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IDENTIFICATION OF NON-LINEAR STRUCTURES
USING RECURRENT NEURAL NETWORKS

P. H. Kirkegaard, S.R.K. Nielsen & H.I. Hansen
Department of Building Technology and Structural Engineering
Aalborg University
Sohngaardsholmsvej 57, 9000 Aalborg, Denmark

ABSTRACT

Two different partially recurrent neural networks struc-
tured as Multi Layer Perceptrons (MLP) are investi-
gated for time domain identification of a non-linear
structure. The one partially recurrent neural network
has feedback of a displacement component from the out-
put layer to a tapped-delay-line (TDL) input layer. The
other recurrent neural network based on the Innovation
State Space model (ISSM) has feedback of the state
space vector from the output layer to the input layer.
The recurrent neural network approaches are validated
with respect to prediction and simulation of a non-linear
process by application to simulated data from a viscous
damped oscillator with hysteresis of the curve-linear
type described by the Bouc-Wen model. The oscillator
is subjected to amplitude modulated Gaussian white
noise filtered through a Kanai-Tajimi filter. It is found
that the two neural network models can act as actual
system identifiers, predictors and simulators. The re-
current neural network with a TDL seems to be a better
simulator than the ISSM network.

NOMENCLATURE

zy; » Output of the jth node in the [th layer
9[}' : A threshold of the jth neuron in the lth layer

Ny : Number of network input
N : Number of network output
f(} : Activation function
: Error function
Y; @ Desired output
gj i Actual output
wyj,; : Connection weight from node i to node J
W : Vector including weights and thresholds
X (t) : Estimated scalar response
F(t) : Scalar excitation

@

: Nonlinear function
: Dirac delta
: Prediction error vector

=
~— On
S

H : Observation matrix
I : Unit matrix
¢ : Structural damping ratio
wy : Circular eigenfrequency
A t% : Hysteretic component

=)
P~

: Restoring term

: Elastic fraction of restoring force

: Hysteretic parameter in Bouc-Wen model
: Hysteretic parameter in Bouc-Wen model
: Hysteretic parameter in Bouc-Wen model
: Yield displacement

: Damping ratio of subsoil layer model

o

Wy : Circular eigenfrequency of subsoil layer model
X(t) : State vector
W(t) : Unit white noise
T(t) : Modulation function
7o : Strength of excitation
At : Time interval
E[] . Expectation operator

g : Acceleration of Gravity

1. INTRODUCTION

Often, it is not possible to represent adequately, sys-
tem characteristics such as e.g. non-linearity, time de-
lay, time-varying parameters and overall complexity in
a mathematical model. System identification methods
for analysing time-invariant linear dynamic systems are
effective and relatively easy to use. The contrast with
analysis of e.g. non-linear-dynamics is sharp. The steps
for system identification for non-linear systems starts
with detection of the existence of non-linearities, fol-
lowed by quantitative assessment of their magnitude
and modelling, e.g. by estimation of the correspond-
ing parameters in a possible model.



According to Natke et al. [1] no unique approach seems
to be possible. Many system identification methods for
non-linear systems such as e.g. Volterra series tend to
be useful in certain applications and to give only par-
tial or approximate information and to be cumbersome,
see e.g. Tomlinson et al. [2]. Further, system identifi-
cation techniques for non-linear problems are sensitive
to noise, some require accurate initial conditions, and
they often need to assume the non-linearity form a pri-
ori, or by using a sufficient number of terms in a series
to obtain a given accuracy while the physical insight
often is lost in the process. In order to avoid some
of these problems much research has been done with
respect to model non-linear dynamic structures using
artificial neural networks.

