Superficial fungal infections and patients with Hidradenitis suppurativa - a study under the Danish Blood Donor Study

Lindsø Andersen, P; Kjaersgaard Andersen, R; Jemec, G B; Ullum, H; Erikstrup, C; Nielsen, K R; Bruun, M T; Hjalgrim, H; Sørensen, E; Burgdorf, K S; Dinh, K M; Banasik, K; Hansen, T; Saunte, D M; Pedersen, O B

Published in: Clinical and Experimental Dermatology

DOI (link to publication from Publisher): 10.1111/ced.14468

Publication date: 2021

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -
Superficial fungal infections and patients with Hidradenitis suppurativa - a study under the Danish Blood Donor Study

P. Lindsø Andersen,1,2* R. Kjærsgaard Andersen,1* G.B. Jemec,1,3 H. Ullum,4 C. Erikstrup,5 K.R. Nielsen,6 M.T. Bruun,7 H. Hjalgrim,8 E. Sørensen,4 K.S. Burgdorf,4 K.M. Dinh,5 K. Banasik,9 T. Hansen,10 D.M. Saunte1,3† and O.B. Pedersen2†

1 Department of Dermatology, Zealand University Hospital, Roskilde, Denmark.
2 Department of Clinical Immunology, Zealand University Hospital, Næstved, Denmark.
3 Department of Clinical Medicine, Health Sciences Faculty, University of Copenhagen, Copenhagen, Denmark.
4 Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
5 Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.
6 Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark.
7 Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/CED.14468

This article is protected by copyright. All rights reserved
The Department of Dermatology, Zealand University Hospital is a part of the European Reference Network on Rare and Undiagnosed Skin Disorders

ORCID:

https://orcid.org/0000-0002-0132-4715 (P.L. Andersen)
https://orcid.org/0000-0003-0159-670X (R.K. Andersen)
https://orcid.org/0000-0002-0712-2540 (G.B. Jemec)
https://orcid.org/0000-0001-7306-9058 (H. Ullum)
https://orcid.org/0000-0001-6551-6647 (C. Erikstrup)
https://orcid.org/0000-0002-8819-5388 (M. T. Bruun)
https://orcid.org/0000-0002-4436-6798 (H. Hjalgrim)
https://orcid.org/0000-0001-5814-6844 (K.S. Burgdorf)
https://orcid.org/0000-0003-1881-5673 (K.M. Dinh)
https://orcid.org/0000-0003-2489-2499 (K. Banasik)
https://orcid.org/0000-0001-6703-7762 (T.F. Hansen)
https://orcid.org/0000-0001-7953-1047 (D.M. Saunte)
https://orcid.org/0000-0003-2312-5976 (O.B. Pedersen)
Corresponding author: Pernille Lindsø Andersen

Email: pehso@regionsjaelland.dk

Funding sources:

The Danish Blood Donor Study is funded by: The Danish Council for Independent Research - Medical Sciences (grant number: 09-069412); The Danish Administrative Regions (http://www.regioner.dk); The A.P. Møller Foundation for the Advancement of Medical Science; The Danish Bio- and Genome Bank (http://www.regioner.dk/rbgben). None of the funders had any influence on study design, data collection and analysis, decision to publish, or preparation of this manuscript.

Conflicts of interests:

KR Nielsen, T Hansen, K Banasik, MT Bruun, KS Burgdorf, H Hjalgrim, KM Dinh & OB Pedersen report no conflicts of interest. C Erikstrup received an unrestricted research grant from Abbott. H Ullum received an unrestricted research grant form Novartis. PL Andersen and RK Andersen received a PhD grant from LEO Foundation (grant no.: LF18002).

DM Saunte was paid as a consultant for advisory board meeting by AbbVie, Janssen, Sanofi, Leo Pharma and received speaker’s honoraria and/or received grants from the following companies: Bayer, Abbvie, Desitin, Pfizer, Galderma, Astellas, Novartis and Leo Pharma during the last 5 years.

