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1. Introduction  

 
ith the increasing demand-side participation in the 

electricity market, electricity providers, such as 

load serving entities (LSEs), have been offering incentives 

to the businesses to adjust their energy usage pattern to 

improve the system efficiency and maximize the operating 

profit by reducing the peak or occasional demand spikes 

[1]-[3]. Generally, there are two types of demand response 

(DR) programs that have been widely adopted by LSEs: 

incentive based program (IBP) and price-based program 

(PBP) [4]. As for IBP, it can be divided into several typical 

W

With the increasing demand-side participation in electricity market, as a profit-

seeking market participant, load-serving entities (LSEs) have been trying to apply 

demand response (DR) programs to induce the demand elasticity to further their 

profit. However, due to the different preference of DRs, it is difficult for LSEs to 

generate the optimal strategic bidding strategy considering DR in the ISO/RTO’s 

market. 

Therefore, this paper proposed a bi-level optimization model with the 

consideration of demand response bidding to maximize the total profit of LSEs: 1) 

conceptually, different from previous related works, the consumers participate DR 

through setting their bidding prices to LSEs with respect to their own preference 

and LSEs should determine the optimal reward value of DR as well as the amount 

of demanded electricity; and 2) technically, an original method has been 

implemented to solve the bi-level optimization model. The closed form of shadow 

price function with respect to the total load demand is derived to reduce the 

complexity of the proposed bi-level model. Hence, the proposed model is 

converted to a mixed integer second order cone programming and able to achieve 

the global optimality. It needs to be note that the closed form of shadow price 

introduced in this paper can also be applied to other bi-level programming models. 

Moreover, case studies have been performed to demonstrate the validity of the 

proposed method: 1) the proposed method to obtain the closed form of real-time 

price is verified on a 9-bus system; 2) 118-bus test system with three demand 

response participants is tested to show that by the proposed method, LSE can 

benefit from the DRs under various circumstance. 

 
  

Demand response, mixed integer second order cone programming, optimal 

strategy, bi-level programming, load serving entities (LSEs) 
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types including direct load control [5]-[6], interruptible 

program [7], market based IBP including emergency 

demand response [8], demand bidding [9]-[11], capacity 

market [12] and ancillary services market [13]. As for 

PBP, the various pricing mechanisms have been 

implemented including time-of-use rate (TOU) [14], 

critical peak pricing (CPP) [15], peak load pricing (PLP) 

[16] and real-time pricing (RTP) [17-20]. In addition, a 

coupon based demand response was proposed in [21] to 

optimize the coupon price. 

As a profit-seeking market participant, LSEs purchase 

electricity with real-time prices from wholesale market 

and charge consumers with flat rate. Therefore, LSEs are 

taking the risk of financial loss whenever the real-time 

price in whole market is higher than retail flat rate. To 

hedge against the risk, several measures have been 

adopted in electricity markets, such as contracts, futures 

and etc.. Recently, demand response acts as another way 

that has been applied by LSEs to induce the inherent 

elasticity of the demand to moderate the peak demand. 

However, the difficulty for implementing DR is to 

accurately model its uncertainty. In practical, DR is 

diverse with respect to the types of consumers and varies 

with different time periods. 

There have been considerable amount of works trying 

to address the uncertainty in DR: [22] proposed a multi-

stage robust optimization method to find an optimal 

solution under the worst case scenario; [23] introduced 

index policies for DR considering unknown demand 

capability; [24] adopted uncertain optimization decision of 

interruptible load to study the uncertain customer response 

and total interruptible capacity requirement; [25] studied a 

stochastic unit commitment with the consideration of 

demand response uncertainty.  

Intuitively, consumers themselves could 

comprehensively evaluate the loss when they participate 

the demand response programs, and well address the 

accurate demand response characteristics. Hence, different 

from the existing methods, this paper considers the DR 

mechanism, in which all DR participants send their 

bidding curve and capacity to LSE, according to their 

preferences, lifestyles, and etc. Then LSE determines the 

optimal reward value of DR as well as the amount of 

demanded electricity in performing the market simulation 

to maximize their profits. 

In the practical electricity market, this kind of program 

is usually participated by big industrial energy consumers, 

such as supermarkets, buildings, companies and so on. 

