
Aalborg Universitet

L*-Based Learning of Markov Decision Processes

Tappler, Martin; Aichernig, Bernhard K.; Bacci, Giovanni; Eichlseder, Maria; Larsen, Kim
Guldstrand
Published in:
Formal Methods – The Next 30 Years - 3rd World Congress, FM 2019, Proceedings

DOI (link to publication from Publisher):
10.1007/978-3-030-30942-8_38

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Tappler, M., Aichernig, B. K., Bacci, G., Eichlseder, M., & Larsen, K. G. (2019). L*-Based Learning of Markov
Decision Processes. In M. H. ter Beek, A. McIver, & J. N. Oliveira (Eds.), Formal Methods – The Next 30 Years -
3rd World Congress, FM 2019, Proceedings: FM 2019: Formal Methods – The Next 30 Years (pp. 651-669).
Springer. https://doi.org/10.1007/978-3-030-30942-8_38

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 03, 2025

https://doi.org/10.1007/978-3-030-30942-8_38
https://vbn.aau.dk/en/publications/f52a4209-4195-456a-8514-4a3af53bfa16
https://doi.org/10.1007/978-3-030-30942-8_38

L∗-Based Learning of Markov Decision Processes

Martin Tappler1, Bernhard K. Aichernig1, Giovanni Bacci3, Maria Eichlseder2,
and Kim G. Larsen3

1 Institute of Software Technology, Graz University of Technology, Graz, Austria
{aichernig,martin.tappler}@ist.tugraz.at

2 Institute of Applied Information Processing and Communications,
Graz University of Technology, Graz, Austria

maria.eichlseder@iaik.tugraz.at
3 Dept. of Computer Science, Aalborg University, Denmark

{giovbacci,kgl}@cs.aau.dk

Abstract. Automata learning techniques automatically generate sys-
tem models from test observations. These techniques usually fall into
two categories: passive and active. Passive learning uses a predetermined
data set, e.g., system logs. In contrast, active learning actively queries
the system under learning, which is considered more efficient.
An influential active learning technique is Angluin’s L∗ algorithm for reg-
ular languages which inspired several generalisations from DFAs to other
automata-based modelling formalisms. In this work, we study L∗-based
learning of Markov decision processes, first assuming an ideal setting with
perfect information. Then, we relax this assumption and present a novel
learning algorithm that collects information by sampling system traces
via testing. Experiments with the implementation of our sampling-based
algorithm suggest that it achieves better accuracy than state-of-the-art
passive learning techniques with the same amount of test observations.
In contrast to existing learning algorithms with predefined states, our
algorithm learns the complete model structure including the states.

Keywords: model inference · active automata learning · Markov decision pro-
cesses

1 Introduction

Automata learning automatically generates models from system observations
such as test logs. Hence, it enables model-based verification for black-box soft-
ware systems [?,?], e.g. via model checking. Automata learning techniques gen-
erally fall into two categories: passive and active learning. Passive algorithms
take a given sample of system traces as input and generate models consistent
with the sample. The quality and comprehensiveness of learned models therefore
largely depend on the given sample. In contrast, active algorithms actively query
the system under learning (SUL) to sample system traces. This enables to steer
the trace generation towards parts of the SUL’s state space that have not been
thoroughly covered, potentially finding yet unknown aspects of the SUL.

2 M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen

Many active automata learning algorithms are based on Angluin’s L∗ algo-
rithm [?]. It was originally proposed for learning deterministic finite automata
(DFA) accepting regular languages and later applied to learn models of reac-
tive systems, by considering system traces to form regular languages [?]. L∗ has
been extended to formalisms better suited for modelling reactive systems such
as Mealy machines [?,?] and extended finite state-machines [?]. Most L∗-based
work, however, targets deterministic models, with the exceptions of algorithms
for non-deterministic Mealy machines [?] and non-deterministic input-output
transition systems [?]. Both techniques are based on testing, but abstract away
the observed frequency of events, thus they do not use all available information.

Here, we present an L∗-based approach for learning models of stochastic
systems with transitions that happen with some probability depending on non-
deterministically chosen inputs. More concretely, we learn Markov decision pro-
cesses (MDPs). Such models are commonly used to model randomised dis-
tributed algorithms [?], like in the verification of protocols [?,?]. We present two
learning algorithms: the first takes an ideal view assuming perfect knowledge
about the exact distribution of system traces. The second algorithm relaxes this
assumption, by sampling system traces to estimate their distribution. We refer to
the former as exact learning algorithm L∗mdpe and to the latter as sampling-based
learning algorithm L∗mdp. We implemented L∗mdp and evaluated it by comparing
it to IoAlergia [?,?], a state-of-the-art passive learning algorithm for MDPs.
Experiments showed favourable performance of L∗mdp, i.e. it produced more ac-
curate models than IoAlergia given approximately the same amount of data.
Generally, models learned by L∗mdp converge in the limit to an MDP observa-
tionally equivalent to the SUL. To the best of our knowledge, L∗mdp is the first
L∗-based learning algorithm for MDPs that can be implemented via testing. Our
contributions span the algorithmic development of learning algorithms, the im-
plementation and the evaluation of learning algorithms. The full technical report
on L∗mdp [?] additionally includes convergence proofs, further experiments and
implementation details.

The rest of this paper is structured as follows. We introduce notational con-
ventions, preliminaries on MDPs and active automata learning in Sect. 2. Sec-
tion 3 discusses semantics of MDPs and presents the exact learning algorithm
L∗mdpe . Section 4 describes the sampling-based L∗mdp. Section 5 discusses the eval-
uation and in Sect. 6, we discuss related work in automata learning. We provide
a summary and concluding remarks in Sect. 7.

