR
@T(T—(k—l)h,T—kh)S(T—(k—l)h)bg(T—(k—l)h,T—kh))

QNHBT(T—(k-1)h, T—kh))) T(T—(k-1)h) (3.24)

V(T—kh) =
%ﬁ(O)T(T—kh) (( AR b'f(T—(k—l)h,T—kh)S(T—(k—l)h)bl(T—(k—l)h,T—kh))

(Qu*) + bT(T—(k-1)h, T—kh)S(T—(k—1)h)by(T—(k-1)h, T—kh)) (N=6)

( (N0 4 BT (T—(k=1)h, T—kh)S(T—(k—-1)h)by (T—~(k-1)A, T—kh))) i1©)(T—kh)
aOT (T—kh) (Q(N—k) +b'{(T_(k_l)h,T_kh)s(T_(k_l)h)bz(T—(k—l)h,T-kh))

QUDBT(T—(k-1)h, T—kh) — bT(T—(k—l)h,T-kh)) T(T—(k-1)k)

ETT(T—(k—l)h)bg(T—(k—l)h,T—kh)Qm‘k)bT(T _(k=1)h, T—kh)T(T—(k-1)h)
V(T—(k-1)h) (3.25)

The final conditions for (3.23)-(3.25) are S(T) = St, T(T) = 0 and V(T) = 0.

(3.23)-(3.25) are the exact difference equations for (2.27)-(2.29). (3.23) is the discrete
time Ricatti equation.
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In order to determine the optimal control force F*(to +kh) given by (3.20), (3.23) is
solved first, and next (3.24). Actually, (3.25) never needs to be solved if the only interest
is finding the optimal control. V(¢p+kh) is only needed if J* has to be calculated.

Assume @(ty+kh) = 0, k = 0,..,N — 1, corresponding an autonomous system.
Then (3.24) is a homogeneous equation with zero initial conditions T(T) = 0, so
T(to+kh) =0, k = 0,.., N—1. Additionally, V(to+kh) =0, k=0,..,N -1

According to (3.22), when an autonomous system is considered, the optimal cost at any
time in the interval [to+kh,T], k= 0,..,N —1, is seen to be

1
Yye R" : J*y,to+kh) = in S(to+kh)y (3.26)

The optimal control law given by (3.20) has the same form as the continuous time control
law (2.32). Thus, the optimal control force is composed of a closed-loop part depending
on the current state and an open-loop part depending on the external loading. In what
follows only the closed-loop control is considered. This is only optimal by free vibrations.
In other cases the limitations described in section 2.2.1 are the same.

To facilitate, define a feedback gain sequence as

Glio+kh) = %’5’( T 4 bT (to+ (k+1)h, to+kh)
S(t0+(k+1)h)®(tg+(k+1)h,t0+kh)) (3.27)

so that the closed-loop control force given by (3.20) can be written in the form

FO(to+kh) = —G(to+kh) Y (to+kh) (3.28)

3.1.2 Steady-State Feedback Gains

A time-invariant structure matrix A is assumed. Hereby, the fundamental matrix of
(2.13) can be written as, cf. (3.2)

O(t,r) = exp(A(t—7)), t > T (3.29)

where
1
2!

As an alternative to the Maclaurin series (3.30) exp(At) can be calculated from

exp(At) = E4+ At + —AAt* +--- (3.30)

exp(At) = ®exp(At)P ™! (3.31)

® and exp(At) are an nX n dimensional modal matrix and a diagonal matrix, respectively,
defined as

&=[20 . . . o)) (3.32)
exp(Aqt)
exp(At) = . (3.33)

exp(Ant)
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X, 1) are eigenvalues and eigenvectors to A
AW = \00) i=1,.,n (3.34)

Since A is non-symmetric, A; and () are normally complex.

In this case ©(t,7) only depends on ¢ and 7 through the difference t—7. Thus, we have

O(to+(k+1)h,to+kh) = ©(h,0) = exp(Ah) (3.35)
bi(to+(k+1)h, to+kh) = by(h,0) = A~ (exp(Ah) — E)B; (3.36)
by(to+(k+1)h,to+kh) = by(h,0) = A~ (exp(Ah) — E)B, (3.37)

Furthermore, the matrices Q and R are assumed to be time-invariant, so that the system
matrices (3.10)-(3.15) are time-invariant. For that reason the upper index (k) is omitted
in the remainder.

(3.23) is solved backward in time beginning at time T'. As T — oc the sequence S may
under certain conditions converge to a steady-state matrix S(oo).