Certainly, for each individual energy user, load 

aggregation can be utilized through which individual 

energy users are banded together in an alliance to more 

competitive prices than they might otherwise receive 

working independently [26]-[28].  Aggregation can be 

accomplished through a simple pooling arrangement or 

through the formation of clusters where individual 

contracts are negotiated between the suppliers and each 

member of the aggregate group. 

The schematic of the market structure with such DR 

mechanism is as Fig. 1. Under this framework, the optimal 

strategy model for LSE becomes a bi-level model, where 

the inner model is the economic dispatch model to 

determine the real-time price and the outer model is to 

maximize the total profit of LSE. 

Technically, the closed form of shadow price function 

with respect to the total load demand is derived to reduce 

the complexity of the proposed bi-level model. Therefore, 

the proposed model is converted to a mixed integer second 

order cone programming and able to achieve the global 

optimality. It needs to be note that the closed form of 

shadow price introduced in this paper can also be applied to 

other bi-level programming models. 

 
Fig.1. Demand response bidding for LSE 

 

The rest of the paper is organized as follows: Section II 

presents the procedures of LSEs’ operation with the 

consideration of bidding based DR, and further formulates 

this issue as a bi-level linear optimization model. Then, in 

order to solve this model, the closed form of inner model in 

introduced in Section III to convert the model from bi-level 

into single level. In Section IV, mixed integer conic 

programing is utilized to achieve to the global optimum of 

the original model. Case studies on a 118-bus system with 

three demand response participants are shown in Section V 

with comparisons between the profit of LSE with and 

without DR, with respect to various retail prices. Finally, 

conclusions are drawn in Section VI. 

 

2. LSE’s Optimal Strategy Considering DR 

 

For each time period, ISOs’ economic dispatch (ED) aims 

to determine the optimal power generation of each 

dispatchable unit and minimize the total operating costs of 

serving the system’s demand. The problem formulation of 

ED is derived as a convex quadratic programming problem 

as follows: 

ED) ( )2

=1

min
gN

i i i i i

i

a P b P c+ +∑  (1-a) 

 
=1

. .
gN

i

i

s t P D=∑  (1-b) 

min max

i i iP P P≤ ≤ ,   1,..., gi N=     (1-c) 

where (ai, bi, ci) is the triplet fuel cost function of unit i; Ng 

denotes the number of dispatchable generators; Pi is the 
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power output of dispatchable unit I; D is the total demand 

without DR; minimum/maximum generation capacity of 

unit i are Pi
min/Pi

max; constraints (1-b) and (1-c) represent 

the constraints of energy balance and generator capacity 

respectively.  

While the actual models in practice are more complex, 

the simplified ED model without considering transmission 

capacity constraints, as in [21], is utilized here to illustrate 

the main point of the proposed work. Hence, the difficulty 

of obtaining the ISO's exact network information for the 

market participants is avoided. It should be noted that 

although the discussion in this paper ignores the 

transmission capacity constraints, the simple ED model 

can still provide valuable potential insights on DR to those 

market participants as well as facilitate the bi-level DR 

modeling. 

As a market participant, the objective for LSE is 

maximizing the total operating profit. Since the DR offers 

LSEs the opportunities to induce the demand elasticity to 

increase the profit, the modified optimization problem 

considering the DR from Nr consumers can be expressed 

as below:  

(DR) ( )0

1

max
rN

r r

r

Z D Dλ λ π
=

= − −∑  (2-a) 

 max. . 0 r rs t D D≤ ≤ ,  1,...,
r

r N=  (2-b) 

 
1

rN

r

r

D D D
=

= −∑            (2-c) 

( )2

=1

arg min
g

i

N

i i i i i
P

i

a P b P cλ = + +∑         (2-d) 

 

=1

. . :
gN

i

i

s t P D λ=∑                   (2-e) 

 min max

i i iP P P≤ ≤  ,     1,..., gi N=  (2-f) 

where λ0 and λ are electricity retail and real-time prices; D 

is the actual demand with DR;
r

π  is the bidding price of 

consumer r in DR; Dr
max is the maximum load shedding 

for DR; 
r

N  is the number of the consumers in DR 

programs. Constraint (2-b) is the upper and lower bound 

for load demand response; constraint (2-c) describes the 

true load demand after the load demand response; 

constraints (2-d)-(2-f) are the inner ISOs’ economic 

dispatch model constraining the real-time price λ. 