2 Preliminaries

Notation & Auxiliary Definitions. Let S be a set. We denote the concatenation
of two sequences s and s′ in S∗ by s · s′, the length of a sequence s by |s| and
the empty sequence by ε. We implicitly lift elements in S to sequences of length
one. Sequence s is a prefix of s′ if there exists an s′′ such that s · s′′ = s′,
denoted by s� s′. The pairwise concatenation of sets of sequences A,B ⊆ S∗ is
A · B = {a · b | a ∈ A, b ∈ B}. A set of sequences A ⊆ S∗ is prefix-closed, iff for

L∗-Based Learning of Markov Decision Processes 3

every a ∈ A, A also contains all prefixes of A. Suffixes and suffix-closedness are
defined analogously. For a sequence s in S∗, s[i] is the element at index i, with
indexes starting at 1, s[� i] is the prefix of s with length i and prefixes(s) =
{s′ | s′ ∈ S∗ : s′ � s} is the set of all prefixes of s. Given a multiset S, we
denote the multiplicity of x in S by S(x). Dist(S) denotes the set of probability
distributions over S, i.e. for all µ : S → [0, 1] in Dist(S) we have

∑
s∈S µ(s) = 1.

In the remainder of this paper, distributions µ may be partial functions, in which
case we implicitly set µ(e) = 0 if µ is not defined for e. For A ⊆ S, 1A denotes
the indicator function of A, i.e. 1A(e) = 1 if e ∈ A and 1A(e) = 0 otherwise.

Markov Decision Processes.

Definition 1 (Markov decision process (MDP)). A labelled Markov de-
cision process (MDP) is a tuple M = 〈Q,ΣI, ΣO, q0, δ, L〉 where Q is a finite
non-empty set of states, ΣI and ΣO are finite sets of inputs and outputs, q0 ∈ Q
is the initial state, δ : Q × ΣI → Dist(Q) is the probabilistic transition func-
tion, and L : Q → ΣO is the labelling function. An MDP is deterministic if
∀q ∈ Q,∀i : δ(q, i)(q′) > 0 ∧ δ(q, i)(q′′) > 0→ q′ = q′′ ∨ L(q′) 6= L(q′′).

q0start q1 q2

but : 1

coin : 1

coin : 1

but : 0.2 but : 0.8

coin : 1

but : 1

{init} {beep} {coffee}

Fig. 1. MDP model of a faulty coffee machine

We learn deterministic labelled
MDPs as learned by passive learn-
ing techniques like IoAlergia [?].
Such MDPs define at most one suc-
cessor state for each source state
and input-output pair. In the fol-
lowing, we refer to these models uniformly as MDPs. We use ∆ : Q×ΣI×ΣO →
Q∪{⊥} to compute successor states. The function is defined by ∆(q, i, o) = q′ ∈
Q with L(q′) = o and δ(q, i)(q′) > 0 if there exists such a q′, otherwise ∆ returns
⊥. Fig. 1 shows an MDP model of a faulty coffee machine [?]. Outputs in curly
braces label states and inputs with corresponding probabilities label edges. After
providing the inputs coin and but, the coffee machine MDP produces the output
coffee with probability 0.8, but with probability 0.2, it resets itself, producing
the output init.

Execution. A path ρ through an MDP is an alternating sequence of states and
inputs starting in the initial state q0, i.e. ρ = q0 ·i1 ·q1 ·i2 ·q2 · · · in−1 ·qn−1 ·in ·qn.
In each state qk, the next input ik+1 is chosen non-deterministically and based on
that, the next state qk+1 is chosen probabilistically according to δ(qk, ik+1). The
execution of an MDP is controlled by a so-called scheduler, resolving the non-
deterministic choice of inputs by specifying a distribution over the next input
given the current execution path. The composition of an MDP and a scheduler
induces a Markov chain with a corresponding probability measure, see e.g. [?].

Sequences of Observations. During the execution of a finite path ρ, we observe
a trace L(ρ) = t, i.e. an alternating sequence of inputs and outputs starting
with an output, with t = o0i1o1 · · · in−1on−1inon and L(qi) = oi. Since we
consider deterministic MDPs, L is invertible, thus each trace in ΣO×(ΣI×ΣO)∗

corresponds to at most one path. We say that a trace t is observable if there exists

4 M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen

a ρ with L(ρ) = t. In a deterministic MDP M, each observable trace t uniquely
defines a state ofM reached by executing t from the initial state q0. We compute
this state by δ∗(t) = δ∗(q0, t) defined by δ∗(q, L(q)) = q and

δ∗(q, o0i1o1 · · · in−1on−1inon) = ∆(δ∗(q, o0i1o1 · · · in−1on−1), in, on).

If t is not observable, then there is no path ρ with t = L(ρ), denoted by
δ∗(t) = ⊥. We denote the last output on of a trace t = o0 · · · inon, by last(t).

We use three types of observation sequences with short-hand notations:
– Traces: abbreviated by T R = ΣO × (ΣI ×ΣO)∗

– Test sequences: abbreviated by T S = (ΣO ×ΣI)∗

– Continuation sequences: abbreviated by CS = ΣI × T S
These sequence types alternate between inputs and outputs, thus they are re-
lated among each other. In slight abuse of notation, we use A × B and A · B
interchangeably for the remainder of this paper. Furthermore, we extend the
sequence notations and the notion of prefixes to ΣO, ΣI, T R, T S and CS, e.g.,
test sequences and traces are related by T R = T S ·ΣO.

