
Aalborg Universitet

Performance and Data Traffic Analysis of Mobile Cloud Environments

Pinheiro, Thiago; Airton Silva, Francisco; Fe, Iure; Kosta, Sokol; Maciel, Paulo

Published in:
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

DOI (link to publication from Publisher):
10.1109/SMC.2018.00695

Creative Commons License
CC BY 4.0

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Pinheiro, T., Airton Silva, F., Fe, I., Kosta, S., & Maciel, P. (2019). Performance and Data Traffic Analysis of
Mobile Cloud Environments. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
(pp. 4100-4105). Article 8616692 IEEE Signal Processing Society. https://doi.org/10.1109/SMC.2018.00695

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/SMC.2018.00695
https://vbn.aau.dk/en/publications/2b022ac6-3a58-44b7-a4c3-d31ca2a560f3
https://doi.org/10.1109/SMC.2018.00695

Performance and Data Traffic Analysis of Mobile
Cloud Environments

Thiago Pinheiro ∗, Francisco Airton Silva †, Iure Fé ∗, Sokol Kosta ± and Paulo Maciel ∗
∗ Informatics Center, Federal University of Pernambuco (UFPE), Recife, Brazil
† Laboratory PASID, Federal University of Piauı́ (UFPI), Picos, Brazil

± Center for Communication, Media and Information Technologies, Aalborg University, Copenhagen, Denmark
Emails: {tfs3, isf2, prmm}@cin.ufpe.br, faps@ufpi.edu.br, sok@cmi.aau.dk

Abstract—Mobile Cloud Computing (MCC) is a technique
for increasing the performance of mobile apps and reducing
their energy consumption through code and data offloading.
Building an MCC infrastructure is a difficult task due to its
inherent complexity and the involvement of different components.
This paper proposes an approach for estimating applications’
performance and data traffic volume generated by tasks of-
floading. This work proposes a Stochastic Petri Net (SPN)-based
formal framework to represent the partitioning of applications
in a method-call level. Our framework considers the available
network bandwidth to send and receive tasks to the cloud. The
modeling strategy represents the use and sharing of the actual
available bandwidth for offloading operations. The approach
enables designers to plan and tune MCC architectures based
on Mean Time to Execute (MTTE) and Throughput estimation.
Using our strategy it is possible to estimate the impact of the
bandwidth variation on the application’s MTTE and Throughput.
In addition, the strategies proposed in this work may be adapted
to support MCC applications in real time providing on-the-
fly probabilistic performance predictions. One case study was
performed to evaluate the approach. Our proposed approach
has proven to be feasible and it highlights the most appropriate
strategies for offloading.

Index Terms—mobile cloud, performance evaluation, data
traffic evaluation, stochastic petri nets, ctmc

I. INTRODUCTION

Mobile Cloud Computing (MCC) is a paradigm that in-
creases the performance of mobile apps and reduces their
energy consumption through offloading technique [9]. The
offloading process sends tasks to be processed on remote
servers in the cloud. The first step in performing task offload-
ing is to split an application into different parts. Next, there
is a decision of which ones are most convenient for remote
processing. Tasks may be partially or completely offloaded,
depending on the application requirements.

Offloading does not come for free. Cloud service providers
charge their clients for resource usage. A wrong offloading
decision may lead a company to financial losses. The higher
the resource usage, the higher the amount to be paid to the
provider. Method-call offloading is a partitioning strategy that
enables to split a code into multiple parts. Deciding which
method to partition is not an easy task. It is necessary to
analyze many possible scenarios.

This paper proposes an approach for estimating the perfor-
mance and data traffic volume generated by tasks offloading

to clouds. For that aim, we defined twofold steps. We pro-
pose a Stochastic Petri Net (SPN) [14] modeling strategy to
represent the application source code structure. The modeling
strategy represents the use and sharing of the available network
bandwidth (BW) for offloading operations. Next, the proposed
models are used to estimate two performance metrics of the
whole application, the Mean Time to Execute (MTTE) and
Throughput. The MTTE corresponds to the execution time
of the application as a whole. The throughput corresponds to
the number of requests per time unit made by each user. We
propose a mobile cloud model to predict data traffic volume
applying SPNs.