If S does converge, then for large T, evidently S(oc0) = S(T'—kh) = S(T'—(k—1)h). The
steady-state solution of the discrete time Ricatti equation (3.23) is thus determined from
the system of non-linear equations

S = QOO + G)T(haO)S@(haO)
i
- (Qoz + @T(h,O)Sbg(h,U)) (Rzz B (h,O)Sbg(h,O))

(@5, +bi(h,050(1,0)) (3.38)

(3.38) represents the Lyapunov equation concerning discrete time systems. Like the con-
tinuous time formulation (2.42), (3.38) represents n(n + 1)/2 non-linear equations which
have to be solved by iteration. For n = 2 the analytical solution from the continuous-
time system (2.79) can be used as a starting value by the iteration. Generally, more than
one solution of the quadratic equation (3.38) exist. The extraneous roots can usually be
eliminated by the requirement that S must be positive semi-definite.

If the limiting solution exists then the corresponding steady-state feedback gain is

-1
G(0) = (Rzz+b§(h,0)5(oo)b2(h,o)) (Qg2+ b’{(h,O)S(oo)@(h,o)) (3.39)
The following time-invariant, closed-loop control law can then be used

F©)(tg+kh) = —G(00) Y (to+khR) (3.40)

3.2 Measuring Noise and Time Delay

In practice the control law (3.28) is not applicable, since the state vector Y (tp+kh) cannot
be determined exactly by direct measuring and the control forces cannot be applied to
the structure at the same time as the measurings are made. Thus, a control law is
introduced in which the control force is based on an estimate of the state vector at the
time where the control force can be applied.
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The measurements, Z(tgp+kh), made while the system is in stage to+kh, are assumed to
be linearly related to the state Y(to+kh) by

Z(to+kh) = DY(to+kh) + e(to+kh) (3.41)

D € R"™" is a time-invariant transformation matrix and {e(to+kh), k =0,..,N-1}isa
white Gaussian random sequence, which means that e(fo+kh) is a normally distributed
stochastic vector, fulfilling

Vk=0,.,N-1: Ele(to+kh)]=0 (3.42)

Vkl=0,.,N-1:

Ele(to+kh)eT (to+1h)] = { 0 l#k

Re(to+kh), 1=k (3.43)

The white Gaussian random sequence is designated stationary if the covariance matrix
Re € R™" does not depend on k, which is assumed.

Besides, it is assumed that {i(®(to+kh), k = 0,.., N—1} in the difference equation (3.6)
is a non-stationary white Gaussian random sequence, which implies

Vk=0,.,N-1: E[a®+kh)] =0 (3.44)

VkiI1=0,.,N-1:

) ) 0, YT
E[i (to+kh) i (to+11)] = { Ry (to+kh), | ? k (344)
ulo LI
VkiI1=0,.,N-1:
) 14k
GO+ (o ] =3 B g da

Since the earthquake excitation is non-stationary the covariance matrix Ryo)(fo+kh) €
R3*3 in (3.45) and Ry)e(to+kh) € R**™ in (3.46) depends on time.

Next, the object is to make a good estimate Y(to + (k + m)hlto +kh), m € Ry of
Y (o + (k + m)h) from measurements {Z(to + jh), j = 0,..,k} up to time to+kh, which
are imprecise and only functions of the state variables, knowing, too, that the system
itself is subjected to random disturbances in the interval [to+(k+1)h,to + (kK + m)A[.
The notation Y(to + (k + m)h|to+kh) is used to indicate, that it is an estimate based on
measurements available from the time interval [to,fo+kh]. This is a prediction problem
and the resulting dynamic system for the estimated state is called a filter.

3.2.1 Kalman Filter

In the prediction problem, consider the structure described by the linear stochastic dif-
ference equation (3.6), where

Vk=0,..N-1: E[Y(to+kh)]=Y® (3.47)

Vk=0,..,N-1:
E [(Y(to-l-kh) ~ Y0 (Y(to+kh) - ¥O) T] = Ry (to+Fkh) (3.48)
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Vk=0,.,N=1: E [Y(to+kh)il7 (to+kh)| =0 (3.49)

Vk=0,,N-1: E[Y(lo+kh)e'(to+kh)| =0 (3.50)

(3.49) is due to (3.6) which states that Y({o+kh) is generated by the sequence {ii(to + jh),
j=0,.,k—1} and therefore, Y(#o+kh) and ii(to+kh) are stochastically independent.

It is assumed that the the measuring noise and the excitation are uncorrelated, which
means that Ry = 0.

