Aalborg Universitet AALBORG

UNIVERSITY

Statistical Damage Detection of Civil Engineering Structures using ARMAV Models

Andersen, P.; Kirkegaard, Poul Henning

Publication date:
1997

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Andersen, P., & Kirkegaard, P. H. (1997). Statistical Damage Detection of Civil Engineering Structures using
ARMAYV Models. Dept. of Building Technology and Structural Engineering, Aalborg University. Fracture and
Dynamics Vol. R9758 No. 107

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 03, 2025


https://vbn.aau.dk/en/publications/f1f39393-0c59-4fe5-9ec2-1dfb5f957deb

INSTITUTTET FOR BYGNINGSTEKNIK

DEPT. OF BUILDING TECHNOLOGY AND STRUCTURAL ENGINEERING
AALBORG UNIVERSITET ® AAU ° AALBORG ° DANMARK

FRACTURE & DYNAMICS
PAPER NO. 107

To be presented at the 16th International Modal Analysis Conference, Santa
Barbara, California, USA, February 2-5, 1998

“

P. ANDERSEN, P.H. KIRKEGAARD

STATISTICAL DAMAGE DETECTION OF CIVIL ENGINEERING
STRUCTURES USING ARMAV MODELS

DECEMBER 1997 ISSNN 1395-7953 R9758

*



The FRACTURE AND DYNAMICS papers are issued for early dissemination of rese-
arch results from the Structural Fracture and Dynamics Group at the Department of
Building Technology and Structural Engineering, University of Aalborg. These papers
are generally submitted to scientific meetings, conferences or journals and should there-
fore not be widely distributed. Whenever possible reference should be given to the final
publications (proceedings, journals, etc.) and not to the Fracture and Dynamics papers.

Printed at Aalborg Universitﬂ




INSTITUTTET FOR BYGNINGSTEKNIK

DEPT. OF BUILDING TECHNOLOGY AND STRUCTURAL ENGINEERING
AALBORG UNIVERSITET ° AAU ° AALBORG ) DANMARK

FRACTURE & DYNAMICS
PAPER NO. 107

To be presented at the 16th International Modal Analysis Conference, Santa
Barbara, California, USA, February 2-5, 1998

P. ANDERSEN, P.H. KIRKEGAARD
STATISTICAL DAMAGE DETECTION OF CIVIL ENGINEERING
STRUCTURES USING ARMAV MODELS

DECEMBER 1997 ISSN 1395-7953 R9758



STATISTICAL DAMAGE DETECTION OF CIVIL ENGINEERING
STRUCTURES USING ARMAY MODELS

P. Andersen & P.H. Kirkegaard
Aalborg University
Department of Building Technology and Structural Engineering
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark

ABSTRACT

In this paper a statistically based damage detection of
a lattice steel mast is performed. By estimation of the
modal parameters and their uncertainties it is possible
to detect whether some of the modal parameters have
changed with a stastistical significance. The estimation
of the uncertainties is based on ARMAV calibration
using a non-linear Prediction Error Method approach.
Besides estimating the parameters of the ARMAV
model this approach can also provide an estimate of
the covariance matrix of these parameters. On the
basis of this covariance matrix it is possible to estimate
the uncertainties of the modal parameters.

NOMENCLATURE

A; Auto-regressive coefficient matrix

C, Moving average coefficient matrix

F  State matrix

B Input matrix

C  Observation matrix

A Transition matrix

T  Sampling interval

y(© Continuous-time system response
y(t) Discrete-time system response

w(f) Continuous-time Gaussian white noise input
e(t,) Discrete-time innovation process

QN Parameter vector based on N samples
B, Estimated covariance matrix of 8,

Y, ith complex eigenvector

®, #thcomplex mode shapes

f;  ih natural eigenfrequency

¢;  ih damping ratio

1. INTRODUCTION

It is a well-known fact that estimated modal parame-
ters of a structural system can serve to indicate for
whether damage of a structure has occured or not, see
Rytter [10]. Changes in natural eigenfrequencies are
no doubt the most frequently used damage indicators.
These are sensitive to both local and global damages.
A local damage will cause changes in the derivatives
of the mode shapes at the position of the damage.
This means that a mode shape having many coordi-
nates can locate the approximate position of a dam-
age. The introduction of damage in a structure will
usually cause changes In the damping capacity of the
structure. Damping ratios can therefore be sensitive to
the introduction of even small cracks in a structure.