The remainder of the paper is organized as follows. Sec-
tion II highlights the main concepts about Method-Call Of-
floading and SPNs; Section III presents the proposed strategy;
Section IV details the case study to support the proposal;
and finally, Section V traces conclusions, stressing future
directions.

II. BACKGROUND

This section presents some concepts about Method-Call
Offloading and SPNs to support the understanding of the
proposed approach.

A. Partial Method-Call Offloading

An alternative to the Full Method-Call Offloading [10], is
the Partial Method-Call Offloading [8]. Instead of all methods,
only a subset of them is offloaded. Data dependencies must
be observed to perform a correct partition. For example,
considering the methods m1() and m2(), two decisions should
be made: Where to execute m1() and m2()?

Combining these possibilities (mobile device or the cloud),
four scenarios may be exploited (see Table I). The number of
possibilities increases proportionally to the application com-
plexity. In a real-world scenario, the number of combinations
of method-calls to offloading may be very large. Such variety
makes harder the software engineer’s work when deciding
the most appropriate offloading distribution. Besides, other
aspects, such as the mobile device current CPU and energy
consumption level, may influence the decision. Assuming that
an application with many active users uses a cloud service, a
wrong offloading decision may lead to financial losses. There-

1

fore, companies should plan their MCC offloading strategies
balancing performance and use of remote resources.

Table I: Scenarios to Method-Calls Executions

Possibility m1() m2()
Scenario #1 mobile mobile
Scenario #2 mobile cloud
Scenario #3 cloud mobile
Scenario #4 cloud cloud

B. Stochastic Petri Nets

Petri Nets (PNs) are a powerful modeling tool that can
be used to represent concurrent, asynchronous, distributed,
parallel, deterministic, and stochastic processes [14]. PNs
define a specification technique that allows a mathematical
and graphical representation, and it has analytical mechanisms
that enable verification on the properties and correctness of
modeled systems. Stochastic Petri Nets (SPNs) are an exten-
sion of Petri Nets [12]. SPNs associate a stochastic delay to
each timed transition. Thus, PNs become probabilistic, being
described by a stochastic process. SPNs may be isomorphic for
Continuous Time Markov Chains (CTMC) and, consequently,
they can provide performance measures [7].

III. ESTIMATING PERFORMANCE AND DATA TRAFFIC

Companies in some situations need to balance system
performance and resource consumptions to find the most ap-
propriate strategy that meets the requirements of their projects.
As the user base of an offloadable app grows, the higher may
be the consumption of some remote resources. Applications’
performance and data traffic are key elements in the choice of
an appropriate offloading strategy. More precisely, this paper
seeks to answer the following questions:

1) How to calculate the throughput and MTTE of a set of
method-calls — that may represent a system functionality
— using SPNs?

2) How to estimate the impact of the available bandwidth
variation on the application’s MTTE?

3) How to estimate the data volume that will be transferred
during the offloading process of a set of method-calls?

A. Network Performance and Communication Time

Network performance is a key factor that has a direct impact
on the performance of the entire MCC application. However,
it is a difficult task to estimate precisely at design time the
network conditions in which applications will be used. Real
life network conditions may vary abruptly.

Latency variation over wireless networks is hard to predict.
As the wireless channel congestion increases, the latency
deteriorates rapidly. Packet loss is another factor that im-
pacts on TCP throughput performance. This work considers
the expected TCP throughput between the device and the
cloud for tasks offloading. A developer may implement a
strategy to estimate the actual bandwidth available during the
application execution. In this context, there are many works

with the aim of evaluating MCC offloading traffic consid-
ering the overall networking aspect and resulting network-
induced constraints [5]. For example, based on the actual
available bandwidth estimated and the performance prediction
performed using the strategy proposed in this work, mobile
apps may decide how the processing will be executed.

Thus when planning an MCC application, developers should
consider that the expected bandwidth may vary within a
specified limit. For example, if the application detects that
the available bandwidth is less than the lower-limit set value,
then the processing is performed locally. Based on the actual
bandwidth resources available, it is possible to use the well-
known Equation 1 to estimate the communication time.