Let the estimator have the form
Y (to+ (k+m)h|to+kh)
. to+(k+m)h
— O(to+(k+m)h, to+kh) Y (to+khlto+(k—1)h) + j O(t,7)ByF(r)dr
to+kh

+ H(to+(k+m)h) (Z(to+kh) — DY (to+khlto+(k— 1)h)) (3.51)

Here H is a time dependent gain matrix, which has to be chosen in a suitable way. The
term Z — DY, is the difference between the measured and estimated outputs.

We shall look for a minimum-variance estimator, which refers to one minimizing the
mean square estimation error. Introduce the estimation error

AY (to+(k+m)h) = Y(to+(k+m)h) — Y(to+(k+m)h|to+kh) (3.52)
Inserting (3.1) for ¢ = to + (k + m)h, (3.41) and (3.51) into (3.52), and regrouping gives

AY(to+(k+m)h) = (@(to+(k+m)h,t0+kh)

_ H(t0+(k+m)h)D) AY (to+kh)
to+(k+m)h
+ (t,7)B1a0(r)dr
to+kh
— H(to+(k+m)h)e(to+kh) (3.53)

Introduce the variance of the estimation error, P({o+kh), defined as

P(to+kh) = E[(AY(t0+kh)—E[AY(t0+kh)])

(AY(tu-Jr-kh) - E[AY(tg+kh)])T] (3.54)
From (3.53) and by use of (3.4), (3.49) and (3.50), we have

P P(to+(k+m)h)
= E[AY(to+(k+m)h)AYT (to+(k+m)h))]

T
(@(t0+(k+ m)h,to+kh) — H(t0+(k+m)h)D)
+ by (to+ (k+m)h, to+kh) R0y (to+kh)bT (to+ (k+m)h, to+kh)

+ H(to+(k+m)h)ReHT (to+(k+m)h), k= 0,..,N-1 (3.55)
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The criterion for choosing the unknown matrix H(to+(k+m)h) in (3.51) is to minimize
the scalar dTP(tg+ (k+m)h)d, where d € R™ is an arbitrary vector. Setting up this
scalar and rearranging, it is seen that the minimum value is obtained, if H is chosen as

-1
= O(to+(k+m)h, to+kh)P(to+kh)DT (Re + DP(t+kh)D”) (3.56)
Then the minimized value of the updated estimation error covariance matrix is
= O(to+(k+m)h,to+kh)P(to+kh)O (to+(k+m)h, to+kh)
— @(to+(k+m)h, to+kh)P(to-+ kh)DT (Re + DP(to+kh)DT) "
DP(to+kh)OT (to+ (k+m)h,to+kh)
+ by (to+ (k+m)h, to+kh) R (to+kh)bT (to+ (k+m)h, to+kh) (3.57)

For m=1, (3.58) is a difference equation which states P(to + kh), k =1,..,N -1 with
the initial condition P(#p) = 0. Next, P(to + (k + m)h) can be calculated for arbitrary
k and m from (3.58).

The reconstruction defined by (3.51), (3.57) and (3.58) is called the Kalman filter.

The closed-loop control force F(9)(to+(k+m)h) is then determined on the basis of the
estimate Y(to+(k+m)h) by

FO(tg+(k+m)h) = ~GY (to+(k+m)h) (3.58)
where G is given by (3.39).



Chapter 4

Experimental Study of
Closed-Loop Control

Experiments of active control were carried out in the laboratory using a model structure
under a linear closed-loop control as developed in chapters 2 and 3.

Two series of experiments were carried out :
e modal space control of free vibrations
e modal space control of forced vibrations caused by a harmonic base excitation

Initially, modal properties were identified for system identification, such as eigenfre-
quencies and modal damping ratios. These parameters were identified by uncontrolled,
damped free vibration tests.

4.1 Experimental Setup

The model structure was mounted on a seismic simulator. Transducers measuring the
structural behaviour were attached to the model. The signals from the transducers were
directed to a microprocessor (a microcomputer COMPAQ portableIII™) which gener-
ated the signal for the control force. The control force was actually transmitted to the
structure through a active mass damper using the signal generated by the microprocessor.

The model structure is a monopile with two concentrated masses, see fig. 4.1. It is made
as a 4 m high box profile (70 x 40 x 4) with two concentrated masses of approximately
25 kg. The pile is bolted to a plate, called the base. This plate is fastened to two spring
blades which can only move in one direction.

The forced vibrations were due to horizontal movements of the base. The movements
were created by a hydraulic cylinder, Schenck, type P1 63H connected to a control system.
This system provided a sinusoidal movement with a given amplitude and frequency.