Thus, all modal parameters are in principle applicable
as damage indicators, see Rytter [10]. This means that
they can be used at least for detection of damage.
However, the key to a successful damage detection is
the use of unbiased and low-variance modal parame-
ter estimates as damage indicators. If the estimates
are biased they might cause a false alarm, i.e. indicate
a damage that does not exist. If the estimation inaccu-
racies are too dominant, it might be impossible to
detect any significant changes, i.e., the existence of a
damage might be hidden. Thus, if the uncertainties of
the estimated modal parameters can be estimated it
will be possible to assess whether changes of modal
parameters are caused by e.g. a damage or simply by
estimation uncertainties. Further, if the changes of the
modal parameters not are caused by estimation
inaccuracies, the estimated uncertainties can be used
to establish a probabilistic confidence in the existence
of a damage, see Doebling et al. [6] and Kirkegaard et

al. [8].

In this paper, statistically based damage detection is
applied to ambient excited civil engineering structures.
It is shown that an ambient excited civil engineering
structure can be represented by an Auto-Regressive
Moving Average Vector (ARMAV) model. The applied
system identification method is a non-linear Predicition
Error Method (PEM). Estimation of ARMAV models
using this technique is known to provide asymptotically
unbiased and efficient modal parameter estimates
solely on the basis of output measurements of a
system. In other words, the uncertainties of the esti-
mated modal parameters will attain the Cramer-Rao
lower bound of variance. By assuming that the lower
bound is reached, it is possible to estimate the stan-
dard deviations associated with the estimated modal
parameters. It is shown how to apply this additional
information as a basis for a simple statistically based
damage detection, which will be illustrated on mea-
surements of a lattice steel mast that has been dam-
aged.

In section 2, it Is explained how an ambient excited
structure can be modelled by an ARMAV model. The
estimation of the ARMAV model is presented in
section 3. From the estimated ARMAV model the
modal parameters and their uncertainties can be
estimated. This is shown in section 4. In section 5, an
example of statistical damage detection will be given.
The technique will be illustrated on the basis of
measurements of a lattice steel mast. Finally, in
section 6 conclusions will be made.



2. ARMAV MODELLING OF AMBIENT EXCITED
STRUCTURES

Experience has led to the following mathematical
mass-spring-dashpot lumped parameter model for a
structure subjected to external loading

My(r) + Cy(r) + Ky(r) = f(1) (0

M, C and K are the mass, damping and stiffness
matrices all of dimensions p x p. y(¢) and f(¢) is the p x
1 displacement and p x 1 force vectors at the mass
points, respectively. From a system identification point
of view a generalization of the mathematical model is
necessary, since the number of measurement chan-
nels is usually less than the number of identified
modes. A generalized multivariate model can be
formulated as, Andersen [5]

Diy(r) + A, \DTy(s) + .. + A, y(1) =

+ B, f(1)

@)

B, . D*}(1) + ...

f.5-2
where D is a differential operator. The matrices 4,; and
B, are all of the dimension p x p. The displacement
vector y(¢) and its derivatives are all of the dimension
p x 1. The p x 1 vector f{r) describes the forces applied
to the system. The modes of a structural system will
typically be underdamped, which implies that each
mode is described by a pair of complex conjugated
eigenvalues. In this situation the order s will be defined
as s=2 with N being the number of underdamped
modes.