As noted, a trace in T R leads to a unique state of an MDP M. A test
sequence in s ∈ T S of length n+ 1 consists of a trace in t ∈ T R with n outputs
and an input i ∈ ΣI with s = t · i; thus executing test sequence s = t · i puts M
into the state reached by t and tests M’s reaction to i. Extending the notion of
observability, we say that the test sequence s is observable if t is observable. A
continuation sequence c ∈ CS begins and ends with an input, i.e. concatenating
a trace t ∈ T R and c creates a test sequence t · c in T S. Informally, continuation
sequences test M’s reaction in response to multiple consecutive inputs.

Active Automata Learning. We consider active automata learning in the
minimally adequate teacher (MAT) framework [?], introduced by Angluin for
the L∗ algorithm. It assumes the existence of a MAT, which is able to answer
queries. L∗ learns a DFA representing an unknown regular language L over some
alphabet A and therefore requires two types of queries: membership and equiv-
alence queries. First, L∗ repeatedly selects strings in A∗ and checks if they are
in L via membership queries. Once the algorithm has gained sufficient informa-
tion, it forms a hypothesis DFA consistent with the membership query results.
It then poses an equivalence query checking for equivalence between L and the
language accepted by the hypothesis. The teacher responds either with yes sig-
nalling equivalence; or with a counterexample to equivalence, i.e. a string in the
symmetric difference between L and the language accepted by the hypothesis.
After processing a counterexample, L∗ starts a new round of learning, consisting
of membership queries and a concluding equivalence query. Once an equivalence
query returns yes, learning stops with the final hypothesis as output.

L∗ has been extended to learn models of reactive systems such as Mealy
machines [?]. In practice, queries for learning models of black-box systems are
usually implemented via testing [?]. Therefore, equivalence queries are generally
only approximated as complete testing for black-box systems is impossible unless
there is an upper bound on the number of system states.

L∗-Based Learning of Markov Decision Processes 5

3 Exact Learning of MDPs

This section presents L∗mdpe , an exact active learning algorithm for MDPs, the
basis for the sampling-based algorithm presented in Sect. 4. In contrast to sam-
pling, L∗mdpe assumes the existence of a teacher with perfect knowledge about
the SUL that is able to answer two types of queries: output distribution queries
and equivalence queries. The former asks for the exact distribution of outputs
following a test sequence in the SUL. The latter takes a hypothesis MDP as in-
put and responds either with yes iff the hypothesis is observationally equivalent
to the SUL or with a counterexample to equivalence. A counterexample is a test
sequence leading to different output distributions in hypothesis and SUL. First,
we describe how we capture the semantics of MDPs.

Semantics of MDPs. We can interpret an MDP as a function M : T S →
Dist(ΣO) ∪ {⊥}, mapping test sequences s to output distributions or unde-
fined behaviour for non-observable s. This follows the interpretation of Mealy
machines as functions from input sequences to outputs [?]. Viewing MDPs as
reactive systems, we consider two MDPs to be equivalent, if their semantics are
equal, i.e. we make the same observations on both.

Definition 2 (MDP Semantics). An MDP 〈Q,ΣI, ΣO, q0, δ, L〉 induces a
function M for i ∈ ΣI, o ∈ ΣO, t ∈ T R:

M(ε)(L(q0)) = 1

M(t · i) = ⊥ if δ∗(t) = ⊥
M(t · i)(o) = p otherwise if δ(δ∗(t), i)(q) = p > 0 ∧ L(q) = o

MDPsM1 andM2 with semantics M1 and M2 are output-distribution equiv-
alent, denoted M1 ≡od M2, iff M1 = M2.

Definition 3 (M-Equivalence of Traces). Two traces t1, t2 ∈ T R are equiv-
alent with respect to M : T S → Dist(ΣO)∪{⊥}, denoted t1 ≡M t2, iff last(t1) =
last(t2) and for all continuations v ∈ CS it holds that M(t1 · v) = M(t2 · v).

A function M defines an equivalence relation on traces. Two traces are M -
equivalent if they end in the same output and if their behaviour in response to
future inputs is the same. Two traces leading to the same MDP state are in the
same equivalence class of ≡M , as in Mealy machines [?]. In the following, we will
refer to a function M induced by an MDP M also as the semantics of M.

Queries. We are now able to define queries focusing on the observable behaviour
of MDPs. Assume that we want to learn a model of a black-box deterministic
MDPM , with semantics M . Output distribution queries (odq) and equivalence
queries (eq) are then defined as follows:
– output distribution (odq): an odq(s) returns M(s) for input s ∈ T S.
– equivalence (eq): an eq query takes a hypothesis Mealy machine H with

semantics H as input and returns yes if H ≡od M; otherwise it returns an
s ∈ T S such that H(s) 6= M(s) and M(s) 6= ⊥.

6 M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen

Table 1. Parts of observation table for learning the faulty coffee machine (Fig. 1).

but coin

S
init {init 7→ 1} {beep 7→ 1}
init · coin · beep {coffee 7→ 0.8, init 7→ 0.2} {beep 7→ 1}
init · coin · beep · but · coffee {init 7→ 1} {beep 7→ 1}

Lt(S)
init · but · init {init 7→ 1} {beep 7→ 1}
.

Observation Tables. Like L∗, we store information in observation table triples
〈S,E, T 〉, where:
– S ⊂ T R is a prefix-closed set of traces, initialised to {o0}, with o0 being the

initial SUL output,
– E ⊂ CS is a suffix-closed set of continuation sequences, initialised to ΣI,
– T : (S ∪ Lt(S)) · E → Dist(ΣO) ∪ {⊥} is a mapping from test sequences

to output distributions or ⊥ denoting undefined behaviour. This mapping
basically stores a finite subset of M . The set Lt(S) ⊆ S ·ΣI ·ΣO is given by
Lt(S) = {s · i · o|s ∈ S, i ∈ ΣI, o ∈ ΣO,odq(s · i)(o) > 0}.