CT =
datasize

BW
(1)

B. Execution Time (MTTE)

MTTE corresponds to the average time to finalize the
processing of a set of method-calls. Figures 1 and 2 present
an example of SPNs for computing MTTE. MTTE is the
expected time to reach an absorbing state. A state of an SPN is
absorbing whether it is impossible to leave it (i.e., P(#FINISH
= 1)). It means a deadlock marking has been reached. MTTE
is based on the probability that the processing of a system
functionality has been completed. MTTE is the average time
for a number of tokens to reach the place FINISH given they
were in place START at time instant zero. SPN models can be
evaluated either by numerical methods or by simulation [13].

Figures 1 and 2 demonstrate a simple representation using
SPN of one functionality with only one method-call. Let us
first look at the SPN representation that corresponds to the
local method-call (see Figure 1). The SPN model comprises
three places and two transitions. The first transition (trigger -
time) is immediate. It means that the transition has zero as
its delay value. The second transition (processing time) is a
General Time High-level Transition. It represents the time to
processing the respective method-call.

The SPN pattern that represents an offloadable method-call
has two new places and two new transitions (see Figure 2).
Transition offloading time represents the time spent to execute
offloading. Transition receiving time represents the time spent
to receive the result sent by the cloud. These transitions are
depicted by a gray rectangle, and the model is later refined
by assigning probabilistic distribution parameter values to
respective transitions. If, on the one hand, such transition is
refined by poli-exponential distributions [6], the SPN can be
evaluated either by numerical analysis or by simulation. On
the other hand, simulation should be carried out.

The models evolved by transformation of high-level transi-
tions into exponentially distributed timed transitions. It allows
assigning average delays to respective timed transitions. Such
transformation of transitions and delays assignments allow the
SPN models to be solved. From here, for simplicity, all timed
transitions will have exponential enabling times. However,
they may adopt other probabilistic distributions as well as
deterministic values.

Moment matching [6] could also be applied to obtain poly-
exponential distributions [15]. By adopting moment matching,
the planner may estimate what exponential-based probability
distribution best fits the mean. Additionally, moment matching
generates more accurate models, which can still be numerically
evaluated. If none poly-exponential distributions are adopted,
simulations should also be adopted.

Such SPN patterns may originate other models to evidence
data dependency between method-calls of any source code
arrangement. The SPN modelling pattern evolved to calculate
MTTE of distinct scenarios. Figure 3a demonstrates the SPN
that represents two serial method-calls. Figure 3b shows the
SPN that represents two parallel method-calls. The pattern
embraces general features common in concurrent systems.
The place SYSTEM INACTIVE when having one token means
that the system is idle. The timed transition T0 receives the
delay to start the processing of method-calls when there is
a token in the place SYSTEM INACTIVE. When there is
no delay, T0 becomes an immediate transition. In a real-
world context, multiple combinations can be derived taking
into account the application’s method-calls and the modelling
patterns presented in Figures 1 and 2.

trigger_time

EXECUTING FINISHSTART

processing_time

one local method-call

Figure 1: Basic SPN Representation of One Application with
Only One Local Method-Call Using Absorbing State

RECEIVINGEXECUTINGOFFLOADING

trigger_time offloading_time

FINISHSTART

processing_time receiving_time

one remote method-call

Figure 2: Basic SPN Representation of One Application with
Only One Offloadable Method-Call Using Absorbing State

The mean processing time and communication time of
each evaluated method are the base for MTTE calculation. In
the models presented, the processing time m1 and process-
ing time m2 transitions receive the mean processing times
of the methods m call 1 and m call 2, respectively. If the
application’s method under analysis is an offloadable method,
it is necessary to obtain the number of bytes transferred to
send tasks and to receive the remote results.

In this work, we consider that there is a specific bandwidth
allocated to offloading operations, as well as to receive the
remote results. More specifically, the developer should con-
sider bandwidth variation for a more accurate estimate (see
Section III-A). Equations 2 and 3 consider the probability of
there being tokens in the offloading place (variable Omj) as
well as in the receiving place (variable Rmj) for other method-
calls other than mi, respectively. BWoffloading represents the
actual bandwidth allocated for tasks offloading – in bits/s.