It is often assumed that the ambient excitation f(y) is
given as the output of a linear time-invariant shaping
filter subjected to Gaussian white noise. Due to the
Gaussian assumption, it is implicitly assumed that the
true ambient excitation is at least weakly stationary. If
the ambient excitation can be described by filtered
white noise, it is possible to derive a model for it.
Assume that the excitation fz) of the structural system
is obtained as the output of an mth-order p-variate
linear time-invariant continuous-time shaping filter

D"f(r)+A,,, D™ 1)+ ... +A S =w(t) (3)

For simplicity, it is assumed that f(r) and w(r) have the
same dimensions as z(r). This implies that the matrices
A, all have the dimension p x p. The stochastic
process w(r) is a zero-mean Gaussian white noise,
fully described by its covariance function. This
covariance function is defined in terms of the p x p
intensity matrix W as

Elw()]=0, Elw()wT(t-0)|=8(x)W (4)

where 8(z) is the Dirac delta function. These statistical
properties are abbreviated NID(0,W).

It is obvious that the response y(1) of the system will
contain a mixture of the dynamic behaviour of the
structural system and of the excitation. It is also
intuitively clear that during a system identification the
dynamic modes of the shaping filter will also be
estimated. These modes are, together with any noise
modes, called non-physical modes. In this way they
can be distinguished from the physical modes of the
structural system.

The structural system can then be combined with the
shaping filter of the excitation by means of convolution
into a resulting linear system subjected to a Gaussian
white noise. The resulting differential equation system
will be of the order n = s+m. Such a differential equa-
tion system can be represented by the following state
space system, Andersen [5]

(1)
(1)

Fx(t) + Bw(t) , w(t) € NID(0O,W)
(5)

Cx(t)

where F is the np x np state matrix, B is the np x p
input matrix, and C the p x np observation matrix.
Define a discrete time instance as 1, = kT, where kis
an integer and T is the sampling interval. A sampling
of the solution of (5) then leads to

x(1,,) =Ax(1,) +%(1,), W(1,) € NID(0,L)

(6)
¥(t) =Cx()

where the process ¥%(t,) is a discrete-time Gaussian
white noise that is completely described by the
covariance matrix Q, given by

T
Q- feF‘BWBTeF’fd: )
0

The transition matrix A is defined as

A =efT (8)

whereas C is unaffected by the sampling. In Andersen
et al. [2] and Andersen [5], it is shown how the state
space system (5) can be represented in discrete time
by a covariance equivalent p-variate ARMAV(n,n-1)
model, i.e. an ARMAV model with an ath order
autoregressive part and a moving average part of
order n-1.

However, (6) does not account for the presence of
noise which will most certainly always be present. A
way to incorporate a noise description into the ARMAY
model is to add process and measurement noise to the
sampled state space system, Andersen [3] and [5]

x(t,) = Ax() + w(z) + w(r,)

®
¥ = Cx(r) +v(t,)



These noise terms are all assumed zero-mean with a
joint second-order moment given by

(1) Q0 o
E|lw)|[wT) wTte) vT(n]|d0 o s7| (10)
v(t) 0 S R

Since external noise is now present in the system the
system response at a given time step cannot be
calculated explicitly, but only predicted. This prediction
is performed by the means of a Kalman filter. From this
filter a p-variate ARMAV(n,n) model that describes the
system dynamics as well as the noise, can be derived,
Andersen [5].

y(t’{) T A].v(t,_{) ..
e(t,) + Ce(s, ) + ...

t Any(rk-n) =
£ Cne([k—n) (11)

e(1,) € NID(0,A)

The left-hand side of this difference equation system
is the auto-regressive part that describes the system
dynamics. The left-hand side is the moving average
part that describes the external noise as well as the
white noise excitation, and secures stationarity of the
system response. e(t,) is a stationary zero-mean
Gaussian white noise innovation process, described
by the covariance matrix A. The matrices 4,and C,
are the auto-regressive and the moving average
coefficient matrices, respectively. The auto-regressive
coefficient matrices are obtained as

-1

C
CA
. 4] = -ca” (12)
CAn-l

This follows directly from the following relation that
links the auto-regressive coefficient matrices to the
state space matrices, Andersen [5]

CA"+A,CA™ +..+A_ CA+A C=0 (13)

The conversion from the ARMAV model back to state
space is not unique. Several ways to realise the model
in state space exist. These realizations can e.g. be
balanced or canonical forms, Andersen [5].

