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Abstract 

 

Pathological electrocardiogram is often used to diagnose abnormal cardiac disorders where accurate 

classification of the cardiac beat types is crucial for timely diagnosis of dangerous conditions. 

However, accurate, timely, and precise detection of arrhythmia-types like premature ventricular 

contraction is very challenging as these signals are multiform, i.e. a reliable detection of these 

requires expert annotations.  

In this paper, a multivariate statistical classifier that is able to detect premature ventricular 

contraction beats is presented. This novel classifier can be trained with a very sparse amount of 

expert annotated data. To enable this, the dimensionality of the feature vector is kept very low, it 

uses strong designed features, and it uses a regularization mechanism. This approach is compared to 

other classifiers by using the MIT-BIH arrhythmia database. It has been found that the average 

accuracy, specificity and sensitivity are above 96 percent, which is superior given the sparse amount 

of training data.  
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Introduction 

 

Analysis and interpretation of Electrocardiograms (ECG) for monitoring cardiac abnormalities have 

been used and researched for many decades. Especially computer-based ECG devices which benefit 

from advanced signal-processing and machine learning are wide spread today (Luz, et al. 2016). 

These computer-based ECG devices collect and analyze the tiny electric impulses produced by the 

heart muscles. When the heart is healthy its produces an ECG signal with a characteristic shape 

which can be used by doctors to support a diagnosis. Any irregularity or arrhythmia in the ECG 

signal can indicate a serious heart condition. There are various types of arrhythmias which can be 

classified into different categories such as morphological arrhythmia and rhythmic arrhythmia. One 

arrhythmia that belongs to these groups is the Premature Ventricular Contraction (PVC) or its 

synonym Ventricular Ectopic Beat (VEB). This arrhythmia is very difficult to detect why it is 

subjected to intensive researched (Luz, et al. 2016), (Jambukia, Dabhi og Prajapati 2015), (Chang, 

et al. 2017).  

This paper discusses, elaborates, and designs a model for a novel PVC classifier that focuses on 

classifying PVC beats. This novel PVC classifier has the ability to achieve high performance scores 

with a very sparse amount of annotated training data (less than 30). This limited amount of training 

data enforces a low number of features to balance the model complexity (a bias-variance 

compromise) and to overcome the “curse of dimensionality” paradigm (Theodoridis og 



Koutroumbas 2008). To achieve low dimensionality five features has been used where two of these 

are novel, i.e. they are designed to classify PVC beats. The three other features have been selected 

because they are often used to classify patterns similar to PVC beats(Jambukia, Dabhi og Prajapati 

2015). More features could have been used, but this would increase the costs in terms of more 

annotated training data. The PVC classifier is based on a multivariate probabilistic approach which 

is regularized to balance the high performance scores against robustness. This approach is related to 

the process used in semi-supervised learning (Oster, et al. 2015); however, in contrast this PVC 

classifier does not use unsupervised data as part of its training and it is able to achieve high scores 

with a very limited amount of training data.  

A model of the presented PVC classifier has been constructed in a mathematical program and its 

performance has been simulated by using randomly selected ECG sets from the MIT-BIH 

arrhythmia database (MIT 2018), (Moody og Mark 2001). Based on the outputs from these 

simulations the quality of the used features and the PVC classifier scores are elaborated and 

discussed in the light of using 10, 20, or 30 annotated training data. 

This paper is organized with a background section which provides the basics in ECG signals in 

relation to the heart activity. This is followed by a section which sets this work in contrast to similar 

research. After this the model used for the simulations is presented and discussed. Finally the results 

from the simulations on the MIT-BIH database are discussed and elaborated. 

 

Background 

 

An ECG signal reflects the electrical activity that controls the different phases of a heartbeat (Figure 

1.1).  The first phase is the atrial depolarization (P beat) which pumps blood from the atria into the 

ventricles. This is followed by the second phase where the ventricles depolarizes (QRS complex) 

and thereby pumps blood from the ventricles to the system, i.e. it maintains the cardiac output. 

Finally, in the last phase the ventricles repolarize (T beat) to prepare for the next beat.  