Three transducers were installed on the model. A displacement transducer was installed
on the base and an accelerometer was mounted on each of the concentrated masses.
The signal from the displacement transducer was used directly as a measure of the
displacement of the base, and it was differentiated numerically to give the velocity . The
measured acceleration signals, 7, and Z,, were used to determine the displacement and
velocity of the two concentrated masses. This conversion was carried out by numerical
integration.

29
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Figure 4.1: Experimental model without actuator.

On the instrumented model, an active mass damper was mounted to generate a control
force. It consists of a vibration exciter, (also called a shaker), Briiel & Kjeer, type 4809,
and a secondary mass. The shaker and the secondary mass are placed on either side of
the pile in order to avoid a considerable excentric loading.

The secondary mass is mounted on a roller bearing nearly without friction and rigidly
connected with the moving element of the shaker. The maximum displacement of the
moving element is § mm peak to peak, which is less than the maximum displacement of
the roller bearing.

The secondary mass is constructed of small masses of approximately 1 kg. Then it is
possible to vary the secondary mass, but in all experiments we have used 10 kg. The
shaker and the secondary mass are mounted on a console, and the total weight of this
system, designated mg, is 26 kg, see fig. 4.2.

The main dimensions of the model structure and the location of the console are shown
schematically in fig. 4.3.

The on-line calculations of the control algorithm were carried out by the microprocessing
unit based on an COMPAQ portableIlI™ microcomputer. The microprocessor was
operated by MS-DOS 3.2 operating system and real-time processed Turbo Pascal 5.0
commands. The acquired data were transferred to the microprocessor and the computed
data were transmitted to the actuator, using an analog and digital I/O board, DT2821.
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Figure 4.2: Active mass damper.

HZ=2% Kp - 0.25 m
m3=26 kg ' l,_’
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{=6.3 kg/m 2.00 m
base B (5

Figure 4.3: Experimental model with dimensions.

4.2 Implementation of Closed-Loop Control in Modal Space

In this section the control concepts in the preceding chapters are modified for implemen-
tation in practice.
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The three measured signals, two accelerations Z4, a@ = 1,2, and the base displacement
u(® are sampled asynchronously. The sampled version of the three signals is given by
the sequences : {Z1((3k—2)ho), k = 1,2,....,; N}, {Zo((3k—1)ho), k = 1,2,....,N} and
{u(®(3khg), k = 1,2,....,N}. hg is the sampling period of the serial-sampling. The
sampling period defined in chapter 2 is then given by h = 3hq¢.

The control schemes described in the preceding chapters implies that the full state vector
is measured at the same time. Because of the asynchronous sampling it is not possible
to determine all components in the state vector directly at the same time. Thus, the
sampled signals are extrapolated to the nearest common time. The displacement of the
base is sampled last, and the acceleration signals are extrapolated to that sample time
by linear regression. This yields, see fig. 4.4

 [Z(GBr-2)ho) + 3 (Z1((3k—2)ho) — Z1((3k—5)ho))

- [22((%-1);;,0) + 1 (Z2((3k~1)ho) ~ Za((3k—4)ho)) |
k=0,1,..,N-1  (41)

b

From the extrapolated state vector, the Kalman filter is used to estimate the state vector
corresponding to the time at which the control force can be applied, cf. (3.58).

Z5(3kho)

4 Zy((3k — 1)ho)
Z((3k — 4)ho)

. Z (3kho)

Z((Bk—-2ho) .
Z:((3k — 5)ho) _ . | u©)(3khy)
: C 43k — 3)ho) :
i a | | | I >
(3!-#5}?’1u (3k—4}hﬂ (GK-B)hD (Sk—2)h° ((3k*1)h0 3|—<hu

Figure 4.4: Linear extrapolation of acceleration signals.

4.2.1 Filtering and Numerical Integration of the Sampled Acceleration
Signals

The mean value of the base excitation is zero and consequently, the mean value of the
measured acceleration signals has to be zero since the model is linear. To ensure that the
mean value criterion is fulfilled a moving average digital filter is implemented. A digital
filter of order Ny based on the extrapolated accelerations (4.1) is chosen as

k
G ma(3kho) = Za(3kho) — Nig Y Zu(3ihe), a=1,2, k> No (4.2)
1=k—No+1
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An input sequence corresponding to about one vibration period is desired. If the period
of the lowest eigenmode is designated T, we have

where [-] denotes Gauss’ symbol. Displacements and velocities are determined by numer-
ical integration of (4.2). Use of the trapezoidal rule yields