We can view an observation table as a two-dimensional array with rows labelled
by traces in S ∪ Lt(S) and columns labelled by E. We refer to traces in S
as short traces and to their extensions in Lt(S) as long traces. An extension
s · i · o of a short trace s is in Lt(S) if s · i · o is observable. Analogously to
traces, we refer to rows labelled by S as short rows. The table cells store the
mapping defined by T . To represent rows labelled by traces s we use functions
row(s) : E → Dist(ΣO) ∪ {⊥} for s ∈ S ∪ Lt(S) with row(s)(e) = T (s · e).
Equivalence of rows labelled by traces s1, s2, denoted eqRowE(s1, s2), holds
iff row(s1) = row(s2) ∧ last(s1) = last(s2) and approximates M -equivalence
s1 ≡M s2, by considering only continuations in E. The observation table content
defines the structure of hypothesis MDPs based on the following principle: we
create one state per equivalence class of S/eqRowE , thus we identify states with
traces in S reaching them and we distinguish states by their future behaviour in
response to sequences in E (as is common in active automata learning [?]). The
long traces Lt(S) serve to define transitions. Transition probabilities are given
by the distributions in the mapping T .

Table 1 shows a part of the observation table created during learning of the
coffee machine shown in Fig. 1. The set S has a trace for each state of the MDP.
Note that these traces are pairwise inequivalent with respect to eqRowE , where
E = ΣI = {but, coin}. We only show one element of Lt(S), which gives rise to
the self-loop in the initial state with the input but and probability 1.

Definition 4 (Closedness). An observation table 〈S,E, T 〉 is closed if for all
l ∈ Lt(S) there is an s ∈ S such that eqRowE(l, s).

Definition 5 (Consistency). An observation table 〈S,E, T 〉 is consistent if
for all s1, s2 ∈ S, i ∈ ΣI, o ∈ ΣO such that eqRowE(s1, s2) it holds either that
(1) T (s1 · i)(o) = 0 ∧ T (s2 · i)(o) = 0 or (2) eqRowE(s1 · i · o, s2 · i · o).

L∗-Based Learning of Markov Decision Processes 7

Algorithm 1 Making an observation table closed and consistent
1: function MakeClosedAndConsistent(〈S,E, T 〉)
2: if 〈S,E, T 〉 is not closed then
3: l← l′ ∈ Lt(S) such that ∀s ∈ S : row(s) 6= row(l′) ∨ last(s) 6= last(l′)
4: S ← S ∪ {l}
5: else if 〈S,E, T 〉 is not consistent then
6: for all s1, s2 ∈ S such that eqRowE(s1, s2) do

7: for all i ∈ ΣI, o ∈ ΣO do
8: if T (s1 · i)(o) > 0 and ¬eqRowE(s1 · i · o, s2 · i · o) then
9: e← e′ ∈ E such that T (s1 · i · o · e′) 6= T (s2 · i · o · e′)

10: E ← E ∪ {i · o · e}
11: return 〈S,E, T 〉

Closedness and consistency are required to derive well-formed hypotheses, anal-
ogously to L∗ [?]. We require closedness to create transitions for all inputs in all
states and we require consistency to be able to derive deterministic hypotheses.
During learning, we apply Algorithm 1 repeatedly to establish closedness and
consistency of observation tables. The algorithm adds a new short trace if the
table is not closed and adds a new column if the table is not consistent.

We derive a hypothesis H = 〈Qh, Σ
I, ΣO, q0h, δh, Lh〉 from a closed and con-

sistent observation table 〈S,E, T 〉, denoted H = hyp(S,E, T), as follows:

– Qh = {〈last(s), row(s)〉|s ∈ S}
– q0h = 〈o0, row(o0)〉, o0 ∈ S is the trace consisting of the initial SUL output
– for s ∈ S, i ∈ ΣI and o ∈ ΣO :
δh(〈last(s), row(s)〉, i)(〈o, row(s · i · o)〉) = p if T (s · i)(o) = p > 0

– for s ∈ S: Lh(〈last(s), row(s)〉) = last(s)

Learning Algorithm. Algorithm 2 implements L∗mdpe using queries odq and
eq. First, the algorithm initialises the observation tables and fills the table cells
with output distribution queries (Lines 1 to 3). The main loop in Lines 4 to 15
makes the observation table closed and consistent, derives a hypothesis H and
performs an equivalence query eq(H). If a counterexample cex is found, all its
prefix traces are added as short traces to S, otherwise the final hypothesis is
returned, as it is output-distribution equivalent to the SUL. Whenever the table
contains empty cells, the Fill procedure assigns values to these cells via odq.

Theorem 1. L∗mdpe terminates and learns an MDP H that is output-distribution
equivalent to the SUL and minimal in the number of states (proof [?]).

4 Learning MDPs by Sampling

The sampling-based L∗mdp is based on L∗mdpe , but samples SUL traces instead of
posing exact queries. Distribution comparisons are consequently approximated
through statistical tests. While using similar data structures, L∗mdp has a slightly
different algorithm structure allowing to stop before reaching exact equivalence.