 

 

 

FIGURE 1.1, ECG SIGNAL – A TYPICAL P-QRS-T COMPLEX 

 

Each phase of the ECG signal has limited amplitude and a limited duration as stated in Table 1 

(Jambukia, Dabhi og Prajapati 2015). Deviation from these values can indicate damages to the 

hearts conducting system or to its cells. Especially morphology and rate changes can indicate a 

serious cardiac arrhythmia such as ventricular tachycardia or ventricular fibrillation.   

The challenges in monitoring these signals are that morphology and rate changes can be imposed in 

form of noise, power-line interference, baseline drift, muscle contraction, and motional artifacts.   

    

Phase Description Amplitude 

P Q

R

S

T

PR

R
RR interval



/duration 

P The first upwards wave of the ECG <80 mS 

RR The time interval between to RR  

peaks 

0.6-1.2 S 

PR The time between the P and the R 

wave 

120-200 ms 

QRS Time between Q and S beats 80-120 ms 

ST Time between S and T beats 320 ms 

TABLE 1, SELECTED ECG PHYSIOLOGICAL FEATURES 

 

VEB or PVC is a group of arrhythmia beats that is triggered from an abnormal electric activity in 

the ventricles where the signals do not come from the correct electric sources, i.e. the sino atrial 

node, the atrioventricular node, and the purkinje fibers. Because the PVC does occur without being 

triggered from the sino atrial node it is not preceded by a P beat and it has a wider QRS complex. 

On an ECG plot this can be seen as very irregular shapes named multiform. Because the shapes are 

multiform the morphology of the PVC beats is different from one person to another which makes 

these very hard to detect in a machine learning setting without using individual supervised learning. 

However, supervised learning is challenging with respect to getting enough annotated data.  

 

Related works 

 

Most of the literature which deals with small training sets uses dimensionality reduction techniques 

like PCA and SVD. However, a problem with this concept is low accuracy for small training set 

sizes (S Raudys 2015). Similar techniques are feature selection and feature extraction, which are 

very alike to dimensionality reduction techniques (Louis, et al. 2017). 

A classifier which is based on a limited amount of training data is provided by Louis et al. They 

assumed that the ECG signals are multivariate Gaussian distributions in a generative model which 

was used to generate training samples. However, with small sample size they had instability 

problems which were solved by adding parallel classifiers that were trained with more data. It is 

noted that they used a proprietary database (Toronto database) for validating the scores (Louis, et al. 

2017). Andreao et al. have used the Hidden Markov Model (HMM) to detect QRS complexes in a 

selected set from the MIT BIH database. They obtain a beat detector performance where the 

sensitivity and the Positive Predicted Value (PPV) were above 99 percent. However, the PVC 

scores are 87 percent for sensitivity and 86 percent for PPV. This difference between QRS and PVC 

scores clearly supports the facts that high PVC scores are hard to get. Jung et al. used a wavelet-

base statistical approach to detect PVC beats and they achieved a sensitivity of 98 percent, a 

specificity of 87 percent, and a PPV of 85 percent. However, this approach uses a control variable 

(α) which needs to be tuned to balance the true positive score against the false positive score, i.e. 

some amount annotated data are needed (Jung og Heeyoung 2017). Other researchers have looked 

into the use of Artificial Neural Networks (ANN) to classify arrhythmias. Minami et al. used 

Fourier transformation and ANN to extract features (Minami, Nakajima og Toyoshima 1999). A 

low complexity system has been proposed by Chang et al. which use simple features to classify 

ECG signals. The scores for this system are above 98 percent for both sensitivity and specificity; 

however, the PVC scores are not available in the presented results (Chang, et al. 2017). Regarding 

QRS detection Andrysiak et al. used a sparse ECG signal representation based on dictionaries and 

they used neural networks to detect these (Andrysiak 2016). They achieved sensitivity scores 

beyond 98 percent in detecting QRS complexes from the MIT-BIH database (MIT 2018). This 

number is comparable to the QRS detector from Pan et al. which has been used in this work (Pan og 



Tompkins 1985). Hence, it would be possible to use this detector to find the QRS complexes in 

future works. 