The potential value of neural networks in system identi-
fication is their ability to approximate non-linear func-
tions using a generic function. Most of the work
has been based on multilayered feedforward networks
trained by the backpropagation algorithm, see e.g.
Masri et al. [3], Qi et al. [4], Riva et al. [5]. How-
ever, such static neural networks cannot by themselves
represent dynamic systems. The static neural network
can only be used to model dynamic systems if the in-
puts and outputs to the network are selected based on
the understanding of the system to be modelled. Gen-
erally, in order to model non-linear dynamic systems,
it is necessary to use the so-called recurrent neural net-
works which incorporate feedback, see e.g. Hush et al.
(6], Hertz et al. [7], Seidl et al.[8], Pham et al. [9] and
Hansen et al. [10].

The objective of this paper is to investigate two dif-
ferent ways to incorporate feedback into a neural net-
work in order to model a non-linear structural system.
The two different recurrent neural network approaches
are described in section 3. In section 4 the approaches
are being used to model a viscous damped oscillator
with hysteresis of the curve-linear type described by the
Bouc-Wen model. The oscillator is subjected to ampli-
tude modulated Gaussian white noise filtered through
a Kanai-Tajimi filter. At last, in section 5 and 7 con-
clusions and references are given, respectively.

2. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are computational models in-
spired by the neuron architecture and operation of the
human brain. The pioneering work in this field is usu-
ally attributed to McCulloch et al. [11]. They de-
veloped a simplified model of a neuron. The brain is
composed of neurons of many different types, see e.g.
McCulloch et al. [11]. For a more detailed descrip-
tion of neural networks, see e.g. Hertz et al. [7] and
Hush et al. [6]. Since McCulloch and Pitts in 1943
there have been many studies of mathematical mod-
els of neural networks. Many different types of neural
networks have been proposed by changing the network
topology, node characteristics and learning procedures.
Examples of those are e.g. the Hopfield network, see
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Hopfield [12], the Kohonen network, see Kohonen [13],
and the so-called multilayered perceptron (MLP). The
MLP is currently given the greatest attention by appli-
cation developers, see e.g. Rumelhart et al. [14].

2.1 Multilayer Perceptron

The multilayered perceptron network belongs to the
class of layered feed-forward nets with supervised learn-
ing. A multilayered neural network is made up of one or
more hidden layers placed between the input and out-
put layers, see fig. 1. Each layer consists of a number
of nodes connected in the structure of a layered net-
work. The typical architecture is fully interconnected,
i.e. each node in a lower level is connected to every
node in the higher level. Output units cannot receive
signals directly from the input layer. During the train-
ing phase activation flows are only allowed in one di-
rection, a feed-forward process, from the input layer to
the output layer through the hidden layers. The input
vector feeds.each of the-first layer nodes, the outputs of
this layer feed into each"of the second layer nodes and
50 On

first second

inputs hidden layer hidden layer

oulput layer

Fig. 2.1: Principle of a multilayer perceptron neural
network.

Associated with each connection between node ¢ in the
preceding layer { — 1 and node 7 in the following layer

is a numerical value wy; ; which is the strength or the
weight of the connection. At the start of the training
process these weights are initialized by small random
values. Signal pass through the network and the jth
node in layer [ computes its output according to

Ni_y

zy = F(Y wizio1i — 61)) (1)

==

forj=1,..,Nyand ! =1, .., k, where Zy; is the out-
put of the 7th node in the [th layer. f:; is a bias term
or a threshold of the jth neuron in the Ith layer. The
kth layer is the output layer and the input layer must
be labelled as layer zero. IN; is the number of neurons
in the [th layer, Ny and Nj refer to the numbers of
network inputs and outputs, respectively.
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The function f() is called the node activation function
and is assumed to be differentiable and to have a strictly
positive first derivative. For the nodes in the hidden
layers, the activation function is often chosen to be a
so-called sigmoidal function

f(B) = 157 (2)

The activation function for the nodes in the input and
output layers is often chosen as linear.