Based on the common sense of market economics, a 

consumer’s bidding price should be increasing with the 

incremental of his/her demand. Here, in this paper, the 

bidding price for an electricity consumer is modeled as 

a piecewise curve as presented in Fig. 2. 

Hence, the consumers’ bidding prices can be 

formulated as: 

 

,1 ,1

,2 ,1 ,2

max

, , 1

0

r r

r r r r

r r r r

r

r m r m r r

if D D

if D D D

if D D D

π
π

π

π −

≤ ≤
 ≤ ≤

= 

 ≤ ≤

L L
       (3) 

where ,1 ,2 ,, , ,
rr r r mπ π πK  are the segments of the bidding 

prices for consumer r; ,1 ,2 , 1, , ,
rr r r mD D D −K  are the demand 

segments of the bidding curve for consumer r. Then, the 

total electricity costs for consumer r should be: 

 
Fig.2 Bidding price curve for consumer r 

( )

( )

,1 ,1

,1 ,1 ,2 ,1 ,1 ,2

max

, 1 , 1 , , 1 , 1

0

r r r r r

r r r r

r r r r r r r r

r r

r m r m r m r r m r m r r

D if D D

D D D if D D D
D

D D D if D D D

π
π π

π

π π− − − −

≤ ≤
 + − ≤ ≤

= 

 + − ≤ ≤

L L

  (4) 

It can be observed that the function r rDπ  is a convex 

function that can be reformulated as: 

( ){ },1 , 1 , 1 , , 1max ,...,
r r r rr r r r r m r m r m r r mD D D D Dπ π π π− − −= + − (5) 

Furthermore, an additional variable sr is employed here 

to simplify the model (2) into (6). 

(DR1)       
0

1

max
rN

r

r

Z D D sλ λ
=

= − −∑        (6-a) 

max. . 0 r rs t D D≤ ≤ ,        1,..., rr N=    (6-b) 

1

rN

r

r

D D D
=

= −∑                            (6-c) 

( )

( )

,1

,1 ,1 ,2 ,1

, 1 , 1 , , 1r r r r

r r r

r r r r r r

r m r m r m r r m r

P s

P P P s

P P P s

π
π π

π π− − −

≤
 + − ≤


 + − ≤

L
 , 1,..., rr N=   (6-d) 

   ( )2

=1

arg min
g

i

N

i i i i i
P

i

a P b P cλ = + +∑       (6-e) 

=1

. . :
gN

i

i

s t P D λ=∑               (6-f) 

min max

i i iP P P≤ ≤  ,     1,..., gi N=          (6-e) 

Hence, (6) is a bi-level model. Traditionally, the 

combinatorial nature of bi-level programming can be 

observed by studying the single-level reformulation which 

is obtained by replacing the inner level problem with its 

KKT (Karush-Kuhn-Tucker) condition. Furthermore, it 

leads to a mixed integer programming with big M approach 

and dummy logic variables. However, only if both the inner 
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and outer model are convex, KKT condition can be a 

necessary and sufficient optimality condition. Here, the 

inner model of (6) is convex, but the outer model is 

nonconvex due to the existence of a bilinear term Dλ . 

Instead of using KKT condition, in order to solve this 

issue, the method to obtain the closed form of the inner 

model and further transform the bi-level model into a 

single level model is proposed in Section. III. It need be 

noted that this bilinear term Dλ is special, where λ is 

uniquely determined by the inner model. 

 

3. A Method to Closed Form of Inner Model 
 

The inner model is a special quadratic programming 

model which contains only one equality and bound 

constraints for each variables, such that 

( )
1 ,...,

=1

min
g

Ng

N

i i
P P

i

F P∑                    (7-a) 

=1

. . :
gN

i

i

s t P D λ=∑        (7-b) 

min max

i i iP P P≤ ≤  ,     1,..., gi N=       (7-c) 

Without considering the bound constraints (7-c), the 

Lagrangian function is expressed as 

( ) ( )2

=1 =1

g gN N

i i i i i i

i i

L P a P bP c D Pλ
 

= + + + −  
 

∑ ∑    (8) 

According to KKT condition, it yields 

=1 =1

1

2 2

1,...,
2

g gN N

i

i ii i

i

i g

i

b
D

a a

b
P i N

a

λ

λ

  
= +     

− = =


∑ ∑
         (9) 

It can be found that the solution and multiplier are the 

linear increasing functions of D, such as λ(D) and Pi(D). 