GBE Jemec has received honorarium from AbbVie, Chemocentryx, Coloplast, Incyte, Inflarx, Novartis, Pierre Fabre and UCB for participation on advisory boards, and grants from Abbvie, Astra-Zeneca, Inflarx, Janssen-Cilag, Leo Pharma, Novartis, Regeneron and Sanofi, for participation as an investigator, and received speaker honoraria from AbbVie, Boehringer-Ingelheim, Galderma and MSD. He has also received unrestricted departmental grants from Abbvie, Leo Pharma and Novartis.
Dear Editor,

Superficial fungal infections (SFI) are common diseases affecting the skin, hair, nails, and mucosal membranes. They are often caused by dermatophytes and yeasts, e.g. *Trichophyton*, *Candida*, and *Malassezia*. Hidradenitis suppurativa (HS) is a chronic, inflammatory skin disease of the intertriginous areas associated with minor infections, peripheral vascular disease, diabetes, and smoking, the last three of which are risk factors for the development of SFI. Despite this, and the anatomical overlap between HS and types of SFI e.g. intertriginous candidiasis and tinea cruris, the possibility of an association between HS and SFI has never been investigated.

The aim of this study was, therefore, to investigate if HS and SFI were associated in a cohort of Danish blood donors. We included data on participants in the second iteration of the Danish Blood Donor Study (DBDS2), distributed between May 2015 and June 2017. We defined HS according to a validated questionnaire which have shown high test parameters (sensitivity: 90%, specificity: 97%, PPV 96% and NPV 92%), ensuring that the control group does not contain large group of people with HS symptoms. SFI were defined based on redeemed prescriptions registered in the Danish National Prescription Registry (table legend 1). An additional analysis on vaginitis among females was based on redeemed prescriptions of vaginal miconazole and clotrimazole, types of prescriptions not included in the first analysis. We analysed the number of antifungal prescriptions after study enrolment using the Anderson Gill modified cox regression analysis that allowed for multiple outcome-measures, and adjusted for the effects of age, sex, body mass index (BMI) and current smoking. To account for the possibility of confounding by opportunistic infection after antibiotic treatment, we performed sub-analyses additionally adjusted for antibiotic use <30 days before antifungal prescription. Results are presented as hazard ratios (HR) and 95% confidence intervals (CI).

Amongst the 36,883 included participants, the prevalence of HS was 2.1%, which match those found in other populations when employing a screening questionnaire (table 1). HS was not associated with antifungal prescriptions after study enrolment, HR: 0.87 (CI: 0.73–1.05) (table 1). For female participants, HS was not associated with receiving treatment for vaginitis neither in the standard analysis, HR: 0.86 (CI: 0.35–2.10), nor in the analysis adjusted for antibiotics use, HR: 0.85 (0.31–2.30) (table 1), although females with HS often receive antibiotics, which can increase the risk of *Candida* vaginitis.

HS is associated with more frequently self-reported minor infections (common cold and genital herpes), but not with SFI. One explanation for this could be the increased cytokine levels in HS affected skin. Especially IL-17/IL-23 and associated inflammatory cytokine pathways are of importance as these...
cytokines are increased in HS skin³ and are key players in the antifungal defence¹. People with HS may therefore be offered some protection against SFI. This is supported by our result, that albeit not statistically significant, showed a lower HR (CI) of 0.87 (0.73-1.05), \(P=0.155\) of antifungal prescriptions. However, we did not investigate cytokine levels in the present study, and our results are furthermore limited by the potential use of over-the-counter antifungal agents among the study participants. In addition, HS severity could not be assessed through the screening questionnaire, but intuitively the severity would be lower than what we see in the clinic as severity increase over time⁷. Additionally, active disease that requires treatment would result in temporary deferral from blood donation (four-weeks for antibiotic use), which in turn mean that those with symptoms who do not receive treatment are more likely to be recruited. Lastly while guidelines recommend fungal identification by microscopy, culture and/or polymerase chain reactions prior to initiation of systemic antifungal therapies for fungal infections in skin, nails and hair we cannot be certain that non-dermatologists adhere to this rule.

Acknowledgements

HU, CE, KRN, KSB, KB, MTB, TH, HH, and KMD participated in the design of the study, data acquisition, and have critically revised the manuscript. GBJ, DMS and OBP participated in the design of the study, data acquisition and analysis, and have critically revised the manuscript. RKA and PLA participated in the design of the study, performed the data analysis, and wrote the manuscript. All authors have accepted the final version of the manuscript and agree to be accountable for aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

The DBDS (M-20090237) and DBDSII (RS-740) are approved by the Scientific Ethical Committees in Central Denmark Region and Region Zealand, respectively, and registered by the Danish Data Protection Agency (2007-58-0015). The study was conducted in accordance with the Helsinki Declaration.