(a) SPN with Absorbing State Used to Calculate MTTE of an Appli-
cation With Two Serial Method-Calls

RECEIVING_m1EXECUTING_m1OFFLOADING_m1

offloading_time_m1 processing_time_m1 receiving_time_m1

RECEIVING_m2EXECUTING_m2OFFLOADING_m2

offloading_time_m2 processing_time_m2 receiving_time_m2

FINISH

m_call_2

m_call_1

(b) SPN with Absorbing State Used to Calculate MTTE of an Appli-
cation With Two Parallel Method-Calls

RECEIVING_m1EXECUTING_m1OFFLOADING_m1

offloading_time_m1 processing_time_m1 receiving_time_m1

RECEIVING_m2EXECUTING_m2OFFLOADING_m2

offloading_time_m2 processing_time_m2 receiving_time_m2

FINISH_m2

m_call_2

FINISH_m1

FINISH_ALL

T1

m_call_1

Figure 3: SPNs Representing Two Offloadable Method-Calls

BWreceiving represents the actual bandwidth allocated to
receive the remote results – in bits/s. Thus, if other methods
are using the allocated bandwidth, the bandwidth allocated for
the operation (i.e. offloading or receiving) is divided among
the methods that are using the network for the same operation.

Equations 4 and 5 calculate the communication time to
transfer an amount of data taking into account the actual band-
width allocated to the evaluated method mi. datasize omi

represents the amount of data transferred to offload the method
mi – in bits. datasize rmi represents the amount of data re-
ceived as the result of the remote processing of the method-call
mi – in bits. Equations 4 and 5 are assigned as the mean delay
value of transitions offloading time mi and receiving time mi
of the method-call mi, respectively. In the evaluation process,
developers must convert Equations 4 and 5 to the syntax of
the stochastic evaluation program used.

After that, a transient analysis on the model obtains the
MTTE. A tool such as the Mercury, TimeNet, GreatSPN or
SHARPE may execute this analysis. These tools generate the
state space of the SPN model and create the corresponding
CTMC. Then, the calculations described in the next section
are performed to obtain the required metrics.

BWOmi =

(
1

1 +
∑n

j 6=i P {Omj > 0}

)
×
(
BWoffloading

1000

)
(2)

BWRmi =

(
1

1 +
∑n

j 6=i P {Rmj > 0}

)
×
(
BWreceiving

1000

)
(3)

offloading timemi =
datasize omi

BWOmi
(4)

receiving timemi =
datasize rmi

BWRmi
(5)

1) Mean Time to Absorption (MTTA): Time-dependent met-
rics are obtained through transient evaluation. The measure of
interest is the Mean Time to Absorption (MTTA). To calculate
the MTTA, the model must have at least one absorbing state. In
this work, the absorbing state is reached when the model is in
the FINISH state. Figure 4 presents the CTMC that represents
the elapsed time to finish the processing for an offloadable
method-call.

RECEIVINGEXECUTINGOFFLOADING FINISHSTART

1/trigger_time 1/offloading_time 1/processing_time 1/receiving_time

Figure 4: CTMC of One Application with Only One Offload-
able Method-Call With Absorbing State

The behavior of the CTMC can be described by the Kol-
mogorov equation given the initial probability vector π(0)
(see Equation 6). Equation 7 gives the expected total time
the CTMC spends in state i during the interval [0, t). The
time spent before absorption can be calculated restricted to the
states of the set of non-absorbing states (N) by limt→∞LN (t).
Thus, L(t) satisfies the Equation 8 where πN (0) is the
vector π(0) restricted to the states in the set N . QN is the
infinitesimal generator matrix restricted to the non-absorbing
states. Finally, MTTA may be described as Equation 9 [4].

dπ(t)

dt
= π(t)Q (6)

Li(t) =

∫ t

0

πi(x)dx (7)

LN (∞)QN = −πN (0) (8)

MTTA =
∑
i∈N

Li(∞) (9)

C. Throughput and Data Transfer Volume

The throughput (Tp) represents the number of executions
per unit of time of a set of method-calls. Tp is obtained by
computing the expected value of tokens at a place, multiplied
by the inverse of the transition delay [11]. Now, as illustrated
in Figure 5, the model needs two transitions to allow it to
return to the initial state when workload execution is complete.

