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Abstract: For many years in the wholesale electricity market, the generation companies would only seek to compete with 

each other to sell electric energy to customers in a way to make more profit. Moreover, there was no mechanism in such 

an environment to enable demand-side participation especially for residential building units with relatively high power 

consumptions. This caused the increasing market power of generation companies and soon to realize that the demand-side 

would yield to any price to purchase the required energy. Having gradually identified this issue, demand response (DR) 

programs were introduced as confronting tools to help consumers being away from such situations. This paper proposes 

an effective market-oriented DR model for residential consumers to change their consumption patterns over the time for 

getting maximum benefits based on their own utility functions. According to the results of simulated case studies, it is 

demonstrated that the proposed model is able to adapt to different consumers with different levels of flexibility against the 

price signals. Moreover, simulation results demonstrate that the residential consumption levels can be easily adjusted 

during the examined period in a way not only to meet the user’s objectives, but also to reshape and smooth the system’s 

aggregated load profile. 

Keywords: Demand-side management, economic demand response model, consumer utility function, electricity market 

restructuring. 

Nomenclature  

Dpeak Demand for the peak times before implementation of DR Programs 

Dshoulder Demand for shoulder times before implementation of DR Programs 

Doff-peak Demand for off-peak times before implementation of DR Programs 

D′
peak Demand for the peak times after implementation of DR Programs 

D′
shoulder Demand for shoulder times after implementation of DR Programs 

D′
off-peak Demand for off-peak times after implementation of DR Programs 

ρ Rate of time preference 

θ Coefficient of relative risk aversion 

Ut Utility function 
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1. Introduction 

 Motivation of the work 

The presentation of Demand Response (DR) models is not only important for retailers, but also for other players in the 

electricity market. It can also help network operators to obtain necessary information about the responses of consumers to 

different load scheduling programs to determine the most appropriate tariffs for network congestion management. Most of 

the existing DR models are based on the concept of price elasticity. In these models, point elasticity (or arc elasticity) is 

the price elasticity of demand at a specific point (or between two given points) instead of the entire curve. On the other 

hand, price elasticity at different points on the demand curve is different. Hence, existing DR models cannot be used as a 

feasible tool for implementing DR in the electricity markets [1]-[2]. This paper employs economic theories and 

mathematical formulations to introduce a new model for time-of-use (TOU)-based DR programs which not only addresses 

this issue, but also enables consumers to better modify their consumption behaviors over the time to get higher benefits. 

 

 Literature review 

In the beginnings of the electric utility industry deregulation, there was no effective participation from the demand side 

in the electricity market, but an extensive contribution from the big generation companies (GenCos) as the major players 

in the market. Therefore, demand-sides were far away from the benefits and the interests of the electricity markets. They 

had not sufficient knowledge and tools to participate effectively in such competitive environments. This kind of demand-

side behavior (passive market player) caused high price spikes and triggered a process which is called "hockey stick 

bidding" in a single-sided market. Indeed, a hockey stick bidding in power markets is a strategy in which GenCos will 

increase the energy price considerably over the marginal utility when demand-side for the electric energy is very inelastic 

[3]. One of the strategies that can change an inelastic demand to an elastic one is called demand side management (DSM) 

[4]-[5]. This concept implies a supply/demand-side relationship that presents mutual benefits to GenCos and consumers as 

well as numerous profits to deregulated distribution systems [6]. Moreover, DSM programs encourage customers to shape 

Ppeak Peak time price 

Pshoulder Shoulder time price 

Poff-peak Off-peak time price 

B Budget before implementation of DR Programs 

B′ Budget after implementation of DR Programs 
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their patterns of electricity consumption for certain goals.  

 

One of the major thrust areas of DSM is known as DR. The US department of energy defines DR as: a tariff or a 

program established to motivate changes in electricity load shapes by consumers in response to changes in the price of 

electricity over time, or to give incentive payments designed to induce lower electricity use at times of high market prices 

or when grid reliability is jeopardized. Similarly, it has been shown in [7] that increasing the capability of demand-side to 

react to electricity prices can not only decrease the running costs of the system, but also alleviate the rate volatility of prices 

during peak times. Generally, DR programs fall into two categories [8]: (1) Price-based DR programs and (2) Incentive-

based DR programs.  