8 M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen

Algorithm 2 The main algorithm implementing L∗mdpe

Input: ΣI, exact teacher capable of answering odq and eq
Output: learned model H (final hypothesis)

1: o0 ← o such that odq(ε)(o) = 1

2: S ← {o0}, E ← ΣI

3: fill(S,E, T)
4: repeat
5: while 〈S,E, T 〉 not closed or not consistent do
6: 〈S,E, T 〉 ← MakeClosedAndConsistent(〈S,E, T 〉)
7: fill(S,E, T)

8: H ← hyp(S,E, T)
9: eqResult ← eq(H)

10: if eqResult 6= yes then
11: cex← eqResult
12: for all (t · i) ∈ prefixes(cex) with i ∈ ΣI do
13: S ← S ∪ {t}
14: fill(S,E, T)

15: until eqResult = yes
16: return hyp(S,E, T)
17: procedure fill(S,E, T)
18: for all s ∈ S ∪ Lt(S), e ∈ E do
19: if T (s · e) undefined then . we have no information about T (s · e) yet
20: T (s · e)← odq(s · e)

Queries. The sampling-based teacher maintains a multiset of traces S for the
estimation of output distributions that grows during learning. It offers an equiv-
alence query and three queries relating to output distributions and samples S.
– frequency (fq): given a test sequence s ∈ T S, fq(s) : ΣO → N0 are output

frequencies observed after s, where fq(s)(o) = S(s · o) for o ∈ ΣO.
– complete (cq): given a test sequence s ∈ T S, cq(s) returns true if suffi-

cient information is available to estimate an output distribution from fq(s);
returns false otherwise.

– refine (rfq): instructs the teacher to refine its knowledge of the SUL by test-
ing it directed towards rarely observed samples. Traces sampled by rfq are
added to S, increasing the accuracy of subsequent probability estimations.

– equivalence (eq): given a hypothesis H, eq tests for output-distribution
equivalence between the SUL and H; returns a counterexample from T S
showing non-equivalence, or returns none if no counterexample was found.

To implement these queries, we require the ability to reset the SUL, to perform
a single input on the SUL and to observe the SUL output.

4.1 Learner Implementation

Observation Table. L∗mdp also uses observation tables. They carry similar in-
formation as in Sect. 3, but instead of output distributions in Dist(ΣO), we store
integral output frequencies (ΣO → N0), from which we estimate distributions.

Definition 6 (Sampling-based Observation Table). An observation table

is a tuple 〈S,E, T̂ 〉, consisting of a prefix-closed set of traces S ⊂ T R, a suffix-

closed set of continuation sequences E ⊂ CS, and a mapping T̂ : (S∪Lt(S))·E →
(ΣO → N0), where Lt(S) = {s · i · o | s ∈ S, i ∈ ΣI, o ∈ ΣO : fq(s · i)(o) > 0}.

L∗-Based Learning of Markov Decision Processes 9

Algorithm 3 Creating compatibility classes
1: for all s ∈ S do
2: rank(s)←

∑
i∈ΣI

∑
o∈ΣO T̂ (s · i)(o)

3: unpartitioned← S, R← ∅
4: while unpartitioned 6= ∅ do
5: r ← m where m ∈ unpartitioned with largest rank(m)
6: R← R ∪ {r}
7: cg(r)← {s ∈ unpartitioned | compatibleE(s, r)}
8: for all s ∈ cg(r) do
9: rep(s)← r

10: unpartitioned← unpartitioned \ cg(r)

Hypothesis Construction. As in Sect. 3, observation tables need to be closed
and consistent for a hypothesis to be constructed. Here, we test statistically if
cells and rows are approximately equal, referred to as compatible. The statistical
tests applied in Def. 7 are based on Hoeffding bounds, as in [?]. Def. 8 serves as
basis for adapted notions of closedness and consistency.

Definition 7 (Different). Two sequences s and s′ in T S produce statistically
different output distributions with respect to f : T S → (ΣO → N0), denoted
diff f(s, s

′), iff (1) cq(s) ∧ cq(s′) ∧ n1 > 0 ∧ n2 > 0 where n1 =
∑
o∈ΣO f(s)(o),

n2 =
∑
o∈ΣO f(s′)(o), and (2) one of the following conditions holds:

2a. ∃o ∈ ΣO : ¬(f(s)(o) > 0⇔ f(s′)(o) > 0), or

2b. ∃o ∈ ΣO :
∣∣∣ f(s)(o)

n1
− f(s′)(o)

n2

∣∣∣ > (√ 1
n1

+
√

1
n2

)
·
√

1
2 ln 2

α , where α specifies

the confidence level (1−α)2 for testing each o separately based on a Hoeffding
bound [?,?].

Definition 8 (Compatible). Two cells labelled by c = s · e and c′ = s′ · e′ are
compatible, denoted compatible(c, c′), iff ¬diff T̂ (c, c′). Two rows labelled by s
and s′ are compatible, denoted compatibleE(s, s′) iff last(s) = last(s′) and the
cells corresponding to all e ∈ E are compatible, i.e. compatible(s · e, s′ · e).

Compatibility Classes. In Sect. 3, we formed equivalence classes of traces with
respect to eqRowE creating one hypothesis state per equivalence class. Now we
partition rows labelled by S based on compatibility. Compatibility given by
Def. 8, however, is not an equivalence relation, as it is not transitive in general.
As a result, we cannot simply create equivalence classes. We apply the heuristic
implemented by Algorithm 3 to partition S.

First, we assign a rank to each trace in S. Then, we partition S by iteratively
selecting the trace r with the largest rank and computing a compatibility class
cg(r) for r. The trace r is the (canonical) representative for s in cg(r), which
we denote by rep(s) (Line 9). Each r is stored in the set of representative traces
R. In contrast to equivalence classes, elements in a compatibility class need not
be pairwise compatible and an s may be compatible to multiple representatives,
where the unique representative rep(s) of s has the largest rank.