References

Table 1

<table>
<thead>
<tr>
<th></th>
<th>All participants in DBDS2, n=53,175</th>
<th>Participants with redeemed prescriptions after enrolment in DBDS2, n=36,883</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HS</td>
<td>Controls</td>
</tr>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
</tr>
<tr>
<td>Median age, years (IQR)</td>
<td>33.9 (27.4-45.6)</td>
<td>36.1 (26.1-46.0)</td>
</tr>
<tr>
<td>Median BMI (n=53,019 / n=36,783)</td>
<td>26.5 (24.3-30.0)</td>
<td>26.5 (23.4-31.2)</td>
</tr>
<tr>
<td>Current smokers, n (%) (n=53,041 / n=36,802)</td>
<td>83 (21.1)</td>
<td>184 (29.8)</td>
</tr>
<tr>
<td>Participants with SFI, n (%)</td>
<td>201 (51.0)</td>
<td>456 (73.8)</td>
</tr>
<tr>
<td>Median antifungal prescriptions (IQR)</td>
<td>2 (1-4)</td>
<td>3 (1-5)</td>
</tr>
</tbody>
</table>

Cox regressions, Andersson Gill variant

Superficial fungal infections not adjusted for antibiotics use <30 days prior to antifungal prescription. Number of events = 6,854

Superficial fungal infections adjusted for antibiotics use <30 days prior to antifungal prescription. Number of

Vaginitis (among females) not adjusted for antibiotics use <30 days prior to antifungal prescription. Number of

Vaginitis (among females) adjusted for antibiotics use <30 days prior to antifungal prescription. Number of
<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio (95-CI)</th>
<th>P-value</th>
<th>Hazard ratio (95-CI)</th>
<th>P-value</th>
<th>Hazard ratio (95-CI)</th>
<th>P-value</th>
<th>Hazard ratio (95-CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>0.97 (0.76-1.08)</td>
<td>0.269</td>
<td>0.87 (0.73-1.05)</td>
<td>0.155</td>
<td>0.86 (0.35-2.10)</td>
<td>0.740</td>
<td>0.85 (0.31-2.30)</td>
<td>0.750</td>
</tr>
<tr>
<td>Female sex</td>
<td>0.85 (0.81-0.90)</td>
<td><0.001*</td>
<td>0.81 (0.77-0.85)</td>
<td><0.001*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Age, year</td>
<td>0.78 (0.76-0.81)</td>
<td><0.001*</td>
<td>0.78 (0.76-0.81)</td>
<td><0.001*</td>
<td>0.70 (0.57-0.86)</td>
<td><0.001*</td>
<td>0.69 (0.55-0.87)</td>
<td>0.001*</td>
</tr>
<tr>
<td>BMI >30</td>
<td>0.89 (0.82-0.95)</td>
<td><0.001*</td>
<td>0.86 (0.79-0.92)</td>
<td><0.001*</td>
<td>1.35 (0.94-1.96)</td>
<td>0.106</td>
<td>1.32 (0.88-1.99)</td>
<td>0.181</td>
</tr>
<tr>
<td>Current smoking</td>
<td>0.89 (0.83-0.96)</td>
<td>0.002*</td>
<td>0.86 (0.80-0.93)</td>
<td><0.001*</td>
<td>1.16 (0.81-1.68)</td>
<td>0.413</td>
<td>0.97 (0.64-1.49)</td>
<td>0.898</td>
</tr>
</tbody>
</table>

Table legend 1. HS: Hidradenitis suppurativa. DBDS2: The second iteration of the Danish Blood Donor Study. IQR: Interquartile range. BMI: Body mass index. SFI: Superficial fungal infections. N/A: Not applicable as only females were included in the analysis. Redeemed prescription as registered in the Danish National Prescription Registry are described in parenthesis below using the Anatomical Therapeutic Chemical Classification system (ATC codes). *Significant after Holm-Bonferroni correct.

Superficial fungal infections were defined as redeemed prescription(s) on antifungal agents, and included the topical therapies: clotrimazole (D01AC01), miconazole (D01AC02), ketoconazole (D01AC08), imidazoles/triazoles in combination with corticosteroids (D01AC20), ciclopirox (D01AE14), terbinafine (D01AE15), and amorolfine (D01AE16), and the systemic therapies: terbinafine (D01BA02), fluconazole (J02AC01) and itraconazole (J02AC02).