In priced-based DR programs, consumers receive dynamic prices that show the value of electricity in various time 

periods [9]. With this information, consumers can modify electricity usage when electricity prices are high. 

 In [10], the authors show that the implementation of dynamic pricing can lead to an increase in consumers' willingness 

to participate in DR programs, which in turn improves the performance of the electricity markets. In [11], a new approach 

to determine the effects of DR program on cost of energy and market clearing price is presented. In a similar manner, 

researchers in [12] present a novel model based on linear price sensitive demand bidding curves to examine the effect of 

price-based DR programs on market clearing and marginal prices. This model is constructed based on the load shifting 

scheme, so that the total energy consumption (before and after DR implementation) remains the same over the study period. 

The results also show that the proposed DR model can alleviate the electricity prices. Authors of [13] study the problems 

of DR programs under various working conditions and describe how these DR programs can affect the economic dispatch 

of GenCos and social welfares in power systems. In [14], an algorithm is designed to optimize the DR scheduling for 

normal operation and during contingency events. In [15], authors present a real-time price-based DR management model 

for residential appliances. This model can help the residential consumers to administer their appliances in a way to minimize 

the energy consumption costs over the time. In [16], authors propose a method that the optimal prices during various times 

in a day are reported to the consumers simultaneously and users would minimize their costs and optimally schedule their 

power usage accordingly as a part of participation in DR program. Reference [17] designs a novel self-scheduling 

framework for DR aggregators. This model takes into account customers uncertainties and electricity prices. A new DR 

model based on fuzzy subtractive cluster approach is presented in [18]. This model can help domestic customers to manage 

controllable loads and thus improve the load pattern to maximize their utility functions. The results of this paper also show 

the effectiveness of the proposed model for larger test systems. Another demand management framework is designed in 

[19] based on DR programs that provides independent system operators (ISOs) with more flexible options for scheduling 
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the available energy resources in electricity markets. A novel formulation of DR program for retail customers is presented 

in [20] where authors demonstrate that the proposed model could persuade inherent demand flexibility and reduce 

operational cost. Likewise, a DR model with elastic economic dispatch is presented in [21] where ISOs can utilize the 

proposed model to get a clear vision about DR actions for their decision-making process. In [22], coalitions of consumers 

with varying sensitivity to DR programs are presented in a day-ahead market. An algorithm based on Monte-Carlo is then 

presented for formulation of multiple purchase offers in this market.  

One of the most important concepts in DR programs is electricity demand elasticity, which is defined as the sensitivity 

of the customer’s demand to the changes in price of electricity. This means when the price of electricity increases, the 

customers will have more motivations to decrease the consumption level. In [23], incentive-based DR models are 

introduced based on the concept of consumer’s utility function and flexible price elasticity of demand. The mathematical 

model for elasticity of demand is introduced to compute each elasticity of the DR program based on the price of electricity 

before and after the execution of DR programs. In [24], a model for DR programs is introduced. Consumer demand for 

electricity is shown to be dependent on the price elasticity of demand, reward and value of the penalty set for DR programs. 

In [25], a DR model based on the consumers' behavior with the concept of demand-price elasticity is introduced. In this 

model, the difference between encouragement and punishment is accepted and proves that encouragement is a great way 

to establish or make changes in a habit than punishment. In [26], a responsive load model is developed based on the concept 

of price elasticity and customer utility function. The mathematical model to calculate elasticity of the demand is proposed 

based on the price of electricity before and after the implementation of DR programs. However, the price elasticity of 

demand prepares a theoretical view on the effects of the DR and cannot be used as a feasible tool for implementing DR in 

the electricity markets as it doesn't consider customer’s features and its preferences [19]. Hence, A good DR model is the 

one that includes the following features: 1) adaptability to different consumers with different response level (such as Low-

Flexible Behavior (LFB),  Semi-Flexible Behavior (SFB) ,Highly Flexible Behavior (HFB) [1]-[3]), and 2) adjustability 

to user’s preferences. Consumers’ desire to use electricity at certain hours varies within a day which mostly depends on 

the lifestyle. Therefore, an efficient DR model should also account for the adjustment of consumption level with the aim 

of satisfying the demand-side objectives.  