 

The arrhythmia detection model 

 

To classify ECG signals some steps are required: ECG filtering to remove noise and artifacts; 

dividing the heartbeat into segments; feature extraction; and feature classification. Regarding ECG 

filtering most authors’ use simple finite impulse response filters (FIR) because they are stable, they 

provide linear phase, and they are simple to implement (Chazal, O’Dwyer og Reilly 2004), (Yeh og 

Chiou 2009), (Luz, et al. 2016), (Lynn 1979). However, other approaches such as wavelet transform 

(Saysdi og Shamsollahi 2007) and non linear filters have been used (G. de Lannoy 2014). The heart 

beat signal segmentation step divides the signal into segments which is processed and used as 

features in the classification step (Pan og Tompkins 1985),(Oster, et al. 2015),(Hejazi1, et al. 

2015),(Jambukia, Dabhi og Prajapati 2015),(Murphy 2012). 

The previous discussed four steps have been used to design the PVC classifier used in his work. 

First, the signal is filtered by a FIR filter that removes noise; second, the filtered signal is processed 

by a QRS detector which indicates the position of the beats in the signal stream. In this work the 

QRS detector described by Pan et al. (Pan og Tompkins 1985) is used because it scores more than 

99 percent in specificity and sensitivity (Jambukia, Dabhi og Prajapati 2015). Third, the ECG signal 

and the beat positions are processed by the feature extraction step where five features are used in 

this work. It is noted that increasing the amount of features often increase the classification scores, 

given that the features are uncorrelated and that the classifier variance is within reasonable limits. 

Nevertheless, as previously discussed the PVC classifier designed in this work uses a very limited 

amount of annotated training data which means that the number of features must be kept low to 

balance the model complexity (bias-variance) and to overcome the “curse of dimensionality” 

paradigm (Theodoridis og Koutroumbas 2008). Hence, five features have been selected where three 

of these (feature 1, 4, and 5, Table 2) have been selected because they provide high scores in most 

PVC related classifiers (Jambukia, Dabhi og Prajapati 2015). The two last features have been 

developed with focus on classifying PVC patterns only (feature 2 and 3, Table 2). These features 

are inspired from the facts that: physiologically there is no premature beat (P beat) before a PVC 

beat, they are robust in noisy environments, and they are uncorrelated to the other features. The 

final step is selecting a classifier for this work. Because of the very limited amount of annotated 

training data used for supervised learning in this work a multivariate probabilistic classifier has 

been chosen. This classifier offers accessibility to classifier-uncertainty and it offers robustness to 

dichotomous variables (Herault og Grandvalet 2007), (K. 1980). It is noted that the “no free lunch” 

theorem states that there is no one model that works best for every problem which means that other 

classifier types could provide acceptable results, given the limited amount of training data (Wolpert 

og Macready 1997). The used multivariate probabilistic classifier is a hybrid between a regularized 

Quadratic Discriminant Analysis (QDA) classifier and a regularized Linear Discriminant Analysis 

(LDA) classifier. This hybrid mix of the well know QDA and LDA classifiers is needed to obtain 

the benefits from the off diagonal covariance elements as well as the benefits that the principal 

diagonal is stable (it prevents the covariance matrix from becoming singular). This classifier is a 

powerful choice which uses a linear combination of features to split classes with the best 

performance. In addition, it is widely applied in similar applications such as speech recognition, 

image retrieval, and pattern recognition (Yeh og Chiou 2009).            

The developed feature extraction model is shown in Figure 1.2. Leftmost the raw ecg-signal enters 

the bandpass-filter and the ECG beat detection blocks. After being processed in the bandpass-filter 

it is normalized and fed to the feature extraction block. Similarly, the signal output from the ECG 



beat detection block is fed to the feature extraction block. This block extracts characteristic features 

which describe the morphology of the ECG signal and passes this to the classifier block. The 

classifier block builds a statistical model from the incoming data in its training phase and uses this 

model to classify in its classification phase.   

 

 
FIGURE 1.2, THE SIMULTION MODEL 

 

The bandpass-filter limits the ECG signal bandwidth to reduce the influence of power-line 

interference, baseline drift, muscle contraction, and motional artifacts. Details of the filter design 

are given below (Figure 1.3). 