. 1. L =1 )
Za(3kho) = (3 Zama(0) + 3 Zamal3kho) + 3 Zumal3ita) )T

i=1
=172 (4.4)
The velocity sequence determined from (4.4) is filtered by analogy with (4.2)
) . 1 k )
Zama(3kho) = Za(3kho) — — Y. Za(3iho),a=1,2 ,k > No (4.5)
‘ No . SR

Finally, the filtered sequence Zy,ma, @ = 1,2 is determined after the same procedure as
the filtered sequence Z, mq, @ = 1,2

The mean value of the filtered velocity sequence is not expected to be 0 until after
one vibration period. Further, one vibration period will pass before the displacement
sequence is expected to have zero mean, see fig. 4.5.

Z5(t) [m/sec]
0.2

Zy(t) [m]

displ t
61 disp acemen{

velocity

0.05H . 0.1 .

5 VAWV 0 | j | {

-0.05 : : -0.1 ' :
0 10 20 30 0 10 20 30
t [sec] ¢ [sec]

Figure 4.5: Displacement and velocity of m; determined by numerical integration.

The relative velocity and displacement are given by

Va(3kho) = Zo ma(3kho) — u(®(3kho)
‘ } ,k=0,1,.,N-1,a=1,2 (4.6)
Ba(3kho) = Zoy ma(3kho) — w0 (3kho)

#(®)(3kh) is determined by numerical differentiation according to

w(®(3kho) — u®(3(k — 1)ho)
3ho

4@ (3kho) = (4.7

The modal displacements and - velocities are then obtained according to (2.82) as

(3kho)] _ 11y7-1 [21(3kRo) _
[31(3%3] = (D™ [v;(Skhg)] v k=01, N=1 (4.8)
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11(3kho) | _ 1y -1 [ 91(3kho) ~
9] o [3089] . e
B Q(i)(h) @?)(h)
- [‘I’il)(fz) @gz)(fz)] (4.10)

4.2.2 Estimation of Modal State-Space Vector

In these experiments with active control the time delay was large compared to the sam-
pling period h = 3ho. The total time delay was mainly caused by the delay between the
control signal sent off and the time, where the desired acceleration of the secondary mass
was obtained. This time delay is designated mh, where m is given as

m=d+moy, mo€]0,1[ ,d=0,1,2,.. (4.11)

In state form the modal equation for the jth mode can be expressed as, cf. (3.1) and
(3.29)

Yi((k 4 mh) = oxp ( Aj(mh) ) Y,(kh)
+ /kik-l-m)h exp ( A;((k+m)h—r1) ) B;pj(r)dr

(k+m)h
+ /k:+ exp ( Aj((k+ m)h — 1) ) Bj&j(T)dT (4.12)

Y;, A; and B; are given by (2.70), a;(t) by (2.53) and p;(t) by (2.67).

The two integrals on the right hand side of (4.12) are considered separately. The integral
containing the modal control is split up. This gives

(k+mo)h
/kh exp ( Aj((k+d+mo)h — 1) ) Bjpj(r)dr

(k+d+mo)h
+ /(k " exp ( A;((k+d+mo)h— T) ) B;p;(7)dr (4.13)
+mo

It appears from fig. 4.6 that p,,(¢) is constant and equal py, ((k -1+ mg)h) in the
interval Jkh, (k + mo)h]. Then the first term in (4.13) can be written as

(k+mo)k
/kh exp (Aj ((k +d+ mo)h — r)) B;p;(r)dr

= b, (k= 1+ moh ) (419
where
(D) (k-l-mg)h
bl,j = fkh exp (Aj ((k +d+ mg)h — ‘r) ) drB;
= Afl (eXP (Aj(d+ mo)h) — exp (Ajdh)) B; (4.15)

The second term in (4.13) yields

/ exp (AJ— ((k+d+m0)h—r)>ijj(T)dr
(k-l-mo)h
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Figure 4.6: Discrete time modal control force.

The second term in (4.13) yields

(k+d+mo)h
f( exp (Aj ((k-{-d—{- mo)h — T)) B;p;(r)dr

k+mo )h.