3. ESTIMATION OF ARMAV MODELS USING THE
PREDICTION ERROR METHOD

The parameter estimates, based on N samples, and
retumed in 8, can be obtained as the global minimum
point of the criterion function

N

V,(0) = det [i): €(4,,0)€7(¢,.0) (14)
Ni=

In other words, as 0, =arg min V,(0).
a

The model parameter vector 8 is determined so that
the prediction error, defined as

e(2,,0) = y(1,) - ¥(1,1t,_;0) (15)

is as small as possible. y(z 1y, ;0) is the one-step
ahead predicted system response. The m x 1 parame-
ter vector 8 is organised in the following way

6 =colfd, . . 4,.C ..C) (6

where col means stacking of all columns of the argu-
ment matrix. The total number of adjustable parame-
ters in 8 is as such m = 2np?. The predictor of the
ARMAV(n,n) model is defined as

(1t 139) =
A0y () - -4, 0 )+ (17)
C(0)e(t, ,,0)+..+C (0)efe,_ .0)

This relation reveals that the predictor of the ARMAV
model is non-linear, since the prediction errors them-
selves depend on the parameter vector 0. This implies
that an iterative minimization procedure such as the
following Gauss-Newton search scheme has to be
applied.

6 = 8 + R (B)F(B))

N
R(0) = Y (,.0)Q; (0)y(¢,,0)
k=1
N . (18)
F(0) = Y 4(2,,0)05'(0)e(t,,0)
k=1

N
0,(0) = L3 e(1,,0)¢71,.0)
Ni=1

The dimensions of R,(0) and F,(0) are m x m and m x
1, respectively. p, is a bisection constant that adjusts
the step size. §(t,,0) is the gradient of the predictor
(17), i.e. the derivative of (17) with respect to each of
the adjustable parameters of the ARMAV model. At
each time step this gradient forms an m x p dimen-
sional matrix.

The estimate of the parameters of the ARMAV model
can as such be calculated by supplying an initial
parameter estimate. On the basis of this the prediction
errors can be calculated, the matrix R«(6) and the
vector F(0) a can be calculated. An updated estimate
can then be calculated using (17). This method is
called the prediction error method (PEM) since it is the
prediction errors that are minimized, see Ljung [9].

For Gaussian distributed prediction errors this method
is asymptotically efficient. In this case an estimate of
the uncertainties of the estimate is provided by the
covariance matrix, Andersen [3]



B(d,) = R;'(B, (19)

When the amount of data is limited the estimator will
not be efficient. However, the performance of the PEM
can in this situation be improved by a backward
forecasting approach, Andersen et al. [1].

4. EXTRACTING MODAL PARAMETERS AND
ESTIMATION OF THEIR UNCERTAITIES

The free vibrations of an ARMAV model realised in
state space are described by the deterministic part of
(8) as

x(t,,,) = Ax(1,)

(20)
y(t) = Cx(1)

The solution of this system is assumed to be of the
form x(1,) = yu*, where ¥ is an np x 1 complex vector
and p is a complex constant. Insertion into (19) yields

wuke-l =A ‘puk

21
y() =Cyp* el

showing that x(z,) = Yu* only is a solution if and only if
¥ is a solution to the first-order eigenvalue problem

(Ip - A)g = 0 22)

This eigenvalue problem only has non-trivial solutions
if its characteristic polynomial is satisfied. The order of
this real-valued polynomial is np. Thus, there will be np
roots y, that are the eigenvalues of A. For each of
these eigenvalues there is a non-trivial solution vector
Y, which is the corresponding eigenvector. The mode
shape @, is then obtained from (20) as

@ =Cy, j=1,2,...np 23

The continuous-time eigenvalues A, the natural eigen-

frequencies f, and damping ratios {, can be extracted.

from the discrete-time eigenvalues as

1
A = log ()
T
Al
= ---!— 4 j=
5 e Jj=1,2,..,np (24)
Re (L)

g = -—

1 IAjl

Due to the relation (13) these modal parameters are
also the modal parameters of the ARMAV model.