 

  

FIGURE 1.3, BANDPASS- FILTER. THE LEFT PLOT IS THE ROOTS AND ZEROS (X-AXIS 

IS THE REAL PART, Y-AXIS IS THE IMARGINARY PART). THE RIGHT PLOT IS THE 

FILTER ATTENNUATION IN DB AS A FUNCTION OF INPUT FREQUENCY. 

 

The deployed filter is a 3’ order Butterworth band-pass filter which cuts below 5 Hz and above 15 

Hz (Figure 1.3). The position of the 3 zeros at DC and the 3 complex poles inside the pass-band 

provides a high damping below the lower limit of the filter. This is necessary to reduce the 

relatively high amplitude often found in baseline drift, in muscle contraction, and in motional 

artifacts. Above the pass-band 3 zeros are located at half the sampling frequency to provide filter 

attenuation and to reduce the impact from power-line interferences. The filter is deployed by 

convolving the filter coefficients with the samples. 

  

The normalization block finds the largest amplitude in the filtered signal and normalizes the signal 

with respect to this Eq.(1). 

Bandpass filter Normalization

ECG beat 
detection

Feature 
extraction

Classifier
Raw ECG 

PVC detected

Classifier
TrainingAnnotation 
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EQ.(1)

 
 

Where Sn is the incoming sampled ECG signal and Sj is the value of the largest sample. 

The ECG beat detection block is a strait forward implementation of the Pan-Tompkins algorithm. 

This algorithm is known for being one of the best for detecting beats with sensitivity and specificity 

scores higher than 99% (Pan og Tompkins 1985). In addition, it is computationally efficient and it 

includes noise removal steps (Jambukia, Dabhi og Prajapati 2015). 

The feature extraction block processes the characteristics of the ECG signal, i.e. it extracts the 

location, duration, amplitude, and morphology features. This block is triggered by the ECG beat 

detection block. As discussed five features have been derived and developed in this work (Table 1). 

These are based on the fact that: PVC beats are not triggered by the sino-atrial-node which means 

that P beats are not generated; the distance between the R beats will be different compared to the 

distances when a normal sinus rhythm is present; and the distance from the P beat candidate to the 

following R beat will be different too. 

 

Feature 

no. 

Feature 

symbol 

Feature description Units 

1 m_PQ Find maximal signal value in the PQ interval Amplitude  

2 a_PQ Calculate the area between the signal in  the 

PQ interval and zero.  

Amplitude 

multiplied 

with time 

3 ms_PQ Maximal slope in the PQ interval Samples/time 

4 i_RR Time between two consecutive R beats Samples 

5 i_PR Time between the P beat and the R beat Samples 

TABLE 2, SELECTED FEATURES 

 

The first feature m_PQ works directly on the filtered and normalized input signal (Table 2). The 

first step is to shape a time window in form of samples that represents the time period where a P 

beat would be expected. As stated in Table 1 the minimum time for the PR distance is 120 mS and 

the maximum distance is 200 mS which can be recalculated into samples with a lower limit of 72 

samples and a higher limit of 42 samples. To find the maximum of the signal in this sample window 

the derivative of the signal is calculated by using a five-point derivative approximation with the 

transfer function F(z). By substituting z with exp(-jωT) the absolute transfer function can be plotted 

in a normalized sample space (Figure 1.4). It is noted that the transfer function behaves as a derivate 

as lng as the frequency is blow approximately ω=π/4, (approximately 90 Hz) which is below the 

upper bandpass-filter limit.    
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FIGURE 1.4, THE DERIVATIVE OF FUNTION (F(Z) AND THE ABSOLUTE TRANSFER 

FUNCTION FOR F(Z). 

 

After taking the derivative of the signal its maximum can be located where the slope is low and the 

signal value is high Eq.(2). In this equation C is a constant, R(n) is the position of the R beat 

number n, Sll is the low limit and Shl is the high limit in samples.   
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A plot of this feature for two ECG signals (MIT-BIH database sets 119 and 217) are provided in 

Figure 1.5 and Figure 1.7. 