(k+i+mo)h
*E/ exp (AJ- ((k+d+m0)h—-r))ijj(r)dT
= (k+i—14mg)h
& Zb” P; ((k+i— 1+mg)h)
where
by = j _ exp (Aj ((k-}-d-{-mg)h—T))dTBj
(k+1—1+ﬂ"to)h

The last integral in (4.12) is solved in the same way, see figure 4.7
(kh+d+mo)h
f exp (Aj ((k‘+d+ m)h—T))Bjaj(T)dT
k

h

(U)GJ ((k— 1 +m0)h) +Xd:b ) a; ((k+i— 1+m0)h)

i=1

Hereby, (4.12) can be written in the form

Yi((k+d+mo)h) = exp (AJ- ((d + mo)h))) Y ;(kh)

d »
S b (p,- ((k+i-1+mg)h)

+

i=0

a; ((k-}-i—l-}—mo)h))

+

Al (exp (Aj(d— i+ 1)h) — exp (Aj(d— z')h) ) B
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(4.16)

(4.17)

(4.18)

(4.19)



36

am(t)
A ((k +mo)h) —
b
! | | | P
kh — h kh kh + dh
| | H
h dh L

Figure 4.7: Discrete time modal base acceleration.

When the base excitation is harmonic u(®) = ugo) sin(wt), we have, cf. (2.53)
a(f) = —— Z ( /’ ( 39 (z:)ulz: )a Sul) sin(wt) ) da;
-7 1=1
+ dU)y )m.—ué )sm(wt) ) =
(0)

3 g .
a;(kh) = ”U—M:-’—sin(wkh);( /0: ‘DE”(:J;;)#(&:;)dIg-{-‘I’EJ)(I,-)m,‘) (4.20)

If aj(t) instead is a white Gaussian noise, the future state is predicted on the basis of
the Kalman filter (3.51),

Y;((k + m)hlkh)

& (Aj(d + mo)h) (khI(k - 1)h)

+ Zblgp.r ((k-i—i—l—!—mg)h)

1=0

+ H((k+m)h) ( Z(kh) — DY ;(kh|(k — 1)h)) ) (4.21)

D is given by (4.10). In the context of data acquisition, linear extrapolation and numer-
ical integration, the measuring noise is assumed to be negligible, i.e. Re ~ 0. Hence,
the gain matrix H;((k + m)h) is reduced to, cf. (3.56)

H;((k + m)h) = exp(A;(d + mo)h)D™! (4.22)

Finally, the estimated state vector is obtained by substituting (3.41) and (4.22) into
(4.21)

(k4 mBER) = exp(As(d-+ ma)h) Y (kA — DA)

+ }:b1 % pi((k+1i— 14 mo)h) (4.23)

=0
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4.2.3 Determination of the Control Force

For the considered closed-loop control system the Ricatti matrix is assumed to be time-
independent, cf. (3.23).

Thus, the modal control force for the jth mode is given in the form, cf. (3.28)
pO((k + m)b) = —G; ¥ ((k + m)hlkh) , j=1,2 (4.24)
where the modal gain vector in the jth mode is obtained from, cf. (3.39)
=
G; = ( raag + b3 ;(h,0)S;ba ;(k, 0) ) ( Q%z,; + b7 ;(7,0)8;0;(h,0) )
(4.25)

S, is obtained from the steady-state Ricatti equation in modal space, cf. (3.38)

S; = Qoo; + ©7(4,0)5,0(,0)  ( Qua+ O] (h,008;b2,(h,0) )

-1
( ra2,5 + b1 ;(h,0)S,b3,;(h,0) ) ( Q% + bl (R, 0)8;0,(h,0) )
(4.26)
in which

®;(h,0) = exp(Ah) (4.27)

bg,_,'(t, kh) = /; exp (A;(t — T)) B;dr
= Aj'(exp(A;(t — kh)) — E)B; (4.28)

A; and B; are given by (2.63). Qoo,j, Qo2 and ry3; become, cf. (3.10), (3.14) and
(3.15)

(k+1)R

Qoo = / @7 (r,kh)Q;®;(r,kh)dr (4.29)
kh
(k+1)h

Qua; = fk O (r,kh)Quba(r kh) dr (4.30)
(k+1)h

g /kh (bT (v, kh)Qjba s(r, kh) + 1) dr (4.31)

The modal weighting matrix Q; is chosen as (2.66).

The modal weighting factor r; for the jth mode is assumed to be time-invariant. As r;
increases, more weight is placed on the control energy in the performance index (2.65) and
hence, the control force decreases. Then r; has to be chosen in proportion to the available
control force. In figure 4.8 the gain factors g1, and g, are illustrated as functions of r;.
The values on the abscissa are those which are relevant in the experiments.

On the basis of the estimated modal state vector the energy level in each mode is calcu-
lated according to (2.80). Then the mode with the highest energy level is controlled.