Above, it was established that the PEM estimator for
Gaussian distributed prediction errors would be
statistically efficient. A standard for the estimation
errors of a statistically efficient estimator is provided

by the Cramer-Rao lower bound. This standard was
utilized by the model parameter covariance matrix
Po(B,) = E1(8,-9,)(8,-8,)71 of the difference between
the true parameters ,,and estimated parameters 8, as
N tends to infinity. In general, the change of para-
meterization from a set of model parameters, given in
an m x 1 dimensional vector 6, to another set of
physical parameters, given in a r x 1 dimensional
vector x, can be performed by a known r-dimensional
functional relation

X = f(8) (25)

Since the number of physical parameters is less than
the number of model parameters, obviously the
accuracy and thus the sensitivity of k is more signifi-
cant than that of 0. In addition, the functional relation
(25) will in general be non-linear as in the case of the
modal decomposition. Thus, to obtain a practically
applicable approach, (25) is usually linearized using a
first-order generalized Taylor expansion at the operat-
ing point (&,,.8,), Andersen [5]

_ af(e)) 5
kK =R, +| 1= 0-06
W ( 30 gaze,,( N) 6

&y + J(B(0 - 6,)

where J(6 ) is a Jacobian matrix of partial derivatives
which should be evaluated at the operating point 8,,.
The covariance matrix P (R,)of the deviation of &,
from the true parameters can be estimated by

B (&) = E|(xy = Ry} ~ RyV]

(27
= J(8,)Py(8,) J(8,)
The estimated covariance matrix 130( 6 ) obtained from
(18) can then be inserted instead of Py(8,). This
expression will only be accurate if ﬁe(ﬁ,,) is a good
estimate of Py(8,) and if the error due to the linear
approximation is small, Andersen [5]. What remains is
to calculate the Jacobian matrix J(8,). This is in
general impossible to do analytically even for small
model structures, when the physical parameters of
interest are the modal parameters. It is therefore
necessary to rely on numerical differentiation. As an
example, the elements of &, can be defined as the
estimated natural eigenfrequencies and associated
damping ratios of the model.
=l &L G- (;lr (28)
The functional relationship between these parameters
and the model parameters is given by the eigenvalue
problem (21) followed by the calculation of the modal
parameters given in (24). This means that the resulting
functional relation between the model and modal
parameters is highly non-linear, and numerical differ-
entiation must be applied. For further information on
the practical considerations and the estimation of the

‘uncertainties of the mode shapes, see Andersen [5].



5. EXAMPLE OF A STATISTICAL BASED DAMAGE
DETECTION

This example illustrates the applications of system
identification using ARMAV models in damage detec-
tion. This applications will be illustrated on a lattice
steel test mast. An elevation of the 20 m high steel
lattice test mast is shown in figure 1a. The four chord
K-frame test mast with a 0.9 x 0.9 m cross-section is
bolted with twelve bolts, three for each chord, to a
concrete foundation block. This block is founded on
chalk and covered by sand. The mast is constructed
with welded joints. At the top of the mast there are two
plywood plates in order to increase the wind forces on
the structure. In one of the lower diagonals, which is
indicated in figure 1a, a damage has been simulated
by introducing a crack and increasing its depth. The
depth of the crack has been increased 4 times, see
figure 1b. Before the damage is introduced the state of
the structure is referred to as the virgin state. After the
introduction of the damage the four different states of
the structure are referred to as damage states. The
mast has been equipped with 6 accelerometers shown
in figure 1a. Three of them are mounted at the top of
the mast and three approximately in the middle of it.
Unfortunately, one of the accelerometers placed in the
middle was damaged due to heavy rain, which means
that the analysis has been performed with the remain-
ing five accelerometers. Figure 1c shows a sketch of
the location of the accelerometers and their sensitive
directions are indicated with arrows. The damaged
accelerometer has the number 2.2,

|

T Middle
§ Ll| = Ii‘ L;_l z.aI
Damage ’_‘
_-i{z _ﬂ__z.z
g )
1 ¥
a) 000 Measurements in mm

Figure 1: a) Elevation of the mast, where the location of the introduced
damage and the six accelerometers is marked. b) The simulated
damage is made by increasing the crack depth In four steps. These
steps are referred to as damage states 1 to 4. ¢) The top and middle
cross-section where the accelerometers are mounted. The sensitive
directions of the accelerometers are indicated with amows.