The a_PO feature calculates an area approximation (in sample space) between the PQ interval and 

the zero level for the R beat number n Eq.(3). 
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By plotting this feature it is noted that the areas are very different for N beats compared to the V 

beats (MIT-BIH database sets 119 and 217, Figure 1.5 and Figure 1.7). This plot indicates that the 

variance and the mean values for the multivariate Gaussian distributions are different which 

increases the probability for correct classification. 

The ms_PQ feature expresses the maximum slope of the signal in the PQ interval Eq.(4). 
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A plot of this feature is provided in Figure 1.5 and Figure 1.7 for the MIT-BIH database sets 119 

and 217. Similarly to the a_PO feature the variance and mean values can be separated by a 

classifier. 



The i_RR feature is found by counting the number of samples there are between two adjacent R 

beats. A similar process is used for the i_PQ beats. A plot of these features is provided in Figure 1.5 

and Figure 1.7 for the MIT-BIH database sets 119 and 217. 

After being processed in the feature extraction block the generated feature-vector is fed to the 

classification block (Figure 1.2). This block implements a regularized quadratic / linear discriminant 

analysis classifier named Regularized Discriminant Analysis (RDA) which assigns the feature 

vector to one (and only one) of K classes. Formally, the feature-vector is assumed to be a member 

of one class only and assignments to any other classes is considered a misclassification. Hence, the 

goal is to design a misclassification risk function R(y=clx,θ) which can then be minimized Eq.(5). 
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EQ.(5) 

 

 

 

It is assumed that the distribution for the true ECG signals can be approximated by Gaussian 

distributions (Louis, et al. 2017). The risk function uses the dirac-delta function (δ(p,q)), the 

unconditional prior (πi), the multivariate mean vector (μi), and the multivariate covariance matrix 

(Σi). Minimizing the risk function Eq.(6) leads to the optimal classification rule Copt.  
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The optimum class Copt is found when the largest estimated class in the set C is positioned in the 

numerator of Eq.(6) which means that it is sufficient to maximize this Eq.(7). This maximization is 

easily performed by using the Negative Log Likelihood (NLL) (Murphy 2012) where minimizing 

the NLL is equivalent to maximizing the log likelihood.  
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The optimization equation Eq.(7) consists of two parts. The first part is the discriminant function 

which is all the terms except the last one and the second part is the first term which is the well 

known Mahalonobis distance (Murphy 2012) between the multivariate feature vector x and a 

multivariate class mean μ.  

The training of the classifier is performed by using multivariate mean μ and multivariate variance Σ 

ML-estimators on the training data sets Eq.(8) where it is assumed that the samples are i.i.d and 

xi=N(μ,Σ).  
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Where the feature vector xi is constructed by assigning the features one by one to each of the 5 

positions in the vector. The variable N is the number of training sets used in the k-fold cross 

validation.   

This classifier approaches a QDA classifier when individual covariance matrixes are used for each 

class and it approaches a LDA classifier when the covariance matrixes for the classes are equal. 

Especially the covariance matrix is the main challenges in using discriminant analysis with a sparse 

training dataset, i.e. the size of the dataset is close to the dimensionality of the feature vector. This 

challenge can be explored by decompose the covariance matrix into its eigenvectors (V) and 

eigenvalues (D) which can then be used in the discriminant function Eq.(9). 
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It is observed Eq.(9) that the discriminant function (dF) is heavily weighted by small eigenvalues 

and the direction of the eigenvectors. Unfortunately, estimators for covariance values are biased so 

large eigenvalues are biased towards higher values and small eigenvalues are biased towards lower 

values (Friedman 1988). Many approaches have been tried to remove this distortion from the 

eigenvalues and to make the covariance matrix nonsingular (Louis, et al. 2017), (Murphy 2012). 

Especially in the context with small sample size settings a promising approach is deploying a 

regularization method that decreases the variance and regulate the covariance principal diagonal. 

This approach is deployed by using a pooled covariance where a weighted amount of the covariance 

matrix for the N beats is pooled with the covariance of the V beats. Added to this is a weighted part 

of the principal diagonal of the pooled covariance matrix itself Eq.(10).  
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EQ.(10)

 
 

Where Σn and Σv are the covariance matrixes for N beats and V beats respectively. The λ and γ 

values control the degree of regularization.  