Definition 9 (Sampling Closedness). An observation table 〈S,E, T̂ 〉 is
closed if for all l ∈ Lt(S) there is a representative s ∈ R with compatibleE(l, s).

10 M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen

Definition 10 (Sampling Consistency). An observation table 〈S,E, T̂ 〉 is
consistent if for all compatible pairs of short traces s, s′ in S and all input-
output pairs i · o ∈ ΣI · ΣO, we have that (1) at least one of their extensions

has not been observed yet, i.e. T̂ (s · i)(o) = 0 or T̂ (s′ · i)(o) = 0, or (2) both
extensions are compatible, i.e. compatibleE(s · i · o, s′ · i · o).

Given a closed and consistent observation table 〈S,E, T̂ 〉, we derive hypothesis

MDP H = hyp(S,E, T̂) through the steps below. Note that extensions s · i · o of

s in S define transitions. Some extensions may have few observations, i.e. T̂ (s · i)
is low and cq(s · i) = false. In case of such uncertainties, we add transitions to
a special sink state labelled by chaos, an output not in the original alphabet1.
A hypothesis is a tuple H = 〈Qh, ΣI, ΣO ∪ {chaos}, q0h, δh, Lh〉 where:
– representatives for long traces l ∈ Lt(S) are given by (see Algorithm 3):

rep(l) = r where r ∈ {r′ ∈ R | compatibleE(l, r′)} with largest rank(r)
– Qh = {〈last(s), row(s)〉 | s ∈ R} ∪ {qchaos},
• for q = 〈o, row(s)〉 ∈ Qh \ {qchaos}: Lh(q) = o
• for qchaos: Lh(qchaos) = chaos and for all i ∈ ΣI: δh(qchaos, i)(qchaos) = 1

– q0h = 〈L(q0), row(L(q0))〉
– for q = 〈o, row(s)〉 ∈ Qh \ {qchaos} and i ∈ ΣI (note that ΣI ⊆ E):

1. If ¬cq(s · i): δ(q, i)(qchaos) = 1, i.e. move to chaos
2. Otherwise estimate a distribution µ = δh(q, i) over the successor states:

for o ∈ ΣO with T̂ (s·i)(o) > 0: µ(〈o, row(rep(s·i·o))〉) = T̂ (s·i)(o)∑
o′∈ΣO T̂ (s·i)(o′)

Updating the Observation Table. Analogously to Sect. 3, we make obser-
vation tables closed by adding new short rows and we establish consistency by
adding new columns. While Algorithm 2 needs to fill the observation table after
executing MakeClosedAndConsistent, this is not required in the sampling-
based setting due to the adapted notions of closedness and consistency.

Trimming the Observation Table. Observation table size greatly affects learn-
ing performance, therefore it is common to avoid adding redundant informa-
tion [?,?]. Due to inexact information, this is hard to apply in a stochastic
setting. We instead remove rows via a function Trim, once we are certain that
this does not change the hypothesis. We remove rows that are (1) not prefixes of
representatives r ∈ R, (2) that are compatible to exactly one r ∈ R, and (3) that
are not prefixes of counterexamples to equivalence between SUL and hypothesis.

Learning Algorithm. Algorithm 4 implements L∗mdp. It first initialises an ob-

servation table 〈S,E, T̂ 〉 with the initial SUL output as first row and with the
inputs ΣI as columns (Line 1). Lines 2 to 4 perform a refine query and then up-

date 〈S,E, T̂ 〉, which corresponds to output distribution queries in L∗mdpe . Here,
the teacher resamples the only known trace L(q0).

After that, we perform Lines 6 to 19 until a stopping criterion is reached. We
establish closedness and consistency of 〈S,E, T̂ 〉 in Line 9 to build a hypothesis

1 This is inspired by the introduction of chaos states in ioco-based learning [?].

L∗-Based Learning of Markov Decision Processes 11

Algorithm 4 The main algorithm implementing L∗mdp
Input: sampling-based teacher capable of answering fq, rfq, eq and cq

1: S ← {L(q0)}, E ← ΣI, T̂ ← {} . initialise observation table

2: perform rfq(〈S,E, T̂ 〉) . sample traces for initial observation table
3: for all s ∈ S ∪ Lt(S), e ∈ E do

4: T̂ (s · e)← fq(s · e) . update observation table with frequency information

5: round ← 0
6: repeat
7: round ← round + 1
8: while 〈S,E, T̂ 〉 not closed or not consistent do

9: 〈S,E, T̂ 〉 ← MakeClosedAndConsistent(〈S,E, T̂ 〉)
10: H ← hyp(S,E, T̂) . create hypothesis

11: 〈S,E, T̂ 〉 ← trim(〈S,E, T̂ 〉,H) . remove rows that are not needed
12: cex ← eq(H)
13: if cex 6= none then . we found a counterexample
14: for all t · i ∈ prefixes(cex) with i ∈ ΣI do
15: S ← S ∪ {t} . add all prefixes of the counterexample

16: perform rfq(〈S,E, T̂ 〉) . sample traces to refine knowledge about SUL
17: for all s ∈ S ∪ Lt(S), e ∈ E do

18: T̂ (s · e)← fq(s · e) . update observation table with frequency information

19: until stop(〈S,E, T̂ 〉, H, round)

20: return hyp(S,E, T̂) . output final hypothesis

H in Line 10. After that, we remove redundant rows of the observation table via
Trim in Line 11. Then, we perform an equivalence query, testing for equivalence
between SUL and H. If we find a counterexample, we add all its prefix traces
as rows to the observation table like in L∗mdpe . Finally, we sample new system
traces via rfq to gain more accurate information about the SUL (Lines 16 to
18). Once we stop, we output the final hypothesis.