The first stage of creating an artificial neural network
to model an input-output system is to establish the ap-
propriate values of the connection weights wy;; and

thresholds 9[]' by using a learning algorithm. A learn-
ing algorithm is a systematic procedure for adjusting
the weights and thresholds in the network to achieve
a desired input/output relationship, i.e. supervised
learning. The most popular and successful learning
algorithm used to train multilayer neural networks is
currently the so-called back-propagation routine, see
e.g. Rumelhart [14]. The back-propagation algorithm
normally employs a gradient descent search technique
for minimizing an error, normally defined as the mean
square difference between desired ¥; (t) and estimated
outputs y,(t) = :Ekj. of output node _j‘ at all the times
t=1,..,N. Le. theerror J is given as

N Ng

T=3 3w -5 @

t=1 j=1

where Vi is the number of network output nodes. The
thresholds are adjusted in the same way as the weights.
The process of computing the gradient and adjusting
the weights and thresholds is repeated until a minimum
of the error J (or a peint sufficiently close to the min-
imum) is found. However, it is generally true that the
convergence of the back-propagation algorithm is fairly
slow. Attempts to speed learning include variations on
simple gradient search, line search techniques and sec-
ond order techniques, see e.g. Hertz et al. [7], Billings
et al. [15].

The MLP described above belongs to the static class of
neural networks. Such network is only capable of mod-
elling dynamic systems if the inputs and outputs to the
network are established from knowledge of the system
to be identified. Therefore, in general, it is necessary
to use artificial recurrent neural networks with feedback
to model dynamic systems, see Hertz et al. [7]. This
class of artificial neural networks with feedback, and
therefore, inherently recursive is commonly referred to
as partially or fully recurrent neural networks. A fully
recurrent neural network has feedback between all the
nodes.

3. MODELLING OF NON-LINEAR DYNAMIC
STRUCTURES USING ARTIFICIAL RECURRENT
NEURAL NETWORKS

In the following two approaches to incorporate feedback
into an MLP in order to model a non-linear dynamic
single degree-of-freedom system are described. Both
approaches are partially recurrent neural networks as
output from the nets are used as input in the next step.

3.1 Tapped-Delay-Line (TDL) Recurrent Neural Net-
work

A partially MLP neural network where there is a feed-
back of the output of the network through a TDL is very
general, and is capable, in theory, of modelling any sys-
tem which can be expressed as a non-linear function

XY = G(X G — Ab), ., X(2 —5AE), vor

S F(t = At), . F(t—mAt),w)  (4)
where X(t) and F'(1) are the estimated scalar response
and the scalar excitation at the discrete time %, respec-
tively. At is the sampling time interval and W is a
vector including the weights and thresholds. The func-
tion (¢ ) can be modelled by an MLP artificial neural
network with n displacement input nodes, ™M excitation
input nodes and a given number of hidden layers and
one output node.

One difficulty with recurrent networks is developing
meaningful teaching algorithms. Since the output of
the nodes is a recursive function of the output of the
nodes on the previous step, the calculation of the gra-
dient must also be a recursive computation. The gra-
dient of the error J with respect to the weights for a
recurrent neural network modelling (4) is estimated by

2

ay(t)

Z (y(t) = 3(8) 5 ~—

(3)

8w13,

where the desired output y(t) = X(t). The last
derivative in (5) is found by differentiating (1). Since
y(t) = X1 this derivative becomes

Neg_1

= f'()b1;0kTk-1,:+ Z Wki,m

a.’L’kl a$k ULE-1,m

Owy; i Bw;J,

(6)
where f ( ) is the derivative of the activation function.

The gradient of the error J with respect to the thresh-
olds is estimated in the same way as described above.



3.2 Recurrent Neural Network Modelling of an Innova-
tion State Space Model

In this section a neural network model is formulated
by a Nonlinear Innovation State Space Model (ISSM)
where D state variables are observed, see Sgrensen [16].

X(t) = G (X(t - At), F(t — At), B(t — At),w)

(7)
(8)

X(t) is the estimate of the state vector at the discrete
time step 1. E(t) is the prediction error vector of order
P at the discrete time step t. Y(t) is the measured
observation vector of order p at the discrete time step
t. H is the observation matrix of order p X n. In-

Y(t) = HX(t) + E(2)

complete State Information may occur, i.e. X(t) is not
completely measurable. The matrix H can be chosen
to H = IP,POPJL—PL where I, , is a p X p unity
matrix and Oy n—p isa p X (0 — p) zero matrix. In
this way the elements in HX(t) are equal to the first

P elements of the obsevation vector Y ().