The performance of the PVC classifier has been found by comparing classifications in relation to 

the provided annotations (i.e. the “ground truth”). This comparison has been based on counting (i.e. 

TP, TN, FP and FN) as suggested by Jager et al. (Jager, et al. 1991). By using this concept a 

measure of accuracy, specificity, sensitivity, positive predicted value PPV and negative predicted 

value NPP can be calculated Eq.(11). 
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Model simulations and elaborations 

 

The model discussed in the previous section (Figure 1.2) has been used to classify N beats and V 

beats in the ECG sets from the MIT-BIH database (MIT 2018). This has been done by using 5-fold 

validation with 15N and 15V beat samples which have been selected randomly from a full ECG set 

in the MIT BIH database. It is noted that the selected training samples are excluded from the test 

sets.   

To explore the performance of the PVC classifier with a very sparse amount of annotated training 

data 10 ECG sets have been selected (Table 3). These series have been selected randomly from the 

complete sets in the MIT BIH database with the only restriction that there is more than 100 PVC 

beats in a selected set. This restriction is necessary for ensuring that it is possible to select the 

training data for the V beats randomly in a k-fold process. To set these scorings into a context they 

are compared to results provided by other researchers.  

Regarding the regularization parameters λ is set to 0.1 and γ is set to 0.2 by using a trial and error 

approach, i.e. more research is needed to clarify the settings of these parameters in the context of 

classifying a nonlinear ECG signal.    

 

MIT 

BIH 

ECG 

set 

Specificity 

[%] 

Sensitivity 

[%] 

Accuracy 

[%] 

PPV 

[%] 

NPV 

[%] 

Total 

number of 

beats 

PVS 

beats 

106 99 100 100 100 100 2027 520 

116 99 100 100 97 100 2412 109 

119 99 100 100 100 100 1987 444 

200 95 96 96 93 97 1775 826 

201 94 98 98 89 99 1802 198 

214 97 100 99 98 100 2006 256 

217 96 98 98 80 100 2208 162 

221 97 99 99 95 99 2031 396 

223 90 96 95 84 98 2605 473 

233 93 99 98 98 97 2249 831 

TABLE 3, PVC CLASSIFIER SCORINGS ON 10 ECG SETS FROM THE MIT-BIH 

DATABASE. 

 

It is observed (Table 3) that the results from the PVC classifier on the ECG sets in general score 

above 90 percent for most sets, which is acceptable taken into consideration that the training set 

consists of 30 annotated beats only. It is noted that two ECG sets stands out (119 and 217). ECG set 

119 scores beyond 99 percent in all measures, whereas ECG set 217 scores lower with a score of 80 

on its PPV measure. To explore these deviations in relation to the features a histogram for each of 

them are plotted together with their time/amplitude and their Reduction in Features Mutual 

Information (RFMI) (Figure 1.5, Figure 1.6, Figure 1.7, Figure 1.8). The plotted histograms contain 

the five features where the curve is the normalized number of N/V beats (y-axis) together with its 

relative feature values (x-axis). Regarding the RFMI plot it expresses the reduction in mutual 

information between the classifier output and each individual feature. The “backwards principle” 

has been used, i.e. one feature is removed at a time given that all other features are present (it is 

noted that these will not sum to 100 percent because the percentage is relative to the RMFI when no 

features are removed). It has been assumed that the features are uncorrelated (Wang og Hu 2007). 



The principle and equations for calculating the RFMI as a function of the two score metrics can be 

found in Wang et al (Wang og Hu 2007). 

 

 
FIGURE 1.5, A HISTOGRAM OF THE FIVE FEATURES WHEN THE MIT-BIH SET 217 IS 

PROCESSED. 

 

 

  
 

FIGURE 1.6, ECG SET 217: A TIME/AMPLITUDE PLOT AND THE REDUCTION IN 

MUTUAL INFORMATION WHEN ONE OF THE FEATURES (1..5) IS LEFT OUT. 