Stopping. The exact learner L∗mdpe stops upon reaching equivalence to the
SUL, i.e. once there is no counterexample. In the sampling-based setting, we may
not find a counterexample due to inaccurate hypotheses. Our stopping criterion
therefore takes uncertainty into account, which we quantify with runamb, the
relative number of (unambiguous) traces in S ∪Lt(S) compatible to exactly one
representative in R. Additionally, we check if the chaos state is reachable.

Consequently, we stop when (1) runamb ≥ tunamb where tunamb is a user-
defined threshold, (2) the chaos state is unreachable, and (3) at least rmin rounds
have been executed. We also stop after a maximum of rmax rounds.

4.2 Teacher Implementation

Due to space constraints, we discuss each query only briefly. An accurate de-
scription can be found in the full technical report [?].

– frequency (fq): returns output frequencies observed in the sampled traces S.
– complete (cq): complete queries are based on threshold nc. We consider test

sequences complete that have been sampled at least nc times.
– refine (rfq): refine queries take an observation table 〈S,E, T̂ 〉 and resample

incomplete sequences in (S∪Lt(S)) ·E. The parameter nresample defines how
often we resample.

12 M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen

– equivalence (eq): we apply two strategies for equivalence queries. First, we
test for structural equivalence between hypothesis H and SUL. The testing
strategy inspired by [?] performs random walks on H and has three param-
eters: ntest, the maximum number of tests, pstop, the stop probability, and
prand, the probability of choosing inputs uniformly at random. Second, we
check for conformance between the collected samples S and H via diff fq.

Note that we return no counterexample if trivial counterexamples containing
chaos are observable in the hypothesis. This prompts L∗mdp to issue further refine
queries, causing the chaos state to be unreachable eventually. Otherwise, the
observation table might grow unnecessarily which is detrimental to performance.

Convergence. We have examined convergence of the sampling-based L∗mdp in
the limit with respect to the following setup. We configure equivalence testing
such that each input is chosen uniformly at random and the length of each test is
geometrically distributed. This resembles the sampling regime assumed for IoA-
lergia [?]. Likewise, we consider a data-dependent αn = 1

nr with r > 2, where
n is the number of samples collected so far. Finally, we consider L∗mdp without
trimming of observation tables. Informally, letting the number of rounds and
thus the sample size n approach infinity, we eventually learn the correct MDP.

Theorem 2. L∗mdp as configured above creates hypotheses Hn that are minimal
in the number of states and output-distribution equivalent to the SUL in the limit
(proof [?]).

5 Experiments

We evaluate the sampling-based L∗mdp and compare it to the passive IoAler-
gia [?] by learning a gridworld model with both techniques. Experimental results
and the implementation can be found in the evaluation material [?]. We treat the
known true MDP model M as a black box for learning and measure similarity
to this model using two criteria: (1) the discounted bisimilarity distance [?,?]
between M and the learned MDPs and (2) the difference between probabilistic
model-checking results for M and learned MDPs. We compute maximal prob-
abilities of manually defined temporal properties with all models using Prism
4.4 [?].

Measurement Setup. As in [?], we use a data-dependent εN = 10000
N for IoAler-

gia, where N is the combined length of all learning traces. This parameter serves
a role analogous to the α parameter of L∗mdp. In contrast, we observed that L∗mdp
performs better with a fixed α = 0.05. We sample traces for IoAlergia with a
length geometrically distributed with parameter pl and inputs chosen uniformly
at random, also as in [?]. The number of traces is chosen such that IoAlergia
and L∗mdp learn from approximately the same amount of data.

We implemented L∗mdp and IoAlergia in Java. Additionally, we use the
MDPDist library [?] for bisimilarity distances, adapted to labelled MDPs. We
performed the experiments with a Lenovo Thinkpad T450 with 16 GB RAM, an
Intel Core i7-5600U CPU with 2.6 GHz and running Xubuntu Linux 18.04.

L∗-Based Learning of Markov Decision Processes 13

Table 2. Results for learning the gridworld example.

true model L∗
mdp IoAlergia

outputs - 3 101 959 3 103 607

traces - 391 530 387 746

time [s] - 118.3770 21.4420

states 35 35 21

δ0.9 - 0.1442 0.5241

Pmax(F≤11(goal)) 0.9622 0.9651 0.2306

Pmax(¬G U≤14(goal)) 0.6499 0.6461 0.1577

Pmax(¬S U≤16(goal)) 0.6912 0.6768 0.1800

C C C M

C M

S M G C G

M G C M

G S M G

Fig. 2. The evaluation gridworld

First Gridworld. Models similar to our grid-
world have, e.g., been considered in the con-
text of learning control strategies [?]. Basi-
cally, a robot moves around in a world of
tiles of different terrains. It may make errors
in movement, e.g. move south west instead
of south with an error probability depending
on the target terrain. Our aim is to learn an
environment model, i.e. a map. Fig. 2 shows
our gridworld. Black tiles are walls and other
terrains are represented by different shades of grey and letters (Sand, Mud, Grass
& Concrete). A circle marks the initial location and a double circle marks a goal
location. Four inputs enable movement in four directions. Observable outputs
include the different terrains, walls, and a label indicating the goal. The true
model of this gridworld has 35 different states.

We configured sampling by nresample = 300, ntest = 50, pstop = 0.25 and
prand = 0.25, and stopping by tunamb = 0.99, rmin = 500 and rmax = 4000.
Finally, we set pl = 0.25 for IoAlergia.