Such SPN pattern may be extended to evidence the method-
calls data dependency of any application.

The throughput may be calculated considering two possibili-
ties: Single Server Semantics (SSS) and Infinite Server Seman-
tics (ISS). Equation 10 calculates the throughput according to
the SSS strategy, and Equation 11 for ISS. The variable i rep-
resents the weight of the arc that connects the place INACTIVE
and the subsequent transition T0. The variable i may vary until
N, where N is the highest enabling degree of the subsequent
transition at the place marking m(INACTIV E) = i.

Tp = P (m(INACTIV E) >= i)× 1

Time
(10)

Tp =

(
N∑
i=1

P (m(INACTIV E) = i)× i

)
× 1

Time
(11)

Using the Equation 12 it is possible to obtain the total
transferred bytes (TTB). Time represents the evaluation period
in milliseconds. Bytes represents the volume of data transferred
in each request.

TTB = Tp× Time×Bytes× Users (12)

RECEIVING_m1EXECUTING_m1OFFLOADING_m1

offloading_time_m1 processing_time_m1 receiving_time_m1

RECEIVING_m2EXECUTING_m2OFFLOADING_m2

offloading_time_m2 processing_time_m2 receiving_time_m2

FINISH_m2

m_call_2

FINISH_m1

T1

m_call_1

Figure 5: SPN without Absorbing State Used to Calculate
Throughput of an Application With Two Parallel Method-Calls

IV. CASE STUDY

This section presents a case study observing the execution
time metric using an application for reducing images color.

A. Color Reduction Application

We implement and analyze an image processing mobile
application following the principles of method-call computa-
tion offloading [8]. The implementation uses a simple client-
server architecture with Remote Method Invocation (RMI).
The relevant parts of the offloading source code are presented
in Listing 1.

Application A resides on the mobile device and its method-
calls are dependency free (lines 5 to 6). That is, the methods
may be executed in parallel. If the method-call is offloaded
to the cloud, it means that the app makes image processing
calls to the server by passing one input (original images). In
this case, the app connects to one virtual machine and then

calls the method reduceColor in the server side. Thereafter, the
processed image returns to the mobile device. Table I reveals
the method-calls distribution scheme of the application.

Both client and server side adopt the Open Source Computer
Vision Library [3] and JavaCV [2]. We have implemented the
computing vision example of Picture’s Colour Reduction [1].
This example transforms images by decreasing the number of
colors depending on the picture’s size.

1

2 p u b l i c c l a s s A p p l i c a t i o n A{
3 p u b l i c L i s t<Image> r e d u c e C o l o r (Image img1 , Image img2){
4 L i s t<Image> r e s u l t s = new A r r a y L i s t<Image >() ;
5 r e s u l t s . add (r e d u c e C o l o r (img1)) ; /∗ m cal l 1 ∗ /
6 r e s u l t s . add (r e d u c e C o l o r (img2)) ; /∗ m cal l 2 ∗ /
7 r e t u r n r e s u l t s ;
8 }
9 }

10

11 p u b l i c c l a s s S e r v e r{
12 p u b l i c Image r e d u c e C o l o r (Image image) {
13 / / JavaCV code s u p r e s s e d
14 }
15 }

Listing 1: Client and Server Classes—Image Processing.

1) The Evaluation: Table I demonstrates the evaluated
scenarios. The testbed executed all method-calls local and
remotely (using one VM as offloading target). Through a
controlled experiment, the collected input parameters for each
method-call were (see Tables II and III): (i) the processing
time to process the image and (ii) the number of bytes sent
and received. As we can see, processing times are lower when
the code is running in the cloud. The experiment executed and
monitored 50 times each scenario. At the end of the process,
the testbed collected the mean values of them.