Considering capacity limits min max

i i iP P P≤ ≤  of Pi(D), λ(D) 

and Pi(D) become piecewise linear functions when 

different upper and lower bound constraints are active 

[29].  

In order to obtain the closed form of λ(D), the space 

Γ=(A, {P
min, P

max}) is defined, where A is the set of 

generators. Since Pi(D) and λ(D) are piecewise linear 

functions, in each interval Dn<D<Dn+1, the units can be 

partitioned into three groups: Ωn, Θn and Ξn, where Ωn 

denotes the units with minimum capacity limits active; Θn 

denotes the marginal units; and Ξn denotes the units with 

maximum capacity limits active. The closed forms of Pi(D) 

and λ(D) are: 

( )

min max

min

max

2
,

1 2

n n n

n

k
k kn

k k k k i

i i n

i
ii n

k k

b
D P Py i

a b
P D P i y

a
aP i

a

∈Ω ∈Ξ ∈Θ

∈Θ

− − +∈Θ


= ∈Ω = −
 ∈Ξ

∑ ∑ ∑

∑
(10) 

( ) min max2 1 2

1 1 1
n n n

n n n

k

k k

k k kk

k k kk k k

bD
D P P

a

a a a

λ
∈Θ ∈Ω ∈Ξ

∈Θ ∈Θ ∈Θ

 
= + − +  

 
∑ ∑ ∑

∑ ∑ ∑
 (11) 

The Ωn, Θn and Ξn as well as the segment Dn should be 

determined to formulate the closed form of the two 

piecewise linear function Pi(D) and λ(D). 

Now, define by g the isomorphism 

( ) { }( )min max, 2 : , , R
i i

V i x a x b A P P= + →     (12) 

Obviously, the cardinality of {V(i,x)} is 2Ng. 

Furthermore, set an increasing order for V(Γ), such that  

  ( ) ( ) ( )1 1 2 2 2 2, , ... ,
g gN N

V s x V s x V s x< < <     (13) 

where (si,xi) belongs to Γ.  

In addition, if the model (7) is feasible, the load demand 

satisfies min max

1 1

g gN N

i i

i i

P D P
= =

≤ ≤∑ ∑ . 

when min

1

gN

i

i

D P
=

= ∑ , Ω0={1,2,…,Ng}, Θ0=∅ and Ξ0=∅; 

when max

1

gN

i

i

D P
=

= ∑ , Ω2Ng=∅, Θ2Ng=∅ and Ξ2Ng={1,2,…, Ng}. 

Furthermore, according to the order (13), the three 

sequence can be updated by 

If max

i ix P= : 1n n−Ω = Ω , { }1n n
i−Θ = Θ − , { }1n n

i−Ξ = Ξ U ; 

If min

i ix P= : { }1n n
i−Ω = Ω − , { }1n n

i−Θ = Θ U , 1n n−Ξ = Ξ . 

In this term, there are 2Ng+1 states, which includes 2 

points {Ω0, Θ0, Ξ0} and {Ω2Ng, Θ2Ng, Ξ2Ng}, and 2Ng−1 

piecewise linear functions. Meanwhile, it should be noted 

that the number of piecewise linear functions is not 

necessarily 2Ng−1. For the following cases, the number can 

be smaller. 

(i) If there exists ( ) ( ), ,i i j jV s x V s x= , the three 

sequence should be updated at the same time and the 

number of states will be one less. 

(ii) If Θn=∅, the piecewise linear function from {Ωn, Θn, 

Ξn} is actually a point, which leads to Θn=Θn-1.  

Now, assume there are m+1 segments and m pricewise 

linear functions, then the segments can be obtained by 
min

min max min

max

min max max

21

2

21

2

n n n

n n

n n n

n n n

n n

n n n

s s s k

i j s s

k i jk

n

s s s k

i j s s

k i jk

a P b b
P P if x P

a
D

a P b b
P P if x P

a

∈Θ ∈Ω ∈Ω

∈Θ ∈Ω ∈Ω

 + −
+ + =


= 

+ −
+ + =



∑ ∑ ∑

∑ ∑ ∑
(14) 

Furthermore, in each interval nD  <D< 1nD + , the linear 

function of λ(D) can be determined by (11), according to the 

groups {Ωn, Θn, Ξn} by the above discussion. 