In order to train an MLP to learn the Innovation State
space model in (7} and (8) an MLP with the state vec-
tor, the scalar excitation and the prediction error vector
are used as input and the state vector as output. This
means that the desired outputs of the network y;()

are the elements of Y(t) The gradient of the error J
with respect to the weight vector W for the recurrent
neural network is estimated by

The gradients of the estimated state variables X with
respect to the weights W can be updated from the re-
cursive equation

() = Cii(;) = A@)+[8(1) ~ K(OH] w(1-1)
. (10)
A@) = 2 (1)
- oo 0X(1) oo OX(1)
e OXT(t — /_\.t)’K(t) ~ OET(t — At)

(12)
A(t), @(t), and K(t) can be found by differentia-
tion of the output of the network in (7) with respects
to the weight vector and input as in the same way it
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is done in (6) for the TDL neural network. é(t) and

K(t) can be interpreted as the dynamic transfer matrix
of an equivalent linear system and the corresponding
Extended Kalman Filter (EKF) gain, respectively. I.e.
that learning the Innovation State Space model corre-
sponds to solving the EKF problem. In Kirkegaard et
al. [17] this problem is investigated.

4. EXAMPLE

In this numerical example the recurrent neural net-
work approaches described in section 3 are validated
and compared with application to simulated data from
a viscous damped oscillator with hysteresis.

4.1 The Equation of Motion

The equation of motion for a single degree-of-freedom
hysteretic oscillator may be written by the stochastic
differential equation

X () + 20wo X (1) + wig(X (1), Z(2)) = F(t)

(13)
where X(t), X(t) and X (t) are displacement, veloc-
ity and acceleration, respectively. F(t) is the external
excitation.  and wy are the damping ratio and circular
eigenfrequncy, respectively. ¢ represents the hysteretic
restoring term which is a functional of the preceding
deformation history X (t) Generally, g can be decom-
posed into a linear, non-hysteretic term and a hysteretic
component. Thus

g=aX(t)+(1—a)Z(t) (14)

The non-dimensional factor & is the ratio of post-yield
stiffness to pre-yield (elastic) stiffness. It measures the
relative contribution of the non-hysteretic term, i.e.
a = 1 corresponds to purely elastic restoring. Z(t)
is the hysteretic component of the restoring force. Here
Z(t) is of the curve-linear type described by the Bouc-
‘Wen model, proposed by Bouc as extended by Wen, see
e.g Wen [18]. The model is available to represent a large
class of hysteretic systems.

. _olzriz g
Z:(l—ﬁszgn(X)l Izn _7‘2”"’))(
0 0

(15)
v, and 1 are loop parameters”. The parameters
v and [ define the shape of the hysteresis loop. 7 is
the smoothness of the transition from elastic to plastic
response. A large value of 1, e.g. 1@ =5, corresponds to
almost an elastic-plastic system. If §+v=1, zg can be

interpreted as the yield displacement of the oscillator.
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The oscillator is subjected to modulated Gaussian white
noise filtered through a Kanai-Tajimi filter. The excita-
tion process F(t) is then obtained from the stochastic
differential equations, see Tajimi [19]

F(t) = 2C,w,U(t) + W2U (1) (16)

U(t) + 2¢w, U (1) + w2U(t) = —r()W(t) (17)

F(t) can then be interpreted as the negative of the
ground surface acceleration, and C_, and w;g; are the
damping ratio and the circular eigenfrequency of a sin-
gle degree-of-freedom shear model of the underlying
subsoil. {W(t),t E]O, OO[} is unit intensity white
noise with the auto-spectral density function % The
deterministic modulation function is given as follows,
see Saragoni et al. [20].