 Contributions 

In view of the discussion presented in previous section, it is clearly understood that an efficient model should be able 

not only to express the extent of consumers’ reactions to price information, but also to account for adjustment of 

consumption levels in different time periods. To this end, the goal of this paper is to address the mentioned issues on the 

existing DR models based on the demand-price elasticity concept with the help of an efficient economic DR model. This 
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model simulates the residential DR program based on a TOU pricing scheme within which a daily time horizon is divided, 

based on power consumption levels, into three periods of peak, shoulder and off-peak, each with a unique tariff.  

In this regard, with a focus on residential DR programs, as shown in Figure 1, residential loads can be divided into two 

groups: non-flexible loads and flexible loads.  It is notable that flexible loads have a big contribution in peak-time demand 

and can be used as efficient tools for DR implementation [27]-[28]. In response to a TOU-based DR program, residential 

consumers may behave in two different ways: 1) they may reduce the consumption in the targeted time periods without 

making any change in the routine consumption of other periods; or 2) they may shift part of their flexible loads from the 

targeted time periods to other periods. In the reference [29] has been emphasized that in the long run, participation from 

the demand side in the electricity market is likely to be almost neutral. This means that consumers only change their demand 

from one period to another in response to price signals. Therefore, the manner in which consumers adjust their consumption 

level in different time periods to achieve the highest financial gain (or avoid financial loss) is of particular importance.  

  

 
Figure 1: Electrical loads of residential sector [28] 

 

This paper also employs economic theories and mathematical formulations to introduce a new model for time-of-use 

(TOU)-based DR program. Compared to the existing price-elasticity based DR models, the proposed model in this paper 

considers the entire demand curve and brings more flexibility in demand management. As will be shown later, this 

flexibility would cause new parameters to emerge and guarantee the prerequisites for making a good DR model (i.e., 

adaptability and adjustability). Moreover, to provide a comprehensive DR model with a strong economics-based core, the 

Diamond's OLG model [30] is applied in this paper as the foundation of a TOU-based DR model with three-time periods. 

By developing such a model, it is possible not only to study different levels of user’s participation in DR actions, but also 

to consider consumer’s preferences during the course of the action. As a whole, the contributions of this paper could be 

summarized as follows: 

 A model for three-period TOU program is proposed based on the mathematical methods and economics theories 

to enable consumer response to price signals for utility maximization, 

Non-flexible Loads 
(Critical/Vital Loads)

Flexible Loads
(Controllable/Schedulable) 

Time-shiftable Loads  
(Deferrables)

Temperature-shiftable 
Loads

Residential 
Loads
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 Tendency of customers to reapportionment of their electricity usage over the time periods is included into DR 

programs, 

 An efficient framework is presented for residential load management by taking into account the different levels 

of participation in DR programs. 

The organization of this paper is as follows: Section 2 explains the mathematical formulation of the proposed DR model. 

Simulation results together with model validation under different test scenarios are presented in Section 3. Finally, Section 

4 concludes the paper by summarizing the main results and discussing future work. 

2. Market-Oriented DR Model 

 Diamond’s OLG Model 

As previously mentioned, the economic model presented in this paper is based on the Diamond's OLG model. This 

subsection provides only a brief description of this model but interested readers may find more detailed information in 

[30]-[31]. Diamond's OLG model assumes that the life of every person can be divided into two periods: 1) working period, 

and 2) retirement period. In working period, the person earns money and in retirement period he/she spends the money 

earned in the previous period. So in the first period, he/she spends a portion of his/her income C1,t and saves the rest for the 

second period C2,t+1. This person should adjust his/her consumption in these two periods such that his/her total profit gets 

maximized. So, to find the best consumption level in each period, he/she must maximize a utility function as follow: 

1, 2, 1

1
( , C )

1



t t tU C


 (1) 

where ρ is the rate of time preference denoting that the benefits a person earns in the next period is less valuable than the 

one he/she earns in the current period, and a negative value which is signifying the opposite. This parameter can be adjusted 

to specify the preference in each period.  