4. Mixed Integer Conic Programming for the Proposed 

Model with Demand Response Bids 
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After obtaining the segments, the closed form of λ with 

respect to D can be written as (15), where the linear 

function in each interval can be computed by (11), leading 

to 

1 1 0 1

2 2 1 2

1m m m m

h D g if D D D

h D g if D D D

h D g if D D D

λ

−

+ ≤ ≤
 + ≤ ≤

= 

 + ≤ ≤

M L
      (15) 

where hi is positive within each sub-region due to the 

decreasing property of multiplier. However, it is still 

difficult to ensure the convexity of λ in the whole space. 

At first, the bi-linear term in objective function (6-a) to 

maximize Dλ− can be formulated as 
2

1 1 0 1

2

2 2 1 2

2

1m m m m

h D g D if D D D

h D g D if D D D
D

h D g D if D D D

λ

−

 + ≤ ≤


+ ≤ ≤
= 


 + ≤ ≤

M L
  (16) 

Since D is a non-negative value, additional binary 

variables yi and continuous variables Zi can be employed 

to simplify (6-a) into (17), where i=1,…,m. 

{ }2 2 2

1 1 1 1 2 2 2 2max , ,..., m m m mD h Z g Z h Z g Z h Z g Zλ = + + +  

(17-a) 

with 

1

1
m

i

i

y
=

=∑ , 
1

m

i

i

D Z
=

= ∑ , 
1i i i i iD y Z D y− ≤ ≤ , { }0,1

i
y =  ,

1,...,i m=   (17-b) 

Take (17) into (6-a) with introducing one dummy 

variable t, hence 

0

1

max
rN

r

r

Z D t sλ
=

= − −∑    (18-a) 

with additional constraints 
2

1 1 1 1

2

2 2 2 2

2

m m m m

h Z g Z t

h Z g Z t

h Z g Z t

 + ≤


+ ≤


 + ≤

L
             (18-b) 

For each constraint of (18-b), it can be reformulated as 

( )
( )

2 2

2

0

1
1

2
2

i i i i i i i i

i i

i i

i i

h Z g Z t h Z g Z t

g Z t
g Z t

h Z

+ ≤ ⇔ + − ≤

+ −
− +

⇔ ≤
,     1,...,i m=   

 (19) 

Equation (19) is a second order cone constraints. Take 

(19) and (13) into (DR1), (6) can be transformed into a 

mixed integer conic programming model, such that 

 (DR2)     
0

1

max
rN

r

r

Z D t sλ
=

= − −∑      (20-a) 

max. . 0 r rs t D D≤ ≤ ,  1,..., rr N=   (20-b) 

 
1

rN

r

r

D D D
=

= −∑                   (20-c) 

 
( )

( )

,1

,1 ,1 ,2 ,1

, 1 , 1 , , 1r r r r

r r r

r r r r r r

r m r m r m r r m r

P s

P P P s

P P P s

π
π π

π π− − −

≤
 + − ≤


 + − ≤

L
 , 1,..., rr N=

   (20-d) 

 

( )
( )

2

1
1

2
2

i i

i i

i i

g Z t
g Z t

h Z

+ −
− +

≤ ,    1,...,i m=

    (20-e) 

 
1

1
n

i

i

y
=

=∑ ,      
1

n

i

i

D Z
=

= ∑ ,     
1i i i i i

D y Z D y− ≤ ≤  

{ }0,1
i

y =  , 1,...,i m=   (20-f) 

Relaxing the binary variables into continuous ones, the 

above model becomes a conic programing which is convex. 

As a result, (16) is essentially a mixed integer convex 

programming method that be efficiently solved by branch-

and-cut method to achieve the global optimum using 

commercial solvers, such as CPLEX, MOSEK, and 

GUROBI. 