s oo s by o
r(t)=rgexp | — In(Q)ilmiﬁ—l- (18)
i1 t1

The amplitude rg defines the strength of the excitation.
t1 and f5 are respectively the instants of the time of
maximum intensity and the time where the intensity
has dropped to half value. White noise sequences are
generated by the broken line process model of Ruiz and
Penzien, see Clough et al. [21].
Assuming the excitation (t} is constant at the value
Fr_y = F(tk_l) throughout the interval [tx_j,%x[,
where t;, = k/At, (13) is integrated on state space form
using a 4th Runge-Kutta scheme. The state vector for

(13), (14) and (15) is X(t) = (X (t), X(t), Z(t)).
Normally, the state variables X(t) and X () can be
observed, whereas Z (%) is non-observable.

The following parameters are used for simulating the
hysteretic oscillator:

(=001, wy=27s"t a=0.05
B=4=08 n=]); 2 =00lm
Cami8, we=808"" 1, =35 12153

zg has been selected so that E[max(|3:(t)|)} R 2z,

where ma,x(|33(t)|) is the peak displacement of the os-
cillator during a certain realization.

4.2 Training of Neural Networks

The data sets used for training of the TDL neural net-
work are the displacement response X (t) and the ex-
citation F'(1), respectively, The ISSM neural network

is also trained with the velocity X (f) component, i.e
Z(f) is not observed. Each simulated signal consists

of 2000 points which are sampled with a sampling pe-
riod of 0.01 s. In the training phase 663 points with
a period of 0.03 s. are used for the TDL neural net-
work. It was found that the TDL could not learn the
time series with a smaller period than 0.03 s. The ISSM
network was trained with all of the points. The TDL
neural network is constructed by trial and error with 6
displacement nodes and 5 excitation nodes in an input
layer, 9 nodes in a hidden layer and one node in the
output layer. The ISSM neural network is constructed
with the state vector, the prediction error vector and
the scalar excitation in the input layer and 7 nodes in
a hidden layer. The outputs from the ISSM net are
the components in the state vector. In this paper the
minimization of the error J is solved using the method
of sequential quadratic programming, see Schittkowski
[22]. The weights and thresholds are changed after the
full-time interval £ = 1, .., N by summing the gradi-
ents for each time step. As stop criteria cross-validation
is used.

The two neural networks were trained with the time
series shown in figure 4.1
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Fig. 4.1: Training data



4.3 Prediction

Figure 4.2 shows the comparison of the simulated dis-
placement and the displacements predicted using the
TDL and ISSM neural networks as an one step ahead
predictors. L.e. the input to the networks are assumed
to be measured for each time step. The initial displace-
ment values for the TDL network and the initial state
vector for the ISSM network are fixed to zero, respec-
tively. The predicted displacements are obtained for
other time series than used for training. This means
that the generalization capability of the trained net-
work can be checked.
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Fig. 4.2: Comparison of neural network predicted dis-
placements and Runge-Kutta simulated displacements.

The results presented in figure 4.2 show that the trained
recurrent neural networks can represent the dynamic of
the hysteretic oscillator. It is observed that the neural
networks are very successful at estimating the time and
magnitude of the peak displacements. Further, the am-
plitude and frequency contents are also acceptably rep-
resented. Especially, it is interesting that the trained
networks subjected to a time series different from the
training data are capable of modelling the oscillator.

Figure 4.3 and figure 4.4 show the autocorrelation of
the prediction errors and the cross-correlation of the
prediction errors and input, respectively. The dotted
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straight lines in the figures show the 95% confidence
limits. The confidence limits for the autocorrelation are
based on X“ test for whiteness, see e.g. Soderstrém et
al. [23]. The prediction errors (residuals) are the differ-
ence between the simulated and the predicted displace-
ments. The autocorrelation test shows if there is any
correlation in the prediction errors. In an ideal iden-
tification the prediction errors would be identical to a
white-noise sequence. The cross-correlation test shows
if there is any correlation between the prediction errors
and the input. The existence of any correlation for posi-
tive correlation lags suggests that there are unidentified
frequency components in the prediction errors, and the
model seems to be underparameterized. The existence
of any correlation for negative lags, however, indicates
that the input of the structure is influenced by its out-
put. In other words, there is a feedback in the struc-
ture, see e.g. Soderstrom et al. [23]. From figure 4.3 it
is concluded that the prediction errors are almost white
within the 95% confidence interval, and that within the
same confidence interval it is concluded from figure 4.4
that the errors do not correlate with input.
Correlation function of residuals. (TDL)