Table II: Registered Processing Times per Method-Call

Method-Call Device Cloud
m1() 140,969 ms 26,644 ms
m2() 260,296 ms 42,612 ms

Table III: Transferred Bytes per Method-Call

Method-Call Sent Bytes Received Bytes
m call 1 (Image 1) 4.05 MB 1.35 MB
m call 2 (Image 2) 8.43 MB 1.76 MB

The analysis evaluated both the application’s MTTE as
well as the data traffic generated during a period of 30 days
for 1,000 active users. Each user makes requests at a rate
of 1/(21, 000, 000 ms) exponentially distributed. We have
considered that the available BW may vary within a specified
limit (see Table IV) impacting the MTTE in each variation.

First, it is necessary to analyze the MTTE of each sce-
nario. Figure 3b represents the SPN model of the application.
Transitions processing time m1 and processing time m2 are
exponential. They store the mean processing times of the
method-calls m1() and m2(), respectively. We have evaluated
the four scenarios through the combining of the four process-
ing time values. Equations 4 and 5 were used as the mean

Table IV: Bandwidth Variation (in Megabits/s)

BW Variation
Operation Minimum Bandwidth Expected Bandwidth
Offloading 0.5 2.0
Receiving 1.0 3.0

delay value of the transitions that represent the offloading and
result receiving processes, respectively. We have calculated
MTTE taking into account the worst-case BW requirement
tolerated by the application as well as the expected network
scenario (see Table IV). MTTE will be within these limits.
Among other factors, MTTE will vary because of the inherent
latency of wireless networks. Table V presents the respective
MTTEs.

Table V: MTTE of the Experiment

Result (MTTE)
Scenario Minimum Bandwidth Expected Bandwidth

#1 309,821 ms 309,821 ms
#2 241,997 ms 165,587 ms
#3 283,783 ms 265,706 ms
#4 255,970 ms 101,249 ms

The next step is to identify the expected throughput for
each user in each scenario using the SPN model presented
in Figure 5. Transition T0 receives the request rate which is
equal to 1/(21, 000, 000 ms). A stationary analysis obtains
the throughput using the Equation 10 (see Table VII).

Now, let us estimate the total transferred bytes (TTB)
generated by each scenario using the Equation 12. Table VI
presents the number of bytes transferred for processing one
user request in each scenario. Table VIII demonstrates the total
bytes transferred in the evaluated period.

We can extract some conclusions by analyzing the results.
The performance of scenarios #2, #3, and #4, when executed
on the minimum BW requirements, was close to the perfor-
mance achieved when processing the entire application locally

Table VI: Transferred Bytes for Each Scenario

Scenario Sent Bytes Received Bytes Total Bytes
#1 - - -
#2 8.43 MB 1.76 MB 10.20 MB
#3 4.05 MB 1.35 MB 5.40 MB
#4 12.48 MB 3.11 MB 15.60 MB

Table VII: Throughput for Each User in Each Scenario

Throughput
Scenario Executions/ms Executions/month

#1 4.6926 × 10−8 121
#2 4.7246 × 10−8 122
#3 4.7025 × 10−8 121
#4 4.7390 × 10−8 122

Table VIII: Total Transferred Bytes for Each Scenario

Total Transferred Bytes / month

Sent Bytes Received Bytes Total Bytes

Scenarios

#1 - - -

#2 1,009.06 GB 211.16 GB 1,220.21 GB

#3 482.18 GB 160.88 GB 643.06 GB

#4 1,498.06 GB 373.93 GB 1,871.99 GB

0

#1 #2 #3 #4

Tr
an

sf
er

re
d

 B
yt

es
 (

G
B

)

M
TT

E
(m

s)

Scenarios

MTTE (ms) Bytes (GB)

1,220.22

1,871.99

643.06

0.00

2,000

1,800

1,600

1,400

1,200

1,000

800

600

400

200

0

350,000

300,000

250,000

200,000

150,000

100,000

50,000

Figure 6: Comparing MTTEs and Volume of Transferred Data

(see Table V). In scenarios #2 and #4 the actual BW available
for offloading and receiving had a significant impact on the
MTTE of the whole application. The higher the BW, the lower
the MTTE. The method m2() is the heaviest, so it must be
processed in the cloud. If m2() is processed locally, maybe it
is not advantageous to only perform the offloading of method
m1() - #3. The performance gain is small. Scenario #4 is most
suitable but the volume of data transferred in the period is
high (see Figure 6). Thus justifying the adoption of scenario
#2 as offloading strategy.