The data have been sampled with a sampling interval
T = 0.02 sec. Each measurement session lasted 160
sec, which implies a record length of N = 8000 points.
Initially, it is impossible to determine which of the
modal parameters will be sensitive to damage. How-
ever, it is assumed that some of the estimated natural
eigenfrequencies or the assoclated damping ratios are
applicable as damage indicators. Since the mode

shapes are only described at a few points of the
structure these will not be used as damage indicators.

State of the Cross-Sectional Crack Depth
Structure Reduction {%)] {mm]
Virgin state 0 0
1. Damage State 7 5
2. Damage State 13 10
3. Damage State 27 20
4. Damage State 40 30

Table 1: Definition of virgin and damage states.

As seen in figure 2 there are two closely spaced
modes around 2 Hz and two closely spaced modes
around 11.5 Hz.

Auscage of Al Spaciral Dens Hes of M Wrgin Sisla kaasuree snis
T T T T

Figure 2: FFT-based spectral density of the response using all virgin
state measurements. The auto-spectral densities and magnitudes of the
cross-spectral densities of all measurement records have been
averaged. All records have been nommalized to unit standard deviation
before averaging. The frequency resolution is 2048 between 0 and 25
Hz. The zoomed regions are the areas around the peaks at 2 Hz and
11.5 Hz.

The two modes located around 2 Hz are the first
modes of bending in the two perpendicular directions,
see figure 1. The mode located around 8 Hz is the first
torsional mode of the structure, and the two modes
located around 11.5 Hz are the second modes of
bending. These observations are in accordance with
prior research reported in Kirkegaard et al. [7], where
the dynamic behaviour of the structure has been
investigated. Because of the closely spaced modes
the most sensible choice of model structure is an
ARMAYV model with as many channels as possible, i.e.
5 channels. In this way information from all sensors is
used. Assuming that all 5 modes are underdamped
and that noise is present in the measurements, it is
necessary to use at least the ARMAV(2,2) model.
However, the optimal order n has been selected on the
basis of the Akaike FPE criterion as n = 3. This model
structure has been used in all identifications. The
actual system identifications have been performed
using the non-linear PEM algorithm. The average
values and sampled standard deviations of the modal
parameter estimates of the five structural modes have



been calculated. From these values, it is also possible
to estimate the coefficient of variation. The results are
seen in tables 2 and 3.

Mode # £ [Hz] g, Hz) v, [Hz]
x 10° x10®
1 (Bending) 2.014 2.49 1.24
2 (Bending) 2.044 2.63 1.28
3 (Tersion) 8.166 3.91 0.48
4 (Bending) 11.504 8.66 0.75
5 (Bending) 11.642 5.44 0.46

Table 2: Mean values f, sampled standard deviations c]_and coeffi-
cients of variation v, of the natural eigenfrequencies of the five

structural modes.

Mode # g% o, (%) v,
1 (Bending) 0.31 0.14 0.46
2 (Bending) 0.31 0.15 0.48
3 (Torsion) 0.10 0.05 0.48
4 (Bending) 0.18 0.20 1.07
5 (Bending) 0.13 0.06 0.45

Table 3: Mean values I, sampled standard deviations acrand coeffi-
clents of variation v, of the natural eigenfrequencies of the five
structural modes.

As seen the coefficients of variation of the estimated
natural eigenfrequencies are very small compared to
the coefficients of variation of the estimated damping
ratios. Since the coefficients of variation of the esti-
mated damping ratios have values between 0.45 and
1.07 it implies that the estimates are very poor. lt is
therefore not worthwhile to use these estimates for
damage detection.