Utility function can be expressed through different formulations; however, Diamond’s OLG model utilizes a function 

called constant relative risk aversion. This utility function is the macroeconomists’ favorite model and has the following 

form [30]: 

1

; 0 1
1

t

C
U








  


 (2) 

in which, θ is the coefficient of relative risk aversion, which has a direct relationship with the concavity of the utility 

function, meaning that the more concave the utility function, the more risk averse is the person. In other words, θ is the 

extra compensation that the person expects to earn in the next period at the expense of a single unit decrease in his/her 

consumption in the current period. It should be noted that the more concave the utility function, the greater is the value of 
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θ and the more risk averse is the person, and the higher is the requirement for cutting back in monotonous consumption 

and saving for the next period. Therefore, as θ increases, the person becomes less inclined to shift his/her consumption 

from the current period to the next. According to (1) and (2), utility function of the Diamond’s OLG model is as follows: 

1 1

1, 2, 11
 +    1, 0 1

1 1 1

 


    

  

t t

t

C C
U

 

 
  

 (3) 

 Proposed DR Model 

In view of the definition provided in the previous sections, to develop a TOU-based residential DR program based on 

load shifting scheme with Diamond’s OLG model acting as its foundation, a three-time period model is needed. In this 

regard, it is assumed that diurnal hours are divided into three periods: 1) peak time, 2) shoulder time, and 3) off-peak time. 

It is further assumed that in the absence of DR program, energy consumption in these three periods are Dpeak, Dshoulder and 

Doff-peak, and a TOU-based DR program changes these values to D'
peak, D'

shoulder and D'
off-peak respectively. 

The price-responsive demand model developed in this paper has the three following stages: 

i. During the peak time, user consumes D'
peak instead of his routine consumption Dpeak (D'

peak ≤ Dpeak) and saves the 

rest (what remains from his/her conceived power budget) for other periods, 

ii. During the shoulder time period, user has three options; he/she can consume a portion of savings made during 

the peak time (D'
shoulder > Dshoulder) or can consume less than he/she normally does and saves the rest for the off-

peak time (D'
shoulder < Dshoulder). Alternatively, he/she can follow his/her routine consumption trend (D'

shoulder = 

Dshoulder), 

iii. During the off-Peak time, user consumes his/her routine quota plus the savings made during the past periods. 

Based on the above definitions, consumer’s utility function for participating in a given DR program will be as follows: 

' ' '

1 2

1 1
( , D , D )

1 1 


 
t peak shoulder off peakU D  (4) 

Based on the Diamond’s OLG model, this formulation can be rewritten as follows: 

'1 '1'1

1 2

1 1
+ 

1 1 1 1 1

 

    

 


 
    

peak off peakshoulder
t

D DD
U  (5) 

where ρi and θ are now described for a consumer in electricity market, according to the Diamond’s OLG model. Parameter 

θ (or coefficient of relative risk aversion) determines the consumer’s willingness to participate in DR program. The greater 

the value of θ, the less inclined will be the consumer to participate in DR program. This parameter provides also the first 

feature of a good DR model known as adaptability. This means that a wide range of consumers in the electricity market 

can be taken into consideration only by changing/fine-tuning this parameter. In a similar fashion, parameter ρi (or the rate 

of time preference) accounts for adjustment of consumption ratio over the time; i.e., changing ρ1 parameter provides an 
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adjustment in the ratio of consumption in the peak-time to the shoulder-time, while changing ρ2 parameter provides 

arbitrary ratio tuning for the consumption in the peak-time to the off-peak time. This enables the model to account for 

adjustment of consumption levels in every time period, which is the second feature of a good DR model known as 

adjustability of consumption levels. 