From the modal control force given by (4.24) the physical control force is calculated from
(2.54). Since only one actuator is implemented, the physical control force is given by

P (k) M;

FO(kh) = 22—
85 (15)

, k=0,1,.,N—-1 (4.32)
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Figure 4.8: Gain factors as a function of r;.

4.3 System Identification

4.3.1 Determination of Dynamic Parameters

The dynamic parameters of the model structure were identified experimentally for the
two lowest modes in the direction of the excitation.

The dynamic properties are determined for the distributed parameter model shown in
fig.4.3.

A free vibration test was carried out for the first and second mode, respectively. In
each test the base was subjected to a sine excitation with constant amplitude and with a
frequency implying resonance in the model. When resonance was obtained the excitation
was stopped and subsequently, the acceleration of the free vibration was measured.

The damping ratio is determined from the logarithmic decrement é given by
1 a1
§=—In|— .
la (az) (4.33)

N is the number of cycles, a; and a; are the amplitudes for the first and last oscillation
within the considered periods.

The damping ratio in the jth mode, (j, is then determined from the associated logarith-
mic decrement §; as

.13
(===, j=1,2 (4.34)

1- (3)
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(1 (2
0.0014 | 0.0050

Table 4.1: Modal damping ratios determined from the logarithmic decrement.

The estimated modal damping ratios are given in table 4.1.

The eigenfrequencies in the two lowest modes, fi and fz, were estimated on the basis of
two identification methods. Firstly, they were estimated by determination of the average
frequency of the sampled acceleration signals. Secondly, the power spectral density of
the sampled acceleration signals were estimated and the eigenfrequencies were obtained
by reading the spectral peaks.

The estimated eigenfrequencies are given in table 4.2.

fi [Hz] | f2 [HZ]
Free vibration frequency 0.83 T.17

Spectral peaks 0.84 7.16

Table 4.2: Experimentally determined eigenfrequencies.

4.3.2 Determination of Modal Parameters

The eigenmodes ®(!)(z) and 3()(z) are determined theoretically on the basis of the
Bernoulli-Euler beam theory.

T 9
lg @2(1‘2) 1 T2
B |
/ Pa(z3)
= >
-
T |
l d,(z1)
>
i

Figure 4.9: Mathematical model of the structural model.

The eigenmodes are composed of three parts, ®;, ®; and @3 belonging to the discrete
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beams with length /1, l» and I3, respectively, see fig. 4.9. According to the Bernoulli-
Fuler theory neglecting the influence of the axial force the eigenmodes are obtained as
solutions of the following differential equations

TCRPY

o -ﬁ@;‘ =0, i=1,2,3 (4.35)
where
274
M=l is1,23 (4.36)

The solutions of (4.35) are given in the form

®i(z;) = Aisin z\;% + B; Cos/\;-f—_i
+ C;sinh )\,;% + D; cosh ,\i% , =193 (4.37)

The solutions (4.37) must fulfil given boundary conditions, which results in a homoge-
neous system of equations for determination of the unknown constants,

Lw)Y =0 (4.38)
where
YT = [Ay, By, C1, Dy, Ay, By, Ca, D3, As, B3, Cs, D3] (4.39)

Non-trivial solutions of (4.38) exist for discrete values of w, for which the determinant of
the coefficient matrix L(w) is equal 0. This leads to the frequency condition

det(L(w)) =0 (4.40)

For each solution w; < wy < -+ - to (4.40) solutions YO Y@ . of (4.39) exist. Thus,
the eigenmodes are determined by inserting the coefficients into (4.37).
The modal mass for the jth mode is obtained from

M; = 2 ([ (39) uepimi+ (e0)) m: )ii=12 @4

corresponding to (2.51).

4.4 Experimental Results

The experiments are as previously mentioned split up into active control of free and forced
vibrations, respectively. The forced vibrations are only caused by harmonic excitations
in the range of the eigenfrequency in the first mode. This implies, that the modal
coordinates in the second mode are small compared to those of the first mode. Naturally,
the system is dominated by the modal energy level in the first mode.

The control force is applied at time ¢t = 3 sec. to ensure, that the mean value of the
velocities and the displacements determined by numerical integration is equal 0.

In all experiments the sampling frequency is 60 Hz, i.e. 20 Hz for each signal.
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mode 1 mode 2

Figure 4.10: 1st and 2nd eigenmode.

1 g1 g2
Test 1 | 1.02 | 1.69 | 0.72

Table 4.3: Weighting factor and corresponding gain factors (test 1).