 

 

For ECG set 217 its histogram (Figure 1.5) and RFMI (Figure 1.6) have been plotted. It is noted 

that the low PPV score is caused by an increase in the FP count, i.e. some N beats have been 

classified as V beats. One reason for this can be found by examine the time/amplitude where it is 

observed that this ECG set is from a patient with a pacemaker that paces in the ventricles, i.e. the 

systoles are initiated by this. However, the designed features detect that the P beat is absent in the 

PVC patterns, but in this paced rhythm there is no P beat because the pacing takes place directly in 



the ventricles, so it seems as the features behaves as expected. From the FMRI plot it is observed 

that removing one of the features 1 to 4 will reduce the FMRI with a considerable amount. It turns 

out that feature 5 only reduces the FMRI with less than 1 percent, i.e. the contribution from this 

feature is limited in this ECG set. Similarly, the reduction in the PPV score can be seen from the 

histogram plot where it is observed that the variance of the V beats and the N beats is close to being 

similar. In addition, it is observed that the mean values of these distributions are close to coincide. 

Thus, the overlapping variances and mean values cause some of the N beats to be classified as V 

beats, i.e. it increases the FP measure.  

 

 
FIGURE 1.7, A HISTOGRAM OF THE FIVE FEATURES WHEN THE MIT-BIH SET 119 IS 

PROCESSED. 

 

 
 

 

FIGURE 1.8, ECG SET 119: A TIME/AMPLITUDE PLOT AND THE REDUCTION IN 

MUTUAL INFORMATION WHEN ONE OF THE FEATURES (1..5) IS LEFT OUT. 

 



As discussed ECG set 119 performs very well. The reasons for this can be found by performing a 

similar analysis as for ECG set 217, i.e. its histogram (Figure 1.7), time/amplitude, and RFMI ( 

Figure 1.8) have been plotted. From the RFMI score it is noted that most of the features contribute 

to the high scores. Actually the new developed PVC features (feature 2 and 3) perform well with a 

stable contribution and with a limited variance. Additional insight can be found by looking into the 

histogram for these features where it is noted that the distributions of the beats are more separable 

compared to the distributions for ECG set 217. 

In general it is noted that the contribution of each feature depends on the selected beat set which 

indicates that the ECG signals have a large spreading on their morphology and signal composition, 

i.e. they need to be handled by dissimilar robust features.    

    

 

FIGURE 1.9, SCORES (Y-AXIS) FOR THE RANDOMLY SELECTED ECG SETS (X-AXIS) 

WITH 15N AND 15V BEATS IN THE TRAINING SET. 

 

The ECG set scores as a function training set size needs some clarification. As already discussed, 

the size of the training data must exceed the number of features considerably (dimensionality of the 

feature vector) to prevent the covariance matrix from becoming singular. However, the 

regularization used in this work enables the size of the training data to come very close to the 

number of features. This means that it is possible to perform the classification with a very small 

training set size. To substantiate this important result the same ECG set that was used with the 15N 

and 15V beats (Figure 1.9) have been used for a 10N and 10V (Figure 1.10) beats set and for a 5N 

and 5V beats set (Figure 1.11).   

 



 

FIGURE 1.10, SCORES (Y-AXIS) FOR THE RANDOMLY SELECTED ECG SETS (X-AXIS) 

WITH 10N AND 10V BEATS IN THE TRAINING SET. 

 

As discussed, the scores for the 15N and 15V beats (Figure 1.9) are close to 90 percent for most 

ECG sets (except PPV score for 217 and 223). By reducing the  training set size to 10N and 10V 

beats it turns out that the scores drop a few percentages except for the PPV scores in set 217 and set 

223 which drops considerably more (Figure 1.10). The same tendency is found when the training 

set size drops to 5N and 5V beats (Figure 1.11). At this very low training set size the scores for 

most of the sets fluctuates considerably, which indicates that few eigenvectors and eigenvalues in 

the covariance matrix dominates and they vary considerably, i.e. they introduces the instability.  

 

 

FIGURE 1.11, SCORES (Y-AXIS) FOR THE RANDOMLY SELECTED ECG SETS (X-

AXIS)WITH 5N AND 5V BEATS IN THE TRAINING SET. 