The importance of the preference parameters primarily lies in their association with consumption in the shoulder-time, 

because without the shoulder-time (i.e., a two-price period model), a portion of power consumption in the peak-time would 

be automatically shifted to the off-peak time, and to adjust the consumption levels of the two periods one would only need 

to check the intensity of this transition. Incorporating three-tariff periods into the model, (while paying no attention to the 

adjustability of consumption level) will result in a shift of consumption from both pricier periods (peak-time and shoulder-

time) toward the cheaper period (off-peak time), which might be inconvenient for customer, as he/she may prefer to use a 

portion of the power saved during the peak-time not in the off-peak time but rather in the shoulder-time. Preference 

parameters allow the model to address this issue and incorporate different consumption strategies based on the customer’s 

lifestyle and preferences. 

From the consumer’s perspective and in the presence of a DR program, the goal is to maximize the utility function by 

adjusting the consumption levels in the three mentioned periods, thus: 

'1 '1'1

1 2

' ' ' '

1 1
+                     

1 1 1 1 1

s.t.

B D .P + D .P +D .P                             

 

    

 


 

  
  

      



peak off peakshoulder
t

peak peak shoulder shoulder off peak off peak

D DD
Max U

 
(6) 

where the equality constraint in the last line indicates that the cost incurred due to purchase of electricity should be equal 

to the allocated budget. The mentioned optimization problem can be solved using different methods, however in this paper 

Lagrange multipliers method is adopted as the one to do so [32]. This method is particularly useful for problems with 

equality constraints as the one presented in (6).  

To get a better insight, let’s consider the following optimization problem: 

 ( ) ;

s. t . ( ) 0j

Max f x

h x
 (7) 

If x*
 is considered as the optimal solution, then there exists a constant λj (j=1, 2, 3…) such that: 

* *

1

*

( ) ( ) 0

( ) 0 ; 1,2,...,

0 ; 1,2,...,







   

  

  

l

j j
j

j

i

f x h x

h x j l

i m

 (8) 

Using the same approach, (6) can be reformulated as follow: 



9 

 

 
'1 '1'1

' ' ' '

1 2

1 1
+ B -D .P - D .P -D .P

1 1 1 1 1

 


    

 


    
    

peak off peakshoulder
peak peak shoulder shoulder off peak off peak

D DD
L                  (9) 

The optimal solution lies on solving the following equations: 

'

'

'
0



  



    
peak

peak peak

peak peak

DdL
D P

dD P
    (10) 

'
'

1

1

0 (1 )
(1 )


  




     



shoulder
shoulder shoulder shoulder

shoulder

DdL
P D P

dD
 (11) 

'

'

2'

2

0 (1 )
(1 )



  




 

  



     


off peak

off peak off peak off peak

off peak

DdL
P D P

dD
  (12) 

' ' ' ' ' ' ' 'D .P - D .P -D .P = 0 D .P - D .P -D .P


      peak peak shoulder shoulder off peak off peak peak peak shoulder shoulder off peak off peak

dL
B B

d
 (13) 

Substituting (10) into (11) and (12) gives: 

1

' ' ' '

1

1

(1 )
(1 )


  



   
     

 

peakshoulder
shoulder peak shoulder peak

peak shoulder

PP
D D D D

P P
 (14) 

1

' ' ' '

2

2

(1 )
(1 )


  



 

 



 
       

off peak peak

off peak peak off peak peak

peak off peak

P P
D D D D

P P
 (15) 

and substituting these two equations into (13) gives: 

'
'

1 1

1 2

D

P + ( ) + ( )
(1 ) (1 )

 

 






 

peak

peak peak

peak shoulder off peak

shoulder off peak

B

P P
P P

P P

 
(16) 

Substituting the above equation into (14) and (15), 
'D shoulder  and

'D off peak can be calculated as: 

1

'
'

1 1

1

1 2

(1 )
P + ( ) + ( )

(1 ) (1 )



 


 




 
  

 

 

peak

shoulder

peak peakshoulder
peak shoulder off peak

shoulder off peak

P B
D

P PP
P P

P P

 
(17) 

1

'
'

1 1

2

1 2

(1 )
P + ( ) + ( )

(1 ) (1 )



 


 








 
    

 

peak

off peak

peak peakoff peak
peak shoulder off peak

shoulder off peak

P B
D

P PP
P P

P P

 
(18) 

As mentioned, in the long-term, consumers participation in electricity markets is neutral. In other words, the change will 

be in the pattern (hours) of consumption in response to price signals, not in the total power consumed, that's mean [29]: 