Especially, if (15) is a convex piecewise linear function, 

such that 1 2 ...
m

h h h≤ ≤ , the integer variables in (20) can be 

eliminated, which leads to 

 (DR3)       
0

1

max
rN

r

r

Z D t sλ
=

= − −∑       (21-a) 

 max. . 0 r rs t D D≤ ≤ , 1,...,
r

r N=    (21-b) 

 
1

rN

r

r

D D D
=

= −∑                  (21-c) 

( )

( )

,1

,1 ,1 ,2 ,1

, 1 , 1 , , 1r r r r

r r r

r r r r r r

r m r m r m r r m r

P s

P P P s

P P P s

π
π π

π π− − −

≤
 + − ≤


 + − ≤

L
 , 1,...,

r
r N=    (21-d) 

  

( )
( )

2

1
1

2
2

i

i

i i

g D t
g D t

h Z

+ −
− +

≤ , 1,...,i m=  (21-e) 

 

4. Numerical Results 

 

A. Test on the closed form of λ(D) 

The method of obtaining the closed form of λ(D) is 

performed and further verified in this subsection based on a 

9-bus system with 3 generation units. The parameters of the 

generation units are available as in Table I. The steps of 

testing are presented as follows: 

Step 1: Compute V(i,x)=2aix+bi as 

( )min

11, 7.2V P = ; ( )min

22, 2.9V P = ; ( )min

33, 3.45V P = ; 

( )max

11, 60V P = ; ( )max

22, 52.2V P = ; ( )max

33, 67.15V P = ; 

Step 2: Order V(i,x) in an increase sequence, such that 
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( ) ( ) ( ) ( ) ( ) ( )min min min max max max

2 3 1 2 1 32, 3, 1, 2, 1, 3,V P V P V P V P V P V P< < < < <

Step 3: The sequence groups can be formulated as 

Ω0={1,2,3}, Θ0=∅, Ξ0=∅;    Ω1={1,3}, Θ1={2}, 

Ξ1=∅; 

Ω2={1}, Θ2={2,3}, Ξ2=∅;    Ω3=∅, Θ3={1,2,3}, Ξ3=∅; 

Ω4=∅, Θ4={1,3}, Ξ4={2};    Ω5=∅, Θ5={3}, Ξ5={1,2}; 

Ω6=∅, Θ6=∅, Ξ6={1,2,3}; 

Step 4: Compute the break points by (14) 

D1=30; D2=33.24; D3=70.60; D4=723.53; D5=790.82; 

D6=820; 

Step 5: Compute each piecewise linear function by 

(11) 

For D1<D<D2, it leads to Ω1={1,3}, Θ1={2}, Ξ1=∅, 

and we have λ(D)=0.1700D−2.2000; 

For D2<D<D3, it leads to Ω2={1}, Θ2={2,3}, Ξ2=∅, 

and we have λ(D)=0.1004D+0.1145; 

For D3<D<D4, it leads to Ω3=∅, Θ3={1,2,3}, Ξ3=∅, 

and we have λ(D)=0.0689D+2.3342; 

For D4<D<D5, it leads to Ω4=∅, Θ4={1,3}, Ξ4={2}, 

and we have λ(D)=0.1159D−31.6667; 

For D5<D<D6, it leads to Ω5=∅, Θ5={3}, Ξ5={1,2}, 

and we have λ(D)=0.2450D−133.7500; 

Hence, the closed form of λ(D) is expressed as 

( )

0.1700 2.2000 30 33.24

0.1004 0.1145 33.24 70.60

0.0689 2.3342 70.60 723.53

0.1159 31.6667 723.53 790.82

0.2450 133.7500 790.82 820

D D

D D

D D D

D D

D D

λ

− ≤ ≤
 + ≤ ≤

= + ≤ ≤
 − ≤ ≤

− ≤ ≤
    (22) 

TABLE I. PARAMETER OF 9 BUS SYSTEM 

Units 
ai 

($/MW2) 
bi 

($/MW) 
ci 

($) 
Pmin 

(MW) 
Pmax 

(MW) 

1 0.1100 5.0 150 10 250 
2 0.0850 1.2 600 10 300 
3 0.1225 1.0 335 10 270 

In order to verify the proposed method, the shadow 

prices with different load demands are computed by the 

economic dispatch model (7) by MOSEK, where the tested 

load demands are set from 30 to 820 MW with 40 MW as 

step length. The shadow price under same load demand 

can be obtained by the closed form (22). Moreover, the 

results of ED and closed form are compared in Fig. 3 to 

depict that the closed form of shadow price with respect to 

the total load demand is as the same as that from 

performing ED. Therefore, this closed form has been 

verified to be able to simplify the inner model of the 

original bi-level programming problem. Especially, it can 

be found from the closed form (22) that this piecewise 

linear function is neither complete convex nor complete 

concave: The function is concave with 30<D<70.60 and 

convex with 70.60<D<820. Recall model (20) and (21), 

the range of D 
1

,
rN

r

r

D D D
=

 
− 

 
∑  can be easily obtained. 