Results. Table 2 shows the measurement results for learning the gridworld. Our
active learning stopped after 1147 rounds, sampling 391 530 traces (Row 2) with
a combined number of outputs of 3 101 959 (Row 1). The bisimilarity distance
discounted with λ = 0.9 to the true model is 0.144 for L∗mdp and 0.524 for IoA-
lergia (Row 5); thus it can be assumed that model checking the L∗mdp model
produces more accurate results. This is indeed true for our three evaluation
queries in the last three rows. These model-checking queries ask for the maxi-
mum probability (quantified over all schedulers) of reaching the goal within a
varying number of steps. The first query does not restrict the terrain visited
before the goal, but the second and third require to avoid G and S, respectively.
The absolute difference to the true values is at most 0.015 for L∗mdp, but the
results for IoAlergia differ greatly from the true values. One reason is that the
IoAlergia model with 21 states is significantly smaller than the minimal true
model, while the L∗mdp model has as many states as the true model. IoAlergia

14 M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen

is faster than L∗mdp, which applies time-consuming computations during equiv-
alence queries. However, the runtime of learning-specific computations is often
negligible in practical applications, such as learning of protocol models [?,?], as
the communication with the SUL usually dominates the overall runtime. Given
the smaller bisimilarity distance and the lower difference to the true probabilities
computed with Prism, we conclude that the L∗mdp model is more accurate.

Due to space constraints, we only present the intuitive gridworld experiment.
The full technical report includes further experiments with a larger gridworld
(72 states), a consensus protocol (272 states) and a slot machine model (109
states) [?]. They also confirm the favourable accuracy of L∗mdp.

6 Related Work

In the following, we discuss techniques for learning both model structure and
transition probabilities in case of probabilistic systems. There are many learning
approaches for models with a given structure, e.g., for learning control strate-
gies [?]. Covering these approaches is beyond the scope of this paper.

We build upon Angluin’s L∗ [?], thus our work shares similarities with other
L∗-based work like active learning of Mealy machines [?]. Interpreting MDPs as
functions from test sequences to output distributions is similar to the interpre-
tation of Mealy machines as functions from input sequences to outputs [?].

Volpato and Tretmans presented an L∗-based technique for non-deterministic
input-output transition systems [?]. They simultaneously learn an over- and an
under-approximation of the SUL with respect to the input ouput conformance
(ioco) relation [?]. Inspired by that, we apply completeness queries and we add
transitions to a chaos state in case of incomplete information. Beyond that,
we consider systems to behave stochastically rather than non-deterministically.
Early work on ioco-based learning for non-deterministic systems has been pre-
sented by Willemse [?]. Khalili and Tacchella [?] addressed non-determinism by
presenting an L∗-based algorithm for non-deterministic Mealy machines.

Most sampling-based learning algorithms for stochastic systems are passive.
Notable early works are Alergia [?] and rlips [?], which identify stochastic
regular languages. Both also apply Hoeffing bounds for testing for difference be-
tween probability distributions. We compare L∗mdp to IoAlergia, an extension
of Alergia by Mao et al. [?,?]. It basically creates a tree-based representa-
tion of given system traces and repeatedly merges compatible nodes, creating an
automaton. Normalised observed output frequencies estimate transition proba-
bilities. IoAlergia also converges in the limit. Chen and Nielsen applied it in an
active setting [?], by sampling new traces to reduce uncertainty in the data. In
contrast to this, we base our sampling not only on data collected so far (refine
queries), but also on observation tables and derived hypothesis MDPs (refine
& equivalence queries), taking information about the SUL’s structure into ac-
count. In previous work, we presented a different approach to active learning

L∗-Based Learning of Markov Decision Processes 15

via IoAlergia which takes reachability objectives into account with the aim at
maximising the probability of reaching desired events [?].

Feng et al. [?] learn assumptions for compositional verification in the form
of probabilistic finite automata with an L∗-style method. Their method requires
queries returning exact probabilities, hence it is not applicable in a sampling-
based setting. It shares similarities with an L∗-based algorithm for learning
multiplicity automata [?], a generalisation of deterministic automata. Further
query-based learning in a probabilistic setting has been described by Tzeng [?].
He presented a query-based algorithm for learning probabilistic automata and
an adaptation of Angluin’s L∗ for learning Markov chains.

7 Conclusion

We presented L∗-based learning of MDPs. For our exact learning algorithm
L∗mdpe , we assumed an ideal setting that allows to query information about the
SUL with exact precision. Subsequently, we relaxed our assumptions, by approx-
imating exact queries through sampling SUL traces via directed testing. These
traces serve to infer the structure of hypothesis MDPs, to estimate transition
probabilities and to check for equivalence between SUL and learned hypotheses.
The resulting sampling-based L∗mdp iteratively learns approximate MDPs which
converge to the correct MDP in the large sample limit. We implemented L∗mdp
and compared it to IoAlergia [?], a state-of-the-art passive learning algorithm
for MDPs. The evaluation showed that L∗mdp is able to produce more accurate
models. To the best of our knowledge, L∗mdp is the first L∗-based algorithm for
MDPs that can be implemented via testing. Further details regarding the im-
plementation, convergence proofs and extended experiments can be found in the
technical report [?] and the evaluation material [?].

The evaluation showed promising results, therefore we believe that our tech-
nique can greatly aid the black-box analysis of reactive systems such as commu-
nication protocols. While deterministic active automata learning has successfully
been applied in this area [?,?], networked environments are prone to be affected
by uncertain behaviour that can be captured by MDPs. Furthermore, L∗mdp pro-
vides room for experimentation, e.g. different testing techniques could be applied
in equivalence queries.

Acknowledgment. This work was supported by the TU Graz LEAD project
“Dependable Internet of Things in Adverse Environments”.

	L*-Based Learning of Markov Decision Processes