' ' 'D     peak shoulder off peak peak shoulder off peakD D D D D  (19) 
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By substituting (16)-(18) into (19), it can be deduced that: 

1 1

'

11
1 2

1 2

(P + ( ) + ( ) )
(1 ) (1 )

(1 )
(1 ) (1 )









 


 
  

          

peak shoulder off peak peak peak

peak shoulder off peak

shoulder off peak
peak peak

shoulder off peak

D D D P P
B P P

P P
P P

P P

 


 

 

 

(20) 

Finally, by substituting (20) into (16)-(18), it can be deduced that: 

'

11

1 2

D

(1 )
(1 ) (1 )





 


  
          

peak shoulder off peak

peak

peak peak

shoulder off peak

D D D

P P

P P



 

 

(21) 

1

'

11
1

1 2

(1 )

(1 )
(1 ) (1 )





  
  

    
          

peak peak shoulder off peak

shoulder

shoulder
peak peak

shoulder off peak

P D D D
D

P
P P

P P






 

 
(22) 

1

'

11
2

1 2

(1 )

(1 )
(1 ) (1 )









   
       

          

peak peak shoulder off peak

off peak

off peak
peak peak

shoulder off peak

P D D D
D

P
P P

P P






 

 
(23) 

where D'
peak, D'

shoulder and D'
off-peak represent electric power consumed in each of the three mentioned periods, respectively. 

To obtain the consumption at each hour of a period one must use the following equations: 

'

'

'

'

'

'

D

D

D


 



 

 

 

peak

t peak t peak

peak

shoulder

t shoulder t shoulder

shoulder

off peak

t off peak t off peak

off peak

D
D

D

D
D

D

D
D

D

 (24) 

The power purchased at each certain hour can be limited to a threshold to prevent power transactions that may threat 

consumer welfare. 

3. Results and Discussion 

In this section, performance of the proposed residential DR model is investigated considering a given load profile for a 

building unit as shown in Figure 2. As can be observed, daily time horizon is divided into three-time frames including 

peak-time, shoulder-time, and off-peak time. Electricity tariff is also defined based on TOU pricing scheme, which means 

each time period has its own unique price. These prices are summarized in Table 1. 
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Figure 2: The examined residential load profile [33] 

  

Table 1: Price of electricity in different time periods [1] 

Poff-peak Pshoulder Ppeak Demand level 

00:00-10:00 11:00-17:00 & 23:00 18:00-22:00 Time Period 

6.9 10 13.8 Price (cents per kWh) 

 

A new participant in the electricity market is also considered to assist better implementation of DR programs. This 

participant is called DR provider (DRP) who is in charge of management and implementation of DR programs at demand-

side. To implement the proposed DR model for the examined residential building unit, all the equations presented in the 

previous sections are coded into scripts using MATLAB software. The choice of the suitable ρ and θ parameters are also 

obtained through a sensitivity analysis where needed.  

Results of running the proposed DR program during the peak-time with two different values of ρ and θ are shown in 

Table 2. These results show that as θ decreases, so does the power consumption; i.e., the lower θ value represents the more 

consumer’s willingness to participate in the DR program. Therefore, in the peak-time period which corresponds to the time 

range with the highest electricity price, the consumer’s willingness to participate in DR actions increases, which in turn 

decreases the consumption in this period. As can be seen in Figure 3 and can be expected, peak-time electricity consumption 

after execution of DR program is decreased in all scenarios, meaning that the main aim of the proposed DR program, which 

is reducing peak-time consumption, has been achieved. Moreover, as shown in this Figure, changes of ρ1 and ρ2 can slightly 

affect the consumption level in this period; however, the general trend (consuming less during peak periods) remains the 

same; i.e., given a ρ2 value and changing ρ1 parameter provides an adjustment in the ratio of consumption in the peak-time 

to the shoulder-time, while changing ρ2 parameter (given a fixed ρ1 value) provides arbitrary ratio tuning for the 

consumption in the peak-time to the off-peak time.  
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Table 2: Changes in the power consumption during the peak time 

Dpeak (kWh) 