1
051 S
ok \//\'\_//\/"_' \,\_/f‘\’/ W e e

0.5 0

0.5 1 1.5 2 25 3
YT
#i Correlation function of residuals. (ISSM)
05+
oF \/ —— —
035 05 1 15 2 25 3
YT

Fig. 4.3: Correlation functions of residuals
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Fig. 4.4: Cross-correlation function between residuals
and input.



IDENTIFICATION OF NON-LINEAR STRUCTURES USING RECURRENT NEURAL NETWORKS 7

In order to compare the predicted displacements from
the TDL and ISSM neural network 25 simulations are
performed. The averaged mean value p N, and averaged
standard deviation oy, of the prediction errors for the
ISSM and the TDL network, respectively are shown in
figure 4.5.

1 N, 1 NAt
=5 — (tdt (1
= WA e (09
7=1
V 1 s 1 NAt 2d
=, | e BT (1) — pn, )2t
ow, S;NN/O (e5(8) = )

(20)
ej(t) is the prediction errors of the jth simulation N
of the N, simulations. (19) and (20) are estimated for
the TDL and ISSM network, respectively.
Figure 4.5 shows only small deviations between the
TDL and ISSM network obtained average mean values
and the standard deviation values, respectively. This
means that there is no large difference between the
predicted displacements obtained by the TDL and the
ISSM neural network.
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Fig. 4.5: The averaged mean value and the standard

deviation value of the prediction errors for the neural

networks, respectively.

4.4 Simulation

The capability of the TDL and ISSM recurrent neural
networks to act as simulators will now be investigated.
Figure 4.6 shows the results of the neural networks
simulations compared with a Runge-Kutta simulation.
Simulation with the TDL neural network is done by sub-
Jecting the excitation time series to the network. Fur-
ther, it is assumed that all the displacement input nodes
are zero at the start. Simulation with the ISSM neural
network is performed by subjecting the excitation time
series to the network and keeping the prediction error
vector fixed to zero for all time steps. The initial state
vector is fixed to zero.

The results presented in figure 4.6 show that the trained
recurrent neural networks can give an acceptable simu-
lation of the displacements of the hysteretic oscillator.
It is observed, as for the predictions, that the neural
networks are very successful at estimating the time and
the magnitude of the peak displacements. Further, the
amplitude and frequency contents are again acceptably
represented.
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Fig. 4.6: Comparison of neural network simulated dis-
placements and Runge-Kutta simulated displacements.

The simulations obtained with the neural networks are
compared in the way as the predictions. This means
that the averaged mean value and standard value of
the prediction errors for the neural networks have been
estimated for 25 simulations, respectively.
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Fig. 4.7: The averaged mean value and the standard
deviation value of the prediction errors for the neural
networks, respectively.

Number of simulation [y, ]

From figure 4.7 it is seen that the TDL neural network
gives a smaller averaged standard deviation of the pre-
diction errors than the ISSM network which implies that
the TDL network seems to be a better simulator than
the ISSM network.



5. CONCLUSIONS

This paper presents two different partially recurrent
neural networks structured as Multi Layer Perceptrons
(MLP) for time domain identification of a non-linear
structure. The results show that the two recurrent neu-
ral networks are capable of modelling a viscous damped
oscillator with hysteresis subjected to stochastic dy-
namic loading. Of particular interest, the results, ob-
tained by using the networks for prediction and simu-
lation, show that the time and magnitude of the peak
displacement, as well as the amplitude and frequency
content are modelled very well. From the results where
the two neural networks are used as a simulator it seems
as the TDL neural network is a better simulator than
the ISSM network.
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