4.4.1 Active Control of Free Vibrations

The free vibrations were caused by an initial displacement of the model top in about 25
mm. After 3 sec. the control force was calculated as described in section 4.2 and applied
to the structure. Fig. 4.11 shows the sampled acceleration signal of mg

The chosen ri-value and the associated gain factors are written in table 4.3

In table 4.4 the controlled natural frequency f and the controlled damping factor ¢
are stated. It is seen, that the damping factor is increased considerably compared to
the damping ratio in the first mode, but there is only a slight increase in the natural
frequency compared to the eigenfrequency in the first mode, see table 4.1.

fHz] | €
Test 1 | 0.86 | 0.022

Table 4.4: Frequency and damping factor of controlled vibration.
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Figure 4.11: Acceleration of my (test 1).

4.4.2 Active Control of Forced Vibrations.

The forced vibration is caused by a sinusoidal base excitation with a frequency f of 0.83
Hz and an amplitude ugo) of approximately 0.5 mm. The control system is activated
when the vibration is stationary, i.e. the effects of the initial conditions are damped out.

The control force is calculated according to the independent modal space control scheme
described in section 1.2.3.

The controlled acceleration signals of m3 are shown in fig. 4.12 and 4.13 for two different
values of the weighting factor r;, see table 4.5. They are referred to as test 2 and 3,
respectively.

71 g1 g2
Test 2 | 0.61 | 2.05 | 0.81
Test 3 | 0.43 | 2.31 | 0.87

Table 4.5: Weighting factor and associated gain factors by forced harmonic vibrations.

Test 2 shows, that full damping of the model is obtained after 23 sec. Afterwards, the
movement increases again. This is an example of the fact, that closed-loop control is
not necessarily optimal. When the model movement is damped, the calculated control
force is zero, but since the structure is still subjected to a base excitation, the movement
increases again. Then the control force will increase too, and suppress the movement
once again when the phase is correct . In test 3 where the gain factors are increased the
described effect is not obtained during the considered control period. Apparently, the
movement is damped more slowly, which is not in accordance with the employed theory.
This is due to the phenomenon that more time is used before the control force obtains
the correct phase in proportion to the model vibrations in test 3 than in test 2. This is
illustrated in fig. 4.14 and fig. 4.15.

The maximum control force applied to the structure is approximately 0.9 N, while the
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Figure 4.13: Acceleration of my (test 3).

maximum available control force is

. aswimy, = 0.004 m - (5.21)%sec™? - 10 kg
1.08 N

a, is the maximum amplitude of the moving element in the shaker, and m,, is the

vibrated mass.
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Chapter 5

Summary and Concluding
Remarks

Active structural control of building structures subjected to earthquake excitations has
been studied. Using the classical quadratic performance index a control algorithm is
investigated for a discretized and a reduced-order model, respectively. The obtained
control law is composed of a closed-loop and an open-loop part. If the external loading
is zero or if it can be described by a white Gaussian noise, the open-loop part is zero.
Although the external loading does not fulfil these conditions the open-loop part is
neglected. However, in order to determine the open-loop part one has to know the
external loading history during the control period before the control system is activated,
which is not realistic in practice.

Implementation of the developed control schemes in practice requires a discrete-time
control algorithm. It is investigated including the effects of measuring noise and time
delay between measuring and application of control forces. The feedback forces are then
determined from an estimate of the state vector given by a Kalman filter.

Active structural control with a closed-loop control algorithm has been carried out ex-
perimentally, where the control algorithm was based on the described independent modal
space control device. The experiments were performed using a cantilever column with
two concentrated masses and a mass damper. Closed-loop control was carried out for a
free vibration of the model, and for the case where it was subjected to a harmonic base
excitation. Results of the experiments clearly showed that the designed control system
was able to damp the vibrations of the model structure.

After carrying out the free vibration test, it was found that there was only a slight
increase in the natural frequency (stiffness) for the controlled mode but the associated
damping factor was increased from 0.14% to 2.2%. The slight increase in the natural
frequency is caused by the chosen value of the weighting factor and with this the feedback
gains.

As expected, the forced vibration tests showed that closed-loop control is not optimal.
When the vibration was damped the model began moving again, since the control force
is negligible in the damped system. This effect can only be eliminated by including the
open-loop control force.

In all the experimental tests the vibration is first damped out about 20 sec. after the
control system has been activated. To minimize this time period it is necessary to
optimize the weighting coefficients in proportion to the available maximum control forces.
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Further studies of active control will concentrate on improving the control algorithms
when the structure is subjected to an unknown external loading and optimization of the
weighting coefficients.
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