Therefore, if [ ]
1

, 70.60,820
rN

r

r

D D D
=

 
− ⊆ 

 
∑ , (21) can be 

applied for the proposed demand response bidding model; 

otherwise, (20) can be utilized for which need to introduce 

additional integer variables. 

 

Fig.3 Comparison of the closed form and the economic dispatch 

B. Test on the proposed bi-level programming model 

IEEE 118-bus test system has been studied to validate 

the effectiveness of the proposed bi-level programming 

model on providing optimal operating strategy for LSEs 

with considering demand response. For this case study, the 

generator parameters are from MATPOWER [30], where 

there are 19 units in service. According to the economic 

dispatch model (7), the total load demand is set as 5500 

MW and the real-time price without DR is 46.0435 $/MWh. 

The proposed approach is performed using MATLAB, and 

MOSEK on a personal computer with Intel® Core™ i5 Duo 

Processor T420 (2.50 GHz) and 4 GB RAM.  

In this case study, there are three consumers 

participating the DR, whose bidding curves are given in Fig. 

4. The maximum reducible demand for each consumer is 

400 MW. Hence, the practical load with the consideration 

of DR should be within the range of [4300, 5500] MW. In 

addition, the closed form of shadow price λ by (11) has been 

obtained by the proposed method as (23). Note, there are 

eighteen pieces in total and only seven pieces are presented 

here due to space limitation. Since (23) is convex, the model 

(21) can be applied to solve this bi-level programming 

model. 

( )

0.0046 19.8757 0 5098.6

0.0053 16.2497 5098.6 5267.9

0.0061 12.2026 5267.9 5309.3

0.0070 7.1000 5309.3 5402.8

0.0082 1.0231 5402.8 5404.4

0.0097 7.3442 5404.4 5533.6

0.01145 17.0018 5533.6

D D

D D

D D

D D D

D D

D D

D D

λ

+ ≤ ≤

+ ≤ ≤

+ ≤ ≤

= + ≤ ≤

+ ≤ ≤

− ≤ ≤

− ≤ ≤ 5670.42













 (23) 

Taking different retail prices into consideration for 

illustration, real-time prices in ISO/RTOs’ market with and 
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without DR are shown in Fig. 5 for comparison. The 

results show the real-time price with DR is relatively 

lower. Although the real-time price λ is reduced by 

shedding demand, LSEs still need to compensate the 

consumers’ based on their bids in DRs according to. 

Therefore, the proposed bi-level programming model can 

be applied to optimize the value of the DR. 

Fig. 6 depicts the optimal value of load shedding in 

DRs solved by the proposed method. Generally, when the 

retail price is relatively lower to the real-time price, in 

order to avoid losses, LSE will have the incentive to 

perform DR to reduce the real-time price. When the retail 

price is relatively higher than the real-time price, LSE will 

not have the incentive to perform DR. 

The profit of LSE is plotted in Fig. 7 to demonstrate 

that the LSE’s profit with DR can be increased comparing 

to it without DR. Specifically, the profit of LSE consists of 

two parts: (i) the cost of compensating consumers in DR; 

(ii) the profit between purchasing electricity from 

ISO/RTOs and selling it to consumers. With the increment 

of retail price, the cost of DR will be reduced until LSE 

can meet the demand by directly buying from ISO/RTO 

without DR. Meanwhile, since the real-time price will rise 

if buying more electricity from ISO/RTO, DR also can 

help further reduce the real-time price for LSEs to 

maximize their profit even when the retail price is high. 