(ρ1= -0.6 & ρ2= -0.85) 

Dpeak (kWh) 

(ρ1= -0.7 & ρ2= -0.78) 
θ Program 

10.0140 - Base Case-Without DR 

6.0647 6.2150 0.7 

Proposed DR model 

5.8667 6.0272 0.6 

5.6461 5.8093 0.5 

5.4135 5.5658 0.4 

5.2068 5.3189 0.3 

5.0872 5.1285 0.2 

 

  
Figure 3: Consumption levels for different rates of time preferences (peak period) 

 

Changing the values of ρ1 and ρ2 have much more effects on the power consumption levels in the shoulder-time than in 

other time frames as observed from Figure 4. By adjusting the rates of time preferences in this period, the consumer can 

choose one of the following modes: 

1) Energy-saving mode: consumer can select this mode to transfer elastic part of the demand into the off-peak 

times to avoid high energy consumption costs (the area below the intersection of the load surface without DR 

and the load surface with DR actions), 

2) Consumption mode: consumer can select this mode to consume the elastic part of the demand which saved 

during the peak time because of the lower prices of this time compared to the peak-time (the area above the 

intersection of the load surface without DR and the load surface with DR actions) 
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Figure 4: Consumption levels for different rates of time preferences (shoulder period) 

 

On the other hand, simulation results regarding DR implementation during the shoulder-time period demonstrate that 

given a ρi  value and changing the relative risk aversion parameter can change the energy consumption trend. For example, 

when ρ1=-0.7 and ρ2=-0.78 as θ decreases, Dshoulder increases; but when ρ1=-0.6 and ρ2=-0.85 the opposite happens as shown 

in Table 3. 

 

Table 3: Changes in the power consumption during the shoulder time 

Dshoulder (kWh) 

(ρ1= -0.6 & ρ2= -0.85) 

Dshoulder (kWh) 

(ρ1= -0.7 & ρ2= -0.78) 
θ Program 

10.6436 - Base Case-Without DR 

10.4391 12.1548 0.7 

Proposed DR model 

10.2606 12.2841 0.6 

10.0087 12.4402 0.5 

9.6394 12.6341 0.4 

9.1236 12.8791 0.3 

8.5094 13.2063 0.2 

 

As can be seen in Figure 5 and can be expected, once θ (i.e., coefficient of relative risk aversion) increases, the user 

becomes less inclined to shift his/her consumption from the current period to the next one. And so, with the increase in θ, 

the amount of energy saving decreases with the goal of transferring it to other times. 
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Figure 5: Levels of commitment in DR programs under different scenarios 

 

 

The results obtained for DR actions during the off-peak time are shown in Table 4. As can be seen in Table 4, with the 

decrease of θ (and increase of consumers’ participation accordingly), there is a growing trend in the power consumption 

of this period due to the lower electricity prices.  

Table 4: Changes in the power consumption during the off-peak time 

Doff-peak (kWh)  

(ρ1= -0.6 & ρ2= -0.85) 

Doff-peak (kWh)  

(ρ1= -0.7 & ρ2= -0.78) 
θ Program 

12.4847 - Base Case-Without DR 

16.7203 14.8574 0.7 

Proposed DR model 

17.0980 14.9208 0.6 

17.5866 14.9830 0.5 

18.1865 15.0345 0.4 

18.9109 15.0421 0.3 

19.6456 15.0773 0.2 

 

In a similar manner, by adjusting the rate of time preference parameters in this period, consumers can choose two 

modes:  

1) Consumption mode: in this mode the user would consume the energy saved during other time intervals (the 

area above the intersection of the base load surface and the one with DR actions in Figure 6)  

2) Energy-saving mode: this mode denotes energy saving during off-peak period (the area below the intersection 

of the two surfaces in Figure 6) which is not an economic working condition for a well-designed DR program. 

Indeed, this mode would trigger a point of discontinuity in the consumer’s decision pattern, meaning that the 

goal of the proposed DR model, which is increasing off-peak time consumption, cannot be achieved. 