Having completed the virgin state analysis, the analy-
sis of the natural eigenfrequency estimates of the
damaged states can begin. It is assumed that the
structure shows linear and time-invariant behaviour in
each damage state. This is a resonable assumption
since the size of the crack is extended between the
last and the first measurement session of two
consequetive damage states. If the size of the crack
was increased significantly during a measurement
session the system would perhaps show time-variant
behaviour. From table 2, it is seen that the estimation
inaccuracies for the natural eigenfrequencies result in
coefficients of variation around 1.0 x 10, Therefore,
in the following analysis, natural eigenfrequency
estimates with estimated coefficients of variation larger
than 1.0 x 10° will be rejected from the analysis. In
this way the uncertainties of the natural eigenfre-
quency estimates of the damaged states will qualita-
tively correspond to the estimates of the virgin state. At
the present state, it has been established that the
natural eigenfrequencies of the five structural modes
can be estimated with a high degree of accuracy.

However, this does not mean that they can be used as
damage indicators. They might simply not be sensitive
to the damage. The easiest way to determine whether
they are suitable as damage indicators or not is by
plotting the estimated natural eigenfrequencies that
have passed the rejection criteria described above. It
turns out that only the third and fifth mode changes
significantly. These changes are plotted in figures 3
and 4 together with the 95% confidence intervals
based the estimated standard deviation obtained from
the estimation of the ARMAV model.
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Figure 3: Estimated natural eigenfrequencies of the third mode that
have passed the rejection criteria. The estimates are plotted together
with their estimated 95% confidence interval, The relation between the
estimates and the damage states is plotted below.
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Figure 4: Estimated natural elgenfrequencies of the fifth mode that have
passed the rejection criteria. The estimates are plotted together with
their estimated 95% confidence interval. The relation between the
estimates and the damage states is plotted bslow.

The observations made in figures 3 and 4 imply that
the the third and fifth natural eigenfrequencies can be
used as damage indicators for this particular damage.
The question is at what damage state it is possible to
detect the damage with a significant confidence.

In the following, it will be assumed that a damage has
been detected if the confidence intervals of all the
natural eigenfrequency estimates of a mode at some
damage state are non-overlapping with the 95%
confidence interval of the natural eigenfrequency of
the same mode in the virgin state.



This detection approach can be utilized by plotting the
estimated selected natural eigenfrequencies and their
estimated 95% confidence intervals of the damage
states together with the averaged natural eigen-
frequency estimates and the estimated confidence
intervals of the virgin state. In figure 5, this is done for
the third natural eigenfrequency estimates, and in
figure 6 for the fifth natural eigenfrequency estimates.
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Figure 5: Estimated natural eigenfrequencies of the third mode and their
estimated 95% confidence intervals.
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Figure 6: Estimated natural eigenfrequencies of the fifth mode and their
estimated 95% confidence intervals.

In figure 5, it is seen that the confidence intervals
become non-overlapping at the moment where dam-
age state four is entered. However, already at damage
state three the confidence intervals of the natural
eigenfrequency estimates of the fifth mode are com-
pletely non-overlapping with the virgin state confidence
interval, see figure 6. So due to the above definition of
a significant damage, it can be concluded that the
actual damage has been detected when it entered the
third damage state. The detected changes of the
natural eigenfrequencies are so significant that they
are probably caused by a structural change. However,
the modal parameters can also exhibit small changes
due to fluctuations in the ambient environment. When
e.g. the ambient temperature changes, thermal expan-
sion effects and changes of the stiffness will occur.
The effects of fluctuating ambient temperatures on this
particular mast have been investigated in Kirkegaard
et al. [7], and a technique based on Kalman filtering for
removal of such an influence has been proposed in
Andersen et al. [4].

6. CONCLUSIONS

In this paper a simple statistical approach for damage
detection of civil engineering structures has been
given. This approach is based on estimation of an
ARMAV model using the prediction error method. By
means of this method it is possible to obtain accurate
estimates of the modal parameters and estimates of
their associated standard deviations. By using these
estimated standard deviations, it is actually possible to
detect a damage in a statistical sense. This has been
illustrated on a lattice steel mast that exhibits a grow-
ing crack in one of its lower diagonals. When this crack
has reached a depth of 20 mm the change of the third
and the fifth natural eigen-frequencies of the structures
becomes significant within a 95% confidence.
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