Figure 7 shows the impact of the offloading BW variations
on the MTTE. For sake of conciseness, we did not consider
variation in the BW to receive the remote results (3.0 Mb/s).
The higher the actual BW, the shorter the communication time.
The offloading BW variation had little effect on the MTTE of
the scenario #3. A large portion of the whole execution time
was spent on local processing. On the other hand, scenario #4
was the most sensitive in relation to BW variation. All method-
calls were processed remotely. Scenario #4 transferred more
data than the other ones. The larger the amount of data being
transferred, the higher the impact of the BW variation.

V. CONCLUSION

In this paper, we proposed an Stochastic Petri Net (SPN)-
based formal framework to represent the partitioning of MCC
applications in a method-call level. Through our modeling
strategy, it is possible to evaluate performance and requests
making by mobile users. Our framework considers the avail-
able bandwidth to send and receive tasks to the cloud. In
this way, representing the communication time to transfer
data between the mobile device and the cloud. Besides, we
proposed an approach that supports data traffic evaluation
using SPNs. Our approach highlights the most suitable options
considering specific scenarios. Going forward, we plan to

0

M
TT

E
(m

s)

Scenario #2 Scenario #3 Scenario #4

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

300,000

250,000

200,000

150,000

100,000

50,000

Available Bandwidth for Offloading (Mb/s)

Figure 7: Bandwidth for Offloading and MTTEs

perform more complex experiments and evaluate more metrics,
such as energy consumption, and apply the ideas presented
herein to other contexts, such as the use of wearable devices
in MCC for real-time performance predictions.

REFERENCES

[1] Colour reduction. http://tinyurl.com/pwq8j44, 2015. Accessed: 2015-
07-28.

[2] Javacv. https://github.com/bytedeco/javacv, 2015. Accessed: 2015-07-
28.

[3] Opencv. http://opencv.org/, 2015. Accessed: 2015-07-28.
[4] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing

Networks and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications. Wiley-Interscience, New York,
NY, USA, 2006.

[5] N. Cordeschi, D. Amendola, and E. Baccarelli. Reliable adaptive
resource management for cognitive cloud vehicular networks. IEEE
Transactions on Vehicular Technology, 64(6):2528–2537, June 2015.

[6] A. Desrochers, R. Al-Jaar, and I. C. S. Society. Applications of petri nets
in manufacturing systems: modeling, control, and performance analysis.
IEEE Press, 1995.

[7] R. German. Performance Analysis of Communication Systems with Non-
Markovian Stochastic Petri Nets. John Wiley & Sons, Inc., New York,
NY, USA, 2000.

[8] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading. In 2012 Proceedings IEEE INFOCOM, pages
945–953, March 2012.

[9] K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can
offloading computation save energy? Computer, 43(4):51–56, Apr. 2010.

[10] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy
on handheld devices: A partition scheme. In Proceedings of the 2001
International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, CASES ’01, pages 238–246, New York, NY, USA,
2001. ACM.

[11] P. Maciel, K. S. Trivedi, R. Matias, and D. S. Kim. Performance and De-
pendability in Service Computing: Concepts, Techniques and Research
Directions, chapter Dependability Modeling. Premier Reference Source.
Igi Global, 2011.

[12] T. Murata. Petri nets: Properties, analysis and applications. Proc. of the
IEEE, 77(4):541–580, Apr 1989.

[13] R. Nelson. Probability, stochastic processes, and queueing theory: the
mathematics of computer performance modeling. Springer Science &
Business Media, 2013.

[14] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Universität
Hamburg, 1962.

[15] B. Silva, P. R. M. Maciel, A. Zimmermann, and J. Brilhante. Surviv-
ability evaluation of disaster tolerant cloud computing systems. In Proc.
Probabilistic Safety Assessment & Management Conference, 2014.