Therefore, this mode will not be considered as a valid state. 
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Figure 6: Consumption levels for different rates of time preferences (off-peak period) 

 

 

To get better insight into the level of commitment in residential DR Programs over the time, the consumption profiles 

have been plotted in Figure 7 for different scenarios. It can be observed that with the increase of θ (while keeping other 

parameters unchanged), the consumer’s willingness to participate in DR actions especially during the peak-time period 

decreases. This effect is clearly illustrated in Figure 8 for each time interval. Therefore, this model can combine the 

willingness of customers (according to the behavior of each consumer) into the DR model to control the consumption over 

the time in an affordable way. From the results, it can be observed that DR program execution not only reduces consumption 

at peak times, but also helps to shift electricity demand to other time periods with lower price. 

 
Figure 7: Levels of commitment in residential DR programs under different scenarios 
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Figure. 8: Changes in power consumption in each period versus changes in θ 

 

 

Considering the results tabulated in Table 5, it is also observed that for a given θ, the total energy consumed over all 

time periods (DAll) is constant, which means that consumption levels have only shifted between the periods to adapt to new 

prices. Moreover, it can be easily understood that the budget allocated to the electricity purchase decreases as θ goes down 

which in turn increases the consumer’s willingness to participate in DR programs. This mean that a consumer who 

participates in a DR program can decrease his/her electricity bill up to 16% without changing his/her overall energy 

consumption. 

Table 5: Results of the model in different scenarios 

Budget ($) DAll (kWh) Budget ($) DAll (kWh) 
θ Program 

(ρ1= -0.6 & ρ2= -0.85) (ρ1= -0.7 & ρ2= -0.78) 

3.3077 33.1423 3.3077 33.1423 - Base Case-Without DR 

3.0345 33.2240 3.0983 33.2273 0.7 

Proposed DR model 

3.0154 33.2253 3.0897 33.2321 0.6 

2.9935 33.2414 3.0795 33.2325 0.5 

2.9659 33.2395 3.0689 33.2343 0.4 

2.9358 33.2414 3.0598 33.2401 0.3 

2.9085 33.2422 3.0586 33.3121 0.2 

 

At the end, it should be emphasized that two methods are currently available to implement DR technologies. The first 

is to deploy autonomous systems that require no interaction from consumers or utilities and automatically sense changing 

conditions of the power grid and adjust accordingly. The second method is to communicate an incentive signal through the 

utility to each consumer. In this method, price information is sent to consumers thereby providing sufficient information 

to modify energy usage. Two signals are used in most implementations. The first is the Transactive Incentive Signal (TIS). 

The TIS is sent by the utility to each consumer. The TIS contains expected energy prices for upcoming periods of time. 

The second is the Transactive Feedback Signal (TFS). The TFS is sent from the consumer to the utility and contains 
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information regarding expected energy use at various prices. The TIS and TFS together comprise an energy market where 

price information is communicated to consumers. To communicate TCS and TFS information to the consumer, wireless 

technologies and power line carrier are two common methods [34]. 

4. Conclusion and Future Works 

In this paper, the well-known Diamond's OLG model was used as the basis of an effective responsive load modeling 

for TOU-based residential demand response (DR) program. The proposed DR model was able to adapt to different 

consumers with different flexibilities against prices and allowed the consumption levels to be adjusted over different time 

intervals. It was demonstrated that in the developed model, parameter θ can be used to easily simulate the consumer’s 

response based on his flexibility against prices, and parameter ρ can be used to adjust the consumption levels in different 

time periods as desired. This model represents the mechanisms used to encourage consumers to shift demand during peak 

times to other times and could be realized by appropriate coding of related equations and algorithms presented previously 

into a residential energy management system and enabling two-way communications between utilities and consumers. 

Also, this model can be used in real time DR models implemented by retailer companies to offer bidding strategy. 

Future works will be mainly focused on developing the proposed model of residential DR program based on alternative 

schemes such as real-time pricing and critical peak pricing and evaluating its applicability and effectiveness in such 

working conditions. We will also conduct more simulations on larger test systems such as a cluster of residential and office 

buildings in a smart grid environment and investigate the effectiveness of our proposed model in presence of uncertain 

parameters (such as price uncertainty and stochastic consumer’s behavior).  
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