 
Fig. 4. Bidding curves of three DRs 

It should be noted that in practical electricity market, 

the retail price is determined before LSE makes decision 

for DR bidding. For example, if the retail price is 40 

$/MWh, the optimal load shedding strategy for the three 

DR participants should be Dr,1=200 MW, Dr,2=300 MW, 

Dr,3=240 MW; if the retail price is 60 $/ MWh, the optimal 

load shedding strategy for the three DR participants should 

be Dr,1=92.74 MW, Dr,2=150 MW, Dr,3=0 MW. For the 

proposed bidding model, LSE will need to forecast the 

total load demand D , which is usually uncertain and need 

to be addressed. Therefore, different realizations of load 

demand within [5000, 5600] MW have been considered. 

The results of load shedding for DR with retail price being 

40 $/MWh and 60 $/MWh are presented in Fig. 8 and Fig. 

9, respectively. From the simulation results, it is obvious 

that, with increasing the load demand, more load shedding 

for DR is utilized. According to the result, there is a fact 

that the load shedding of DRs may be constant within 

certain interval. For Fig. 8, the results are constant when 

[ ]5200,5540D = MW; for Fig. 9, the results are constant 

when [ ]5300,5400D = MW; and, both of them are constant 

near 5500 MW. 

 
Fig. 5. Price from ISO/RTO with different retail price 

 
Fig. 6. Bidding results of load shedding of each DR by LSE 

 
Fig. 7. Comparison of profit of LSE with and without DR 
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Fig. 8. Load Shedding of DR under retail price 40 $/MWh 

 
Fig. 9. Load Shedding of DR under retail price 60 $/MWh 

When the consumers’ bidding price is set to be as five 

times as the value in Fig. 4, and the real-time price with 

DR under different retail prices and the optimized load 

shedding of each DR can be observed in Fig. 10 and Fig. 

11 respectively. Compared with Fig. 5 and Fig. 6, it is 

similar that the lower retail price is, the larger amount of 

load shedding is, and the lower real-time price will be. 

Meanwhile, due to the high bidding price, the amount of 

load shedding in Fig. 11 is less than that Fig. 6. Also, due 

to the high bidding price, when the retail price is higher 

than 55 $/MWh, performing DR will not further increase 

LSEs profit but only bring them extra costs in 

compensating consumers in DR. Fig.12 is the comparison 

of LSEs’ profit with and without DR. The results show 

that DR only slightly improves the LSEs’ profit. 

Comparing with Fig.7, it concludes that 1) LSEs can 

benefit from the DRs, and 2) lower biding price is, the 

more profit growth can be achieved. Finally, the results of 

load shedding for DR with retail price being 40 $/MWh 

and 60 $/MWh are presented in Fig. 13 and Fig. 14, 

respectively. Compared with those in Fig.8 and Fig. 9, it 

can be observed that, with increasing the load demand, 

only load shedding for DR2 is utilized and for the same 

retail price, there needs less load shedding, because the 

DR bidding price is higher than before (five times as the 

value in Fig. 4). 

 
Fig. 10. Price from ISO/RTO with different retail price 

 
Fig. 11. Bidding results of load shedding of each DR by LSE 

 
Fig. 12. Comparison of profit of LSE with and without DR 
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Fig. 13. Load Shedding of DR under retail price 40 $/MWh 

 
Fig. 14. Load Shedding of DR under retail price 60 $/MWh 

 

5. Conclusions 

 
This paper proposed a bi-level optimization model 

with the consideration of demand response bidding to 

maximize the total profit of LSEs. The contributions of 

our work are as follows: 

The consumers participate DR through setting their 

own bidding prices. Therefore, LSEs are able to determine 

the optimal reward value of DR as well as the amount of 

demanded electricity without knowing the accurate 

demand response characteristics. 

An original method has been implemented to solve the 

bi-level optimization model. The closed form of shadow 

price function with respect to the total load demand is 

derived, which can greatly reduce the complexity of the 

proposed bi-level programming model and leads to a 

mixed integer second order cone programming to achieve 

the global optimality. Most importantly, the proposed 

approach to the closed form of shadow price can also be 

applied to other bi-level programming models. 

Finally, it should be noted that we consider the optimal 

strategy as a real-time problem in this paper. Therefore, 

only a single-period economic dispatch model is 

considered. However, considering the coupling of 

different time periods, a multi-period dynamic economic 

dispatch model will add another dimension into the 

proposed model, which will be more complex and we may 

research in future works. 
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