 

To substantiate these importance results they are compared with scores from other researchers. Luz 

et al. provides a comparison from five authors which are averaged to one score in this work (Luz, et 

al. 2016). Their scores provide a specificity of approximately 85 percent and a PPV of 

approximately 89 percent (table 9). Similarly, Christov et al. compared 4 authors (Christov, Jekova 

og Bortolan 2005), which when averaged provide a specificity of 98 percent and a sensitivity of 96 

percent. Oster et al. compared 6 authors which when averaged provide a specificity of 92 percent 

and a PPV of 92 percent (Oster, et al. 2015). It is noted that these authors uses the full dataset in 

different k-fold based training and testing procedures – not only 15N and 15V beats. The 

multivariate Gaussian model presented by Louis et al. is able to handle 30 beats training data; 

however, they used the proprietary Toronto database for validating the performance of their system. 



This means that their result is not directly comparable with the results from the MIT-BIH database; 

however, for the sake of completeness their error percentage (7 percent) is added to Table 4 (Louis, 

et al. 2017). In addition, a comparison presented by Louis et al. (table 5 in their paper) is averaged 

and added to Table 4.    

 

No. Author Sen. [%] Spe. [%] PPV  [%] NPV  [%] 

1 This work (15N/15V) 96 99 93 99 

2 Luz et al. (average over 5 

authors) (Luz, et al. 2016) 

Not provided 85 89 Not 

provided 

3 Christov et al. (average over 4 

authors) (Christov, Jekova og 

Bortolan 2005) 

96 98 Not provided Not 

provided 

4 Oster et al. (average over 6 

authors) (Oster, et al. 2015) 

Not provided 92 92 Not 

provided 

5 Louis et al. (Louis, et al. 2017) Error percentage of 7 percent on the proprietary Toronto 

database 

6 Louis et al., table 5, (average 

over 5 authors) (Louis, et al. 

2017) 

Error percentage of 13 percent on the proprietary Toronto 

database 

TABLE 4, THE PVC CLASSIFIER SCORES COMPARED WITH SCORES FROM SIMILAR 

WORKS. 

    

From Table 4 it is noted that the PVC classifier performs comparable to similar works (even though 

author number 2 to 4 uses larger training data sets in a k-fold manner). 

 

Conclusion  

  

In this work a novel PVC classifier has been presented which provides very good results in relation 

to similar classifiers where it is noted that comparable classifiers uses much more data for training 

in form of a k-fold spilt of the data. In contrast, the developed PVC classifier only uses supervised 

annotated data in form of 15N beats and 15V beats to obtain an average performance of more than 

96 percent in accuracy, specificity, and sensitivity and more than 93 percent in the PPV and NPV 

scores. These non-trivial results indicate big potentials in designing robust PVC classifiers which 

can be trained with only 30 classified beats (classified by an expert). It is noted that a training set 

size of 30 beats is the upper limit to obtain the discussed performance which means that many beat 

patterns can be trained with fewer annotated beats to obtain similar performance; however, some 

PVC signals are sensitive to less training data which means that lower scores must be expected in 

these cases.   

The novelty of the presented PVC classifier is rooted in the use of solid and robust feature designs 

in combination with an advanced regularization method. The five features consist of three selected 

features in combination with two novel features designed for detecting PVC beats only. These 

features work well for most of the beat sequences in the MIT-BIH database; however, set 119 and 

217 stand out. Set 119 is a sinus rhythm with some embedded PVC extra systoles. By analyzing the 

behavior of the features on set 119 it has been found that they provide clear clusters and their 

mutual information show that all features contribute which means that this rhythm gets high scores. 

In contrast, sequence 217 is a paced rhythm where a pacemaker initiates the systoles. These systoles 

have very similar characteristics and morphologies to PVC patterns why they are very difficult to 

classify. Nevertheless, it has been found that all features contribute so a linear combination of these 



makes this rhythm detectable. An improvement of this work could be to add an extra feature which 

detects the pacemaker beats, which most likely would increase the scores for sequence 217. 

Finally, the PVC classifier has been tested (5-fold) with a reduced amount of training data where 

the set sizes is reduced to 20 (10N and 10V) and 10 (5N and 5V) beats respectively. The average 

performance of the PVC classifier only drops a few percents on these very sparse training sets; 

however, a tendency to classifier instability is found with the smallest amount of training data (5N 

and 5V), why relaying on this very limited training data size is not recommended.  
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